公务员期刊网 精选范文 计算机视觉开发范文

计算机视觉开发精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的计算机视觉开发主题范文,仅供参考,欢迎阅读并收藏。

计算机视觉开发

第1篇:计算机视觉开发范文

关键词:结算;工程量;取费

中图分类号:F830.46 文献标识码:A

引言

房地产开发项目是指建设方向开发商提供已完工程,并按照规定向开发商收取工程价款的过程,传统的工程结算分为中间结算和竣工结算相结合的方法,随着市场经济发展和建筑业改革的不断深化,“标价支付、竣工清算”的结算方式应运而生,该种结算方式既体现了建设项目招投标的形成全过程管理连挑价值链的延伸,同时以行业管理为主体并实施统一管理的内容,由于竣工结算直接影响房产商开发项目所产生的经济利益大小,直接体现了工程造价系统控制的最终结果,因此对结算过程中存在的问题进行合理分析并制定相应解决措施对合理控制房产项目结算价格具有重要意义。

1 房地产开发项目工程结算中存在的问题

1.1 高估冒算

当前国内对预结算编制中出现误差的奖惩制度制定并不完善,房产商对施工单位编制结算表表中存在误差没有相关约束机制,同时施工队伍素质参差不齐,追求经济效益最大化的思想指使其在编制结算中出现对工程量高估冒算的现象,具体可表现为技术人员对造价人员交底不详细导致的多报,施工方存在侥幸心理或为了逃避审计单位而无原则虚报等,同时由于当前国内定额变动频繁、计算程序较为复杂以及各个区域内计算基础不同等因素也导致工程量高估冒算现象[1]。

1.2 虚增工程量

因造价人员对定额理解不透彻,或新旧定额间存在差距,编制人员按照利于其工程量的定额进行计算;在工程量计算时按照施工中材料进场量进行计算,而未按照定额规定计算规则进行计算,或将定额中规定的材料损耗计入导致材料用量增加;虚列工程项目,将未施工的项目列入结算内,或在计算工程量时采取重复计算或多计算等手段导致工程量增多。

1.3 错套定额

施工方在申报结算时套用定额时往往是就高不就低,施工中的低工程套用高价定额子目,该类现象在土石方开挖、混凝土标号及石子粒径等环节中易出现;在套用定额时在钢筋混凝土楼梯面层内跨步同连接板结构面层内应采用地面部分而采用楼面面层等现象,该类现象均会导致造价增加[2]。

1.4 材料价格混乱

现代建筑中材料费用约占总费用的60-70%,因此材料价格在工程造价中占有核心地位,但近年来材料市场化在一定程度上导致了管理混乱和材料价格涨跌失控的局面;在材料使用时以次充好,而在结算中材料价格按照质优价高的上报,施工中偷工减料或采用同设计型号不同的材料代替,在结算中材料价格调整时调涨不调跌,或只调整高于定额价格的材料而不调整低于定额的材料价格导致工程造价虚增。

1.5 未按标准取费

现代建筑中工民建应符合建筑面积、高度和跨度三个指标中的两个指标方可,而构筑物中符合一个指标则可,因工程类别不同其相应的费率也会发生变化而引起工程造价发生变化,同时按照市场价计入的项目以补充估价的形式存在而不能计取任何费用,只能计取定额测定费和税金;在实际施工中未使用大型机械或特种机械而在结算时却列入该类费用,或工程施工中未因赶进度而夜间加班但在结算时却列入夜间施工所增加的费用等[3]。

2 结算中存在问题的解决措施

2.1 工程量审核。工程量是工程资源投入的量化指标,也是结算审查工作中的关键,其是根据施工图纸按照规定的计算规则进行审查,若计算工程量增加则会导致工程直接费用和间接费用都相应增加,因此在对施工方上报的结算审查中应将工程量审查作为重中之重。

按计算规则审查。房产商在进行结算审核时应根据招投标文件、施工合同以及施工图纸等按照既定计价模式应采用的计算规则进行审核,应注意工程量计算并非构件实际体量计算,而是在编制定额时已做相应简化,应主要审核工程量计算规则是否同清单设置吻合、所报单项工程内容是否与清单内单项工程所包含的内容一致,计价是否按照计价规范中的规则相符等,应注意应该扣除的部分是否已经扣除等。

审查是否存在重算部分。随着工程计价软件的更新,施工方往往巧立名目对工程量进行重复计算,或故意扩大工程量或虚报工程量,所以在审核时应认真体会定额内的说明和计算规则以防止施工方重套工程量。

严审变更和签证工程量。对施工过程中所发生的变更及签证所设计的工程量应结合实际情况进行审查,确保实事求是,应认真审查变更及签证手续是否齐全,确认所涉及的项目是否已完成并通过验收,尤其是涉及的工程量较大且未能做合理解释的不可单单以签证为准,并且应注意核减变更前所涉及的工程量;应合理区分变更及签证所涉及的责任方,对因施工方内部原因导致的变更不能予以确认,甚至应防范施工方模仿责任人笔体签字或私刻公章现象增加工程量现象。

2.2 套用定额单价的审查。若工程计价采用定额计费则单价应按照定额单价进行计算,房产商在审查时应重点审查定额套用是否合理,是否存在低价高套现象;对因选用材料不同、做法不同或材料断面厚度不同而进行定额换算现象,应主要审查其换算是否按照规定执行;对补充定额则应审查其是否依据编制原则进行;对执行工程量清单的项目则因一般情况下采用综合单价一次性包死而不做调整,若由于变更等出现新的子项则其单价应按照以下依据实施,原报价中已有适用于该工程量则应按照已有价格确定,有类似工程时则可参照类似价格确定,无类似工程则应由施工方提出相应的变更价格后同开发商机型协调决定;应严格审查施工方是否存在将原定额内已经包括在单价内的施工内容单独列项申报或将费率中包含部分单独列项重复申报,或通过对定额单价的换算、混算等措施来抬高结算单价等现象。

2.3 费用审查。对费用审查应结合当地部门规定及合同和招标文件等确定费率的时效性,所采用的取费表是否与工程性质相符,费率计算是否正确以及价格调整是否符合相关规定等,对于施工过程中新增加的项目则应重点审查施工方是否依据施工方投标文件中费率口径等;对施工方报价时承诺的下浮率应在结算时严格执行,对合同外的部分则应按照另行约定的下浮率进行结算;若施工方未进行下浮率承诺则应执行投标报价与公示价相比的下浮率,并选择承诺下浮率与公示价下浮率中较大的进行结算;若项目存在预备费则应结合施工中该项费用是否实际发生来进行核减,但工程技术措施费则不应以工程量增减而进行调整。

2.4 材料审查。在材料价格审查时应重点审查用量大价格高或材料不透明的部分材料,房产商平时应注意收集材料价格信息以及通过各种途径了解相关材料价格,对于定额内没有相关价格的新型材料应深入了解市场价格以及厂家产品质量等信息便于在审查时有理有据;应重点审查相关材料定额价及市场价调整量或调整系数等,以防施工方报价中的水分;对施工中宜发生问题的材料应重点审查并现场核实,对施工方报价中价格不明确的材料应进行必要的市场调查或各种途径了解材料真实价格。

2.5 变更、签证审查。对施工中发生的变更和签证应重点审查其合法性和合理性,坚决杜绝在签证费用中已包含在合同价款汇总的费用施工方再次巧立名目重新计费的现象;应重点审查签证中是否存在工程量交叉而计费重复的现象,若由于发生较大变更而导致清单发生较大变化则应重新对清单类别和数量进行审核,并依据合同规定来确定计价模式和取费费率。

参考文献

[1]罗绍.论房地产开发施工和结算阶段的造价控制[C].有科技与生活,2009(12).

第2篇:计算机视觉开发范文

关键词:计算机视觉技术;食品工业;分级;图像处理

中图分类号: TS207 文献标识码:A

随着微型个人计算机应用的越来越广泛,以及计算机在综合学科中应用的深入研究,现如今在工农业、军事国防、医学卫生等众多领域的使用和研究方面计算机视觉技术都起到了至关重要的作用,为了节省人力、降低成本、减少误差,该项技术在食品企业、科研院所、检测机构中的应用更加普遍。如今,在农产品药物残留检测、水果重量分级、等级筛选、质量监管等方面计算机视觉技术有众多应用。

1 计算机视觉技术概述

计算机视觉技术是利用计算机、摄像机、图像卡以及相关处理技术来模拟人的视觉,用以识别、感知和认识我们生活的世界[1]。该技术是模拟识别人工智能、心理物理学、图像处理、计算机科学及神经生物学等多领域的综合学科。计算机视觉技术用摄像机模拟人眼,用计算机模拟大脑,用计算机程序和算法来模拟人对事物的认识和思考,替代人类完成程序为其设定的工作。该技术由多个相关的图像处理系统组成,主要包括光源提供系统、图像提取系统、计算机数据运算系统等。原理是:首先通过摄像机获得所需要的图像信息,然后利用信号转换将获得的图像信息转变为数字图像以便计算机正确识别[2]。随着科学技术的发展,计算机技术在各个领域得到广泛应用,计算机视觉技术不仅在代替人类视觉上取得了重大成就,而且在很多具体工作方便超越了人的视觉功能。计算机视觉计算有如此快速的发展,是因为与人类的视觉相比该技术具有以下显著优势[3]。

1.1 自动化程度高

计算机视觉可以实现对农产品的多个外形和内在品质指标进行同时检测分析,可以进行整体识别、增强对目标识别的准确性。

1.2 实现无损检测

由于计算机视觉技术对农产品的识别是通过扫描、摄像,而不需要直接接触,可以减少对所检测食品的伤害。

1.3 稳定的检测精度

设计的运行程序确定后,计算机视觉技术的识别功能就会具有统一的识别标准,具有稳定的检测精度,避免了人工识别和检测时主观因素所造成的差异。

2 计算机视觉技术在食品检测中的应用

20世纪70年代初,学者开始研究计算机视觉技术在食品工业中的应用,近几十年电子技术得到快速发展,计算机视觉技术也越来越成熟。国内外学者在研究计算机视觉技术在食品工业中的应用方面主要集中在该技术对果蔬的外部形态(如形状、重量、外观损伤、色泽等)的识别、内部无损检测等方面。国内有关计算机视觉技术在食品业中的应用研究起始于90年代,比国外发达国家晚多达20a,但是发展很快。

2.1 计算机视觉技术在果蔬分级中的应用研究

计算机视觉技术在食品检测中的应用研究相当广泛,从外部直径、成熟度的检测到内部腐烂程度的检测都有研究。韩伟等[4]采用分割水果的拍摄图像和新的计算机算法计算水果的半径,进而得出果蔬的最大直径。研究表明,该算法不仅降低了计算量而且提高了计算精度,此方法用于水果分级的误差不超过2mm,高于国际水果分级标准所规定的5mm分类标准差,可在工业生产中很好应用。李庆中[5]也利用图像的缺陷分割算法研究了计算机视觉技术在苹果检测与分级中的应用,结果表明此算法能快速、有效地分割出苹果的表面缺陷。孙洪胜等[6]以苹果色泽特征比率的变化规律为理论基础,结合模糊聚类知识利用计算机视觉技术来检测苹果缺陷域,检测不仅快速而且结果精确。刘禾等[7]通过研究认为苹果的表面缺陷可以利用计算机视觉技术进行检测,计算机视觉技术还可以将苹果按照检测结果进行分级,把检测过的苹果分成裂果、刺伤果、碰伤果和虫伤果等类别。梨的果梗是否存在是梨类分级的重要特征之一,应义斌等[8]通过计算机视觉技术、图像处理技术、傅立叶描述子的方法来描述和识别果形以及有无果柄,其识别率达到90%。杨秀坤等[9]综合运用计算机视觉技术、遗传算法、多层前馈神经网络系统,实现了具有精确度高、灵活性强和速度快等优点的苹果成熟度自动判别。陈育彦等[10]采用半导体激光技术、计算机视觉技术和图像分析技术相结合的方法检测苹果表面的机械损伤和果实内部的腐烂情况,初步验证了计算机视觉技术检测苹果表面的损伤和内部腐烂是可行的。冯斌等[11]通过计算机视觉技术对水果图像的边缘进行检测,然后确定水果的大小用以水果分级。试验表明,该方法比传统的检测方法速度快、准确率高,适用于计算机视觉的实时检测。朱伟[12]在模糊颜色的基础上,分析西红柿损伤部分和完好部分模糊颜色的差别,用分割方法对西红柿的缺陷进行分割,结果显示准确率高达96%。曹乐平等[13]人研究了温州蜜柑的果皮颜色与果实可滴定酸含量以及糖分含量之间的相关性,然而根据相关性,样品检测的正确识别率分别只有约74%和67%。刘刚等[14]从垂直和水平两个方向获取苹果的图像,并通过计算机自动分析图像数据,对苹果的外径、体积、以及圆形度等参数进行处理,与人工检测相比,计算机视觉技术具有检测效率高,检测标准统一性好等优点。Blasco. J [15]通过计算机视觉技术分析柑橘果皮的缺陷,进而对其在线分级,正确率约为95%。赵广华等[16]人综合计算机视觉识别系统、输送转换系统、输送翻转系统、差速匀果系统和分选系统,研制出一款适于实时监测、品质动态的智能分级系统,能够很好地实现苹果分级。王江枫等[17]建立了芒果重量与摄影图像的相互关系,应用计算机视觉技术检测桂香芒果和紫花芒果的重量和果面损伤,按重量分级其准确率均为92%,按果面损伤分级的准确率分别为76%和80%。

2.2 计算机视觉技术在禽蛋检测中的应用研究

禽蛋企业在生产过程中,产品的分级、品质检测主要采用人工方法,不仅需要大量的物力人力,而且存在劳动强度大、人为误差大、工作效率低等缺点,计算机视觉技术可以很好的解决这类产品工业生产中存在的困扰。欧阳静怡等[18]利用计算机视觉技术来检测鸡蛋蛋壳裂纹,利用摄像机获取鸡蛋图像后,采用fisher、同态滤波和BET算法等优化后的图像处理技术,获得裂纹形状并判断,试验结果表明,计算机视觉技术对鸡蛋蛋壳裂纹的检测准确率高达98%。汪俊德等[19]以计算机视觉技术为基础,设计出一套双黄鸡蛋检测系统。该系统获取蛋黄指数、蛋黄特征和蛋形尺寸等特征,和设计的数学模型对比来实现双黄鸡蛋的检测和识别,检测准确率高达95%。郑丽敏等[20]人通过高分辨率的数字摄像头获取鸡蛋图像,根据图像特征建立数学模型来预测鸡蛋的新鲜度和贮藏期,结果表明,计算机视觉技术对鸡蛋的新鲜度、贮藏期进行预测的结果准确率为94%。潘磊庆等[21]通过计算机视觉技术和声学响应信息技术相结合的方法检测裂纹鸡蛋,其检测准确率达到98%。Mertens K等[22]人基于计算机视觉技术研发了鸡蛋的分级检测系统,该系统识别带污渍鸡蛋的正确率高达99%。

2.3 计算机视觉技术在检测食品中微生物含量中的应用研究

计算机技术和图像处理技术在综合学科中的应用得到快速发展,在微生物快速检测中的应用也越来越多,主要是针对微生物微菌落的处理。食品工业中计算机视觉技术在微生物检测方面的研究和应用以研究单个细胞为主,并在个体细胞的研究上取得了一定的进展。殷涌光等[23]以颜色特征分辨技术为基础,设计了一套应用计算机视觉技术快速定量检测食品中大肠杆菌的系统,该系统检测结果与传统方法的检测结果具有很好的相关性,但与传统方法相比,可以节省5d时间,检测时间在18h以内,并且能够有效提高产品品质。Lawless等[24]人等时间段测定培养基上的细胞密度,然后通过计算机技术建立时间和细胞密度之间的动态关联,利用该关联可以预测和自动检测微生物的生长情况,如通过计算机控制自动定量采集检测对象,然后分析菌落的边缘形态,根据菌落的边缘形态计算机可以显示被检测菌落的具置,并且根据动态关联计算机视觉系统可以同时处理多个不同的样品。郭培源等[25]人对计算机视觉技术用于猪肉的分级进行了研究,结果显示计算机视觉技术在识别猪肉表面微生物数量上与国标方法检测的结果显著相关,该技术可以有效地计算微生物的数量。Bayraktar. B等[26]人采用计算机视觉技术、光散射技术(BARDOT)和模式识别技术相结合的方法来快速检测李斯特菌,在获取该菌菌落中的形态特征有对图像进行分析处理达到对该菌的分类识别。殷涌光等[27]人综合利用计算机视觉、活体染色、人工神经网络、图像处理等技术,用分辨率为520万像素的数字摄像机拍摄细菌内部的染色效果,并结合新的图像处理算法,对细菌形态学的8个特征参数进行检测,检测结果与传统检测结果显著相关(相关系数R=0.9987),和传统检测方法相比该方法具有操作简单、快速、结果准确、适合现场快速检测等特点。鲁静[28]和刘侃[29]利用显微镜和图像采集仪器,获取乳制品的扫描图像,然后微生物的图像特征,识别出微生物数量,并以此作为衡量乳制品质量是否达标的依据,并对产品进行分级。

2.4计算机视觉技术在其他食品产业中的应用研究

里红杰等[30]通过提取贝类和虾类等海产品的形状、尺寸、纹理、颜色等外形特征,对照数学模型,采用数字图像处理技术、计算机识别技术实现了对贝类和虾类等海产品的无损检测和自动化分类、分级和质量评估,并通过实例详细阐述了该技术的实现方法,证实了此项技术的有效性。计算机视觉技术还可以检验玉米粒形和玉米种子质量、识别玉米品种和玉米田间杂草[31]。晁德起等[32]通过x射线照射获取毛叶枣的透视图像后,运用计算机视觉技术对图像进行分析评估,毛叶枣可食率的评估结果与运用物理方法测得的结果平均误差仅为1.47%,因此得出结论:计算机视觉技术可以应用于毛叶枣的自动分级。Gokmen,V等通用对薯片制作过程中图像像素的变化来研究薯片的褐变率,通过分析特色参数来研究薯片中丙烯酰胺的含量和褐变率也关系,结果显示两项参数相关性为0.989,从而可以应用计算机视觉技术来预测加热食品中丙烯酰胺的含量,该方法可以在加热食品行业中得到广泛应用。韩仲志等人拍摄和扫描11类花生籽粒,每类100颗不同等级的花生籽粒的正反面图像,利用计算机视觉技术对花生内部和外部采集图像,并通过图像对其外在品质和内在品质进行分析,并建立相应的数学模型,该技术在对待检样品进行分级检测时的正确率高达92%。另外,郭培源等人以国家标准为依据,通过数字摄像技术获取猪肉的细菌菌斑面积、脂肪细胞数、颜色特征值以及氨气等品质指标来实现猪肉新鲜程度的分级辨认。

3 展望

新技术的研究与应用必然伴随着坎坷,从70年代初计算机视觉技术在食品工业中进行应用开始,就遇到了很多问题。计算机视觉技术在食品工业中的研究及应用主要存在以下几方面的问题。

3.1 检测指标有限

计算机视觉技术在检测食品单一指标或者以一个指标作为分级标准进行分级时具有理想效果,但以同一食品的多个指标共同作为分级标准进行检测分级,则分级结果误差较大。例如,Davenel等通过计算机视觉对苹果的大小、重量、外观损伤进行分析,但研究结果显示,系统会把花粤和果梗标记为缺陷,还由于苹果表面碰压伤等缺陷情况复杂,造成分级误差很大,分级正确率只有69%。Nozer等以计算机视觉为主要技术手段,获取水果的图像,进而通过分析图像来确定水果的形状、大小、颜色和重量,并进行分级,其正确率仅为85.1%。

3.2 兼容性差

计算机视觉技术针对单一种类的果蔬分级检测效果显著,但是同一套系统和设备很难用于其他种类的果蔬,甚至同一种类不同品种的农产品也很难公用一套计算机视觉设备。Reyerzwiggelaar等利用计算机视觉检查杏和桃的损伤程度,发现其检测桃子的准确率显著高于杏的。Majumdar.S等利用计算机视觉技术区分不同种类的麦粒,小麦、燕麦、大麦的识别正确率有明显差异。

3.3 检测性能受环境制约

现阶段的计算机视觉技术和配套的数学模型适用于简单的环境,在复杂环境下工作时会产生较大的误差。Plebe等利用计算机视觉技术对果树上的水果进行识别定位,但研究发现由于光照条件以及周边环境的影响,水果的识别和定位精度不高,不能满足实际生产的需要。

综上所述,可看出国内外学者对计算机视觉技术在食品工业中的应用进行了大量的研究,有些研究从单一方面入手,有些研究综合了多个学科,在研究和应用的过程中,取得了较大的经济效益,也遇到了很多问题,在新的形势下,计算机视觉技术和数码拍摄、图像处理、人工神经网络,数学模型建设、微生物快速计量等高新技术相融合的综合技术逐渐成为了各个领域学者的研究热点,以计算机视觉为基础的综合技术也将在食品工业中发挥更加重要的作用。

参考文献

[1] 宁纪锋,龙满生,何东健.农业领域中的计算机视觉研究[J].计算机与农业,2001(01):1-3.

[2] 李峥.基于计算机视觉的蔬菜颜色检测系统研究[D].吉林:吉林大学,2004.

[3] 曾爱群.基于计算机视觉与神经网络的芒果等级分类研究[D].桂林:桂林工学院,2008.

[4] 韩伟,曾庆山.基于计算机视觉的水果直径检测方法的研究[J].中国农机化,2011(05):25-29.

[5] 李庆中.苹果自动分级中计算机视觉信息快速获取与处理技术的研究[D].北京:中国农业大学,2000.

[6] 孙洪胜,李宇鹏,王成,等.基于计算机视觉的苹果在线高效检测与分级系统[J].仪表技术与传感器,2011(06):62-65.

[7] 刘禾,汀慰华.水果果形判别人工神经网络专家系统的研究[J].农业工程学报,1996,12(0l):171-176.

[8] 应义斌,景寒松,马俊福.用计算机视觉进行黄花梨果梗识别的新方法[J].农业工程学报,1998,14(02):221-225.

[9] 杨秀坤,陈晓光,马成林,等.用遗传神经网络方法进行苹果颜色白动检测的研究[J].农业工程学报,1997,13(02):193-176.

[10] 陈育彦,屠康,柴丽月,等.基于激光图像分析的苹果表面损伤和内部腐烂检测[J].农业机械学报,2009,40(07):133-137.

[11] 冯斌,汪憋华.基于计算机视觉的水果大小检测方法[J].农业机械学报,2003,34(01):73-75.

[12] 朱伟,曹其新.基于模糊彩色聚类方法的西红柿缺陷分割[J].农业工程学报,2003,19(03):133-136.

[13] 曹乐平,温芝元,沈陆明.基于色调分形维数的柑橘糖度和有效酸度检测[J].农业机械学报,2009,41(03):143-148.

[14] 刘刚,王立香,柳兆君.基于计算机视觉的苹果质量检测[J].安徽农业科学,2012,40(08):5014-5016.

[15] Blasco J,Aleixos N,Molto puter vision detection of peel defects in citrus by means of a region oriented segmentation algorithm[J].Journal of Food Engineering,2007,81(03):535-543.

[16] 赵广华,飞,陆奎荣,等.智能化苹果品质实时分选系统[J].中国科技信息.

[17] 王江枫,罗锡文,洪添胜,等.计算机视觉技术在芒果重量及果面坏损检测中的应用[J].农业工程学报,1998(12):186-189.

[18] 欧阳静怡,刘木华.基于计算机视觉的鸡蛋裂纹检测方法研究[J].农机化研究,2012(03):91-93.

[19] 汪俊德,郑丽敏,徐桂云,等.基于计算机视觉技术的双黄鸡蛋检测系统研究[J].农机化研究,2012(09):195-199.

[20] 郑丽敏,杨旭,徐桂云,等.基于计算机视觉的鸡蛋新鲜度无损检测[J].农业工程学报,2009,25(03):335-339.

[21] 潘磊庆,屠康,詹歌,等.基于计算机视觉和声学响应信息融合的鸡蛋裂纹检测[J].农业工程学报,2010,26(11):332-337.

[22] Mertens K,De Ketelaere B,Kamers B,et al.Dirt detection on brown eggs by means of colorcomputer vision[J]. Poultry Science,2005,84(10):1653-1659.

[23] 殷涌光,丁筠.基于计算机视觉的食品中大肠杆菌快速定量检测[J].吉林大学学报(工学版),2009,39(02):344-348.

[24] Lawless C,Wilkinson DJ,Young A,et al.Colonyzer: automated quantification of micro-organism growth characteristics on solid agar[J].BMC Bioinformatics,2010(08):38-44.

[25] 郭培源,毕松,袁芳.猪肉新鲜度智能检测分级系统研究[J].食品科学,2010,31(15):68-72.

[26] Bayraktar B,Banada PP,Hirleman ED,et al.Feature extraction from light-scatter patterns of Listeria colonies for identification and classification [J].Journal of Biomedical Optics,2006,11(03):34- 36.

[27] 殷涌光,丁筠.基于计算机视觉的蔬菜中活菌总数的快速检测[J].农业工程学报,2009,25(07):249-254.

[28] 鲁静.乳品微生物自动检测系统的设计[J].湖北第二师范学院学报,2010,27(08):115-117.

[29] 刘侃.鲜奶含菌量快速检测系统[D].华中科技大学,2008.

[30] 里红杰,陶学恒,于晓强.计算机视觉技术在海产品质量评估中的应用[J].食品与机械,2012,28(04):154-156.

第3篇:计算机视觉开发范文

【关键词】计算机视觉;构件;表面特征;检测

表面缺陷检测以及特征提取,所涉及的范围是非常广泛的,包括了铁轨表面缺陷、带钢表面缺陷以及织物表面缺陷等。因此加强对产品的表面缺陷提取以及质量检测显得尤为重要,目前基于计算机视觉的构件缺陷检测系统已经受到国内外研究人员的重视,如何更好地将计算机视觉技术引入到产品表面质量缺陷检测中去是未来发展的重点。笔者将在下文中就此展开详细的阐述。

1.计算机视觉的基本工作原理

1.1系统结构

计算机视觉是一项涉及范围广泛的技术,他通过图像采集装置将检测目标转化为图像信号,再经过专门性的额图像处理系统最终生成具体的表面特征。具体来讲在图像处理环节米旭涛根据图像的具体像素以及图像分布和颜色、亮度、饱和度等进行目标提取,再比照系统预设的参照值得出最终的检测结果,例如尺寸大小、颜色等师傅偶合格。计算机视觉处理系统包括了光源、镜头、计算机以及图像采集装置和处理系统等,这些系统综合组成共同推动了计算机视觉系统的正常稳定运行。

1.2计算机视觉硬件设计

计算机视觉系统的硬件平台包括了照明系统、镜头相机以及图像采集装置和工控机四个部分,这四个部分缺一不可,共同组成了整个计算机视觉系统。

1.2.1照明系统

照明系统是整个计算机视觉系统的关键,尤其是在光源和照明方案的配合上更是直接影响了整个系统运行的成败。因此在照明方案的制定以及光源的选择上应该尽可能的突出物体特征参量,综合考虑对比度以及亮度等因素,将计算机视觉系统的光源与照明方案相匹配,选择需要的几何形状以及均匀度等,同时还需要结合被检测物体的表面特征几何形状。针对构件表面缺陷的照明方案,笔者认为应该选择功率相对较大的LED光源,用低角度的方式进行照明。

1.2.2相机镜头

相机系统是成像的关键,因此在相机镜头的选择上应该适用于具体的构件。一般来说相机镜头包括了两方面内容,一是线扫,二是面扫。通过二者的综合运用实现更好地成像效果。

1.2.3图像采集卡

图像采集卡主要是指在计算机视觉系统中位于图像裁剪机设备和图像处理设备之间的重要接口。是成像的中间环节,发挥着不可或缺的作用。

2.基于计算机视觉的构件表面缺陷特征提取

基于计算机视觉的构件表面缺陷特征提取可以分为为三个重要部分,分别是图像预处理部分:主要是指针对构件进行区域的定位,将非构件的部分移出计算机视觉的缺陷提取技术中去,从而降低了后续工作的工作难度;其次是进行缺陷定位,主要是指通过特定的技术和算法将缺陷从结果当中直接分离出来。第三部分是缺陷特征的提取,也是系统处理的结果部分,是通过计算缺陷的程度以及缺陷大小,从而为后期的构件维护提供参考依据。具体来说,这三个部分的操作主要体现在以下几个方面:

2.1区域定位

区域定位是减少构件处理和选择时间的关键,能够大大提高构件缺陷提取的效率。构件的表面的基本特征和大致集合框架提取是区域定位和的第一步,要将计算机区域定位和缺陷提取结合起来,更好地实现缺陷分析。要做好构件的区域定位首先需要明确构件的基本种类和特征:一是根据构件的重用方式来说,可以分为白匣子、灰匣子、黑匣子从构件的使用范围来看又可以分为通用构件和专用构件;根据构件的粒度的大小可以分为小。中大三种不同粒度的构件;再次是从构件的功能上来看可以分为系统构件、支撑构件以及领域构件三个部分。四是从构件的基本结构特征来看可以分为原子构件以及组合构件。最后从构件的状态来说,又可以分为动态和静态构件。因此从不同种类的构件进行区域定位为视觉系统正常运行创造了优良的条件。

2.2缺陷提取

在进行缺陷提取的过程中,难免会受到客观的环境影响,比如噪声、温度以及湿度等对图像处理的结果产生影响,因此需要对区域定位中产生的区域进行滤波处理,然后再采用阈值分割的办法进行缺陷提取。具体操作步骤如下所示:

(1)计算出成像中的最小最大灰度值,并且设置初始阈值。

(2)根据阈值,结合图像的分割目标,将图像分割成为目标和背景两个部分,求导出平均灰度值。

(3)再根据新的平均灰度值计算出新的阈值。

(4)观察阈值的初始值与新阈值之间的关系,如歌二者相等则整个计算过程就结束,如果不相等,则就需要进一步计算。

通过阈值计算得出啊的最佳阈值分割效果图,能够进行初步的缺陷预判,但是初步预判当中还存在较多的不确定因素,主要包括两类,一是在边缘部分出现的细小毛刺,由于与缺陷的距离较近,因此在初步缺陷提取中容易形成误判、再次是在构件表面有一些非常细小的缺陷,这些缺陷的影响较小,不会对构件的性能造成影响,因此在进行缺陷提取的过程中需要将这两个因素排除在外,具体主要是指采用图像形态学中开运算和闭运算,从而达到对构件中的明了细节和暗色细节的过滤。具体来说缺陷的分割提取采用的是Sobel算子。主要是利用了图像像素点的上下左右灰度加权算法,对构件表面的缺陷进行检测。再采用二值图像边界跟踪法,将缺陷从构件图像中分离出来。

2.3缺陷特征提取

缺陷特征提取,又可以称之为缺陷的定量计算和定性过程,是将前期所得的数据结果以更加直观的形式展现出来,通过对比指标参数判断构件的表面质量是否合格,符合基本的生产标准。一般来说常用的表示缺陷特征的标准有以下几种:

(1)周长:周长是对缺陷的边界长度的描述,在图像特征上显示则是指构件成像上的缺陷区域的边界像素数量。

(2)面积:面积相对于周长能够更加直观地反映整体缺陷的大小,它是缺陷区域中的像素的总数,因此更高体现缺陷的影响规模。

(3)致密性:这是一个相对专业的缺陷指标概念主要是指每平方面积上的平方周仓,是一个双单位描述指标。

(4)区域的质心:区域质心是描述缺陷的影响关键也就是缺陷区域内的核心区域,是对整个区域的核心描述。

(5)最小外接矩形。

3.结语

综上所述,构件表面缺陷直接影响构件的最终使用效果,构件表面缺陷的检测应用领域也逐渐广泛,而计算机视觉技术在检测缺陷中的优越性更体现了基于计算机视觉的构件表面缺陷特征提取的研究价值。本文主要针对构件表面缺陷的检测,综合计算机视觉技术提出了具体的检测方法和检测工作原理,通过对表面缺陷的检测,力图提高构件的整体质量。

【参考文献】

[1]陈黎,黄心汉,王敏,何永辉,龚世强.带钢缺陷图像的自动阈值分割研究[J].计算机工程与应用,2002,(07).

[2]许豪,孔建益,汤勃,王兴东,刘源泂.基于数学形态学的带钢表面缺陷边缘提取[J].机械设计与制造,2012,(06).

第4篇:计算机视觉开发范文

关键词: 木材表面缺陷; 计算机视觉; 检测系统; 木材加工

中图分类号: TN911?34; TP391 文献标识码: A 文章编号: 1004?373X(2017)12?0148?04

Abstract: Since the manual detection for wood surface defect in the process of wood processing exists the problems of low efficiency and large quality difference, a real?time on?line automatic detection system of wood surface defect was designed by means of computer vision technology. The system can find out whether the wood surface has defect, detect the size and location of the wood surface defect accurately, and store the information to guide the wood processing equipment for wood processing. The system has the characteristic of accurate and fast detection speed. The conclusion from various experiments indicates that the system′s recognition accuracy rate can reach up to 92.33%, and the average detection time is 2 ms, which shows that the system is feasible.

Keywords: wood surface defect; computer vision; detection system; wood processing

0 引 言

木材表面缺陷是指降低木材商品价值和使用价值的各种特征的总称,这些缺陷不但会影响木材强度,还严重影响木材加工和木制装饰的质量及外观[1?3]。常用的木材表面缺陷检测的方法有:人工检测、超声波检测、X射线检测、激光扫描、计算机视觉技术检测[4]。

目前,计算机视觉技术已在许多领域得到了广泛的应用,在木材表面缺陷的检测中也取得了显著的成果[5?10]。文献[11]中,提出一种改进Sobel算子提取木材表面缺陷边缘的算法,并使用神经网络模式识别检测木材表面缺陷,该文献介绍的方法能够提高木材表面缺陷边缘的检测精度,识别的准确率较高,但需要大量具有代表性的木材图像作为训练样本,算法的复杂性也导致检测效率不高。文献[12]提出一种基于数学形态学分割木材表面缺陷的方法,并使用最小二乘支持向量机分类器检测木材表面缺陷,缺陷分割算法能够有效避免木材纹理对分割结果的影响,但在实际处理分割时,需要根据应用背景选择不同的参数值来得到分割的种子点,通用性有待提高。文献[13]介绍了一种基于HIS空间二维最大信息熵的分割方法,它对木材表面缺陷图像的分割结果较好,但是分割的处理时间较长,实时性不强。虽然对木材表面缺陷检测的研究有很多,然而,应用计算机视觉技术,实时在线检测并定位木材表面缺陷却未见报道。

木材加工过程中木材表面缺陷的检测大多仍依赖人工完成,检测的效率会随着检测人员的疲劳加重而有所下降,并且不同操作员的经验差异导致同一块木材的检测结果也会有所不同[13]。因此,研究一种能够代替人工进行木材表面缺陷检测的方法对木材加工行业非常重要。

本文利用计算机视觉技术,开发了一套木材表面缺陷在线实时检测系统,为木材加工行业提供了一个有效的方案。该系统可以检测出木材表面缺陷的大小以及位置信息,通过串口通信模块与下位机进行双向数据传递,进而指导木材加工设备对已检测木材进行作业。

1 系统设计方案

系统结构如图1所示,主要包括木材表面缺陷检测平台和木材表面缺陷软件检测系统。检测平台主要包括传送机构、结构光源、CCD工业相机、接近开关等。CCD工业相机为维视MV?VD120SC,分辨率为1 280× 960,焦距为8 mm,帧率为15 f/s,像素尺寸为4.65 μm ×4.65 μm,传感器光学尺寸为,信噪比大于54 dB,数据位数输出 8 b,输出方式为USB 2.0,供电要求为5 V(USB接口或外接电源供电),外形尺寸为56 mm×50.6 mm×50.6 mm。机架使用欧标型3030铝型材,由3030角码、M5不锈钢内六角圆柱头螺钉、M5配3030铝型材的T型螺母、M8尼龙脚垫、12W?T8?LED灯管、UCP208立式轴承座、宽450 mm PVC输送带和沪工DC 5 V接近开关等构成。

软件检测系统通过数据线与相机相连,实时获取传送带送来的木材图像,并快速地进行缺陷检测,最后将相关木材表面缺陷的信息传递给木材加工设备。木材经传送带进入相机拍摄区域时,安装在机架一侧的接近开关检测到木材的接近并将信号传给检测系统,检测系统控制下位机使得传送带电机失电,传送带停止。下位机的计时器开始计时,随之检测系统控制相机获取木材图像,并检测木材表面缺陷,并向下位机传递检测结果,下位机再控制木材加工设备对木材进行后续的加工。当计时器计时到达设定的时间后,下位机使传送带电机得电,传送带移动一个单位距离(确保与上一张检测图像无过多重复,并无检测区域丢失),然后电机失电,传送带停止,重复前面的步骤。当木材完全离开相机拍摄区域,接近开关将信号传给检测系统,检测系统进入待机状态。整个系统的工作流程如图2所示。

2 系统软件设计

本软件使用Microsoft Visual Studio 2013 作为开发平台,采用C++作为主要开发语言,操作界面使用MFC/C++开发。通过调用OpenCV和CameraDS相关函数来实现实验图像的获取,具有获取速度快,兼容大部分数字摄像机等优点。

2.1 系统安全设计

如图3所示,本软件根据用户不同的实际需求提供了自动检测和手动检测两种模式。手动模式下,用户才可以对检测系统的参数进行设置,设置好参数后,按下“获取图片”按钮,然后再按下“缺陷检测”按钮,信息提示窗口将显示木材表面缺陷的中心坐标、缺陷大小、缺陷检测所用的时间等。按下“继续”按钮,传送带带动木材运动一个单位距离,传送带停止运动,重复上述操作便可实现再一次的缺陷检测。自动模式下,系统会根据手动模式下设置的参数进行自动检测。

为了提高本系统的稳定性与安全性,在安全操作方面做了一些设置。自动模式和手动模式两种模式只能在一个检测循环结束后进行切换。例如,当要从手动模式切换到自动模式,自动模式的选择只能在缺陷检测完成后,“继续”按钮弹起后才起作用。而从自动模式切换到手动模式需要在缺陷检测完成后,即信息提示框中显示缺陷信息后方可实现。这样的设置可防止传送带传送时间出现差异,导致部分木材表面缺陷部位未能被检测到,也可防止缺陷检测中途遭到中断。

2.2 参数设定

为了得到准确的检测结果,用户首次使用本系统需要手动设置与检测有关的参数,点击“参数设定”按钮,弹出对话框如图4所示。

2.2.1 分割阈值设定

本软件使用二值化函数对木材表面缺陷图像进行阈值分割,阈值的设定将直接影响检测的结果。二值化函数的作用是将图像中灰度值大于设定阈值(图4中设为90)的像素点的灰度值修改为255(白色),小于或等于设定阈值的则被修改为0(黑色)。使得木材表面缺陷的部分变为黑色,木材正常的部分变为白色。

2.2.2 时间间隔设定

“时间间隔”测试前先打开相机,在木材表面位于拍摄区域的下边缘处作个小标记,准备好秒表,按下“测试”按钮的同时按下秒表计时,眼睛观察拍摄区域,当小标记到达拍摄区域的上边缘时停止计时,将秒表上显示的时间输入到相应的编辑框中。

2.2.3 最大舍弃面积设定

“最大舍弃面积”表示面积小于该值的区域将不被定为缺陷而舍弃,因为木材表面可能存在灰尘、污点、木屑等,它们的面积相对于缺陷的面积小的多,应该被舍弃。

2.2.4 像素标定设定

“像素标定”的含义为寻找图像中像素点的距离与实际物理距离的转换关系。例如:假设长度为1 mm的小线段,在图像中的像素距离为10,那么在图像中像素距离为100的线段,实际长度则为10 mm。根据这个转换关系,只需统计缺陷部分区域的像素面积和中心位置即可知道木材表面缺陷的实际大小与位置。按下“测量”按钮,在弹出对话框,按下“打_相机”,如图5所示。按照右侧的标定操作说明示意图,在待测的木材上面放一把尺子,将尺子与参考线对齐,读出参考线在尺子上的长度。点击“确定”退出当前对话框,然后把参考线的长度输入到编辑框中。最后点击“保存”退出“参数设定”对话框。

2.3 缺陷检测

“参数设定”完成后,按下“打开相机”按钮,左侧的框中将会动态显示图像,再按下“获取图片”按钮,框中显示按下按钮时获取的那帧图像。调节显示框下的滑动条可调节图片的对比度,再按下后面的“保存”按钮,可作为下次操作的参考数值。按下“缺陷检测”按钮,图中的木材表面缺陷将会被框出来,而且框中左上角显示的编号与右侧的提示框的序号对应,可方便查看检测是否准确。检测的结果如图6所示。缺陷大小的计算是通过统计缺陷轮廓的像素点的个数,再根据像素标定得到的转换关系来转换为实际面积的大小。而缺陷的中心默认为矩形框的中心。

2.4 检测结果的修改与保存

软件界面的右上角的两个按钮可查看检测结果的历史记录。本软件还能够对检测的结果进行修改和保存。点击“保存结果”按钮,软件会将右侧的信息提示框中的信息保存到Excel文档中,点击“修改结果”,将打开Excel文档,用户可根据历史记录来修改或删除软件误检测的结果。

3 系统测试

3.1 系统测试环境

PC主机为CPU Intel Xeon E3?1230 v5 340 GHz;内存为8 GB;操作系统为Window 10 专业版;主板为Gigabyte X150M?PLUS WS?CF;开发平台为Microsoft Visual Studio 2013;版本为12.0.21005.1;应用程序框架为MFC;本地编译工具为VC++;开发语言为C++。

3.2 系统整体测试

测试方法:使用相机拍摄木材图片,其中包含无缺陷、有污点、有缺陷、有划痕、有灰尘的各种不一样的木材图片。分别统计每个样本的准确率Ai和检测木材表面缺陷的准确率A如下:

式中:Si为每个样本检测结果的总数;Ei为每个样本中误检测和漏检测的数量总和;n为样本总数。

部分木材表面缺陷检测结果如图7所示。假设下面9张木材照片为测试的总样本,第1张照片有一个缺陷,且被正确检测出来,则S1=1,E1=0,A1=1,第2张照片有一个缺陷,且被检测出来,但有两个误检测结果,则S2=3,E2=2,A2=0.33,同理,A3=1,A4=1,A5=1,A6=0.5,A7=1,A8=1,A9=1。最后算出检测的准确率:A=(A1+A2+…+ A9×100%=87%。

使用前面讲述的测试方法对300张木材图片进行检测,统计出本软件检测木材表面缺陷的准确率为92.33%,平均检测时间为2 ms,能够基本满足木材加工企业的加工要求。

4 结 论

本文提出了一种基于OpenCV的木材表面缺陷检测系统,经实验有如下结论:本系统能够快速准确地检测定位木材表面的缺陷,检测的准确率达到92.33%,平均检测的时间为2 ms;系统软件操作界面简单易用,稳定可靠,具有一定的实用性;该系统能够灵活应用到多种木材加工生产线上,具有较好的通用性。它为木材加工流水线实时自动检测木材表面缺陷提供了一种可实现的方法。

注:本文通讯作者为邹湘军。

参考文献

[1] 王林,白雪冰.基于Gabor变换的木材表面缺陷图像分割方法[J].计算机工程与设计,2010(5):1066?1069.

[2] 金仁莲.关于木材缺陷及木材检验技术要点探讨[J].农民致富之友,2016(2):140.

[3] 戴天虹,吴以.基于OTSU算法与数学形态学的木材缺陷图像分割[J].森林工程,2014(2):52?55.

[4] 牟洪波.基于人工神经网络的木材缺陷检测研究[D].哈尔滨:东北林业大学,2006.

[5] TSAI D M, HUANG T Y. Automated surface inspection for statistical textures [J]. Image and vision computing, 2003, 21(4): 307?323.

[6] 王海涛,甄理,杨春霞,等.基于计算机视觉的铁轨表面缺陷检测系统[J].无损检测,2011(11):38?41.

[7] 赵红颖,于微波.计算机视觉技术在发动机缺陷检测系统中的应用[J].光学精密工程,2000,8(3):283?286.

[8] 胡亮,段发阶,丁克勤,等.带钢表面缺陷计算机视觉在线检测系统的设计[J].无损检测,2003(6):287?290.

[9] 熊建平.基于计算机视觉的墙地砖表面缺陷检测[J].电子测量技术,2015(5):53?55.

[10] FUNCK J W, ZHONG Y, BUTLER D A, et al. Image segmentation algorithms applied to wood defect detection [J]. Computers and electronics in agriculture, 2003, 41(1/3): 157?179.

[11] 尹建新.基于算机视觉木材表面缺陷检测方法研究[D].杭州:浙江工业大学,2007.

第5篇:计算机视觉开发范文

关键词:OpenCV;人脸检测;实时

中图分类号:TP391.41

人脸检测(Face Detection)是指对于给定的图像或视频,采用一定的策略对其进行搜索以确定其中是否含有人脸,如果是则返回一脸的位置、大小和姿态。人脸检测是人脸识别的重要环节,运用摄像机或摄像头采集含有人脸的视频流,并进行实时的人脸检测是目前主流的应用。

OpenCV(Open Source Computer Vision Library)是开源的计算机视觉代码库,它轻量级而且高效,由一系列C函数和少量C++类构成,实现了图像处理和计算机视觉的接口,实现了图像处理和计算机视觉方面的很多通用算法[1]。

1 系统设计

本系统采用了OpenCV的基于boost筛选式级联Haar分类器,该分类器是通过成千上万的物体各个角度的训练图像训练出来的,它先对图像进行直方图均衡化处理,并将图像归一化到同样大小,然后标记是否包含要检测的物体,在人脸检测方面比较擅长。系统加载分类器后,利用OpenCV的视频捕获函数实时捕获连接在电脑上的摄像头读入的视频流,并将抓取的视频帧转换为图像,然后对图像进行人脸检测和标定,具体流程图如图1所示:

图1 系统流程图

2 系统实现

本系统在WindowsXP操作系统下使用VC++6.0基于OpenCV1.0进行开发。系统具体实现如下:

(1)初始化声明。通过CvMemStorage*captureFaceStorage=cvCreateMemStorage(0);语句创建一个内存存储器,来统一管理各种动态对象的内存,参数为0时创建的内存块默认大小为64k。然后分别声明分类器对象、图像对象级联名称及识别函数等成员:

Static CvHaar Classifier Cascade* cascade=0;

Ipl Image *frame,*frame_copy=0;

Char* capture Face Cascade_name=haarcascade_frontalface_alt2.xml;

(2)加载分类器。通过cvLoad函数,加载调用CvHaarClassifierCascade类的分类器文件“haarcascade_frontalface_alt2.xml”:

cascade=(CvHaarClassifierCascade*)cvLoad(captureFaceCascade_name,0,0,0);

(3)捕获视频。通过cvCreateCameraCapture函数捕获摄像头,捕获视频后循环执行抓取帧操作cvGrabFrame(cap)和获取图像操作cvRetrieveFrame(cap)操作,从而将帧转换成图像,以便于处理。

(4)图像格式转换。一般从硬盘读入的图片或者通过cvCreateImage方法创建的IplImage图片默认的origin属性为0,即显示的时候都是正的。而由摄像头或者视频文件获取的帧图像origin属性为1,此时显示的图像扫描顺序是从下到上,它会将帧图像的第i行赋值给图像的第height-i行,因此采集的图像会出现倒立现象,为此,应将复制的图像的origin属性调整为与帧图像的origin属性一致。此时需要使用cvFlip(frame,frame_copy,0)函数,实现对帧图像沿X轴的翻转。

(5)识别与检测人脸。本部分主要实现人脸检测功能,首先将从实时视频中提取的图像进行灰度化处理:

然后调整新图像gray,使它精确匹配目标small_img的大小,并利用cvEqualizeHist函数进行灰度图像直方图均衡化处理,最终通过cvHaarDetectObjects函数检测出人脸:

(6)标定检出的的人脸。绘制目标圆形区域,标定出检测出的人脸:

最后通过cvShowImage("result",img)显示出检测后的图像,如果检测到人脸,显示效果图。

3 结束语

基于的摄像头实时人脸检测系统的实现充分说明了OpenCV技术在实现人脸检测方面的效率高、功能强的特点,OpenCV必将在计算机视觉、图形图像处理领域有着广泛地应用前景。

参考文献:

[1]Gray Bradski,Adrian Kaebler.Learning OpenCV:Computer Vision with the OpenCV Library[M].USA:O Reilly media,2008.

[2]梁路宏.人脸检测研究综述[J].计算机学报,2002(05):449-458.

作者简介:徐占鹏(1979.01-),男,山东栖霞人,讲师,硕士,研究方向:计算机应用、计算机图形图像处理和计算机视觉。

第6篇:计算机视觉开发范文

【关键词】电力系统;发展趋势;新技术发展

0 前言

电力系统是我国国名经济的基石。电力系统是由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。现代社会需要的是安全可靠经济的电能。电力系统主要由发电输电变电配电及用电等5部分组成。电力系统是一个具有复杂的大系统由于用户的不断增加的需求,电网对于技术的要求水平也提出了越来越高的要求。

1 电力系统自动化的发展趋势总的发展趋势的特点研究

1.1 电力系统自动化的图形化特点

因为电力系统联网工程的正式启动,电力系统的调度管理、数据计算分析呈现出传输路径的交叉性,信息更新越来越高速这样的几种特点。在计算机技术和通信技术的快速发展下,电力系统技术整合也在蓬勃发展着。电力系统信息数据处理上已经不再使用传统的处理方式,而是使用图形化处理这样的新技术,这样看到图形,电力系统管理者就能了解电力系统的变化发展趋势,也就能对未来电力系统软件开发带来丝丝先机。

1.2 电力系统自动化的远程化特点

过去电力系统的硬件平台大部分是计算机,外加使用扩展测控法对接口电路工作开展监测。此类的设计有很多的优势,这种类型的设计的周期很长,扩展性也很好。但是这样的设计方式也具有着高成本、大体积、大功耗以及灵动性差的多种缺点。现在,正是有着网络技术的不断更新和电子技术的不断进步,远动终端设备已经变为越来越接近最优化、智能化和小型化、协调化。因此,建立在此基础之上的电力系统也具备了远程化的特点,使电力系统自动化在控制系统方面的发展更加贴近智能化。

1.3 电力系统自动化的分布化特点

发电率范围在几十兆瓦至几千瓦之间并且模型较小的发电单元,它的地点处于用户周围还有有高效和可靠特点的称为电力系统自动化技术分布化。分布式发电主要包括以液体或气体为燃料的内燃机、太阳能发电、微型燃气轮机和风力发电等等的其他一些发电方式。这种发电技术具有很好的灵活性,能够给与用户各不相同的感受。还能为边远商业区域提供可靠的电力资源,让他们使用具有再生特点的资源进行多次发电,这样的电能还具有稳定度高的特点,是具有分度化的特色。极端及技术、新材料技术和电力电子技术都要作为支柱技术被在其中使用。

2 电力系统与新技术的结合

2.1 与智能计算机的结合

计算机视觉技术就是与智能计算机的结合之一。使用计算机视觉技术能够方便的获得多种图像信息。在电力系统中应用计算机视觉技术。目前,计算机视觉技术使用在电力系统中的作用是修改遥控系统在此同时提高它的性能。这主要表现在使用在线监测和开展无人操作或者环境监视,红外图像监测是电力设备在线监测常用方法中效果最好的。它既有这使用方便,又有着精准度较高的特点。红外图像识别方面主要就是使用计算机视觉技术,这样能取得较好的效果。计算机视觉技术的工作原理是在科学获取电力设备实时红外图像和电力设备正常工作时图像后,将两者开展对比。如果出现不正常。也就因此能够证明电力设备出现问题。第开展无人操作或者环境监视是使用微波双鉴探测器进行协助,将差分图像以及流光法一起使用对移动物体开展监测。如果出现不正常现象,那么系统就可以识别出来,并且警告我们。因为计算机视觉技术还处于起步阶段,其存在一定的不足之处。虽然计算机视觉技术发展迅速,但计算机视觉技术发展的并不完善,因为图像识别自身的复杂性的原因,所以现阶段还不能实现完全的无人操作。正是因为有着这些原因,在大多数情况下,计算机视觉技术只能够作为一种辅助技术。

2.2 与微机保护系统的结合

在电力系统自动化技术发展速度过快并且伴随着相关微机设备应用范围越来越普遍的情况下。人们越来越严格的要求微机保护系统。更简单的说,也就是原有的电力系统自动化技术当中的微机保护系统已经无法满足社会发展的需要。人们需要的微机保护系统应该具备更加牢靠与稳定的可以对通信进行保护的能力。这样才能够达到人们希望人机互动的效果。这样的系统在对硬件提高出高要求的同时也对软件业产生了更加具体的要求。例如,我国在上世纪末将第一套微机线路保护设备投入使用,并且该设备因为性能占据极大的优势从而获得世界各国用户的普遍认可。

在继电保护设备中,我们更加需要完善的问题就是设备的实时性。设备的实时性直接关乎电网的安全稳定,它直接受到其影响。假如设备实时性出现缺陷,会给电力系统带来难以补救损失的可能性。现阶段在我国电力系统中应用的嵌入式系统通常来说主要为C/C++语言。这是因为该系统不仅灵活性高并且可移植性也很强。同时该系统还使用了能够随时改变的模块化,目的在于处理好各种存在可能性会产生的问题但是却又不能够进行更换的难题。在提供便利的同时也能够尽最大的努力满足用户各种要求。

2.3 与GPS安全监控系统的结合

GPS的全称是全球定位系统。这是一个卫星系统。它能具有导航、定位、授时等功能的原因是它可以保证在地球上任意一点都可以同时被观测到。高精度、高效率和低成本都是GPS定位技术具有的优点。正是在这些优点的帮助下,它才能在各类大地测量控制网获得加强改造,也因此具有了较为普及的应用。目前,GPS技术出现了一个不断进步的境地,而将GPS技术使用到电力系统当中的条件也越来越松。电力系统使用GPS动态安全监控系统后取得效果很好。不仅能够对系统开展实时且有效的监控,同时还能够将GPS定位技术的精准度高并且效率快以及成本低的优势完全体现出来。可以对管辖区内的大地测量控制电网进行合理的监测。电力系统使用GPS动态安全监控技术后。基于GPS的动态安全监控系统指的是电力系统采用GPS所实现的光纤通信技术和同步测量技术。电力系统的动态安全监测管理主要包括动态相量测量系统、定时系统、中央信号处理系统和通信系统四个部分的内容。使用GPS和EMS监控系统能够做到对数据的动态、集中处理、定时等,为相量的控制提供条件。实现动态检测是我们必须做的,同时也是是电力系统发展的要求。

动态安全监控系统是基于GPS统一时钟的新一代EMS。各种各样的电磁暂态故障记录器和集中在稳态运行监控和数据采集(SCADA)系统是电力系统目前主是在录音的过程中使用的监控工具。前面具有记录数据冗余,记录时间短,缺乏沟通不同的录音机,让困难分析系统作为一个整体的动态特性:后者记录数据刷新间隔时间,但是用于系统的稳态特性。很难分析整个系统的动态行为的原因是都有一个共同的、缺乏精确的时间戳之间的联合不同位置即记录数据只是部分有效。新一代的基于GPS动态安全监控系统,是一个相结合的新的和现有的SCADA的动态安全监控系统。在这样的新技术下,GPS同步相量测量技术和光纤通讯技术和实施总量控制提供了条件。

在大型电力系统的稳定性和振动监测中常用的GPS系统的研究获得了一定的成果。在现实生活中已投入运行,例如GPS同步相量测量装置监控系统在南方电网投运。中国南方电网功率角振荡天骨干接触线己广泛应用在网格中的500千伏线路可以在实时调度中心观察。

3 结语

电力系统自动化技术无疑具有着很大的潜力在计算机技术、信息技术、控制技术的发展下,也将有更多的技术出现。随着它们的出现,电力系统将更加自动化,为人们提供更好的电能。

【参考文献】

第7篇:计算机视觉开发范文

关键词:EMGU;智能监控;目标跟踪

随着视频监控技术的发展,其架构从模拟化转向了数字化,利用计算机视觉技术对视频信号进行分析理解,并以此为基础对视频监控系统进行控制,不断提高系统的智能化和自动化。本文将EMGU应用到智能监控系统的开发过程,并实现了运动目标的自动跟踪。

1 EMGU简介

OpenCV(Open Source Computer Vision Library)是一个跨平台计算机视觉库,实现了图像处理和计算机视觉方面的很多通用算法。Emgu CV是.NET平台下对OpenCV图像处理库的封装[1],也就是.NET版的OpenCV。EMGU具有跨平台的特点,兼容C#、、C++等编程语言,并且可以实现特征检测与跟踪、运动分析、目标分割与识别等图像高级处理功能[2]。

1.1 EMGU在VS2010中的配置

⑴下载EMGU安装包(以libemgucv-windows-x86-2.4.0.1717版本为例)并进行安装,安装完成后将emgucv-windows-x86 2.4.0.1717\bin目录添加到系统环境变量中;

⑵导入UI插件,单击VS2010中的工具->选择工具箱项->.NET Framework组件菜单,单击浏览按钮进入EMGU安装目录bin下选择Emgu.CV.UI.dll,将ImageBox 和HistogramCtrl组件添加到工具箱中;

⑶在解决方案中加入 EmguCV 的引用[3]:包括Emgu.CV.dll、Emgu.CV.ML.dll、Emgu.CV.UI.dll、Emgu.Util.dll以及ZedGraph.dll等。

1.2 系统设计目的及拓扑结构

开发的智能监控系统通过IMOS平台来获取告警信息和视频源,当系统接收到IMOS平台通知的告警信息后,开始对IMOS平台的监控视频流进行分析,主要完成图像预处理、运动目标的检测、人体目标的识别和自动跟踪等操作,进而通过IMOS平台控制摄像机云台跟踪运动目标,将目标始终锁定在被监控视野内。系统的拓扑方案如图1所示。

1.3 目标跟踪分析与实现

目标跟踪是利用监控视频的图像信号,对运动目标进行检测、识别和定位,并自动控制云台和摄像机的运动,跟踪和锁定目标。在目标检测阶段若有多个目标同时出现时,则由系统自动选取一个最有利(运动物体区域范围最大)的目标进行跟踪,达到目标跟踪监控自动化。部分关键代码如下:

//YUV格式转换

Bitmap frameBGR = ConvertYUV2Bitmap(srcY, srcU, srcV, (int)w, (int)h);

mage frame = new Image(frameBGR);

frame._SmoothGaussian(3);

//更新图像帧和背景模型,以自适应环境变化[4]

#region use the BG/FG detector to find the forground mask

currentForm._detector.Update(frame);

Image forgroundMask = currentForm._detector.ForgroundMask;

#endregion

currentForm._tracker.Process(frame, forgroundMask);

//选择运动物体区域范围最大目标并绘制跟踪框

Maxblob.Size = sizeF;

foreach (MCvBlob blob in currentForm._tracker)

{

if ((blob.Size.Height * blob.Size.Width) > (Maxblob.Size.Height * Maxblob.Size.Width))

Maxblob = blob;

}

frame.Draw((Rectangle)Maxblob, new Bgr(0.0, 0.0, 255.0), 1);

// 当跟踪框面积大于预设面积时,跟踪目标开启

if ((Maxblob.Size.Height * Maxblob.Size.Width >= 50))

{

//当跟踪框的坐标与前置坐标偏差超过阀值时,开始转动云台

if (((Maxblob.Center.X - currentForm.pointCenter.X) >= 10) )

{

currentForm.SendMessage(MW_PTZ_CMD_E.MW_PTZ_PANRIGHT);

... ...

}

}

2 总结

本文探讨了EMGU在智能监控系统开发过程中的应用,并给出了EMGU在VS2010中的配置过程。结合IMOS平台,对运动目标的自动跟踪过程进行了分析,对于智能监控系统的开发具有一定的参考价值。

[参考文献]

[1]王燕,曹银杰,郎丰法,等.基于Emgu CV的数字相机图像采集[J].电子科技.2012,25(4):31-32.

[2]赵霞,陆小龙,廖明.基于OpenCV的角铁中线检测方法[J].中国测试.2010,36(3):27-29.

第8篇:计算机视觉开发范文

【关键词】机器视觉;应用研究

机器视觉是一门涉及人工智能、计算机科学、图像处理、模式识别、神经生物学、心理物理学等诸多领域的交叉学科。机器视觉主要利用计算机来模拟人或再现与人类视觉有关的某些智能行为,从客观事物的图像中提取信息进行处理,并加以理解,最终用于实际检测和控制。随着现代计算机技术、现场总线技术与大规模集成电路技术的飞速发展,机器视觉技术也日臻成熟,已经广泛应用在国民经济发展的各行业。

1.机器视觉系统组成

一个典型的机器视觉应用系统包括图像捕捉、光源系统、图像数字化模块、数字图像处理模块、智能判断决策模块和机械控制执行模块,如图1所示。首先采用CCD摄像机获得被测目标的图像信号,然后通过A/D转换成数字信号传送给专用的图像处理系统,根据像素分布、亮度和色彩等信息,进行各种运算来抽取目标的特征,然后再根据预设的判别标准输出判断结果,去控制驱动执行机构进行相应处理。

总之,随着机器视觉技术自身的成熟和发展,可以预计它将在现代和未来制造企业中得到越来越广泛的应用。

2.机器视觉技术的应用

在国外,机器视觉的应用主要体现在半导体及电子行业,其中大概40%-50%都集中在半导体行业。具体如PCB印刷电路;SMT表面贴装;电子生产加工设备;机器视觉系统还在质量检测的各个方面已经得到了广泛的应用,并且其产品在应用中占据着举足轻重的地位。

而在中国,以上行业本身就属于新兴的领域,再加之机器视觉产品技术的普及不够,导致机器视觉在以上各行业的应用几乎空白。目前随着我国随着配套基础建设的完善,技术、资金的积累,各行各业对采用图像和机器视觉技术的工业自动化、智能化需求开始广泛出现,国内有关大中专院校、研究所和企业近两年在图像和机器视觉技术领域进行了积极思索和大胆的尝试,逐步开始了工业现场和其它领域的应用。

(1)工业中的应用

虽然机器视觉技术从20世纪80年代才开始起步,但由于其突出的优点,在各种工业领域被广泛应用,特别是近几年发展十分迅速,国内外的成果也是层出不穷。

在国外,机器视觉技术广泛应用于机器零部件的装配、非接触测量、产品质量检测、在线过程控制、数控机床加工、过程监控等领域。英国ROVER汽车公司800系列汽车车身轮廓尺寸精度的100%在线检测,是机器视觉系统用于工业检测中的一个较为典型的例子,该系统由62个测量单元组成,每个测量单元包括一台激光器和一个CCD摄像机,用以检测车身外壳上288个测量点。汽车车身置于测量框架下,通过软件校准车身的精确位置。测量单元的校准将会影响检测精度,因而受到特别重视。每个激光器/摄像机单元均在离线状态下经过校准。同时还有一个在离线状态下用三坐标测量机校准过的校准装置,可对摄像顶进行在线校准。检测系统以每40秒检测一个车身的速度,检测三种类型的车身。系统将检测结果与人、从CAD模型中撮出来的合格尺寸相比较,测量精度为±0。1mm。ROVER的质量检测人员用该系统来判别关键部分的尺寸一致性,如车身整体外型、门、玻璃窗口等。实践证明,该系统是成功的,并将用于ROVER公司其它系列汽车的车身检测。

机器视觉在国内的应用主要集中于检测与定位等几个方面,这样的工业产品占据了中国市场的绝大部分。机器视觉在工业检测中的应用最为常见的是对各种机械零件的几何尺寸进行测量,在半导体及电子行业,国内高等院校和科研单位也研究出基于机器视觉的管脚尺寸自动检测装置。此外,机器视觉还被用于对于如刀具等工业设备的检测和数控机床的加工。在很多工业领域存在着高精度定位的问题,如钻床数控系统钻头定位、金属板材数控加工轨迹坐标定位等。目前机器视觉技术由于其高精度的优点在这方面得到广泛的应用。华中科技大学在金属板材数控加工中利用机器视觉技术对加工轨迹坐标定位。提出一种基于机器视觉的非接触式加工轨迹坐标定位方法,完成了金属板材数字化成形中支撑模型的非接触式高精度快速定位。湖南大学进行了钻头视觉定位研究,在视觉定位中采用间接定位方式,间接实现钻头刃磨初始状态的定位。中国计量学院等单位进行了基于机器视觉的PCB数控钻机定位研究。大量的实践证明采用机器视觉系统进行定位并且综合运用数控伺服传动技术以及各种先进控制技术能够有效实现精确定位。利用机器视觉系统节约了大量的人力和物力,降低了产品生产成本。

(2)农业中的应用

计算机视觉技术在农业上的应用研究,起始于20世纪70年代末期,主要应用于植物种类的鉴别、农产品品质检测与分级等。随着计算机软硬件技术、图形图像处理技术的迅猛发展,它在农业上的应用研究有了较大的突破,在农业领域的生产前、生产中、收获时和产后的各个环节中,均可以利用计算机视觉技术来实现这些农业生产的视觉化。计算机视觉在产前的应用主要是检验种子质量;在产中的应用包括田间杂草识别、植物生长信息的监测、病虫害的监视和营养胁迫诊断等方面;在农作物收获时的应用主要体现在农业机器人的研制与开发上;在产后的应用包括水果分级和农产品的加工等。在农田作业机械上,机器视觉技术被不断的开发和应用。农药的粗放式喷洒正是农业生产中效率最低、污染最严重的环节。利用机器视觉技术可以实现农药的精量喷洒,近年来,机器视觉技术在播种机械方面的应用主要是检测播种质量;在自动收获机等农田自动作业机械上,更需要依靠机器视觉系统来确定作物行与机械的相对位置,以控制自动作业机械在作物行间自动行进,

机器视觉技术在农业生产上的应用可提高生产的自动化水平,解放劳动力,具有良好的应用前景。同时还应看到,由于农业对象的特点,机器视觉理论和技术的局限性以及硬件条件的限制,机器视觉技术在农业生产的应用距离实用和普及还有相当长的距离。相信随着相关技术的发展,很多问题会得到好的解决,机器视觉技术在农业生产中的应用会极大地加快农业现代化的进程。

(3)医学上的应用

随着药品和医疗器械安全性问题重要性的不断提升,越来越多的生产厂商将机器视觉技术引入实际生产中来,以达到提高生产效率,加强产品品质保障的目的。同样,在医疗系统中机器视觉也得到了越来越多的应用。

机器视觉科技医药领域的应用主要分为医学与药物两部分。机器视觉技术在医学疾病诊断方面的应用主要体现在两个方面:一是对(X射线成像、显微图片、B超、CT、MRI)图像增强、标记、渲染处理,主要利用数字图像处理技术、信息融合技术对X射线透视图、核磁共振图像、CT图像进行适当叠加,然后进行综合分析协助医生诊断;二是利用专家知识和3D重构对物体三维信息与运动参数进行分析并给出形象准确的解释,如诊断与手术等。机器视觉技术的应用不仅节省了人力,而且大大提高了准确率和效率。在药物方面,机器视觉系统对药用瓶的缺陷检测,也包括了药用玻璃瓶范畴,也就是说机器视觉也涉及到了医药领域,其主要检测包括尺寸检测、瓶身外观缺陷检测、瓶肩部缺陷检测、瓶口检测等。除此之外,对药剂杂质的检测、对医学用具质量的检测、对药物外包装泄露的检测等等都在保障着药物的质量安全,保障着人们的生命健康。

(4)交通领域的应用

随着计算机的普及和相关软件的不断更新升级,机器视觉技术在交通领域所发挥的作用愈为重要。机器视觉技术在交通领域的应用范围较广,主要包括视频检测系统、智能车辆的安全保障系统、车牌识别和交通指挥等。

视觉技术应用于视频检测时,视频检测系统的目标就是用数字图像处理和计算机视觉技术,通过分析交通图像序列来对车辆、行人等交通目标的运动进行检测、定位、识别和跟踪,

并对目标的交通行为进行分析、理解和判断,从而完成各种交通流数据的采集、交通事件的检测,并尽快进行相应处理。视频的交通事件和参数检测系统有高度的网络化和智能化,可实现远程监控和设置。视觉技术应用于智能车辆安全保障系统,主要用于路径识别与跟踪、障碍物识别、驾驶员状态监测、驾驶员视觉增强等。德国UBM大学Dick-manns教授领导的智能车辆研究小组一直致力于动态机器视觉领域的研究,研制的EMS-Vision视觉可较好地模拟人眼功能。车牌识别技术(VLPR)是计算机视觉和模式识别技术在现代智能交通系统中的一项重要研究课题,是实现交通管理智能化的重要环节。随着图像处理技术的日趋成熟,更多算法的融入综合,使得车牌识别技术逐渐成熟。单一算法很难达到良好的识别效果,只有多种方法结合,才能实现车牌识别的高效性和准确性。过去的10多年里,有些国家已经成功开发了一些基于视觉的道路识别和跟踪系统。其中,具有代表性的系统有:LOIS系统、GOLD系统、RALPH系统、SCARF系统和ALVINN系统等。

机器视觉技术在交通各领域都发挥着越来越重要的不可替代的作用。在取得较大成绩的同时仍有不足。其一应尽快开发出具有高性价比的实用化的激光距离成像系统,能够获取高质量的原始图片至关重要;其二,处理各种交通事件的及时性决定了所有的图像处理的速度应尽可能的快,目前的各种算法都各有优劣,如何能在最短的时间内完成图像的识别工作成为我们下一步要努力的方向。

3.发展趋势

在机器视觉赖以普及发展的诸多因素中,有技术层面的,也有商业层面的,但制造业的需求是决定性的。制造业的发展,带来了对机器视觉需求的提升;也决定了机器视觉将由过去单纯的采集、分析、传递数据,判断动作,逐渐朝着开放性的方向发展,这一趋势也预示着机器视觉将与自动化更进一步的融合。未来,中国机器视觉发展主要表现为以下一些特性:

(l)随着产业化的发展对机器视觉的需求将呈上升趋势。

(2)统一开放的标准是机器视觉发展的原动力。

(3)基于嵌入式的产品将取代板卡产品。

(4)标准化一体化解决方案是机器视觉发展的必经之路。

(5)机器视觉系统价格持续下降、功能逐渐增多。

4.结语

机器视觉技术经过20年的发展,已成为一门新兴的综合技术,在社会诸多领域得到广泛应用。大大提高了装备的智能化、自动化水平,提高了装备的使用效率、可靠性等性能。随着新技术、新理论在机器视觉系统中的应用,机器视觉将在国民经济的各个领域发挥更大的作用。

参考文献

[1]李福建,张元培.机器视觉系统组成研究[J].自动化博览,2004(2):61-63.

[2]范祥,卢道华,王佳.机器视觉在工业领域中的研究应用[J].现代制造工程,2007(6):129-133.

[3]张萍,朱政红.机器视觉技术及其在机械制造自动化中的应用[J].合肥工业大学学报(自然科学版),2007, 30(10):1292-1295.

[4]马彦平.计算机视觉技术在农业生产中的应用与展望[J].中国农业资源与区划,2009,30(4):21-27.

[5]饶秀勤.基于机器视觉的水果品质实时检测与分级生产线的关键技术研究[博士学位论文].杭州:浙江大学,2007.

[6]冯新宇,庞艳辉.车牌识别技术实现方法初探[J].交通科技与经济,200712:50-511.

[7]徐琨,贺昱曜,王夏黎.基于背景模型的运动车辆检测算法究[J].微计算机信息,2007,4-1:120-1211.

第9篇:计算机视觉开发范文

关键词: 机器视觉; 图像检测; 航空轮胎; 表面质量

中图分类号: TP 23文献标识码: A

引言近年来,随着生产工艺飞速发展,人们开始关注产品的外观质量,比如印刷品、包装、工艺品等以外观质量为重要附加价值的产品,又比如航空轮胎等表面缺陷会直接影响到使用效果甚至会给使用者的生命财产安全带来无可挽回的损失的产品。众所周知,机器视觉已经发展成为重要的工业生产加工手段之一,在中国成为全球重要的制造中心之一的背景下,中国成为继美国、欧洲和日本后的全球第四大机器视觉市场,同时也是最具发展潜力的市场。一方面外国企业积极入驻中国带来了巨大的视觉系统需求,另一方面国内企业不断扩大生产规模,加大了对视觉系统的需求,以航空轮胎为例,未来十年,国家将在大飞机项目中投入500~600亿资金,大飞机项目的发展,必将会带动航空轮胎行业大规模的发展,对航空轮胎的质量要求也会更加严格。1国内外相关技术研究国外对机器视觉技术的研究,由于开展的比较早,而且具有资金、技术以及硬件方面的优势,已经走在了国内的前面。国外的机器视觉系统的应用领域涉及到了社会生产的各个方面,有原始的在线监视,也有外观检测以及动作、行为控制,许多工业加工成套生产设备都集成了机器视觉系统,成为加工生产线的标配,比如印刷生产线上的机器视觉质量控制系统,又比如汽车制造业中的移动三坐标测量系统[1]。由于经济和技术原因,国内绝大多数图像处理技术公司都以国外产品为主,没有或者很少涉足拥有自主知识产权的机器视觉在线检测设备,对视觉技术的开发应用停留在比较低端的小系统集成上,对需要进行大数据量的实时在线检测的研究很少,也很少有成功案例。但是,随着国内经济发展和技术手段不断提高,对产品质量检测要求就更高,对在线检测设备的需求也就更大,具有巨大的市场潜力。计算机、摄像机等电子技术的飞速发展大大提高了机器视觉系统的硬件水平,同时图像处理理论和算法的快速发展也给机器视觉系统提供了强大的软件支持。但是,仍然伴随着一些问题,主要有以下两点:光学仪器第35卷

第3期谢,等:机器视觉在轮胎检测领域的应用研究

(1)算法的精确性提高伴随着计算量的成倍增加,处理时间就成为了实时检测的软肋;(2)硬件的分辨率提高了,图像的分辨率、精度也随之提高了,但是数据量计算量都因此成倍增加。因此,如何保证检测的实时性和准确性,是机器视觉系统在工业应用中需要解决的核心问题。2视觉检测核心技术

2.1机器视觉图像处理技术机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。有大量的文献和著作给与介绍和讨论,其中比较著名的马颂德的《计算机视觉》介绍了计算机视觉的算法和理论,以及Richard Hartley的《Multiple View Geometry in Computer Vision》介绍了在计算机视觉中的几何理论和方法[2]。机器视觉中的图像处理方法,主要包括图像增强、数据编码和传输、平滑、边缘锐化、分割、特征抽取、图像识别与理解等内容。经过这些处理后,输出图像的质量得到相当程度的改善,既优化了图像的视觉效果,又便于处理器对图像进行分析、处理和识别[3]。机器视觉理论应用于现代检测领域,是上世纪末本世纪初计算机视觉的一个新的研究方向。它使用计算机视觉的理论方法来识别物体的关键点,经过分析处理以后,转换成坐标数据,然后产生检测数据。国内已有学者把机器视觉技术运用于检测领域[4]。但是在轮胎检测领域,机器视觉技术的应用还仅仅停留在理论之上,还没有可实际应用的商品化的设备,更不用说结合机器视觉和嵌入式两种技术的便携式检测仪了。

2.2嵌入式技术嵌入式系统一般指非PC系统,有计算机功能但又不称之为计算机的设备或器材。它是以应用为中心,软硬件可裁减的,适应对功能、可靠性、成本、体积、功耗等综合性严格要求的专用计算机系统。嵌入式系统几乎包括了生活中的所有电器设备,如掌上PDA、移动计算设备、电视机顶盒、手机上网、数字电视、多媒体、汽车、微波炉、数字相机、家庭自动化系统、电梯、空调、安全系统、自动售货机、蜂窝式电话、消费电子设备、工业自动化仪表与医疗仪器等。嵌入式系统有以下几大优点[56]:(1)嵌入式系统通常是面向特定应用的,它通常都具有低功耗、体积小,集成度高等特点;(2)嵌入式系统和具体应用有机地结合在一起,它的升级换代也是和具体产品同步进行的,因此嵌入式系统产品一旦进入市场,就具有较长的生命周期;(3)由于空间和各种资源相对不足,嵌入式系统的硬件和软件都必须设计,量体裁衣、去除冗余,力争在同样的硅片面积上实现更高的性能,这样才能在具体应用中对处理器的选择更具有竞争力。本研究选取嵌入式系统中的DSP(数字信号处理器)来进行开发,具体型号为TI公司的TMS320。它具有很高的编译效率和执行速度,在信号处理方面具有优势,它的特点如下:(1)程序和数据具有独立的存储空间,有着各自独立的程序总线与数据总线,可以同时对数据和程序进行寻址,大大提高了数据处理能力;(2)由于广泛采用了流水线操作,减少了指令的执行时间,可以同时运行8条指令;(3)与一般计算机不同,乘法(除法)不由加法和移位实现,它具有硬件乘法器,乘法运算可以在一个指令周期内完成;(4)指令周期降到了1.67 ns。随着工作频率进一步提高,指令周期将进一步缩短;(5)拥有自己独特的专门为数字信号处理而设计的指令系统;(6)相比传统的处理芯片,它还具有体积小、功耗小、使用方便、实时处理迅速、处理数据量大、处理精度高、性能价格比高等许多优点。3轮胎检测系统构成

3.1研究目标机器视觉用于产品表面缺陷检测需要面对以下主要问题:(1)数据处理量非常庞大;(2)如何快读匹配图像;(3)如何快速实现缺陷分割并剔除伪缺陷;(4)如何选取缺陷特征,用以实现缺陷识别。以具体产品为例,相对其他轮胎产品,航空轮胎对质量检测的要求较为严格,只要航空轮胎的检测技术到位,其他轮胎产品也基本可以检测。以航空轮胎的缺陷检测为例,根据GB/T 9747-2008《航空轮胎试验方法》、GB/T 13652-2004 《航空轮胎表面质量》和GB 15323-1994 《航空轮胎内胎》等标准的要求,研究表面缺陷在线检测的图像处理方案;开发一套基于机器视觉的产品表面缺陷的在线检测设备,同时根据GB/T 13653-2004 《航空轮胎X射线检测方法》所述,配合X射线发射仪,利用一对一的服务器/客户机构架的机器视觉对标准中所描述的航空轮胎的一系列缺陷,如断层、气泡和裂口等进行高精度、高实时性、高连续性以及非接触式的在线缺陷检测。具体技术指标:(1)能检测出最小直径0.3 mm的轮胎内部缺陷(即横向纵向最小均为0.3 mm)并能对缺陷进行分类识别,主要包括结构类、气泡类和夹杂物类,对缺陷的检出率要求大于90%;(2)对缺陷部位进行定量和定位分析:读出缺陷的尺寸(误差0.5 mm),测出缺陷距离轮胎表面的深度,决定缺陷在轮胎内部的位置;(3)在线检测设备的检测检测速度与X射线管旋转速度同步,X射线管旋转一周即完成一个轮胎一个圆周的缺陷检测。

3.2研究内容和技术路线

3.2.1确定机器视觉检测系统的基本框架在数据量大时,采用一个处理器搭配一台摄像机的一对一方式。在产品表面检测中,由于航空轮胎的圆周面比较大,数据量也就比较大,通常采用的机器视觉单摄像机方式,很难满足圆周面检测分辨率高、数据量大的要求,而多台摄像机能满足分辨率和数据量的要求,却又相应带来实时性差的问题。若采用多台摄像机的方式,就需要配备多套成像系统,一套成像系统造价在10万元左右,基于成本和计算数据量的考虑,本研究选用一对一方式,利用分时运动克服单台摄像机采集数据量不足的缺点。具体来说,就是在经典的服务器/客户端模式架构的基础上设计一种基于机器视觉的系统结构以实现轮胎圆周面产品表面缺陷的在线检测,该结构主要由四部分组成:服务器(嵌入式系统)、客户端(图像处理子系统)、信号模块(PLC)、输出单元。系统框架如图1所示。每隔一定的时间(系统初步设定为5 s),服务器通过PLC控制步进电机驱动轮胎做圆周转动,每转过一个固定角度(系统定为120°),服务器就调动客户端完成此区域内相对独立的视觉检测任务,一次间隔只检测轮胎的三分之一(120/360),经过3个时间间隔,客户端即完成了整个轮胎360°的全面检测,然后利用拼接原理把各部分拼接起来,统一到一个坐标系下。拼接测量的关键是利用重叠区计算出各次测量时基准的不同,然后消除不同,统一在一个坐标系下。拼接测量的方法可以直接计算出被测轮胎的全面信息。为了保证服务器和客户端之间图像检测数据可靠、实时的交互,本研究采用千兆以太网的方式传输数据。作为整个检测系统的管理控制单元和人机交互接口,服务器不仅要完成检测任务的调度,还要可以设定检测参数,接收和实时显示客户端上传的图像数据和处理结果(缺陷等),并将信息存入数据库中。此外,服务器还接收PLC传来的位置检测信号,用于与客户端的同步,并且根据检测结果中的位置信号,对执行机构发出动作信号,标记并剔除有缺陷的产品。在客户端处理核心中安装有图像采集卡,接收服务器设置的参数和任务调度,控制采集卡和摄像机完成图像实时采集,利用图像处理算法处理和分析图像数据,将最终得到的缺陷位置和分类信息上传给服务器,保存缺陷图像以备查。

3.2.2设计编写表面缺陷检测的图像处理方案在表面缺陷检测中,根据图像数据的特点,本研究提出以下图像处理过程:缺陷分割、特征提取及缺陷分类。首先是缺陷分割:在表面缺陷检测的时候,利用图像处理算法,处理采集到的产品表面图像,将缺陷从复杂的背景图像中分离出来。接着是特征提取:提取缺陷后,对缺陷的各种标识性属性进行提取,主要是几何特征和灰度统计特征,以保证后续的缺陷分类和识别。几何特征指的是轮廓特征,比如长度、形状、面积、重心等。灰度统计特征指的是分布位置、统计值、均方差等等。还有缺陷分类:本研究采用改进的BP算法[7]对网络进行训练,构建神经网络分类器来实现轮胎缺陷分类,为了提高检测系统对伪缺陷的适应性,本研究将部分伪缺陷也作为网络输出并对其进行训练。由于图像处理中需要运用大量的计算机内存处理算法,为避免编程中出现内存泄露进而造成计算机内存资源流失的现象,决定采用对内存进行托管的C#语言进行编程。

3.2.3服务器和客户机系统之间的同步服务器/客户端模式架构的机器视觉系统具有独立性和并行性的特点,它不得不面临的一个重要问题是如何解决服务器和图像处理子系统之间的同步问题,包括摄像机同步采集、数据同步处理和轮胎运动同步控制等。本研究利用摄像机本身的外同步特性,采用对摄像机提供统一的线扫描触发信号保证摄像机采集同步。机器视觉系统基本组成模块见图2。

4结论实际测量结果证明,应用视觉检测方法可以较好地解决传统测量方法中时间长、工作量大、测量效率低的问题。该方法能够充分利用现代计算机技术的优势,设备简单、易用,克服了传统测量仪器的许多误差来源,具有快速、准确、非接触测量的优点。在实验室中初步完成了实验系统的核心部分(如图3所示),与传统的测量方法相比,原先需要15 min的测量时间,现在只需要15~30 s就可完成,操作也更加简单便捷。该系统可检测出最小直径0.3 mm的轮胎内部缺陷(即横向纵向最小均为0.3 mm)并能对缺陷进行分类识别,主要包括结构类、气泡类和夹杂物类,对缺陷的检出率为96%。

参考文献:

[1]彭向前.产品表面缺陷在线检测方法研究及系统实现[D].武汉:华中科技大学,2008.

[2]ZHANG Z.Determining the Epipolar geometry and its uncertainty[J].A Review Int Journal on Computer Vision,1998,27(2):161-195.

[3]章毓晋.图像处理和分析[M].北京:清华大学出版社,1999.

[4]朱方文.基于LAP方法的机器人灵巧手控制[D].上海:上海大学,2006.

[5]张嘉琪.基于嵌入式系统图像处理平台的万寿菊水分状态检测系统的研究[D].重庆:西南大学,2009.