公务员期刊网 精选范文 生物燃料技术范文

生物燃料技术精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的生物燃料技术主题范文,仅供参考,欢迎阅读并收藏。

生物燃料技术

第1篇:生物燃料技术范文

[关键词] 生物燃料 综合应用技术 新进展

[中图分类号] TK6 [文献标识码] A [文章编号] 1003-1650(2016)10-0206-01

引言

党的十报告中提出了关于提高能源使用效率的问题,即要支持新能源的开发,提高可再生能源的利用率。至此,河南驻马店市农业大区对生物质燃料的综合应用技术得到了高度重视。生物质能作为碳源具有可再生性,可以转化为固态燃料、液态燃料、气态燃料。

1 固体生物质燃料的综合应用技术

制备固体生物质燃料所采用的技术是固化成型技术,即将品位相对较低的生物质转化为品位相对较高的生物质燃料,而且由于燃料已经固化成型的,所以方便与存储和运输,在燃料的利用上也非常便利。固体生物质燃料的资料来源于农业和林业生产中所产生的玉米芯、秸秆等等各种废弃物。

1.1 固体生物质燃料的成型技术

首先,要收集生物原材料,将这些材料经过筛选之后,确保材料干燥,灰分符合要求,污染性低而且热值高、容易燃烧。对于这些材料进行干燥处理后,进行成型处理以方便运输[1]。其次,将所有筛选出来的材料粉碎处理,并将黏结剂和助燃剂加入其中进行压缩,使固体生物质燃料不仅方便存储,而且容易燃烧。

1.2 固体生物质燃料的生产技术

根据不同的生产条件,固体生物质燃料所采用的生产技术也会有所不同。其一,常温湿压成型技术,具体而言,是将纤维素原料进行水解处理而使得原料的纤维经过湿润时候软化,使其皱裂,之后进行压缩处理。这种技术的操作简单,但是会提高部件的磨损度,而且所生产的燃料的燃烧值比较低。所以,成本相对较高。其二、炭化成型技术,即对生物质原料进行炭化处理后成为粉末状,将粘结剂加入其中,压缩成木炭。比如,河南驻马店市农业大区,秸秆多综合利用,利用炭化技术工艺生产出来的秸秆炭粉可制成炭球、活性炭等炭产品。在秸秆炭化的过程中所排放的烟雾收集起来提取可燃气体、木焦油、木醋酸。但目前综合利用率还比较低,所以,还国家对秸秆综合利用予以补贴和政策上的倾斜。

2 液态生物质燃料的综合应用技术

2.1 燃料乙醇

燃料乙醇成本低而且具有可再生性。生产技术上,是对非粮食原料乙醇回收后,经过净化并发酵处理。其中,对脱水处理技术具有很高的要求,主要采用了萃取精馏法、吸附分离法以及共沸精馏法等等[2]。所生产的燃料乙醇中所含有的乙醇可以达到99.7%,比无水乙醇中的乙醇含量要高。

2.2 生物柴油

动植物油脂经过加工处理后,可以生产出与柴油的化学性质比较接近的长链脂肪酸单烷基酯,即为“生物柴油”。这种材料具有良好的性,没有毒,而且生物降解,是用于替代柴油的最好的材料。生产技术上,物理方式进行技术处理即为直接混合法、酯交换法和酶催化法;化学方式进行技术处理即为采用了微乳化法高温热裂解法。由于所使用的材料不同,生产出来的生物柴油存在着有点和不足。目前广泛使用的生物柴油制备方法为酯交换法。这种方法的原料来源广泛,加工工艺简单,所生产出来的生物柴油性能稳定,但是在生产的过程中会有碱性废水产生,而且生产设备会遭到严重的腐蚀。

3 气态生物质燃料的综合应用技术

生物质发酵技术,就是将生物质采用厌氧微生物分解技术,经过代谢处理之后生成了气体,这种气体的主要成分是甲烷,其中还包括二氧化碳、氢气以及硫化氢等等,即为“沼气” [3]。沼气的发酵划分为水解液化、酸化、产甲烷三个阶段。生物技术的快速发展,挖掘高效厌氧微生物并使用的效率也会有所提高,对沼气的利用起到了促进作用。

按照生物质气化原理,生物质气化制氢技术需要将生物质进行气化处理后,可燃性的气体与水蒸汽不断地重整,从中可以提取氢气。研究的介质是催化剂、气化炉,使用白云石制作二氧化碳,吸收蒸汽,经过气化后产生二氧化碳气体。经过试验表明,气体中的氢气产量是非常高的,可以达到66.9%;二氧化碳气体为3.3%;一氧化碳气体为0.3%。

总结

综上所述,中国在近年来环境污染日趋严重。要保护好生态环境,就要加大清洁能源的使用力度,同时还要提高能源的重复使用效率。特别是发展新能源,能够对不可再生能源的利用以缓解,一方面可以对能源使用的安全予以维护,而且还可以推进新农村建设。

参考文献

[1]王永征,姜磊,岳茂振,等.生物质混煤燃烧过程中受热面金属氯腐蚀特性试验研究[J].中国电机工程学报,2013,33(20):88―95.

第2篇:生物燃料技术范文

1 生物质固体成型燃料

农作物秸秆通常松散地分散在大面积范围内,且堆积密度较低,这给收集、运输、储藏和应用带来了一定的困难。在一定温度和压力作用下,将秸秆压缩成棒状、块状或颗粒状等成型燃料,提高其运输和贮存能力,改善秸秆燃烧性能,提高利用效率,不仅可以用于家庭炊事、取暖,也可以作为工业锅炉和电厂的燃料替代煤、天然气、燃料油等化石能源。

2 不同类型的生物质固体成型燃料

3 生物固体成型燃料的特点

生物质固体成型燃料是生物质能开发利用技术的发展方向之一,可为农村居民和城镇用户提供优质能源,近年来越来越受到人们的广泛关注。其体积缩小6~8倍,密度约为1.1~1.4吨/m3;能源密度相当于中质烟煤:使用时火力持久,炉膛温度高,燃烧特性明显得到了改善。

二 国外生物质固体成型燃料发展现状

1 国内外发展现状

目前,国外生物质能固体成型燃料技术及设备的研发已经趋于成熟,相关标准体系也比较完善,形成了从原料收集、预处理到生物质固体成型燃料生产、配送、应用整个产业链的成熟体系和模式。

2 生物质固体成型设备

3 热利用设备

4 发展现状

2005年,世界生物质固体成型燃料产量已经超过了420万吨,其中美洲地区110万吨,欧洲地区300万吨。预计2007年将总产量超过500万t。欧洲现有生物质固体燃料成型厂70余个。仅瑞典就有生物质颗粒加工厂10余

家,单个企业的年生产能力达到了20多万吨。国外生物质固体成型燃料技术及设备的研发已经趋于成熟,相关标准体系也比较完善,形成了从原料收集、预处理到生物质固体成型燃料生产、配送、应用的产业链成熟体系和模式。

5 欧盟标准-CEN/TC335固体生物质燃料

欧盟固体生物质燃料标准化工作始于2000年。按照欧盟的要求,由欧盟标准化委员会(cEN)组织生物质固体燃料研讨会,识别并挑选了一系列需要建立的固体生物质燃料技术规范。欧盟标准化委员会准备了30个技术规范,分为术语;规格、分类和质量保证;取样和样品准备,物理(或机械)试验;化学试验等5个方面。技术规范的初始有效期限制为3年,在2年以后CEN成员国需要提交对标准的意见,特别是可否转成欧盟标准。(表2)

三 我国发展生物质固体成型燃料的有力条件

1 国内发展现状

我国生物质固体成型技术的研究开发已有二十多年的历史,20世纪90年代主要集中在螺旋挤压成型机上,但存在着成型筒及螺旋轴磨损严重、寿命较短、电耗大、成型工艺过于简单等缺点,导致综合生产成本较高,发展停滞不前。进入2000年以来,生物质固体成型技术得到明显的进展,成型设备的生产和应用已初步形成了一定的规模。

2 形成了良好的政策法规环境

国务院办公厅《关于加快推进农作物秸秆综合利用意见的通知》中指出“结合乡村环境整治,积极利用

秸秆生物气化(沼气)、热解气化、固化成型及炭化等发展生物质能,逐步改善农村能源结构。”财政部出台了《秸秆能源化利用补助资金管理暂行办法》,采取综合性补助方式,支持从事秸秆成型燃料、秸秆气化、秸秆干馏等秸秆能源化生产的企业收集秸秆、生产秸秆能源产品并向市场推广。

3 核心技术趋于成熟

目前,我国秸秆固体成型的关键技术已取得突破,特别是模辊挤压式颗粒成型技术,已经达到国际同类产品先进水平,有效地解决了功率大、生产效率低、成型部件磨损严重、寿命短等问题,并已实行商业化。全国秸秆固体成型设备的生产和应用已初步形成了一定的规模,固体成型燃料的年产量约20万吨,主要以锯末和秸秆为原料,用于农村居民生活用能、锅炉燃料和发电等。生物质炉具的开发也取得一定的进展,开放了秸秆固体成型燃料炊事炉、炊事取暖两用炉、工业锅炉等专用炉具。

(1)不同的成型技术(图5、6、7)

(3)生物质固体成型燃料示范工程案例

示范地点:北京大兴区:建设规模:年产20000吨固体成型燃料,包括:颗粒燃料生产线1条,年产10000吨:压块燃料生产线1条,年产10000吨;原料类型:各种农作物秸秆、木屑、花生壳等。

工艺技术路线:(如8所示)

执行情况:已完成秸秆固体成型设备的研究设计,形成了具有自主知识产权的成型机,产品如图9、10、11、12所示。

2008年5月通过农业部科教司组织的鉴定,鉴定结论:技术为国内领先,主要技术经济指标居国际先进水平。

(4)生物质固体成型燃料炉

根据用途的不同,生物质固体成型燃料炉具可分为炊事炉、采暖炉和炊事采暖两用炉;根据使用燃料的规格不同,可分为颗粒炉(图13)和棒状炉;根据进料方式的不同,可分为自动进料炉和手动炉;根据燃烧方式的不同,可分为燃烧炉、半气化炉(图14)和气化炉。

(5)拟引进国外先进技术

引进了瑞典Gordic Environment AB公司的pellx生物质固体成型燃料高效燃烧器。(图15)

热输出:10~25kW;

燃烧效率:大约90%;

功率消耗:大约40W

(6)我国生物质固体成型燃料标准体系(图16)

(7)近期拟(已)制订计划(表4)

4 秸秆收储运模式初步建立

农作物秸秆通常松散地分散在大面积范围内。收购组织面广量大,涉及到千家万户,这给秸秆能源化利用带来了困难。经过探索和尝试,各地因地制宜,形成了“农户+秸秆经纪人+企业”、“农户+企业+政府”等各具特色的秸秆收储运模式。(图17)

需求分析:

生物质固体成型燃料适用于农村居民炊事和采暖用能,大中城市工业锅炉、发电和热电联产等。生物质固体成型燃料可为农村家庭提供室内取暖燃料,未来发展潜力巨大;随着国家节能减排政策的实施,大中城市取缔燃煤的工业锅炉将成为必然,将燃煤锅炉改造为燃生物质固体成型燃料锅炉则是一个可行的选择;木质颗粒燃料具有燃烧效率高、自动化程度高、清洁卫生等优点,适合于别墅壁炉等高端人群的冬季采暖,也是未来一个应用方向。

四 发展前景与展望

《可再生能源中长期发展规划》中明确提出“重点发展生物质固体成型燃料”到2010年,生物质固体成型燃料年利用量达到100万吨;到2020年,生物质固体成型燃料年利用量达到5000万吨。(图18)

效益分析:

拉动内需。建设1处年产3000吨秸秆固体成型燃料的示范点,需投资180万元,需要水泥100吨、砖30万块、沙子170吨、钢材70吨。

增加就业。建设秸秆固体成型燃料示范点可引导农村劳动力就地就近就业,每条生产线需要操作工30人,均来自当地农民,按照1000元/月计算,年人均收入可达1.2万元。同时,从秸秆的收集、储存和运输整个收购环节,可以间接带动当地的一部分劳动力参与到这个行业中来。按照每年收购12000吨原料计,可以吸收至少200人参与该行业。

第3篇:生物燃料技术范文

生物能源是什么

生物能源又称绿色能源,可再生,原材料遍布各地,蕴藏量极大。生物能源离我们并不遥远,它就在身边。垃圾、秸秆、沼气甚至包括 “地沟油”,这些看似无用的家伙经过加工处理都能变成可利用能源。通常包括:一是木材及森林工业废弃物;二是农业废弃物;三是水生植物;四是油料植物;五是城市和工业有机废弃物;六是动物粪便。

生物能源主要有沼气、生物制氢、生物柴油和燃料乙醇。沼气由微生物发酵秸秆、禽畜粪便等有机物产生,主要成分是甲烷;生物氢通过微生物发酵得到,由于燃烧生成水,是最洁净的能源;生物柴油是利用生物酶将植物油或其他油脂分解后得到的液体燃料,作为柴油替代品;燃料乙醇是植物发酵时产生的酒精,以一定比例掺入汽油,使排放的尾气更清洁。

生物能源的现状

新型原料培育、产品综合利用、技术高效低成本转化,是“十二五”生物能源技术三大趋势。原料从以废弃物为主向新型资源选育和规模化培育发展;高效、低成本转化技术与生物燃料产品高值利用是技术发展核心;生物质全链条实现绿色、高效利用。

我国现有生物质资源相当于4.5亿吨标准煤,利用技术被列为重点科技攻关项目,如户用沼气池、节柴炕灶、薪炭林、大中型沼气工程、生物质压块成型、气化与气化发电、生物质液体燃料等。

生物能源科技重点包括:微藻、油脂类、淀粉类、糖类、纤维类等能源植物的选育与种植,生物燃气高值化制备及综合利用,农业废弃物制备车用生物燃气示范,生物质液体燃料高效制备与生物炼制,规模化生物质热转化生产液体燃料及多联产技术,纤维素基液体燃料高效制备,生物柴油产业化关键技术研究,万吨级的成型燃料生产工艺及国产化装备,生物基材料及化学品的制备炼制技术等。已经开发出多种固定床和流化床气化炉,以秸秆、木屑、稻壳、树枝为原料生产燃气。

利用方式

1.气体燃料。包括沼气、生物质气化制气等。利用有机垃圾、生物质废料、残留物、废弃物等进行发酵等工艺,生产出沼气等可燃气体。这种利用方式受原材料供应限制,大中型沼气工程发展较慢。可燃气通常用于家庭,以及专用燃气交通工具,使用范围较窄。可燃气体发电同样受到原料供应的限制。

2.液体生物质燃料。包括燃料乙醇和生物柴油,是可再生能源开发利用的重要方向。

生物柴油的原料来源广泛:回收动植物油;含油量高的植物,如麻风树(学名小桐子)、黄连木、文冠果、续随子等。构建大规模生物柴油能源林是解决原料供应的根本。

燃料乙醇在经历了以粮食为原料生产的初级阶段后,逐渐向以木质纤维素等非粮食原料转向。目前已有若干实验试点企业运行投产。

3.固体生物质燃料。分为生物质直接燃烧、压缩成型燃料、生物质与煤混合燃烧为原料的燃料。热效率利用率较低,通过新型炉灶、锅炉提高热效率利用率,或者把生物质固化成型后采用略加改进后的传统设备燃用,但成型燃料的压缩成本较高。此外,生物质燃料发电也成为当前生物质能开发利用的重要方向。

美国、英国、瑞典等国家均有生物质能源发电站建设投产,我国在这方面也具有了一定的规模,南方地区的许多糖厂利用甘蔗渣发电。广东和广西两省共有小型发电机组300余台,云南也有一些甘蔗渣电厂。

在诸多的生物质利用技术中,生物质发电技术是最具发展潜力的利用技术之一。因为电的利用范围较广,而且可以充分利用现存电网。高效直燃发电是最简便可行的高效利用生物质资源的方式之一。

发展生物能源的8大优势

生物能源对环境污染小,属于可再生能源,其普遍、易取,便于运输,且具有以下优势:

1.生物燃料是唯一能大规模替代石油燃料的能源产品,而水能、风能、太阳能、核能及其他新能源只适用于发电和供热。

2.产品多样。液态:生物乙醇和柴油;固态:原型和成型燃料;气态:沼气等。既可以替代石油、煤炭和天然气,也可供热和发电。

3.原料多样。秸秆、林业加工剩余物、畜禽粪便、食品加工业的有机废水废渣、城市垃圾,还可利用低质土地种植各种能源植物。

4.生物燃料可以像石油和煤炭那样生产塑料、纤维等产品,形成生产体系。其他可再生能源和新能源不可能做到。

5.可循环性和环保性。生物燃料是在农林和城乡有机废弃物的无害化和资源化过程中生产出来的产品;生物燃料的全部物质均能进入生物循环。物质上永续,资源上可循环。

6.生物燃料的“带动性”。生物燃料可以拓展农业生产领域,带动农村经济发展,增加农民收入;还能促进制造业、建筑业、汽车业等行业发展。

7.生物燃料具有对原油价格的“抑制性”。生物燃料将使“原油”生产国从目前的20个增加到200个,通过自主生产燃料,抑制进口石油价格,并减少进口石油花费,使更多的资金能用于改善人民生活,从根本上解决粮食危机。

8.生物燃料可以创造就业机会和建立内需市场。联合国环境计划署的“绿色职业”报告中指出,“到2030年可再生能源产业将创造2040万个就业机会,其中生物燃料1200万个”。

相关政策

近几年,中国生物能源产业发展迅速,产品产出持续扩张,国家产业政策鼓励生物能源产业向高技术产品方向发展,中国企业新增生物能源投资项目逐渐增多。投资者对生物能源产业的关注越来越密切,生物能源已成“十二五”规划扶持重点。《可再生能源中长期发展规划》提出,未来15年内投资约1.5万亿用于发展可再生能源,到2020年发展燃料乙醇至1500万吨、生物柴油500万吨。2011年1月5日,总理主持召开国务院常务会议,决定实施新一轮农村电网改造升级工程。在“十二五”期间,使全国农村电网普遍得到改造,基本建成安全可靠、节能环保、技术先进、管理规范的新型农村电网。

存在问题

1.原料资源短缺。广西木薯燃料乙醇项目,被利用为燃料乙醇原材料的木薯的前后价格差别很大,这对供应体系是个挑战。考虑到与人畜食物相争,很多国家都限制玉米乙醇生产,生物柴油原料不足。同样的问题在生物质发电、成型燃料和生物柴油领域也普遍存在。制备生物柴油主要原材料――“地沟油”回收方面表现尤为突出。相比于“地沟油”制备食用油技术,生物柴油的成本高售价低,再加上相关部门监管力度不够,造成“地沟油”回流餐桌现象普遍,也直接导致生物柴油原料供应不足。

2.技术基础薄弱。以能源作物为原料生产燃料处于试验阶段,以废弃动植物油生产生物柴油的技术较为成熟,但潜力有限。后备资源潜力大的纤维素生物质燃料乙醇和生物合成柴油的生产技术还处于研究阶段,产业化程度低。

3.生物燃油产品市场竞争力弱。受原料来源、生产技术和产业组织等多方面因素的影响,燃料乙醇的生产成本较高。目前,国家每年对102万吨燃料乙醇的财政补贴约为15亿元,在目前的技术和市场条件下,扩大燃料乙醇生产需要大量的资金补贴。

4.销售市场建设滞后,下游企业对接缺失。主要体现在生物液体燃料方面。以生物柴油为例,国内企业几乎都没有自己的加油站,很难进入中石油、中石化的成品油零售市场,销售渠道更是匮乏单一。在生物柴油发展的黄金期,国内涉足企业数量一度达到了300多家,目前数量缩水三分之一。

中小投资者的机遇

原料加工:如绿野科技从菊芋块茎中提取菊粉;甜高粱产量高,秆渣是造纸的好原料,作为大规模的能源作物具备有利的特性,很有前途。

油料作物种植:如北京草业与环境研究发展中心的柳枝稷、芦竹和荻,已试种了3000亩;赤峰市翁牛特旗经济林场,文冠果基地全国最大;湖南林业科学院能源植物与生物燃料油研究中心,选育出大果、矮化、高产、高含油的光皮树无性系良种6个,营造光皮树油料林30万亩。

第4篇:生物燃料技术范文

生物燃料的技术革新能否克服环境污染的缺憾?革新的突破口在哪里?答案似乎已经找到。根据业界的预测,未来第四代生物燃料可以“完美”解决“绿色”燃料带来的污染问题。

说到第四代技术,还得先从最基本的概念说起。 生物燃料泛指由生物资源经过一系列物理、化学变化过程而获得的燃料乙醇、燃料丁醇、生物柴油等可再生燃料。它起源于上世纪70年代,由于受传统能源价格提高、环保意识加强和全球气候变化等因素影响,美国、巴西、欧盟以及中国等成为积极发展这一技术的主角。

生物燃料依据其使用的原料和技术可分为四代。第一代的代表产品为生物乙醇和生物柴油;第二代的代表产品是纤维素乙醇,它由以麦秆等农林废弃物为主的生物质原料经过预处理、酶降解和糖化、发酵等步骤制成;第三代是指以微藻为原料生产的各种生物燃料,也称为微藻燃料;第四代主要利用代谢工程技术改造藻类的代谢途径,使其直接利用光合作用吸收二氧化碳合成乙醇、柴油或其他高碳醇等,这是当前最新技术。虽然该技术尚处于实验室研究阶段,但在环保、成本等方面的优势已经可以预期:

首先是燃料的生产途径。传统技术要分解生物质生产乙醇,而第四代技术则采用微藻,直接通过光合作用,将温室气体二氧化碳转变成乙醇。

其次是工艺对环境的影响。传统技术在生产生物燃料的过程中,会产生大量的有害气体、固体废弃物,且排放大量二氧化碳,而第四代技术不仅不会产生任何废弃物,而且能吸收大量的二氧化碳,有助于碳减排。

再次是对粮食安全的影响。第一、二代技术会消耗大量的粮食,且占用大面积耕地,进而在世界范围内引发对粮食安全的担忧,而第四代技术根本不需要农作物和农场,建厂灵活性高,生产环节很少,与传统技术多达20个环节相比,第四代技术只需要简单的三四个环节。

第5篇:生物燃料技术范文

关键词:生物质;秸秆;燃烧技术;现状;展望

Current situation and prospect of

combustion technologies for different forms of biomass

Liu Shengyong, Liu Xiao’er, Wang Sen

(Key Laboratory of Renewable Energy of Ministry of Agriculture, Electrical and Mechanical? Engineering College, Henan Agricultural University, Zhengzhou, 450002,China)

Abstract:In this paper,the characteristics of biomass fuels,and current situation of combustion technologies for biomass briquette,biomass bale,biomass powder and biomass gas were introduced. The problem of deposit and corrosion during biomass combustion was analyzed. At last,the prospect for the development trend of biomass combustion technologies was forecasted.

Key words:biomass; straw; combustion technologies; current situation; prospect

0引 言

生物质能与化石能源相比,具有可再生和低污染的优势,因此受到全世界普遍的重视,并已成为新能源的发展方向之一。生物质能主要通过直接燃烧、气化、液化和厌氧发酵加以利用。生物质因具有挥发分高、炭活性高、N和S含量低,灰分低,生命周期内燃烧过程CO2零排放等特点,特别适合燃烧转化利用,是一种优质燃料[1]。生物质燃烧技术按其形态的不同可分为生物质成型燃料的燃烧技术、生物质捆烧技术、生物质粉体燃烧技术和生物质燃气燃烧技术等,就中国的基本国情和生物质利用水平而言,生物质燃烧技术无疑是最简便可行的高效利用生物质资源的方式之一。

1生物质燃料的燃烧特性

第6篇:生物燃料技术范文

方向性错误?

在美国佛罗里达州西棕榈滩边的一片丛林里,有一块约半个篮球场大的水泥地,上面摆着一排排装有塑料窗的白色浴缸,缸里盛满了墨绿色的液体。

这里是生物燃料公司阿肯罗尔的秘密实验场地,除美国能源署的官员外,从未对外露过庐山真面目。浴缸里的墨绿色液体是水和海藻的混合物。现年46岁的公司首席执行官保罗・伍兹说,他与他的合作者们有意利用海藻,生产一种比石油和玉米乙醇更清洁、更便宜的生物燃料。

“我们希望最终能生产出200亿加仑生物燃料,而且价格具有竞争力。预计一年后,我们的产品就可以投入市场。”伍兹说。

如此豪言壮语,在生物燃料圈里曾经比比皆是,但对那些雄心勃勃致力于用植物替代汽油研究的人们而言,2008年是不幸的。曾获美国政府大力支持的玉米乙醇工业在这一年遭遇重大挫折。

一系列重大研究显示,以粮食为原料的生物燃料,如玉米乙醇,并非如人们想象的那样,是一种绿色燃料,正是它导致了世界粮食价格飞涨。而且,由于发展生物燃料可以获得政府补贴,大片森林遭砍伐,由此产生的温室效应比燃烧汽油还严重。

美国自然资源保护委员会分析员纳撒内尔・格林说:“传统的生物燃料,如玉米乙醇和生物柴油等,正把我们引向一个错误方向。”

但就此放弃生物燃料研究显然不是一个明智的选择。目前,人们还无法摆脱对喷气式飞机和内燃机等交通工具的依赖。即便是颇被看好的电动汽车技术,也还需几年时间才能被大众接受,因为电动汽车一旦进入市场,交通基础设施势必进行大规模改造,加油站需改造成充电站。

因此,美国环境保护基金会汽车战略资深研究员约翰・迪西科认为,彻底放弃生物燃料研究是“欠成熟”的做法。幸运的是,一些欧美公司正在开发不以粮食为原料的生物燃料,它们的新选择从柳枝稷到海藻,可谓五花八门。虽然每一种技术都存在缺点,不够完善,但面对一个化石燃料日益紧缺的世界,每一种尝试都代表着一个希望。

纤维素乙醇

玉米和甘蔗最早被选为生物燃料原料,因为植物淀粉中的糖比较容易发酵成乙醇。但对于植物而言,除可以食用的淀粉和糖外,还有其他重要成分,比如构成所有植物细胞壁的有机分子――纤维素。

李・林德是达特茅斯学院环境工程师,也是低碳能源生物技术供应商马斯科马的创办人之一,他正专注于寻找能消化纤维素并且直接吐出乙醇的细菌。他称这一过程为“生物综合处理”,可以大大降低生产成本。他相信即便没有政府补贴,马斯科马公司最终也能生产出比石油更便宜的乙醇。

马斯科马公司的技术引起很多大买家的兴趣。最近它与通用公司签了一单生意,用于开发纤维素燃料。马斯科马公司还计划在密歇根州建立一个商业生产基地。

总部位于马萨诸塞州的Verenium公司虽然成立才两年,但它在路易斯安那州修建的实验厂已基本完工,这是美国本土第一家生物燃料工厂,建成后每年将生产140万加仑纤维素乙醇。它选用的原料是甘蔗残渣。

Verenium公司最近与能源巨头英国石油公司达成合作协议,共同开发纤维素乙醇。公司首席执行官卡洛斯・里瓦斯希望这一合作能加速纤维素乙醇商业化进程。他说:“在实验室里,我们可以做得十分完美,可一旦进入现实世界,一切可能完全变样,我们必须通过实践来学习。”对分解纤维素最有经验的当属丹麦的诺维信公司,它是世界最大的工业酶生产商。多年来,它生产的酶主要用于污水处理,但近几年,它开始涉足生物燃料领域。如今,生物燃料已成为诺维信公司增长速度最快的业务。

诺维信公司雇用了一批“酶猎头”,在全世界范围内搜寻能消化纤维素的昆虫。有人会问,既然可以在实验室里利用生物技术获得更好的酶,为什么还要在大自然中寻找天然酶呢?

在诺维信公司位于加利福尼亚州的研究所,科学家们给出了答案。他们正试图通过改变天然酶的遗传结构来提高纤维素的分解技术。这一过程被称为“定向进化”。诺维信北美公司总裁拉斯・汉森说:“纤维素正在向抗降解的方向进化,我们的生物技术必须迎头赶上,以对抗这种进化带来的挑战。”

海藻新希望

生物技术的发展让人们充满期待,新型生物燃料的出现也许指日可待。

乙醇的一大缺点是,标准的汽车发动机必须经过改造,才能使用乙醇做燃料。而且,如用输油管运送乙醇,会对管道造成很大腐蚀。位于加州的Amyris公司正在研究如何利用遗传工程,生产能够制造可再生燃料的酵母。这种可再生燃料具有碳氢化合物的一切优点,比如运输便捷、能量密度高等,却没有碳氢化合物污染环境的缺点。

Amyris公司创建人内尔・伦宁格说:“我们希望生产出一种能立即投入现有基础设施的生物燃料。”

但Amyris公司生产的燃料主要以甘蔗残渣为原料。虽然甘蔗的利用率远远高于玉米,但它仍属于粮食作物。很难想象,Amyris公司可以在不影响粮食供给的情况下推广它的技术。

于是,科学家们又把目光转向了一种更为物美价廉的替代品――藻类。它没有粮食作物原料的任何缺点,无需土地,无需淡水,只要阳光充足,在盐水中就能生长。不仅如此,海藻还能大量吸收碳。因此,从理论上讲,以海藻为原料可谓一举两得,既可以生产可再生的生物燃料,也可以吸食化石燃料植物所释放的碳。

阿肯罗尔公司的伍兹很早就开始研究海藻。大多数海藻公司的做法是先压榨海藻提取油,然后加工成燃料,而阿肯罗尔公司的做法是先获取气态油,然后冷凝成液态。伍兹说,凭这种方法,乙醇的英亩年产量可达6000加仑,而玉米乙醇的英亩年产量仅为370加仑。

伍兹的想法吸引了不少合作者。阿肯罗尔公司准备在索诺兰沙漠地区建立一个商业化生产工厂。那里临海,可以利用海水培养海藻,附近还有一家煤炭厂,可以提供浓缩的二氧化碳进行增压加工。

第7篇:生物燃料技术范文

生物燃料泛指由生物质组成或萃取的固体、液体或气体燃料,可单独使用或与汽油或柴油混合使用。当前各国积极研究和投入的生物燃料主要指生物液体燃料,包括燃料乙醇、生物柴油等。

20世纪70年代的能源危机使得各国纷纷寻求各种手段,通过能源供给多样化,降低对化石燃料的依赖,增强自身能源安全。

进入21世纪以来,国际原油价格经历了一轮以需求拉动的上涨,年平均名义价格由2001年的24美元/桶上涨至2010年的79美元/桶,实际增长1.6倍。2008年7月创每桶148美元的历史高位,受国际金融危机冲击,半年内又暴跌至每桶35美元左右,波动幅度巨大,但油价整体上行趋势未变。

显然,由国际油价走势变动带来的航空煤油价格高企及波动加剧将给航空公司带来极大的运营风险。此外,为应对全球气候变化的挑战,各国在减少温室气体排放方面已达成基本共识,针对不同行业的减排目标和政策也相继出台。在国际油价高企和全球温室气体减排的背景下,生物燃料有望成为替代传统航空煤油的重要新能源。

生物燃料使命

生物燃料的发展大致经历了三个阶段:(1)第一代生物燃料,主要以粮食为原料,其发展日益受到限制;(2)第二代生物燃料,以非粮作物如乙醇、纤维素乙醇、生物柴油等为代表;(3)第三代生物燃料,以微藻等为原料,目前美国、以色列、德国、加拿大、阿根廷、澳大利亚、韩国等正在积极研究。

自2000年以来,全球生物燃料产量增长了近三倍。美国是最大的生物乙醇及生物柴油生产国。从中期来看,美国和巴西可能还将继续保持生物燃料主要生产国的地位。但长期而言,亚洲国家包括中国、印度、印度尼西亚及马来西亚可能将抢夺更多的市场份额。目前,很多国家已出台一系列支持生物燃料研发和产业化的政策,积极支持生物燃料的发展。

我国新能源政策的远期目标为:争取到2020年实现非化石能源占一次能源消费比重的15%左右,生物柴油年产量达到200万吨,燃料乙醇达到 1000万吨。我国发展生物燃料起步较晚,但发展十分迅速,目前已在河南、安徽、黑龙江、吉林、广西等地建立生物乙醇生产厂,并在全国部分城市进行混合10% 燃料乙醇的汽油供应试点,我国生物乙醇产量居世界第三位。

美国提出,到2020年生物燃料将占其能源总消费量的25%,2050年达到50%,2012年,美国约150万吨生物燃料投产,2013-2015年,还将投入650万吨产能。

欧盟提出2020年前可再生能源占能源消费总量的20%,生物燃料占运输燃料10%的目标。以德国为例,德国2007年颁布《生物燃料配额法令》,规定生物燃料在化石燃料中混掺的最小含量,其生物柴油消费量占欧洲生物柴油消费总量的45%,并且已建立1000多个生物柴油加油站。

巴西作为最早实施生物燃料产业化政策的国家之一,2006年已实现40%以上的汽油消费由乙醇汽油取代,成为唯一不供应纯汽油的国家。目前,巴西消耗的所有汽油均掺有20% 及以上的乙醇,同时还出口乙醇,产量居世界第二。巴西《生物柴油法》要求到2013年生物柴油与普通柴油混合比例达到5%。

生物航油实验

如前所述,由于石油资源紧张、油价波动、航空公司运营成本高企及碳排放标准的提高,越来越多的油料公司、航空公司及飞机设备制造商开始将目光投向生物燃料。2008-2012年,全球已有20多个以生物航油为燃料的试验飞行和商业航班,其中95%以上均未出现任何飞行异常或故障。试验表明,混合生物燃料的效率比传统燃料高1.1%,温室气体排放量比传统燃料低60%-80%。

据中国民航局预测,2020年全国航油消费量将超过4000万吨,其中生物航油可能占航油总量的30%,按每吨1万元计算,2020年我国生物航油市场规模将达1200亿元。

国际航空运输协会指出,到2020年全球航空燃料总需求的6%,即每年约800万吨应来自生物燃料,但要实现这一目标,一方面需对航空公司的燃料比例进行管制,另一方面要对生物燃料实施政策性补贴。

2011年10月,中石油、中航油与国航成功进行国内首次航空生物燃料的验证试飞。中石油已建120万亩小桐子种植基地,可提供的原料年产量达16-17万吨,目前其正与霍尼韦尔旗下UOP公司商谈在华合作建立首个年产6万吨的航空生物燃料炼厂,并有望2013-2014年投入商业运营。

2011年12月,中石化向民航局提交了生物航煤及其调和产品的适航审定申请,民航局已受理该申请,并计划今年11月前完成适航审定,年内进行商业飞行。2009年,中石化启动了生物航煤的研发。2011年,将其杭州石化炼厂装置改造成一套2万吨/年生物航煤装置,该装置从2011年年底开工以来已生产70吨生物航煤。中石化计划采用的原料主要为餐饮废弃油脂。

此外,中国商飞和波音公司开始合作研发生物航油,并在北京启动了“中国商飞-波音航空节能减排技术中心”,该中心首个研究项目是将废弃食用油提炼成生物航油。空客公司已与清华大学签署协议,双方将以地沟油等为原料合作研究生物航油,预计下半年公布首批研究结果。

未来挑战

在我国石油对外依存度日益上升、环保成本和压力日趋严峻的形势下,积极发展包括生物航油在内的生物燃料产业,是应对能源短缺和节能减排的重要手段。生物航油的发展存在很多机遇,但同时也面临几大挑战。

一是生物航油的成本。目前生物航油的成本是传统航油的2-3倍,要想大幅降低成本必须实现规模化生产,而我国尚未建立起成熟的生物航油研发、生产及供应体系。航油是航空公司最大的成本支出,以国内三大航空公司为例,航油成本占其运营成本均已超40%,因此高昂的价格将使生物航油的推广和应用受阻。

二是生物航油的生产技术。例如,通过纤维素生产乙醇及海藻提炼等技术尚不成熟,而地沟油混杂了动物油、植物油等成分,提炼技术难度大,尚不能实现大规模应用。

三是生物航油的原料供应。生物燃料的原料包括动植物油脂、废弃食用油和微生物油脂等,各种原料的产能和收率存在很大差异,如何保证可持续的原料供应仍是当前需关注和解决的问题。

第8篇:生物燃料技术范文

一、经验:通过立法、规划和鼓励补贴等政策,持续推动生物质资源的研究、开发和利用

(一)美国通过立法和补贴政策促进生物质乙醇产业发展

美国是世界上最大的乙醇生产国,乙醇商业化生产始于上个世纪90年代,玉米一直是其主要的生产原料。20世纪90年代开始,美国以法律形式确定了生物质能源的主导地位和具体发展指标。2002年11月,《美国生物质能与生物基产品展望》报告对美国生物质资源研究做出了远景规划,提出到2030年,美国生物质能和生物基产品将发展成为完善、成熟并可持续发展的产业,为美国农业经济增长创造新的机遇,并向消费者提供性能优良、绿色环保的生物基产品。

1999年,美国了《开发和推进生物基产品和生物能源》总统令,制定了到2030年以生物质燃料替代目前石油消费总量30%的发展目标,占国家电力的5%、交通运输燃料的20%和化工产品的25%。2005年,美国能源部提交的报告显示:生物质能已经开始对美国的能源做出贡献,2003年提供了1亿吨标煤能量,占美国能源消费总量的3%,超过水电而成为可再生能源的最大来源。

为了实现上述目标,美国在生物质资源研发领域的资金投入逐年递增,其中,包括2008年12月能源部投资2亿美元支持利用生物质原料生产先进生物燃料的商业化研究与实践、2009年1月其能源部与农业部联合支持有关生物燃料、生物质能及生物基产品生产技术与过程的研发项目等。即使在金融危机发生之后,生物质资源研究仍成为美国经济复兴和再投资计划的重要组成部分。2009年5月,美国能源部宣布,复兴计划中将有7.865亿美元用于加快先进生物燃料的研究和开发、以及商业规模的生物精炼示范项目等。

发展生物燃料对美国经济发挥了极大的推动力量。据统计,仅 2007年发展乙醇使美国减少进口2.28亿桶原油,原油进口减少量约占美国原油进口总量的5%,相当于为美国经济节省了165亿美元;乙醇生产经营、乙醇运输以及新建乙醇生产企业投资,共为其国内生产总值增加476亿美元,为美国各经济领域创造了近24万个工作岗位;使美国消费者增加了123亿美元收入,为联邦政府创税约46亿美元,同时为各州和当地政府创税36亿美元。

奥巴马上台后,提出了7000多亿美元的巨额经济刺激计划,同时,确保实现国会设定的2022年美国生物燃料年产量达到360亿加仑的目标。为减轻粮食负担,美国已经做好了向非粮的二代生物燃料过渡的部署,到2030年,生物燃料替代30%化石运输燃料中,玉米原料只占6.7%,九成以上将是非粮原料。其最新举措是加快纤维素燃料乙醇的研发和产业化。(详见表1)为尽快实现第二代生物燃料技术的产业化和商业化,美国政府采取了一系列刺激和鼓励政策。

2007年10月,美国生物质研发技术咨询委员会了新的生物燃料与生物基产品路线图,确定了生物质技术发展的主要障碍和解决途径。

(二)欧洲各国对替代燃料的立法支持、差别税收以及油料植物生产的补贴,共同促进了生物柴油产业的快速发展

欧盟委员会提出,2010年运输燃料的5.75%用燃料乙醇和生物柴油替代,到2020年这一比例将提高到20%。法国计划到2015年生物柴油的产能将从现在的每年600万吨增长到1000万吨。目前,意大利是欧洲生物柴油使用最多的国家之一。在2001年制定的金融法中,意大利计划在3年内将生物柴油的生产配额从12.5万吨增加到30万吨。德国政府鼓励使用生物柴油,对生物柴油生产企业全额免除税收,使其价格低于普通柴油。德国在2003年颁布法规,准许自2004年起,无需标明即可在石化柴油中最多加入5%的生物柴油。同时,德国还规定了机动车使用生物燃料的最低份额,从2004年起的2%提高到2010年的5.75%。新规定的出台将使生物柴油营业额从2000年的5.035亿美元猛增至24亿美元,平均年增25%。西班牙2002 年12月30日颁布法令,对生物燃料全部免征特别税,该税是浮动的,根据石油产品和生物燃料生产成本的变化进行调整。

2009年4月23日,欧盟的生物燃料政策也拍板定案,其生物燃料也有了一个明确的目标和发展方向。《可再生能源指令》和《燃料质量指令》这两道与生物燃料政策相关指令的产生,将对欧洲生物燃料行业的未来发展起着决定性的作用,并影响全球生物燃料市场。

(三)巴西通过规划推动生物柴油发展

巴西是世界上最大的可再生能源生产国。2002年,联邦政府推出生产和使用生物柴油计划(PNPB),计划目标为:2008年1月开始,将在全国燃料消费中,添加2%的生物柴油,到2013年1月该比例将上升到5%。为了推进该计划,联邦政府分步骤、分阶段实施。

第一阶段:可行性分析阶段。结论是:在经济上,可以扩大就业,增加收入,缩小区际之间的收入差距。在社会发展上,可以扶持社会弱势阶层,提高低收入者收入水平。在环境上,通过使用生物柴油,减少废气和空气污染,可以降低社会的医疗成本。在发展战略上,可以减少对进口能源的依赖,降低国家能源安全风险。

第二阶段:完善法律和政策阶段。首先,定义和规范生物质能源,同时在法律、政策、税收上给予支持。在税收上针对发展程度不同的地区采取不同的优惠税率,给予贫穷地区更多的税收减免。按照该种差别税率的逻辑,政府政策有义务保护两个薄弱环节:(1)农民的种植环节。联邦政府为了鼓励小农户种植油料作物,保障全部收购,创造了一个“社会燃料”凭证,以此来决定企业税收减免的多少。(2)市场环节。政府公布生物柴油的质量标准,以保障提供到市场上的都是高质量的产品。

第三阶段:计划的实施阶段。在各项法律、政策和税收标准确立以后,2004年12月6日,联邦总统宣布推出PNPB。2005年,第一个加入2%生物柴油的加油站开业,联邦政府以拍卖的方式收购生物柴油,只有拥有“社会燃料”凭证的企业才能参加拍卖。政府的介入和收购,主要目的是形成实在的市场需求。

目前,世界可再生能源消费仅占总能源消费的14%,而巴西占45%。巴西还是世界上最大的乙醇出口国,30年来,乙醇生产导致巴西原油消耗下降,累计节省520亿美元,还提供了100万个工作岗位。

二、各国开发生物质能源带来的启示

(一)利用自身资源禀赋的比较优势,寻找新的替代原料来源,力求保持能源安全、环境安全与粮食安全协调发展

从中国的情况看,上海财经大学财经研究所张锦华与吴方卫研究认为,我国农产品中资源禀赋最高的是甘薯,玉米也有一定优势,小麦不具有优势。但由于当时国家急于解决陈化粮问题,采用玉米和小麦作为生物质能源原料。以玉米为主的生物质能源发展路径并不完全基于资源禀赋优势的策略。同时,与美国地多人少相反,中国的人口众多,即使采用一定优势的玉米为原料的生物质能源发展路径也受到粮食安全问题的制约。虽然我国有大量的盐碱地、荒地等劣质土地可种植甜高粱,也有大量荒山、荒坡可以种植麻风树和黄连木等油料植物,但目前缺乏对这些土地利用的合理评价和科学规划。我国虽然在西南地区种植了一定规模的麻风树等油料植物,但不足以支撑生物柴油的规模化生产。生物质燃料资源不落实是制约生物质燃料规模化发展的重要因素。生物质资源的发展是生物质能源的根本问题,优良的作物品种是发展生物质能的重中之重。

(二)政府积极参与,为生物质能源的产业化发展创造良好的市场环境

生物质能源产业是具有环境效益的弱势产业。2000年以来,我国建立了包括燃料乙醇的技术标准、生产基地、销售渠道、财政补贴和税收优惠等在内的政策体系,但为避免对粮食安全造成负面影响,国家开始对以粮为原料的燃料乙醇的生产和销售采取严格管制。对于生物柴油的生产,国家还没有制定相关的产业政策,也没有完善的销售渠道。此外,生物质资源的其它利用项目,如燃烧发电、气化发电、规模化畜禽养殖场大中型沼气工程项目等,初始投资高,需要稳定的投融资渠道给予支持,以降低成本。同时,需建立行之有效的投融资机制做保障,促进生物质资源的开发利用。

(三)将扶持生物质能源的产业化发展纳入到国家的可持续发展战略中

我国非粮作物的燃料乙醇尚处于试验阶段,要实现大规模生产,还需在生产工艺和产业组织等方面做大量工作。以废动植物油生产生物柴油的技术较为成熟,但发展潜力有限。后备资源潜力大的纤维素生物质燃料乙醇和生物合成柴油的技术尚处研究阶段,一些相对成熟的技术缺乏标准体系和服务体系的保障,产业化程度低,大规模生物质能源生产产业化的格局尚未形成。

(四)加强生物质资源研究对于国家可持续发展具有很强的战略意义

第9篇:生物燃料技术范文

电池在我们的生活中发挥着非常重要的作用,但在使用过程中却带来了严重的环境问题。一节一号电池腐烂在地里,能使一平方米土壤永久失去利用价值;一粒纽扣电池可使600吨水受到污染,相当于一个人一生的饮水量。严峻的现实迫使我们寻找电池发展的新出路,生物燃料电池的问世让我们看到了曙光。本文初步介绍了生物燃料电池的基本情况,以期能开阔视野,对中学化学教学有所裨益。

1穿越历史,生物燃料电池向我们走来

早在19世纪初,英国化学家戴维就提出了燃料电池的设想,1839年英国人格拉夫发明了最早的氢燃料电池[1]。可以说发展到今天,氢燃料电池已成为了最成熟的燃料电池,但在氢气的制备、输送、电池的能量转化率、使用安全性等方面存在许多问题,陷入了尴尬的发展处境[2]。生物燃料电池的出现又让我们充满了新的期待。

生物燃料电池的发展可追溯到20世纪初,1910年英国杜汉姆大学植物学教授Michael Cresse Potter用酵母和大肠杆菌进行试验时,发现了微生物也可以产生电流,从而拉开了生物燃料电池研究的序幕。六十年代,为了将长途太空飞行中的有机废物转化成电能,美国航空航天管理局投入了大量的人力和物力进行研究,真正掀起了生物燃料电池研究的。后来尽管由于技术原因,生物燃料电池曾一度陷入停滞状态,但七、八十年代出现的石油危机又让电池家族的新成员成为人们瞩目的中心,自此之后迎来了更加广阔的发展前景[3]。

简言之,生物燃料电池就是以微生物、酶为催化剂,将有机物(如糖类等)中的化学能直接转化成电能的一种电化学装置。根据电池中使用的催化剂种类,可将生物燃料电池分为微生物燃料电池和酶燃料电池两种类型。

2两种典型的生物燃料电池

2.1 微生物燃料电池

典型的微生物燃料电池如上图所示,它由阳极室和阴极室组成,质子交换膜将两室分隔开。它的基本工作原理可分为四步来描述:(1)在微生物的作用下,燃料发生氧化反应,同时释放出电子;(2)介体捕获电子并将其运送至阳极;(3)电子经外电路抵达阴极,质子通过质子交换膜由阳极室进入阴极室;(4)氧气在阴极接收电子,发生还原反应。我们以葡萄糖为例来具体地说明这个过程[1]:

阳极半反应:

C6H12O6+6H2O6CO2+24H++24e-E0=0.014V

氧化态介体 + e-还原态介体

阴极半反应:

6O2+24H++24e-12H2O E0=1.23V

2.2 酶燃料电池

如下图,葡萄糖在葡萄糖氧化酶(GOx)和辅酶的作用下失去电子被氧化成葡萄糖酸,电子由介体运送至阳极,再经外电路到阴极。双氧水得到电子,并在微过氧化酶的作用下还原成水。

阳极半反应:葡萄糖葡萄糖酸+2H++2e

阴极半反应:H2O2+2H++2e2H2O[3]

2.3生物燃料电池中的介体及其作用

2.3.1介体的作用

在生物电池的设计中一个最大的技术瓶颈就是如何有效地将电子从底物运送至电池的阳极。科学家设想在阳极室加入一种或几种化学物质,作为运输电子的介体。介体的作用如图3所示。

2.3.2 介体需满足的条件[1][3]

经过研究发现充当介体的分子必须具备严格的条件:①介体的氧化还原电极电势应与代谢物的电势相一致;②介体的氧化态和还原态都应易溶于电解质溶液;③在溶液中有足够的稳定性且不能吸附在细菌细胞或电极的表面;④介体的电极反应快;⑤微生物燃料电池中的介体应易于穿透细胞膜且对微生物无毒害作用;⑥微生物燃料电池中的介体在得到电子后应易于从细胞膜中出来;⑦介体的任一种氧化态都不会对微生物的代谢过程造成干扰。

生物燃料电池中常用的介体有硫堇、EDTA-Fe(Ⅲ)、亚甲基蓝、中性红等。

3 生物燃料电池的优点

与传统的化学电池技术相比,生物燃料电池具有操作上和功能上的优势(表1)。首先它将底物直接转化为电能,保证了具有高的能量转化效率。其次,不同于现有的生物能处理,生物燃料电池能在常温、常压甚至是低温的环境条件下都能够有效运作,电池维护成本低、安全性强。第三,生物燃料电池不需要进行废气处理,因为它所产生的废气的主要组分是二氧化碳,不会产生污染环境的副产物。第四,生物燃料电池具有生物相容性,利用人体内的葡萄糖和氧为原料的生物燃料电池可以直接植入人体。第五,在缺乏电力基础设施的局部地区,生物燃料电池具有广泛应用的潜力。

表1化学燃料电池与生物燃料电池比较[3]

4生物燃料电池的用途[1][5]

4.1改善汽车的燃料结构

使用生物燃料电池,1L糖类物质的浓溶液氧化产生的电能可供一辆中型汽车行驶25-30 Km,如果汽车的油箱为50L的话,装满糖后可连续行驶1000Km而不需要再补充能源。使用生物燃料电池,一方面可控制因化石燃料燃烧导致的空气污染问题,另一方面还可避免因发生交通事故而引发的汽油起火燃烧甚至是爆炸。

4.2污水处理

2005年,由美国宾夕法尼亚州立大学的科学家洛根率领的一个研发小组宣布,他们研制出一种新型的微生物燃料电池,可以把未经处理的污水转变成干净用水和电能。

4.3为可植入人体内的设备提供能量支持

2005年日本东北大学教授西泽松彦领导的研究小组新开发出了一种利用血液中的糖分发电的燃料电池。这样的生物电池可为植入糖尿病患者体内的测定血糖值的装置提供充足电量、为心脏起搏器提供能量。

4.4 在机器人设计中的作用

2001年英国西英格兰大学的科学家们研制出了一种名为“Slugbot”的机器人(如图5),专门用于搜捕危害种植业的鼻涕虫。“Slugbot”将抓获的鼻涕虫放在一容器里,在酶的作用下将其转化成电能。

2000年美国南佛罗里达大学科学家斯图亚特.威尔金森(Stuart Wilkinson)宣称,他们已经研制出了一种需要吃肉以给体内补充电能的机器人Chew Chew。 这种机器人体内装有一块微生物燃料电池,为机器人运动和工作提供动力。这种微生物燃料电池可以通过细菌产生酶,消化肉类食物,然后把获取的能量再转化为电能,供给机器人使用。

4.5在航空航天上的使用

为处理密闭的宇宙飞船里宇航员排出的尿液,美国宇航局设计了一种巧妙的方案:用微生物中的芽孢杆菌来处理尿液,产生氨气,以氨气作为微生物电池的电极活性物质,这样既处理了尿液,又得到了电能。一般在宇航条件下,每人每天排出22克尿,能得到47瓦电力。

5 生物燃料电池发展展望

在化石燃料日趋紧张、环境污染越来越严重的今天,生物燃料电池以其良好的性能向我们展示了一个美好的发展前景。但不可否认的是,由于技术条件的制约,目前生物燃料电池的研究和使用还处于不成熟阶段:电池的输出功率小、使用寿命短。例如美国得克萨斯大学亚当・海勒博士研制的葡萄生物电池能提供的功率仅为2.4微瓦,这说明要点燃一个小灯泡需要100万株葡萄,并且产电能每天都在衰减。由此导致生物燃料电池的使用范围非常狭小,远没有达到全面推广的时期。研究人员正在积极研究,努力克服这一瓶颈。

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

5.1开发无介体生物燃料电池[5]

有一类铁还原性微生物,由于其细胞膜上有丰富的细胞色素,表现出较强的电化学活性,在生物电池中能直接将电子转移至阳极而不需要借助任何介体。研究表明Rhodoferax ferrireduler和Geobacteraceae种群的微生物都具有这种功能,它们在电池内发生的反应可表示为:

C6H12O6+6H2O+24Fe(Ⅲ) 6CO2+24Fe(Ⅱ)+24H+

+24e-。

无介体生物燃料电池的优点主要表现为有充足的空间,有利于提高电子转移的效率和速率。

5.2加强对电极的修饰[4]

学者Derek R. Lovley等用石墨毡和石墨泡沫代替碳棒作为电池的阳极,研究发现电池的电能输出大大增加,约为原来的三倍。说明增大电极的表面积可以增大吸附在电极表面的微生物和酶的密度,从而增加电量的输出。

Zhen He等在微生物燃料电池中用微生物来修饰阴极,加快了氧气的还原反应速率,极大地提高了电池输出的电流密度。

5.3 选择合适的质子交换膜[4][6]

质子交换膜能有效地维持电池两极室内酸碱度的平衡,保证电池反应的正常进行。Liu和Logan在电池的设计中取消了质子交换膜,结果发现电池的库仑输出效率由55%降到了12%;Min et al.研究发现如果氧气由阴极室进入阳极室,电池的库仑输出效率会从55%降至19%。这说明质子交换膜的质量好坏关系到生物燃料电池的性能,选择合适的质子交换膜,增强质子的穿透性而降低氧气的扩散成为了生物燃料电池开发中的一个重要环节。

5.4 开发光化学生物燃料电池[5]

利用光合细菌或藻类吸收太阳光,并将其转化成电能的装置称为光化学生物燃料电池。科学家曾设计出这样的一种电池:用石墨作阳极,阳极室内有项圈藻和可溶性奎宁介体;阴极也为石墨电极,电解质溶液为铁氰化钾。把这种电池先放在阳光下光照10小时,然后在黑暗的环境中放置10小时,发现可产生1mA的电流(外电路电阻为500欧),只不过光子转化成电子的效率只有0.2%。后来人们又用Synechococcus细菌来代替项圈藻,发现转化率可提高到3.3%。

参考文献:

[1] A.K.Shukla,P.Suresh,S.Berchmans ,A.Rajendran.Biological fuel cells and their applications[J]. Current Science,2004,(4):455-468.

[2] 沈萍.微生物学[M].北京: 高等教育出版社, 2000,446-450.

[3] 刘强,许鑫华,任光雷,王为.酶生物燃料电池[J].化学进展,2006,(11):1530-1536.

[4] 连静,祝学远,李浩然,冯雅丽.直接微生物燃料电池的研究现状及应用前景[J].科学技术与工程,2005,(22):1671-1815.

[5] Frank Davis and Séamus P.J.Higson.Biofuel cells-Recent advances and applications[J].Biosensors and Bioelectronics, 2007,(22):1224-1235.

[6] Alyssa L.Walker,Charles W.Walker Jr.Biological fuel cell and an application as a reserve power source[J].Journal of Power Sources,2006,(160):123-129.

[7]袁丽霞.多种多样的电池[J].化学教学,2006,(12):53-56.

[8]仇红亮.漫谈氢能源发展的尴尬[J].化学教学,2005,(6):37-38.

致谢:本文在写作过程中,得到化学系乐翠娣老师的指导和帮助,谨致以诚挚的谢意!