前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的生物燃料科技主题范文,仅供参考,欢迎阅读并收藏。
关键词:肺部真菌感染;呼吸内科;原因;药物治疗
近年来,我国的肺部真菌感染率呈快速增长趋势。本次研究选取2012年1月~2014年12月我院呼吸内科收治的100例肺部真菌感染患者作为研究对象,分析其发生感染的原因,并对其进行药物治疗,现报道如下。
1 资料与方法
1.1一般资料 选取2012年1月~2014年12月我院呼吸内科收治的100例肺部真菌感染患者作为研究对象,将其随机分为两组,各50例。对照组中,男性患者27例,女性患者23例;患者的年龄为45~75岁,患者年龄的平均值为(60.67±2.37)岁;24例患者为慢性阻塞性肺疾病,13例患者为肺炎,6例患者为慢性支气管炎,5例患者为哮喘,2例患者为肺癌。观察组中,男性患者26例,女性患者24例;患者的年龄为44~76岁,患者年龄的平均值为(60.71±2.41)岁;23例患者为慢性阻塞性肺疾病,12例患者为肺炎,7例患者为慢性支气管炎,5例患者为哮喘,3例患者为肺癌。两组患者一般资料无明显差异,可进行对比研究。
1.2方法 对这100例患者的临床资料进行回顾性分析,分析其发生感染的原因和引发感染的真菌的类型。
所有患者均针对其基础疾病进行常规治疗。对照组患者加用伊曲康唑进行药物治疗,服用2次/d,药物剂量为200mg/次。观察组患者加用氟康唑进行药物治疗,服用1次/d,首次药物剂量为400mg,之后剂量为200mg/次。对照组和观察组患者均进行为期6w的治疗。治疗结束后,观察对比对照组患者和观察组患者的临床治疗效果。
1.3疗效判定 临床治疗效果可分为有效、显效以及无效。显效,即患者的临床症状和各项生命体征均基本消失或明显得到改善,痰液培养的结果连续3次为阴性,肺部X线拍片无阴影;有效,即患者的临床症状和各项生命体征均有所改善,痰液培养的结果连续3次为阴性,肺部X线拍片中的阴影面积缩小;无效,即患者临床症状和生命体征均未得到改善,甚至出现恶化,痰液培养结果为阳性,肺部X线拍片中的阴影面积扩大。临床治疗总有效率=(显效例数+有效例数)/总例数×100%。
1.4统计学方法 将对照组和观察组的患者的基本资料和各项研究数据录入到SPSS17.0统计学软件中进行统计学处理,性别比例、病情、临床治疗总有效率等计数资料采用χ2检验,使用[n(%)]表示,平均年龄等计量资料采用t检验,使用(x±s)表示。当P值0.05时,则可以认为对照组和观察组之间不存在明显的差异。
2 结果
2.1基础疾病情况 本次研究的100例患者中,47例患者为慢性阻塞性肺疾病,所占比例为47%;25例患者为肺炎,所占比例为25%;13例患者为慢性支气管炎,所占比例为13%;10例患者为哮喘,所占比例为10%;5例患者为肺癌,所占比例为5%。慢性阻塞性肺疾病所占比例最大,这说明,引发呼吸内科患者肺部真菌感染的主要疾病为慢性阻塞性肺疾病。
2.2真菌感染诱因 发生肺部真菌感染的100例患者中,62例患者长期使用抗生素,所占比例为62%;33例患者长期使用糖皮质激素,所占比例为33%;5例患者长期进行放疗和化疗治疗,所占比例为5%。这说明,肺部真菌感染的主要诱因为抗生素的长期使用。
2.3致病真菌 67例患者感染真菌为白色念珠菌,所占比例为67%;14例患者为曲霉菌,所占比例为14%;10例患者为光滑念珠菌,所占比例为10%;其他类真菌感染的患者共有9例,所占比例为9%。这说明,肺部真菌感染的主要致病真菌为白色念珠菌。
2.4临床治疗效果 对照组患者的临床治疗总有效率为78%,观察组患者的临床治疗总有效率为92%,观察组患者的临床治疗效果更加显著(P
3 讨论
肺部真菌感染是一种常见的临床病理现象,其发生率所占比例超过全部真菌感染发生率的总和[1]。真菌往往在人体的黏膜层和皮肤内潜藏,是主要机体菌群之一[2]。当人的免疫力下降,潜藏的真菌可能会使人体出现局部炎症感染[3]。呼吸内科患者在治疗过程中,往往需要使用抗生素和糖皮质激素,长期使用的情况下,真菌菌群的活性被抑制,对人体内的微循环造成影响,从而降低人体免疫力[4]。
研究结果显示,引发呼吸内科患者肺部真菌感染的主要疾病为慢性阻塞性肺疾病,主要诱因为抗生素的长期使用,主要致病真菌为白色念珠菌。与使用伊曲康唑治疗的对照组患者相比,使用氟康唑治疗的观察组患者的临床治疗效果更加显著(P
综上所述,呼吸内科患者预防肺部真菌感染的主要方法为,有效治疗可能引发真菌感染的肺疾病,科学使用抗生素。在发生肺部真菌感染后,使用氟康唑进行治疗,能够使患者的临床症状得到有效改善。
参考文献:
[1]陶健钊.呼吸内科患者发生肺部真菌感染的原因及进行药物治疗的对比分析[J].当代医药论丛,2014,10(5):82-83.
[2]李小兰,杨雅林.呼吸内科患者肺部真菌感染的原因及临床要点分析[J].医学信息,2014,28(25):558.
1.大有可为的电子垃圾
精致光滑的iPhone4,各种锃亮超薄的电视机和笔记本电脑,它们似乎跟脏兮兮的污染物毫不沾边,但事实上,这些光鲜的高科技产品可能对人类健康带来严重威胁。研究机构发现,在发展中国家,不少废弃电子产品不经任何保护措施就被任意拆解,其中的汞、铅、镉及其他有毒金属暴露于环境之中,而人们这么做,只是为了获得电子产品中少量的金、铜等贵重金属。
位于美国新泽西州的“云蓝”公司可以帮助科技公司处理电子垃圾,保证其中的贵重金属能够回收并在未来新的电子产品中重新再利用。对银行等机构来说,他们很担心存储于旧电脑中的敏感数据在处理过程中被泄露,“云蓝”公司可以在厂内当场处理。
2. 太阳塔
从太阳身上汲取能量的方式有两种,一种是通过光电板将太阳光直接转化为电能,第二种则是将太阳光产生的热量,通过镜面聚焦产生蒸汽从而带动发电涡轮机。后者被称为太阳热或聚焦太阳能。事实上,在美国内华达州和加利福尼亚州沙漠中已有这样的太阳热电站在运行,这些太阳热电站利用一排排很低的曲面镜来反射太阳光。
不过,美国eSolar公司的比尔・格罗斯认为,他可以改进一些基本技术。eSolar公司并不是采用曲面镜阵列,而是利用垂直的镜面塔技术,这种技术可以完美地将太阳光聚集于地面上的一个目标。此外,通过软件控制,镜面还可以完美地跟踪太阳的位置,将产生的电能最大化。
3. 微生物与生物燃料
生物科技曾经是硅谷最重要的研究方向之一,科学家们致力于解码基因组,力争生产更新更好的药物。但是很快科学家们对可替代能源的兴趣远远超过了生物科技。如今,科学家们发现这两个领域其实有着许多共同点,尤其是在生物燃料方面。第一代生物燃料是有局限性的:每加仑玉米燃料乙醇比石油燃料产生的能量少,而诸如生物柴油燃料之类的新型燃料,如果没有经过代价不菲的技术转化,常常无法应用于汽车引擎。
那么如何利用现有的基础设施广泛使用生物燃料呢?如今,有许多生物科技公司正在这一领域努力。Amyris公司和LS9公司正在利用生物科技生产新型生物燃料,这种燃料如今已可应用于我们的小汽车和卡车之中。这两家公司首先在实验室中培养一种可以生产生物燃料的微生物。当然,这种技术要想实现商业化生产还需要很长的路要走,但它为未来的生物燃料带来了希望。
4. 智能电表
我们所使用的电器已是21世纪电器,然而电器接入的电网却仍然属于20世纪。这种电网效率低,而且极易崩溃。改进电网是大范围利用清洁能源的重要组成部分:需要更好的导线来传输风力等能量产生的电能。一个灵活多变的智能电网可以更好地处理可再生能源的间歇性问题。
对于一个小型的智能电网来说,安装的首要步骤就是安装一个智能电表。如今的电表只会记录和显示一些最基本的信息。现有基础设施甚至不知道提醒用户灯火管制,直到大量用户打电话过去询问。但是接入网络中的智能电网可以传播各种即时信息,让基础设施和用户都能够时时了解究竟用了多少电,这样就可以更高效地使用电源。
5. 燃料电池
燃料电池是一种传统、基本的技术,它们通过电池内部的燃料氧化反应产生电量。本质上讲,它们是一种化学电池,在每一所高中的化学课上都可以制作这种电池。与蓄电池不同的是,它们不能存储电能。不过,它们的简易性也让它们更适用于某些特定场合,如美国宇航局曾经长期使用氢燃料电池为太空船供电。
一些人开始尝试利用氢燃料电池作为一种更清洁的商业发电方式。比如,本田和其他一些汽车公司已经研制出氢燃料电池动力汽车,不过这些氢燃料电池造价不菲。带来变化的是美国加州的“旺盛能源”公司。2010年初,“旺盛能源”公司推出一种被称为“旺盛盒”的产品,该系统利用燃料电池技术提供离网电力。“旺盛盒”有半个集装箱大小,采用固体氧化物燃料来氧化自然气体从而产生电能。这种技术已经出现了一段时间,但“旺盛能源”公司能够以相对较低的温度实现氧化反应。
6. 潮汐塔
潮汐是一种海洋能,可以产生巨大的动能,并且可以通过适当的技术捕获。事实上,因为潮汐比风更好预测,潮汐能潜力比风能更好。通常,最好的风力资源都远离人口密集的中心城市,而很多大城市紧临海边。不过问题在于,在水下建造基础设施比在陆地上的花费高得多,此外还要考虑咸水对设施的侵蚀和后期维护等挑战。
与风力一样,世界上某些地区潮汐能非常丰富,如加拿大的芬迪湾是地球上潮汐能最密集的地区之一。尽管纽约市的潮汐有些平静,但该市仍有潜力利用潮汐能,Verdant之类的能源公司正在进行尝试。
7. 绿色混凝土
制造水泥是一种高耗能的过程,因为必须将粉末状石灰石粘土高温加热到1450摄氏度,这通常需要大量的化石燃料,如煤或天然气等。毫无疑问,这一过程会产生大量的二氧化碳。每生产一吨水泥,要释放出650到920公斤二氧化碳。去年,全球共生产了近30亿吨水泥,二氧化碳排放量占全球5%左右。
好消息是现在有许多碳存储技术,可以使水泥生产过程效能更高。比如,Hycrete公司已经生产出一种屋顶防水水泥,而且可以在将来重复再利用。伦敦Novacem公司则更进一步,他们已经研制出一种新型水泥生产技术,采用硅酸镁来替代富含碳的石灰石,而且生产过程中能够同时吸收二氧化碳。
8. 小型核电站
核电长期以来一直是环境运动的指责目标,绿色和平组织最开始就是一个反核组织。核电的放射性废料和严重事故的威胁,一直是绿色组织和环保人士最担忧的问题。
核电站建设仍然进展缓慢。在过去数十年中,美国没有建造一所新的核电站。这和环境没有关系,只因为核电站的投资日益增加,如今很少有人愿意拿大笔的资金去冒这个风险,但这不意味着核电的萎缩。美国纽斯高核电公司和巴布科克・威尔科克公司正在进行尝试。他们准备建设一些小型的核电站,这种核电站规模只相当于现有的数十亿瓦特反应堆的四分之一,这样就可以大大降低投资风险和事故风险。
9. 人工光合作用
事实上,自然界其实总是比人类更智能,比如光合作用。长有绿色叶子的植物能够捕获太阳的能量并将其转化为有用的化学燃料,这一过程比我们人类的光电太阳能电池板要高明、高效得多。
有许多科学家在尝试人工光合作用。美国麻省理工学院能源专家丹尼尔・诺塞拉正在试验一种人工光合作用方式。这种人工光合作用可以产生电源,电源再用来生产氢制造燃料电池。朱尔生物技术公司准备将这种利用方式商业化。问题是,如何最好地利用这种免费能源?或许应该从植物那里取取经。
10. 生物碳
随着全球气候变化加剧,每个人都希望能够找到一种更完美的途径来快速、经济地降低碳排放量,但至今仍然未有一个理想的解决方案。不过,这并不意味着就没有通往“碳零排放”的捷径。生物碳就是一个相对简易的方式。
植物在生长过程中会吸收二氧化碳。但是,一旦它们被砍伐或燃烧,它们所吸收的碳就又会被排回大气中。保证树木生存,尤其是热带地区的树木,是存储碳的一种方式。但是,如果植物被砍伐并在一个可控的、低氧环境中燃烧,就会生成木炭。木炭是碳的一种稳定的固体形态。如果将生物碳与某种土壤混合在一起,就可以减少大量的从土壤中释放出来的甲烷和一氧化二氮等温室气体。一项最新研究发现,生物碳可以抵销全球12%的碳排放量。生物碳技术面临的挑战就是它本身的价值相对较低,因此没有多少商家愿意大批量生产。
来源:美国《时代》2010年1月3日
随着全球石油、煤炭的大量开采,能源日益枯竭库,存量不断减少,能源短缺和随之而来的环境污染日渐引起人们的关注,并已成为制约我国经济社会又快又好发展的瓶颈。改善能源结构,利用现代科技开发生物质能源来缓解能源动力,减少污染物排放等问题刻不容缓。我国政府及有关部门对生物质能源利用也极为重视,已将“大力发展生物质能”列入国家“十二五”规划。
2、我国生物质能产业发展现状及前景
现阶段我国的生物质能应用主要集中在沼气利用,生物质直燃发电,工业替代燃料和交通运输燃料这四方面。
2.1 沼气利用
近年来沼气利用在中国发展迅速,在中央投资的带动下,各地也加大投入,形成了户用沼气、小型沼气、大中型沼气共同发展的新格局。沼气开发利用现在不仅能解决农民的烧柴问题,更重要的是我国的沼气发展正从分散式农户经营向产业化方向转变。2008年山东民和牧业建成了一个利用鸡粪为原料的3MW热电联产沼气工程;2009年安阳贞元集团通过与丹麦技术资金伙伴合作,以养殖场,公共污粪和秸秆为原料在安阳建立了一个年产400万m3的车用气的沼气项目。从目前情况看,通过生物发酵产沼气的技术相当成熟,但是现阶段还存在沼气工程总体规模较小效益不高,产气不是很稳定,特别是在北方冬季产气明显不足,和沼气副产品市场需求不足等因素约束。
2.2 生物质直燃发电
生物质直燃发电是最早采用的一种生物质开发利用方式,也是消耗量最大、最直接、最容易规模化和工业化的能源利用方式。早在2004年,山东单县、河北晋州和江苏如东这三个地方就开始了生物质直燃发电的试点示范,而2006年《可再生能源法》的施行更极大促进了生物质直燃发电行业的发展,年投资额增长率都在30%以上,到2010年我国生物质直燃发电量已达到550万千瓦。其中,我国生物质最大的企业国能生物发电集团有限公司在2010年投入运营和在建生物质发电项目近40个,总装机容量100万千瓦。到2013年,该公司规划生物质发电装机数量达到100台,装机容量达到300万千瓦。届时每年可为社会提供绿色清洁电力210亿千瓦时,年消耗农林剩余物可达3000万吨,每年可为农民增收约80亿元,每年可减排二氧化碳1500万吨以上。
生物质直燃发电技术比较成熟,而且它是增加农民收入、促进农民增收的直接载体,是实现工业反哺农业、加快农村经济发展的重要途径。需要注意的是生物质直燃发电还存在项目投资和运营成本较高,原料供应季节性强,需要政府补贴,受国家政策影响风险大等问题。
2.3 工业替代燃料
生物质作为工业替代燃料主要包括生物质成型燃料、生物质可燃气和生物质裂解油。
生物质成型燃料一般以木块、木粉、木屑和秸秆等农业生物质废弃物为原料,用作工业锅炉的燃料。生物质成型燃料的技术研究开发始于20世纪80年代,早期主要集中在螺旋挤压成型机上,但存在成型筒及螺旋轴磨损严重,寿命较短,电耗大等缺点,导致综合成本较高,发展停滞不前。进入2000年以来,生物质成型技术得到明显的进展,成型设备的生产与应用已初步形成了一定规模。国家发改委规划到2010年,生物质成型燃料生产量可达100万t。生物质成型燃料多用在一些中小型的工业蒸汽锅炉、有机热载体锅炉和商业蒸汽锅炉方面。其中,珠海红塔仁恒纸业有限公司的“生物质固体成型燃料替代重油节能减排项目”项目是目前全国最大的生物质成型燃料节能减排项目,该项目2011年投入运行,以两台40t/h生物质成型燃料专用低压蒸汽锅炉,代替现有的六台燃油锅炉。
生物质可燃气较早使用在气化发电方面,一般是生物质气化净化后的燃气送给燃气轮机燃烧发电或者将净化后的燃气送入内燃机直接发电。生物质气化发电厂的规模一般为几十千瓦到十几兆瓦,与生物质直燃发电相比,它的规模较小,但它发电效率较高,投资成本较少,对原料的来源限制也较少。除了气化发电,生物质可燃气也越来越多地应用在工业替代燃料方面。深圳华美钢铁厂就是国内首家使用生物质能源的钢铁企业,它将原燃烧重油的两段式连续推钢加热炉改烧生物燃气,该项目在2009年初立项,并2010年5月正式投产至今运行正常,这是目前世界范围内建成运行的最大的工业生物燃气项目。
生物质裂解油是指将秸秆、木屑、甘蔗渣等农业废弃物通过高温快速加热分解为挥发性气体,再经冷却后提炼出的一种液体。生物质裂解油的热值一般为16~18MJ/kg,产油率可达70%,它可直接用作锅炉和窑炉的燃料,也可进一步加工转换成化工产品。我国在生物质裂解油这方面的研究起步较晚,但近年来发展较快。浙江大学,中国科技大学,山东理工大学等高校在生物质热解液化装置优化和油品的应用、分析和提纯方面都做了大量的研究工作,也取得了不错的成绩。在生物质裂解油的工业化应用过程中,2007年广州迪森公司在广州萝岗开发区成功建设了一套年产3000吨的生物油工业实验装置并一直连续运行。易能生物公司则使生物油迈入了工业应用的新阶段,从2007年在安徽合肥建立起第一套年产万吨的生物油装置以来,其2009年在山东滨洲和2011年在陕西铜川宜君科技工业园分别投产了第两套和第三套的年产万吨的生物油装置,这也标志着生物质裂解油的产业化进入了实质性阶段。生物质裂解油与生物柴油、燃料乙醇相比生产成本较低,但是它热值较低,又具有一定的酸性,需要对燃烧设备进行少量改造。生物质裂解油除能直接用于中低端燃料市场外,还可以进一步通过精炼工艺生产多种化学品,开发利用的市场潜力巨大,具有十分广阔的发展前景。
2.4 交通运输燃料
生物能源作为交通运输燃料主要包括生物燃料乙醇和生物柴油。上世纪末,利用粮食相对过剩的条件,我国开始发展生物燃料乙醇。从目前的情况看,玉米、小麦等粮食类作物和甘蔗、木薯等经济类作物加工燃料乙醇的技术比较成熟,但基于对国家粮食安全的担心,和发展经济类作物会发生品种单一,种性退化较严重等问题,国家一直有意保持国内燃料乙醇的产量在一定的限制水平。
玉米和木薯加工燃料乙醇目前已处在比较尴尬的境地情况下,我国的企业和科研院校正加大力度地投入研发纤维素等新的燃料乙醇的生产。据了解,中国拥有发展纤维素乙醇的原料优势。纤维素广泛分布于农作物秸秆、皮壳当中,资源丰富且价格低廉。2008年吉林燃料乙醇有限公司和2009年安徽丰原生化公司都以玉米秸秆为原料分别建立了一套年产3000t和一套年产5000t燃料乙醇工业化示范装置。中粮集团与中石化、丹麦诺维信公司联手建造的中国规模最大的年产万吨的纤维素TU将于2011年正式投建。纤维素乙醇的生产代表了中国未来燃料乙醇的主流方向,目前需要做的是加快研发力度,突破技术瓶径,降低生产成本,加快商业化生产的速度。
生物柴油主要应用于运输业和海运业,是一种重要的交通运输燃料。生物柴油在国内的发展状况与燃料乙醇相似,用油类植物生产生物柴油的技术比较成熟,但是它受原料的制约严重。要发展大力生物柴油产业,必须要有稳定的原料来源。据了解,欧美国家主要以菜籽油、大豆油为原料生产生物柴油,但我国人多地少的国情决定了我国生物柴油产业不宜以食用油为原料,只能大力发展丘陵盐碱等非粮用地发展麻风树、黄连木等乔灌木油料作物。2010年底中海油在海南中海油东方化工城内的6万t生物柴油项目正式投产运行,其采用的是高压酯交换(SRCA)生物柴油生产工艺的装置,产品已在海南岛内的柴油零售批发网点推广使用,这是我国首个麻风树生物柴油产业化的示范项目。
近年来,利用微藻制备生物柴油受到了国内外的广泛关注,因为微藻繁衍能力高,生长周期短,可大量培养而不占用耕地,能有效解决原料来源不稳定的问题。美国在2007年推出“微型曼哈顿计划”,其宗旨就是向藻类要能源,目标是到2010年每天产出百万桶生物燃油,实现藻类产油的工业化。2008年10月英国碳基金公司也启动了目前世界上最大的藻类生物燃料项目,投入的2600~-英镑将用于发展相关技术和基础设施,该项目预计到2020年实现商业化。我国的科研人员也在政府和企业的大力支持下加紧研发这项新技术,希望能早日实现产业化。虽然现在较高的生产成本制约着微藻生物柴油产业的发展,但通过今后技术的不断改进,相信微藻生物柴油产业的前景是十分广阔的。
一、国内生物燃料产业发展现状及存在的主要制约因素
(一)国内生物燃料产业发展现状
1、燃料乙醇开始规模化应用
“十五”期间,我国在黑龙江、吉林、河南、安徽4省,分别依托吉林燃料乙醇有限责任公司、河南天冠集团、安徽丰原生化股份有限公司和黑龙江华润酒精有限公司四家企业建成了四个燃料乙醇生产试点项目进行定点生产,初步形成了现有国内燃料乙醇市场格局。到2007年,我国燃料乙醇产能达160万吨,四家定点企业产能达144万吨。值得注意的是,为不影响粮食安全并改善能源环境效益,我国已确定不扩大现有陈化粮玉米乙醇生产能力的政策,转向以木薯和甜高粱等非粮作物为原料生产燃料乙醇,并开始商业化生产。目前,广西木薯乙醇项目的生产能力超过20万吨,2008年全国燃料乙醇总产量达172万吨。此外,生物液体燃料也已开始在道路交通部门中初步得到规模化应用,我国燃料乙醇的消费量已占汽油消费量的20%左右,在黑龙江、吉林、辽宁、河南、安徽5省及湖北、河北、山东、江苏部分地区已基本实现车用乙醇汽油替代普通无铅汽油。
2、生物柴油步入快速发展轨道
自2002年经国务院批示,国家发改委开始推进生物柴油产业发展以来,生物柴油年产量由最初的1万吨发展到现在的近20万吨,总设计产能约200万吨/年,生物柴油被纳入《中华人民共和国可再生能源法》的管理范畴。2008年,为鼓励和规范生物柴油产业发展,防止重复建设和投资浪费,根据生物燃料产业发展总体思路和基本原则,结合国家有关政策要求及产业化工作部署与安排,国家发改委批准了中石油南充炼油化工总厂6万吨/年、中石化贵州分公司5万吨/年和中海油海南6万吨/年3个小油桐生物柴油产业化示范项目。截止目前,我国生物柴油产业已初步形成以海南正和生物能源公司、四川古杉油脂化工公司和福建卓越新能源发展公司等民营公司、外资公司以及中粮集团、航天科工集团和三大石油集团共同参与的格局。
(二)生物燃料产业发展需突破的主要制约因素
目前,我国生物燃料产业的快速发展还面临许到原料资源供应、产业发展的技术瓶颈、商业化应用市场和政策、市场环境不完善等制约因素。
1、原料资源供应严重不足
无论是燃料乙醇还是生物柴油都面临着“无米下锅”。
从燃料乙醇看,如果完全用玉米来生产,按照1∶3.3 比例计算,2020 年将达4950 万吨,加上其他工业消费对玉米需求的增长,未来我国玉米生产将难以满足燃料乙醇生产的工业化需求,而且随着陈化粮食逐步消耗殆尽和玉米价格的不断上涨,玉米燃料乙醇的发展可能威胁到我国粮食安全,因此完全使用玉米生产燃料乙醇在我国并不现实。
从生物柴油看,国内仅有的几个项目都是以地沟油、植物油脚等废弃油脂做原料,而全国一年的废弃油脂也只有600―700万吨,其中相当比例还要用于化工生产,每年可供生物柴油企业利用的废弃油脂不足50 万吨。按照1.2 吨废弃油脂生产1 吨生物柴油计算,40 多万吨废弃油脂能满足的产能只有30 多万吨。目前,我国很多企业处于部分停产或完全停产状态,行业发展陷入了困境。
2、产业发展中的技术、标准瓶颈制约
目前,我国生物质能产业发展尚处于起步阶段,产业发展中的生产技术、产品标准、生产设备等问题已成为阻碍生物燃料产业快速健康发展的重要问题之一。
从燃料乙醇的发展看,一方面,我国的自主研发能力还比较弱,缺乏具有自主知识产权的核心技术。目前国内以玉米、木薯等淀粉类为原料的生产技术已经进入商业化初期阶段,以甜高粱、甘蔗等糖质类为原料基础的燃料乙醇生产技术大多处于试验示范阶段,还需在优良品种选育、适应性种植、发酵菌种培育、关键工艺和配套设备优化、废渣废水回收利用等方面作进一步研究。而国外以淀粉、糖质类为原料的燃料乙醇生产技术已经十分成熟,并进入大规模商业化生产阶段。此外,我国的纤维素乙醇还处在试验阶段,技术还有待完善,尤其是如何降低纤维预处理和纤维酶的成本,高效率的发酵技术等方面,总体而言与国外发达国家相比差距较大。另一方面,国内还缺乏以不同生物质为原料的燃料乙醇相关产品和技术标准。尽管我国于2001年颁布了变性生物燃料乙醇(GB18350-2001)和车用乙醇汽油(GB18351-2001)两项强制性国家标准,在技术内容上等效采用了美国试验与材料协会标准(ASTM);但上述标准主要是基于淀粉类原料而制定的,而制备燃料乙醇的原料种类较多且生产工艺也大不相同,在某些技术指标上也会有所差异,单一基于淀粉类原料制定的标准在一定程度上制约了我国燃料乙醇产业的快速发展。
从生物柴油的发展看,我国主要采用化学酯化法生产生物柴油,已形成较完备的技术体系和方法,但由于酯化过程要进行水洗、除渣、酯化、分离、蒸馏、洗涤、干燥、脱色等一系列过程,因此,转化率低,成本较高,而且产品质量难以保障。此外,虽然我国在2007年颁布了《柴油机燃料调和用生物柴油(BD100)国家标准》(GB/T20828-2007),但由于生物柴油的酸度、灰分、残炭均高于石油类柴油,常会以B5或B20等BX类生物柴油与石化柴油混用。而我国至今没有B5或B20标准,更没有对生物柴油企业的生产设计和运行进行技术规范,生物柴油质量难以保证,导致难以进入中石油、中石化的销售终端,大量生物柴油卖给企业用作烧锅炉等用途,极大地制约了我国生物柴油产业的快速健康发展。
3、生产成本过高,商业化应用缺乏市场前景
从燃料乙醇看,目前,除巴西以甘蔗为原料生产的燃料乙醇成本可以与汽油相竞争外,其他国家燃料乙醇的成本都比较高,而我国燃料乙醇由于受原料成本高、耗能大、转化率低等因素影响,燃料乙醇的生产成本更高;从生物柴油看,在原料价格高峰时,生物柴油的生产成本是每吨接近7000元,而售价是6000元左右。因此,不依靠政府补贴,大规模的商业化应用缺乏市场前景。
4、政策法规和市场环境尚需改进
虽然我国在2005年2月28日通过了《可再生能源法》,并于2007年8月出台了《可再生能源中长期发展规划》,但主要是以利用再生能源发电作为目标和重点的,缺乏对包括燃料乙醇、生物柴油等生物燃料开发利用的明确性规定。另外,在生物燃料产业发展方面缺乏利用税收减免、投资补贴、价格补贴、政府收购等市场经济杠杆和行政手段促进发展的政策性法规;而且,部分出台的优惠政策行业内企业很难享受。此外,我国生物燃料产业的市场化竞争和运作环境也有待进一步完善。
二、我国生物燃料产业发展的路线图
(一)发展目标
按照因地制宜、综合利用、清洁高效的原则,合理开发生物质资源,以产业发展带动技术创新,通过加强生物质的资源评价和规划,健全生物燃料产业的服务体系,包括完善科技支撑体系,加强标准化和人才培养体系建设,完善信息管理体系等途径促进生物燃料产业的发展,实现生物燃料产业发展从追赶型到领先型的转变。到2020年,燃料乙醇年利用量达1000万吨,生物柴油年利用量达200万吨,年替代化石燃料1亿吨标准煤。
(二)发展路线
近期(2011―2015年):在燃料乙醇方面,应维持玉米乙醇、小麦乙醇的现有发展规模,继续提高玉米乙醇、小麦乙醇项目的生产效率;重点发展木薯乙醇、马铃薯乙醇等非粮淀粉类燃料乙醇;努力完善木薯乙醇、马铃薯乙醇等非粮燃料乙醇的生产工艺,提高生产经济性;进行甜高粱乙醇、甘蔗乙醇等糖类原料的直接发酵技术的示范;同时,加大纤维素遗传技术研发力度,争取在纤维素酶水解技术上有所突破;开展抗逆性能源植物的种植示范。在生物柴油方面,仍将维持以废弃油脂为主,以林木油果等为辅的原料供给结构;开展高产木本油料种植技术研究;开展先进酯化技术示范;制定生物柴油技术规范和B5或B20等BX类生物柴油与石化柴油混用的产品标准,并建立国家级的质量监测系统。
中期(2016―2020年):在燃料乙醇方面,加大以甜高粱等糖类作物为原料的燃料乙醇的产业化利用,应用耐高温、高乙醇浓度、高渗透性微生物发酵技术,采用非相变分离乙醇技术;戊糖、己糖共发酵生产乙醇技术实现突破,纤维素乙醇进入生产领域;耐贫瘠能源作物在盐碱地、沙荒地大面积种植,提高淀粉作物中淀粉含量、糖作物中的糖含量技术成功,燃料乙醇在运输燃料中起到重要作用。在生物柴油方面,大力开发以黄连木、麻风树等木本油料植物果实作为生物柴油主要原料的生物柴油,高产、耐风沙、干旱的灌木与草类规模化种植技术取得突破;高压醇解、酶催化、固体催化等生物柴油技术广泛应用。
远期(2020年以后):在燃料乙醇方面,燃料乙醇逐步替代汽油并探索利用更高热值产品(如丁醇等);植物代谢技术取得突破,减少木质素含量提高纤维素含量,大规模生产木质纤维类生物质燃料乙醇的工业技术开发成功并实现产业化。在生物柴油方面,以黄连木、麻风树等木本油料植物果实作为生物柴油主要原料的生物柴油的生产工艺不断成熟且生产经济性不断提高,规模不断扩张;工程微藻法技术逐步完善并走向成熟且实现产业化。
三、促进我国生物燃料产业发展的保障措施
(一)统一思想,合理规划,有序推进
向全社会广泛宣传发展生物燃料产业的重要意义,切实提高对发展生物燃料产业重要性的认识,把生物燃料产业的发展提高到国家经济和社会发展的战略高度予以考虑。同时,要借鉴先发国家在生物燃料产业发展过程中的经验和教训,仔细分析生物燃料产业发展过程中可能会出现的问题。此外,各地区也要按照因地制宜、统筹兼顾、突出重点的原则,做好生物燃料产业发展的规划工作,根据生物质资源状况、技术特点、市场需求等条件,研究制定本地区生物燃料产业发展规划,提出切实可行的发展目标和要求,充分发挥好资源优势,实现生物质能的合理有序开发,走出一条具有中国特色的生物燃料产业发展路径。
(二)开展资源评价,发展能源作物
必须通过生物质资源的调查和评价工作,搞清各种生物质资源总量、用途及其分布,为发展生物燃料产业奠定良好基础。一是开展调查研究,做好资源评价。二是在生物质资源普查与科学评价基础上,制定切实可行的能源作物发展规划,以确定在什么地方具有大规模种植何类能源作物的条件。在不毁坏林地、植被和湿地,不与粮争地,不与民争粮的原则下,调整种植业比例,优化种植结构,根据主要能源作物品种的性能、适宜的边际性土地等资源数量、区域分布现状,科学制订能源作物的种植规划。在种植基础好、资源潜力大的地区,规划建设一批能源作物种植基地,为生物燃料示范建设和规模化发展提供可靠的原料供应基础。
(三)加大生物燃料产业前沿技术研究和产业化示范工作
必须要坚持点面结合、整体推进的原则,将近、中远期目标相结合,并结合我国生物质资源特点,加大对生物燃料产业前沿技术和技术产业化研究的支持力度。一是制定生物燃料产业发展的技术路线图,通过政府、企业和研究机构的共同工作,提出中长期需要的技术发展战略,有利于帮助企业或研发机构识别、选择和开发正确的技术,并帮助引导投资和配置资源。二是加强生物燃料产业技术的试点和产业化示范工作,设立生物燃料产业研究发展专项资金,增加研究开发投入,加大生物燃料产业技术的研发力度,加快推进生物燃料产业技术的科技进步与产业化发展。三是重视生物燃料产业技术和产品的标准体系建设,制定生物燃料产业技术和产品标准,发挥标准的技术基础、技术准则、技术指南和技术保障作用,并建立国家级的质量监测系统加强市场监督工作,促进生物燃料产业的健康发展。
(四)加强财政、税收和金融政策的引导和扶持
一是可以给予适当的财政投资或补贴,包括建立风险基金制度实施弹性亏损补贴、对原料基地给予补助、具有重大意义的技术产业化示范补助和加大面对生产生物燃料产品企业的政府采购等措施,以保证投资主体合理的经济利益,使投资主体具有发展生物燃料项目的动力。二是加大对投资生物燃料项目的税收优惠,包括对投资生物燃料项目的企业实行投资抵免和再投资退税政策,对生产生物燃料产品的企业固定资产允许加速折旧,对科研单位和企业研制开发出的生物燃料新技术、新成果及新产品的转让销售在一定时期可以给予减免营业税和所得税等措施,以鼓励和引导更多的企业重视、参与生物燃料产业发展。三是积极引导金融资本投向生物燃料产业,包括对生物燃料龙头企业实施贷款贴息,支持有条件的生物燃料企业发行企业债券和可转换债券,支持符合条件的生物燃料企业以现有资产做抵押到境外融资以获得国际商业贷款和银团贷款,鼓励和引导创业投资增加对生物燃料企业的投资等措施,鼓励以社会资本为主体按市场化运作方式建立面向生物燃料产业的融资担保机构,以降低生物燃料企业的融资成本,扩充和疏通生物燃料企业的融资渠道。
(五)加强部门间合作,建立产业服务配套体系,完善市场体系建设
一是建设和完善服务保障体系。整合资源,建立和完善产业服务配套体系,针对生物质资源分布广、收集运输难等问题,建立生物质资源收集配送等产业服务体系;积极引导农民发展能源作物种植、农作物秸秆收集与预处理等专业合作组织,建立生物质原料生产与物流体系;尽快建立完善生物燃料产业技术的推广服务体系、行业质量标准和产品检测中心等配套服务体系,加强生物燃料产业技术、管理人才队伍的建设。二是必须尽快开发具有自主知识产权的生物燃料产业的国产设备,重点开发有利于生物燃料产业发展的装备设计与制造技术,包括大型专用成套设备和成熟的生产工艺路线。三是完善市场体系建设。要通过市场带动,积极发展上下游企业和相关配套产业,整合资源,优化结构,建立完善的市场体系。
2006年5月份,一列特殊的火车在瑞典开始正式运营。该火车共有10节车厢,最高速度可达每小时130公里――这是世界上第一列使用生物燃料的火车,使用的燃料是由屠宰场里扔掉的牛油、内脏等经过高温发酵而产生的沼气。据报道,瑞典打算用10年的时间,对所有办公用车、公共汽车、旅游车和校车进行改造,最终使它们能够使用生物燃料。
生物燃料是指从植物,特别是农作物中提取适用于汽油或柴油发动机的燃料,包括燃料乙醇、生物柴油、生物气体、生物甲醇、生物二甲醚等,目前以燃料乙醇和生物柴油最为常见。国际市场原油价格持续处于高位,由于生物燃料能有效替代汽油和柴油,并且更具环保优势,所以近年来,生物燃料成为世界范围内可再生能源研究的热点。
在生物燃料的规模化生产方面,巴西、美国、德国和中国处于世界领先位置。2005年全世界燃料乙醇的总产量约为3000万吨,其中巴西和美国的产量都为1200万吨。我国每年生产燃料乙醇102万吨,可以混配超过1020万吨生物乙醇汽油,乙醇汽油的消费量已占全国汽油消费量的20%,成为世界上第三大生物燃料乙醇生产国。
在生物柴油方面,2005年世界生物柴油总产量约220万吨,其中德国约为150万吨。据《南德意志报》报道,2006年,德国生物柴油销售量已经超过300万吨,占德国汽车柴油总消费量的10%。
短命的第一代生物燃料
美国的乙醇燃料已占运输用燃料的3%。2006年美国国会通过的《能源政策法》规定,到2010年,汽油中必须掺入的生物燃料应是目前的3倍。欧盟在2006年春天公布的《欧盟生物燃料实施计划》称,到2030年欧洲将有27%至48%的汽车使用生物燃油,这将大大减轻欧盟各成员国对于石油能源的依赖。日本的一项环保计划透露,日本要在4年内让国内40%的汽车改用生物燃料。
中国也在积极推广生物燃料,特别是燃料乙醇。除2004年2月已批准的黑龙江、吉林、辽宁、河南、安徽5省以外,湖北、山东、河北、江苏等也将进行乙醇汽油使用试点。东北三省已经实现了全境全面封闭推广使用车用乙醇汽油。国家发改委报告称,2005年我国生物乙醇汽油的消费量已占全国汽油消费量的20%。同时,国家有关部门正在研究制定推进生物柴油产业发展的规划以及相应的激励政策,提出了“到2020生物柴油生产能力达到200万吨”的产业发展目标。
国内生产燃料乙醇,主要原料是陈化粮。中国发展生物燃料的初衷,除了能源替代之外,还有消化陈化粮、提升粮食价格、提高农民收入方面的考虑。目前全球各地生产生物燃料,也是大多以粮食作物为原料,如玉米、大豆、油菜子、甘蔗等。
使用粮食作物作为生产原料的生物燃料被称为第一代生物燃料。尽管第一代生物燃料到现在为止也只不过经历了区区几年的发展,并且只是在很少的几个国家实现了规模化生产,但是它的局限性很快就显示出来。目前世界各国都在着力研发第二代生物燃料。
第一代生物燃料的最大缺点是占用耕地太多以及威胁粮食供应。纽约理工大学教授詹姆斯・乔丹和詹姆斯・鲍威尔前不久在《华盛顿邮报》上撰文指出:生物燃料不是满足我们对交通燃料需求的一个长期而实用的解决方案、即便目前美国三亿公顷耕地都用来生产乙醇,也只能供应2025年需求量的一半。可是这对土地和农业的影响将是毁灭性的。
美国明尼苏达大学一个研究小组2006年7月10日在美国《国家科学院学报》上指出,未来的生物燃料应该在产出效率上有明显提高,其生产用地也不能和主要农作物用地冲突。文章指出,能在低产农田和较恶劣环境种植的作物如柳枝稷、莎草和木本植物等,可能更有前途。
2006年10月份在北京举行的“2006中国油气投资论坛”上,国家能源办副主任徐锭明指出,发展生物能源不可一哄而上,要以战略眼光,结合各地的资源情况,从实际出发。此前,国家发改委、农业部的官员,也分别对地方政府在发展生物能源方面的冲动提出忠告,要求一定不能与人争地、争粮、争水。
第二代生物燃料渐成气候
鉴于此,生物燃料业加快了新技术的开发,并将目光投向非粮作物。国际能源机构大力支持推进第二代技术的研发,二代生物燃料不仅有更加丰富的原料来源,而且使用成本很低,草、麦秸、木屑及生长期短的木材都能成为原料。加拿大已建成使用麦秸生产乙醇的工厂,德国开发了使用木材和麦秸等生产生物柴油的技术,哥伦比亚已成功地从棕榈油中提炼出乙醇。乌拉圭畜牧业非常发达,开始以牛羊脂肪为原料提炼生物柴油。日本已经在大阪建成一座年产1400吨实验性生物燃料的工厂,可以利用住宅建筑工程中废弃的木材等原料生产能添加到汽油中的生物燃料。
中国在第二代生物燃料技术方面的研发也不落后于其他国家。中国科学院一个实验室研制出一项最新科技成果,可以将木屑、稻壳、玉米秆和棉花秆等多种原料进行热解液化和再加工,将它们转化为生物燃料。据统计,中国目前能够规模化利用的生物燃料油木本植物有10种,这10种植物都蕴藏着盛大潜力。丰富的植物资源,使中国生物燃油的前景非常光明。
中国除了进行以木本植物为原料的实验外,还扩大了粮食原料的实验范围,探索以低产农田和较恶劣环境种植的作物为原料,并在一些技术上取得了突破。2006年8月,河南天冠燃料乙醇有限公司投产的年产3000吨纤维乙醇项目,成为国内首个利用秸秆类纤维质原料生产乙醇的项目。2006年10月19日,中粮集团在广西开工建设的40万吨燃料乙醇项目,所用原料为木薯,也属于非粮作物。加工1吨燃料乙醇,用木薯的成本比用玉米和甘蔗分别低500元和300元左右。而且由于木薯适于在土层浅、雨水不宜保持的喀斯特地区种植,更有助于帮助农民增加收入。
种种迹象表明,生物燃料的发展方向正在悄然转变,生产生物燃料的原料将由“以粮为主”向“非粮替代”转变。
关键词:海藻;生物燃油;能源;减排;
1引言
随着全球经济的发展,能源将日趋紧张。传统能源的迅速减少以及严重的污染问题,已经严重危害到全球的经济和环境。我们必须减少对化石资源的依赖,加大可再生能源的开发和利用。目前,生物质能生产主要以农作物为原料,对粮食、耕地、水等资源需求巨大,因为资源供给的限制,难以满足市场需求。海洋生物质能的开发为解决这一问题提供了出路。
2利用海藻发展生物燃料研究的背景和现状
生物质能是以生物质为载体,将太阳能以化学能形式贮存其中,能源主要依靠植物的光合作用产生。生物能可以转化为固态、液态和气态燃料形式,替代传统的化石燃料,具有环保和可再生双重属性。工程海藻的研究和开发,为生物质能产业提供充足和廉价的原料供给成为可能。
美国从1976年起就启动了微藻能源研究。目前,美国的科学家已经培育出富油的工程小环藻,这种藻类比自然状态下微藻的脂质含量提高3至12倍。2006年11月,美国亚利桑那州建立了可与1040兆瓦电厂烟道气相连接的商业化系统,成功地利用烟道气的二氧化碳,大规模光合成培养微藻,并将微藻转化为生物“原油”。2007年,美国启动“微型曼哈顿计划”,计划实现微藻制备生物柴油的工业化。美国能源局计划在各项技术全面进展的前提下,将微藻产油的成本于2015年降至2至3美元/加仑。
2007年,日本启动了大型海藻的能源计划项目,利用马尾藻生产汽车用乙醇。预计到2020年,栽培面积将达1万平方公里,每年可收获6500吨干藻,可以生产约200万升燃料乙醇,相当于现有日本汽车油耗量的三分之一。
今年,我国微藻能源方向首个国家重点基础研究发展计划(“973计划”)项目“微藻能源规模化制备的科学基础”,已经正式启动。该项目将以推动微藻能源规模化制备中核心技术的重大突破为目标,提高微藻能源规模化制备系统中各单元的效率为主线,研究从藻种选育到微藻能源规模化制备系统构建过程中亟待解决的生物学及工程学方面的关键科学问题。[1]
3 、海藻作为生物燃油原料的优点
海藻主要包括微藻和大型海藻,海藻的种植可以利用海洋、盐碱地等不适合粮食作物生产的空间进行生产,这样避免了传统生物质能对农业资源的需求。各国研究机构都在运用现代生物技术开发海洋工程微藻,因为海洋微藻本身具备以下特征。一是光合效率高,生长速度快。生长周期短、繁殖快。二是微藻个体小、木素含量低,易粉碎干燥,生产液体燃料所需处理工艺相对简单,生产成本较低。三是微藻内大量积累脂质,因而可以大量生产生物燃料。四是微藻在生长过程中又可以消耗大量的二氧化碳,能缓解温室气体的排放。五是综合利用价值较高。微藻在制备生物燃油的同时可以开发虾青素、活性蛋白、不饱和脂肪酸、天然色素、生物肥料等高值产品,以降低微藻产油的成本。[2]
4、我国海藻养殖优势和存在问题分析
目前,我国拥有世界上最大规模的海藻生产基地,不论是产业规模,还是出口贸易,在世界上都占有举足轻重的地位。我国海藻养殖业发展较早,并成功的掌握了紫菜、海带等海藻大规模培养的关键技术。在螺旋藻和小球藻等微藻的藻种选育、规模培养和产业化方面取得了大量技术成果,某些技术已经达到国际先进水平。
与国际上其他国家相比,我国在推动藻类能源规模化制备技术上有一定优势,主要表现为以下几点:一是我国拥有一定的高水平技术人员和技术储备,并在人力成本方面具有明显优势。二是海藻分类区系、藻种选育和基因工程等领域具备较强的科研力量。三是我国海洋环境富营养化和赤潮比较严重,可以通过大规模海藻栽培实现对海洋的生态修复。四是我国在海洋资源方面拥有明显的区位及环境优势。[3]
我国在海藻能源开发方面有很多不足之处,概括起来主要表现在以下几个方面:一是海藻的燃料转化技术研究投入不足,发展相对滞后。二是实现封闭式光生物反应器的规模化生产方面技术落后。三是我国海藻的栽培局限于近海小规模的试验场,试验项目的投入在技术和资金方面与发达国家相比明显不足。
5、海洋生物质能源发展趋势的必然性
5、1 发展海洋生物质燃料可以满足国家战略需求
我国1993年开始成为石油净进口国,能源安全已成为国家安全战略中最重要的一环,能源发展方向不但决定着能源安全,甚至影响到国家安全。同时,新能源工业必然要成为未来能源工业的制高点,谁有更大的竞争优势,谁就有更多的话语权。
目前,随着全球气候恶化,国际上很多领域对碳排放指标提出越来越明确的要求。在航空领域,欧盟去年公布自2012年起对所有抵达或离开欧盟国家的商业航班实施碳排放权配额制度。作为应对策略,德国开始试飞生物燃油的客机,在6个月试验期间,这架空客A321型客机预计减排二氧化碳1500吨。如果仍然使用传统燃料,我国民航业为购买碳排放权仅2012年一年需向欧盟支付8亿元人民币。[4]
另外,根据专门机构的数据和预言,按照目前的发展速度,不久的将来碳交易将发展成为全球规模最大的商品交易市场。种种迹象证明,无论是出于环境效益,还是经济效益,海洋生物质燃料的发展都已经刻不容缓。
5.2 利用海藻发展生物燃料在技术上可行
2006年全球研发海藻生物燃料的企业大约有4家,到2008年已超过50家,我国目前从事海藻生物柴油研发的企业已有5家。2009年6月,《美国生物燃料月刊》预测分析认为,到2014年,海藻生物柴油将达到6.13亿升的生产能力,每升的批发价格约为0.34美元。《生物燃料文摘》评论认为,从理论上看,海藻生物柴油的成本会像过去预计电脑的市场成本一样,很快会降下来。
6关于发展海洋藻类生物质能的几点建议
结合实际情况,就我国发展海洋藻类生物质能研究领域的资源配置及研究重点提出以下几点建议。一是从国家层面上设计和制定系统的科技发展路线图。二是明确关键科技问题,开展有针对性的技术攻关。三是开展海洋藻类基础生物学的研究。四是加快开展具有共性的关键技术研究的步伐,突破海洋生物质能产业化的技术瓶颈。五是建立健全海藻环境保护和海藻资源合理有序开发的有关法律法规,制定海藻能源产品的技术标准及相关产业扶持政策,保证海洋生物质能产业得到健康持续的发展。[5]
《时代》周刊2005年10月3日
英国生物学权威杂志《皇家学会生物学分会学报》9月底发表最新研究报告称,两名日本科学家不久前首次拍摄到最神秘的深海动物之一――巨型乌贼的活体照片。这是人类首次拍摄到自然生存状态中的野生活体巨型乌贼。被拍摄到的巨型乌贼长13米,触须有一辆公共汽车那么长,眼睛大小则与人的头骨规格相仿。
长期以来,“巨型乌贼”之谜一直吸引着人类,从古希腊神话到凡尔纳的科幻小说,都曾提到过这种神秘的深海动物。但在此次拍摄前,科学家见到过的巨型乌贼都已死亡或濒于死亡,可见研究这种深海动物之困难。因此,人类对其了解至今仍然很少。
为追寻巨型乌贼的行踪,自2002年以来,几名日本科学家每年都会花两周左右的时间,在大海中追踪抹香鲸,抹香鲸是巨型乌贼的天敌,常以乌贼为食物,因此找到抹香鲸,也就能找到乌贼。
在东京以南1000公里处的小笠原群岛附近900米深海中,科学家终于碰到了巨型乌贼,并通过水下摄像机成功抓拍到它的活动。
科学家将一部数码相机安置在海下1000米深处,并在附近埋伏下巨大的铁钩,上挂有虾肉做诱饵。上钩的这只巨型乌贼一只触须被铁钩刺穿,它反复挣扎,试图摆脱铁钩,最后留下一条5.5米长的“断臂”逃之夭夭。数码相机记录下全过程,600余幅照片向人们展示了一种凶猛敏捷的巨型生物,其巨大程度远远超出此前科学家对这种神秘生物的猜测和想像。
蛇纹石用作燃料添加剂
《经济学人》2005年10月6日
科技人员最近发明了一种名为Clap的燃料添加剂,以提高汽车发动机的燃料使用效率。所谓Clap添加剂,其实就是将蛇纹石(serpentine)研磨成直径仅百万分之一毫米的微粒,然后添加到汽车燃料中。发明者称,这种添加剂能够将老旧汽车发动机的燃料使用率提高10%。
Clap研究项目最早是由莫斯科“纳米科技研究所”于1979年启动,其研究初衷是发明一种发动机剂。研究人员起初只是想找到一种合适的微粒加入汽车使用的汽油中,以有效修复因沙砾卷入而造成的发动机气缸和活塞磨损的问题,维持汽车发动机运转的效果。
2002年,意大利一家生物研究实验室的工程师受到俄罗斯研究的启发,先后试验过将铜、锌、铝和银的纳米颗粒添加入汽车燃料箱,但这些物质都不合适,因为它们会使汽油变得过于稀滑。
最终,科学家的视线逐渐集中到蛇纹石上来,这种物质富含镁化硅酸盐,极易吸附在各种普通汽油和柴油发动机的气缸内表面,正好能实现预期效果。
关键词:生物质 生物质能发电 技术状况
中图分类号:TP273 文献标识码:A 文章编号:1672-3791(2014)05(b)-0120-01
1 生物质概述
生物质,从广义上讲,是指通过光合作用而形成的各种有机体,包括了所有的动植物和微生物。生物质所蕴含的能量称为生物质能,是一种可再生能源,它直接或间接地来源于绿色植物的光合作用。
生物质能是地球上最古老的能源,一直以来是人类赖以生存的重要能源之一。在目前世界能源消耗中,生物质能占总能耗的14%,仅次于石油、煤和天然气,是世界第四大能源。在生物质能的利用过程中产生的二氧化碳可被等量的植物通过光合作用所吸收,从而实现二氧化碳的零排放和生物质能的循环利用,同时生物质能也是一种含硫量低的可再生能源,可以转化得到气态、液态和固态燃料,从而补充和替代化石燃料,减少对矿物能源的依赖。
目前,世界各国,尤其是发达国家,都在致力于开发高效、无污染的生物质能利用技术,以达到保护矿产资源,保障国家能源安全,实现二氧化碳减排,保持国家经济可持续发展的目的。
2 生物质能的利用转化方式
目前,我们对生物质能的利用主要有生物质直接燃烧、气化、液化、固化和沼气技术等方式。
生物质直接燃烧是通过燃烧将化学能转化为热能,从而获取热量。直接燃烧可分为锅炉燃烧、炉灶燃烧、炉窑燃烧和炕连灶燃烧。
生物质气化是在一定的热力学条件下,将组成生物质的碳氢化合物转化为含一氧化碳和氢气等可燃气体的过程。气化过程不同于燃烧过程,一方面,燃烧过程中需供给充足的氧气,使原料充分燃烧,从而获取热量,而气化过程希望尽可能多地将能量保留在反应后得到的可燃气体中,所以只供给较少的氧气以满足热化学反应的需要;另一方面,燃烧后产生的是水蒸气和二氧化碳等不可再燃烧的烟气,而气化后的产物是含氢、一氧化碳和低分子烃类的可燃气体。
生物质液化是生物质热裂解技术的一部分。生物质热裂解是生物质在完全无氧供给的条件下热降解为可燃气体、液体生物油和固体生物质炭三种成分的过程。其中,反应产生的生物油可进一步分离,制成燃料油和化工原料。
在生物质能转化利用的各种途径中,利用生物质能转化后的热能来发电具有高效、环保等优势,在丹麦、瑞典、芬兰、荷兰以及巴西和印度等国家已得到广泛应用。近年来,随着能源和环保压力的增大,我国生物质能发电得到快速发展。
3 生物质能发电技术
生物质发电的主要形式有:生物质直接燃烧发电、生物质混合燃烧发电、生物质气化发电、沼气发电和垃圾发电。
生物质直接燃烧发电与燃煤火力发电在原理上没有本质区别,主要区别体现在原料上,火力发电的原料是煤,而直接燃烧发电的原料主要是农林废弃物和秸秆。直接燃烧发电是把生物质原料送入适合生物质燃烧的特定蒸汽锅炉中,产生蒸汽,驱动蒸汽机转动从而带动发电机发电。直接燃烧发电对原料预处理技术、蒸汽锅炉的多种原料适用性、蒸汽锅炉的高效燃烧、蒸汽轮机的效率等方面都有较高要求。
生物质混合燃烧发电,顾名思义,即为生物质与煤混合作为燃料发电。混合燃烧的方式主要有两种:一种是将生物质原料直接送入燃煤锅炉,与煤共同燃烧;另一种是先将生物质原料在气化炉中气化生成可燃气体,再通入燃煤锅炉与煤共同燃烧,最后发电。可见,在混合燃烧方式中,对生物质原料的预处理过程显得尤为重要。一般情况下,通过改造现有的燃煤电厂就可以实现混合燃烧发电,只需在厂内增加储存和加工生物质燃料的设备和系统,同时对原有燃煤锅炉燃烧系统进行适当改造就可以了。
生物质气化发电是利用生物质气化技术产生的气体燃料,经净化后直接进入燃气机中燃烧发电或者直接进入燃料电池发电的过程,可以分为内燃机发电、燃气轮机发电、燃气―蒸汽联合循环发电和燃料电池发电。生物质气化发电是生物质能最有效、最洁净的利用方式之一,它不仅能解决生物质难于燃用、分布分散等缺点,还能充分发挥燃气发电设备紧凑和污染小的优点。
沼气发电是一种新型的发电方式,也是沼气能量利用的一种有效形式。在沼气发电中,驱动发电机组发电的是沼气而非蒸汽。
垃圾发电包括垃圾焚烧发电和垃圾气化发电,简而言之,垃圾发电就是将垃圾直接作为燃料或者将垃圾制成可燃气体作为燃料来进行发电的方式。垃圾发电不仅能够回收利用垃圾中的能量,达到节约资源的目的,同时还解决了垃圾的处理问题。
我国的生物质能资源及其发电的状况
我国作为传统的农业大国,生物质资源非常丰富。我国农作物秸秆年产量约为6.5亿吨,2010年达到7.26亿吨;薪柴和林业废弃物资源中,可开发量每年达到6亿吨以上。近年来,高产的能源作物如甘薯、甜高粱、巨藻、绿玉树、木薯、芭蕉芋等,作为现代生物质能源已受到广泛关注,越来越多的科研机构、科技企业也不断参与到研究和发展生物质能资源的队伍中来,为生物质能源产业提供了可靠的资源保障。
我国的生物质发电以直接燃烧和气化发电为主要方式,原料主要采用农业、林业和工业废弃物等。我国生物质发电起步较晚,但也有近30年的历史,2006年我国生物质发电总装机容量约为2000 MW,其中蔗渣发电约为1700 MW;从2006年12月,我国第一个生物质直燃发电项目―― 国能单县生物发电厂正式投产开始,截止2008年8月,我国累计核准农林生物质发电项目130多个,总装机容量约3000 MW,已有25个生物质直燃发电项目并网发电;2009年我国6 MW及以上火电设备中生物质发电共占到0.37%,预计到2020年将建成总装机容量为20000 MW的生物质发电项目,这样每年就可以节约7500万吨煤,而且减少大量的污染排放,此外,秸秆销售还可以给农民增加200~300亿元的收入。
4 结语
从总体上看,我国生物质发电产业尚处于起步阶段,商业化程度较低,效益也不高,市场竞争力较弱。但是,近年来,国家对生物质能的开发利用逐渐重视,已连续在4个“五年计划”中将生物质能利用技术的研究与应用列为重点科技攻关项目,并先后制定了《可再生能源法》《可再生能源中长期发展规划》《可再生能源发展“十一五”规划》《可再生能源产业发展指导目录》和《生物产业发展“十一五”规划》,提出了生物质能发展的目标和任务,明确了相关扶持政策。有了这些政策和技术支持,相信生物质能的未来必定会生机勃勃。
参考文献
[1] 王长贵,崔容强,周篁.新能源发电技术[M].北京:中国电力出版社,2003.
关键词:生物能;开发利用;综述;能源植物;生物质能源
Abstract
With the intensification of world energy crisis, the exploitation of biomass energy has become a hot
point at the present in the world. Giving a overview of the present research evolvement and the exploiting and using state both at home and abroad in energy plant, production technology of energy plant is introduced simply, some existing problems are analyzed and certain suggestions which accorded to the characteristics of energy plant and national situations are proposed in this paper.
Keywords: bioenergy; exploitation and utilization; recapitulate;energy plant; biomass energy
0. 引言
能源是现代社会赖以生存和发展的基 础,随着社会的发展,能源危机已成为当今 世界面临的巨大挑战。据世界能源权威机构1999 年底的分析,世界已探明的主要矿物燃 料储量和开采量不容乐观,其中石油剩余可 采年限仅有 40 年[1],其年消耗量占世界能源 总消耗量的 40.5%[2]。从发展的角度看,化 石能源终将耗竭,加之其燃烧时产生的有害 物质严重污染了生态环境。传统的能源结构 已经开始调整,作为未来的主要能源只能依 赖于可再生能源和受控核聚变能。因此,国 内外的能源研究人员正积极探索发展替代 燃料和可再生能源。
生物质是一种重要的可再生能源。生物 质能是指利用生物可再生原料和太阳能生 产的清洁和可持续利用的能源,包括燃料酒 精、生物柴油、生物制氢、生物质气化及液 化燃料等。能源植物是最有前景的生物质能 之一。本文从能源植物的概念、分类入手, 对其国内外研究进展和开发利用现状、生物 能源生产技术及存在的问题进行了综述。
1. 能源植物定义
绿色植物通过光合作用将太阳能转化 为化学能而贮存在生物质内部,这种生物质 能实际上是太阳能的一种存在形式。所以广 义的能源植物几乎可以包括所有植物。植物 的生物质能是一种广为人类利用的能源,其 使用量仅次于媒、石油和天然气而居于世界
能源消耗总量第四位。但以目前的技术水
平,还不能将所有植物都用于能源开发。因 此,一般意义上讲能源植物通常是指那些利 用光能效率高,具有合成较高还原性烃的能 力,可产生接近石油成分和可替代石油使用 的产品的植物以及富含油脂、糖类淀粉类、 纤维素等的植物[3,4]。
2. 能源植物的分类
能源植物种类繁多,生态分布广泛,有 草本、乔木和灌木类等。目前全世界已发现 的能源植物主要集中在夹竹桃科、大戟科、 萝科、菊科、桃金娘科以及豆科,品种主要 有绿玉树、续随子、橡胶树、西蒙德木、甜 菜、甘蔗、木薯、苦配巴树、油棕榈树、南 洋油桐树、黄连木、象草等。为了研究利用 方便,这里按其使用的功能和转化为替代能 源的化学成分将能源植物主要分为四类。
2.1 富含类似石油成分的能源植物
这类植物合成的分子结构类似于石油 烃类,如烷烃、环烷烃等。富含烃类的植物 是植物能源的最佳来源,生产成本低,利用 率高。目前已发现并受到能源专家赏识的有 续随子、绿玉树、西谷椰子、西蒙得木、巴 西橡胶树等。例如巴西橡胶树分泌的乳汁与 石油成分极其相似,不需提炼就可以直接作 为柴油使用,每一株树年产量高达 40L。我 国海南省特产植物油楠树的树干含有一种 类似煤油的淡棕色可燃性油质液体,在树干 上钻个洞,就会流出这种液体,也可以直接用作燃料油。
2.2 富含高糖、高淀粉和纤维素等碳水
化合物的能源植物
利用这些植物所得到的最终产品是乙 醇。这类植物种类多,且分布广,如木薯、 马铃薯、菊芋、甜菜以及禾本科的甘蔗、高 粱、玉米等农作物都是生产乙醇的良好原料
[5]。
2.3 富含油脂的能源植物
这类植物既是人类食物的重要组成部 分,又是工业用途非常广泛的原料。对富含油 脂的能源植物进行加工是制备生物柴油的 有效途径。世界上富含油的植物达万种以 上,我国有近千种,有的含油率很高,如桂北 木姜子种子含油率达 64.4%,樟科植物黄脉 钓樟种子含油率高达 67.2%。这类植物有些 种类存储量很大,如种子含油达 15%~25% 的苍耳子广布华北、东北、西北等地,资源 丰富,仅陕西省的年产量就达 1.35 万 t。集 中分布于内蒙、陕西、甘肃和宁夏的白沙蒿、 黑沙蒿,种子含油 16%~23%,蕴藏量高达
50 万 t。水花生、水浮莲、水葫芦等一些高 等淡水植物也有很大的产油潜力。生存在淡 水中的丛粒藻(绿藻门四胞藻目),就如同 产油机,能够直接排出液态燃油[6]。
2.4 用于薪炭的能源植物
这类植物主要提供薪柴和木炭。如杨柳 科、桃金娘科桉属、银合欢属等。目前世界 上较好的薪炭树种有加拿大杨、意大利杨、 美国梧桐等。近来我国也发展了一些适合作 薪炭的树种,如紫穗槐、沙枣、旱柳、泡桐 等,有的地方种植薪炭林 3~5 年就见效,平 均每公顷(10 000 m2,15 亩)薪炭林可产 干柴 15 t 左右。美国种植的芒草可燃性强, 收获后的干草能利用现有技术轻易制成燃 料用于电厂发电。
3. 国内外能源植物研究开发和利用概况
3.1 国际能源植物的研究开发和利用
情况国际上能源植物的研究始于 20 世纪 50 年代末 60 年代初,发展于 70 年代,自 80 年代以来得到迅速发展。1986 年美国加州大 学诺贝尔奖获得者卡尔文博士在加州福尼 亚大面积地成功引种了具有极高开发价值 的续随子和绿玉树等树种,每公顷可收获
120~140 桶石油,并作了工业应用的可行性 分析研究,提出营造“石油人工林”,开创了 人工种植石油植物的先河[7]。至此在全球迅 速掀起了一股开发研究能源植物的热潮,许 多国家都制定了相应的开发研究计划。如日 本的“阳光计划”、印度的“绿色能源工程”、 美国的“能源农场”和巴西的“酒精能源计划” 等。随着更多的“柴油树”、“酒精树”和“蜡树” 等植物的发现及栽培技术的不断成熟,世界 各地纷纷建立了“石油植物园”、“能源林场” 等,栽种一些产生近似石油燃料的植物。英 国、法国、日本、巴西、俄罗斯等国也相继 开展石油植物的研究与应用,借助基因工程 技术培育新树种,采用更先进的栽培技术来 提高产量。
目前,美国已种植有一百多万公顷的石 油速生林,并建立了三角叶杨、桤木、黑槐、 桉树等石油植物研究基地;菲律宾有 1.2 万 公顷的银合欢树,6 年后可收 1000 万桶石 油;日本则建立了 5 万 m2 的石油植物试验 场,种植 15 万株石油植物,年产石油 100 多桶;瑞士“绿色能源计划”打算用 10 年种 植 10 万公顷石油植物,解决全国一年 50%
石油需求量。 泰国利用椰子油制作的汽车燃料加油
站在泰国中部巴蜀府开始营业,成为世界上 第一个椰子油加油站。巴西是乙醇燃料开发 应用最有特色的国家,实施了世界上规模最 大的“乙醇种植”计划。2004 年,巴西的乙醇 产量达 146 亿 L,乙醇消费量超过 122 亿 L。 目前巴西乙醇产量占世界总产量的 44%,出 口量的 66%。美国通过采用基因工程技术,
对木质纤维素进行了成功的乙醇转化。从
1980 年到 2000 年的 20 年内,美国的燃料乙 醇生产量由 66.24 亿 L 增加到 617 亿 L。
此外,还陆续发现了一些很有前景的能 源植物资源。南美洲北部有一种本土植物
——苦配巴(Copaífera L.),主要生长在巴西 亚马逊流域的密林和丛林中,其树高大,有 粗大的树干和光滑的表皮,只要在树干上钻 一个孔,就能流出金黄色的油状树液,每株 成年树每年能产油 10kg~15kg,成份非常接 近柴油。阿联酋大学的瑟林姆教授等人发现 了一种名叫“霍霍巴(Jojba)”的植物—希蒙得 木(Simmondsia chinensis (Link) Schneider), 生长在美洲沙漠或半沙漠地区,种子含油率 达 44%~58%,其油在国际上被誉为“液体 黄金”、“绿色石油”,广泛用于航空、航天、 机械、化工、等领域。产于澳大利亚的古巴 树(又称柴油树),每棵成年树每年可获得约
25 L 燃料油,且这种油可直接用于柴油机。 油棕榈树也是一种石油树,3 年后开花结果, 每公顷可年产油 1 万 kg。柳枝稷(Panicum virgatum L.)是美国草原地区用于水土保持 或作为牛饲料的乡土植物,自从发现它可被 用来生产乙醇后,美国联邦政府认为这种植 物具有成为能源作物的潜力并加紧了对这 种植物的研究。澳大利亚北部生长的两种多 年生野草—桉叶藤(Cryptostegia grandiflora R. Br)和牛角瓜(Calotropis gigantean (Linn.) Dryanderex Aiton f.),其茎、叶含碳氢化合 物,可以用于提取石油。这些野草生长速度 极快,每周长 30 cm,每年可以收割几次。 美国加州 “ 黄鼠草 ”(Ixeris chinensis (Thunberg) Nakai),每公顷可生产 1 t 燃料 油,如果人工种植,草和油的产量还能提高, 每公顷生长的草料可提炼出 6 t 石油[8]。日 本科学家最近发现一种芳草类芒属植物“象 草”,1 hm2 平均每年可收获 12 t 生物石油, 比现有的任何能源植物都高产,且所产生的 能源相当于用油菜籽制作的生物柴油的 2 倍,但其投入不及种植油菜的 1/3,因此是
一种理想的石油植物。
3.2 国内能源植物的开发利用现状
我国是“贫油大国”,也是世界能源消费 大国。1993 年我国由石油净出口国变为净进 口国,石油进口量逐年上升,目前对石油进 口依赖度已超过 1/3[9]。我国对能源植物的 研究及开发利用起步较晚,与欧美发达国家 相比还存在很大差距。但我国植物资源丰 富,早在 1982 年分析了 1581 份植物样品, 收集了 974 种植物,并编写成了《中国油脂 植物》、《四川油脂植物》,选择出了一些 高含油量的植物,如乌桕(Sapium sebiferum (Linn.)Roxb)、小桐子(Jatropha curcas L.)、油 楠(Sindora glabra Merr.ex De Wi)、四合木 (Tetraena monglica) 、五 角枫 (Acer mono Maxim)等。已查明我国油料植物为 151 科
697 属 1554 种,种子含油量在 40%以上的 植物 154 种;新近调查表明,我国能够规模 化利用的生物质燃料油木本植物有 10 种, 这 10 种植物均蕴藏着巨大的潜力,具有广 阔的发展前景。
我国对能源植物的利用虽处于初级阶 段,但生物柴油产业得到了国务院领导和国 家计委、国家经贸委、科技部等政府部门的 高度重视和支持,并已列入国家计划。“七 五”期间,四川省林业科学研究院等单位利 用野生小桐子(麻疯树的果实)提取生物柴 油获得了成功;中科院“八五”重点项目“燃 料油植物的研究与应用技术”完成了金沙江 流域燃料油植物资源的调查研究,建立了小 桐子栽培示范区。湖南省在此期间完成了光 皮树制取甲脂燃料油的工艺及其燃烧特性 的研究;“九五”期间根据《新能源和可再生 能源发展纲要》的框架,在中央有关部委和 地方制定的计划中,优先项目是:对全国绿 色能源植物资源进行普查,为制订长期研究 开发提供科学依据;运用遗传工程和杂交育 种技术,培育生产迅速、出油率高,更新周 期短的新品种;进行能源植物燃料的基础研 究和开发研究,包括能源植物燃烧特性,提 炼工艺及综合利用和开发[10,11]。中国工程院
有关负责人介绍,中国“十五”计划发展纲要
提出发展各种石油替代品,将生物与现代化 农业、能源与资源环境等项目列入国家 863 计划,把大力发展生物液体燃料确定为国家 产业发展方向。据了解,“十一五”期间,我国 规划生物柴油原料林基地建设规模 83.91 万 公顷,原料林全部进入结实期后,将形成年 产生物柴油 125 万多吨的原料供应能力。目 前,已有一些颇具实力的企业和国外大型能 源企业,进入麻疯树生物柴油这一领域,在 各地筹建起有相当规模的生物柴油生产企 业,预计未来全国麻疯树种植面积至少可达
200 万公顷以上,显示了良好的资源开发利 用前景。
国内对能源植物产品研究与开发主要 集中在生物柴油和乙醇燃料两类上。生物柴 油的研究内容涉及油脂植物的分布、选择、 培育、遗传改良及加工工艺和设备等。用于 生产生物柴油的主要原料有油菜籽、大豆、 小桐子、黄连木(Pistacia chinens Bunge)、油 楠等。小桐子含油率 40%~60%,是生物柴 油的理想原料[12]。海南正和生物能源公司、 四川古杉油脂化工公司和福建新能源发展 公司都已开发出拥有自主知识产权的技术, 并相继建成了规模近万吨级的生物柴油生 产厂。德国鲁奇化工股份有限公司、贵州省 发改委、贵州金桐福生物柴油产业有限公司 就中德合作贵州小油桐生物柴油示范项目 签订了合作协议。西南生物柴油生产企业— 华正能源开发有限公司,总投资 8 000 万元, 年生产能力可达 2 万吨。
用于生物乙醇燃料加工的原材料主要 有甜高粱、木薯、甘蔗等。其中甜高粱具有 耐涝、耐旱、耐盐碱、适应性强等特点,成 为当前世界各国关注的一种能源作物。我国 种植的沈农甜杂 2 号甜高粱,收获后每公顷 可提取 4011L 酒精。此外,我国自 2000 年 开始启动陈粮转化燃料乙醇计划,目前已年 产百万吨燃料乙醇,在吉林、黑龙江、河南、 安徽等省普遍推广燃料乙醇- 汽油混合燃 料。秸秆酶解发酵燃料乙醇新技术已经试验成功,山东泽生生物科技有限公司建成了年
产 3 000 吨秸秆酶解发酵燃料乙醇产业化示 范工程。
转贴于 4. 生物能源的生产技术
4.1 生物柴油生产方法
生物柴油的生产方法主要有化学法、生 物酶法、超临界法等。
(1) 化学法 国际上生产生物柴油主要 采用化学法,即在一定温度下,将动植物油 脂与低碳醇在酸或碱催化作用下,进行酯交 换反应,生成相应的脂肪酸酯,再经洗涤干 燥即得生物柴油[13]。甲醇或乙醇在生产过程 中可循环使用,生产设备与一般制油设备相 同,生产过程中副产 10%左右的甘油。但化 学法生产工艺复杂,醇必须过量;油脂原料 中的水和游离脂肪酸会严重影响生物柴油 得率及质量;产品纯化复杂,酯化产物难于 回收,成本高;后续工艺必须有相应的回收 装置,能耗高,副产物甘油回收率低。使用 酸碱催化对设备和管线的腐蚀严重,而且使 用酸碱催化剂产生大量的废水,废碱(酸) 液排放容易对环境造成二次污染等。
(2) 生物酶法 针对化学法生产生物柴 油存在的问题,人们开始研究用生物酶法合 成生物柴油,即利用脂肪酶进行转酯化反 应,制备相应的脂肪酸甲酯及乙酯。酶法合 成生物柴油对设备要求较低,反应条件温 和、醇用量小、无污染排放。Xu 以大豆油 为原料,采用固定化酶的工艺[14],酶用量为 油的 30%,甲醇与大豆油摩尔比为 12:1,反 应温度 40℃,反应 10 h 生物柴油得率为 92
%。因酶成本高、保存时间短,使得生物酶
法制备生物柴油的工业化仍不能普及。此 外,还有些问题是制约生物酶法工业化生产 生物柴油的瓶颈,如脂肪酶能够有效地对长 链脂肪醇进行酯化或转酯化,而对短链脂肪 醇转化率较低(如甲醇或乙醇一般仅为
40%~60%);短链脂肪醇对酶有一定的毒 性,酶易失活;副产物甘油难以回收,不但
对产物形成抑制,而且甘油也对酶也有毒
性。
(3) 超临界法 即当温度超过其临界温 度时,气态和液态将无法区分,于是物质处 于一种施加任何压力都不会凝聚的流动状 态。超临界流体密度接近于液体,粘度接近 于气体,而导热率和扩散系数则介于气体和 液体之间,所以能够并导致提取与反应同时 进行。超临界法能够获得快速的化学反应和 很高的转化率。Kusdiana[15]和 Saka[16]发现用 超临界甲醇的方法可以使油菜籽油在 4 min 内转化成生物柴油,转化率大于 95%。但反 应需要高温高压,对设备的要求非常严格, 在大规模生产前还需要大量的研究工作。
4.2 生物乙醇生产情况
生物乙醇的生产是以自然界广泛存在 的纤维素、淀粉等大分子物质为原料,利用 物理化学途径和生物途径将其转化为乙醇 的一种工艺,生产过程包括原料收集和处 理、糖酵解和乙醇发酵、乙醇回收等三个主 要部分。发酵法生产燃料酒精的原料来源很 多,主要分为糖质原料、淀粉质原料和纤维 素类物质原料,其中以糖质原料发酵酒精的 技术最为成熟,成本最低。木质纤维原料要 先经过预处理再酶解发酵,其中氨法爆破
(ammonia fiber explosion,即 AFEX)技术, 被认为是最有前景的预处理方法。随着耐高 温、耐高糖、耐高酒精的酵母的选育和底物 流加工艺,发酵分离耦合技术的完善,工业 发酵酒精的成本还将越来越低。
5. 能源植物替代能源存在的问题及建议
目前,对于能源植物的利用还处于摸索 阶段,在应用上存在着一些问题,如能源植 物原料资源相对匮乏,生物柴油原料短缺, 供应量随季节变化;原料的栽培技术及油脂 加工技术不成熟,成品生产力不高等;生物 柴油理化性质也限制了其应用,如生物柴油 油脂的分子较大(约为石化柴油的 4 倍)、粘度较高(约为石化柴油的 12 倍)导致其
喷射效果不佳,挥发性低、不易雾化,造成 燃烧不完全,形成燃烧积炭, 影响发动机运 转效率。再有生物柴油生产处于初级阶段, 缺乏统一的质量标准,难以形成统一的市 场,生物原料价格也是限制生物柴油市场应 用的瓶颈。
针对以上的问题并结合我国的具体国 情提出以下建议:
第一、制定和完善有关法规政策,为我 国生物质能源产业提供良好的政策环境与 保障。如加强立法,通过税收及其它经济手 段,将能源的外部社会成本和环境成本计入 能源成本中,以增强生物质能源的竞争力; 对有前景但技术经济性或商业化条件尚未 完全过关的技术,要加大风险资金的投入力 度;加强生物质利用技术的商品化工作、提 高并考验生物质能源的可靠性和经济性,让 开发生物质能源有利可图,支持鼓励其工业 化生产。
第二、加快能源植物的培育,增加生物 能源的资源量。就是要依据植物的生态地理 空间分布格局,利用基因工程等生物技术选 育产量高、含油量高、与生物柴油的脂肪酸 组成相适应的脂肪酸组成高的能源植物,同 时高度重视大规模可再生能源基地的开发, 因地制宜,变荒山为油田,在保证农业的基 础上退耕还林,进行油料作物的栽培,扩大 生物原料资源。
第三 建立生物质能源系统研究平台, 加快科技发展,为可再生能源的开发利用提 供有力的科技支撑。根据生物质能源利用的 要求和特点,建立相关研究条件和试验基 地,选择重点研究内容和关键技术问题,进 行技术创新及系统集成,形成从生物质生 产、转换机理、技术开发和集成系统应用示 范的研究体系。
第四、开展国际合作,引进国际先进技 术和资金,推进生物质能源的市场化进程。 目前,我国生物柴油因其产量小,还没有进 入中国三大垄断石化企业(石化、中石油和中海油)的销售网络,随着产业化规模的扩
大,与石化企业的合作不为是打开未来市场 的一条有效途径。
参考文献
[1] 王敬诚. 世界石油储量还可开采 40 年[N]. 经 济参考报, 2004: 6~19.
WANG Jingcheng. World petroleum reserves can only exploit for 40 years[N]. Report of economy reference, 2004, 6-19.(in Chinese)
[2] 英国石油公司. BP 世界能源统计评论[R].
2002, 7.
British Petroleum Company. Comment on the world energy stat. in BP [R], 2002,7. (in Chinese)
[3] 翔实. 植物燃料的研究现状与发展[J]. 科技与
经济, 1996, 12: 43~45.
XIANG Shi.The study and development on plant fuel
[J]. Scientific Chinese ,1996,12:43-45. (in Chinese)
[4] 秦向华. 能源植物姗姗走来[J]. 森林与人类,
2004, 11: 49.
QIN Xianghua. Energy plants come closely[J]. Forest and Humankind ,2004, 11:49. (in Chinese)
[5] 杨世诚. 绿色能源: 植物是明天[J]. 森林与人
类, 2000, (5): 11~12.
YANG Shicheng. Green energy: Plant is the future[J]. Forest and Humankind, 2000(5):11-12. (in Chinese)
[6] 缪晓玲, 吴庆余. 微藻生物质可再生资源的开
发利用[J]. 可再生能源, 2003, 3: 13~16.
MIU Xiaoling, WU Qingyu. Exploitation of biomass renewable energy sources of microalgae [J]. Renewable Energy, 2003,3:13-16.James A. Duke.
Handbook of energy crops. Unpublished,1983. (in
Chinese)
[7] 忻耀年, Sondermann B, Emersleben B. 生物柴
油的生产和应用[J]. 中国油脂, 2001, 26(5): 72~77.
XIN Yaonian, Sondermann B, Emersleben B.
Production and Application of Bio Diesel Fuel.China
Oils and Fats ,2001,26(5):72-77.(in Chinese)
[8] 李永新. 用科学发展观审视我国能源可持续
发展战略[J]. 中国能源, 2004, 9(9).
LI Yongxin. China's Sustainable Development Strategy and Scientific Development Concept[J]. Energy of China, 2004,9(9) (in Chinese)
[9] 史立山. 中国能源现状分析和可再生能源发
展规划[J]. 可再生能源, 2004, 5: 1~4.
SHI Lishan. Analyzed of Chinese energy status and programming of renewable energy [J]. Renewable Energy,2004,5:1-4. (in Chinese)
[10] 李改练, 王远红, 杨继涛, 等. 中国生物质能
利用状况及展望 [J]. 河南农业大学学报, 2004,
38(1): 100~104.
LI Gailian,Wang Yuanhong ,Yang Jitao. Utilization condition and outlook of biomass energy in China [J]. Journal of Henan Agricultural University, 2004,38(1):
100-104. (in Chinese)
[11] Azam M M, Waris A, Nahar N M. Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India Biomass Bioenergy 2005, 29, 293~302
[12] 李为民, 章文峰, 邬国英. 菜籽油油脚制备生
物柴油[J]. 江苏工业学院学报, 2003, 15(1): 7~10.
University .2003,15(1):7-10. (in Chinese)
[13] Xu Yunyuan. A novel enzymatic route for biodiesel production from renewable oils in a
solvent-free medium [J].Biotechnology Letters, 2003,
25: 1239~l24l.
[14] KUSDIANA D, SAKA S. Kinetics of transesterification in rapeseed oil to biodiesel fuel as
treated in supercritical methanol [J]. Fuel, 2001, 80:
693~698.
[15] SAKA S, KUSDIANA D. Biodiesel fuel from rapeseed oil as treated in supercritical methanol [J].