公务员期刊网 精选范文 集成电路工艺与设计范文

集成电路工艺与设计精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的集成电路工艺与设计主题范文,仅供参考,欢迎阅读并收藏。

集成电路工艺与设计

第1篇:集成电路工艺与设计范文

1 概述

在各种形式的开关变流器中,为了减小功率管的电流、电压及热应力,降低损耗,提高变流器效率,减小电磁干扰,提高开关频率和增加变流器功率密度,广泛采用了软开关技术。作为软开关技术的一种,无源无损缓冲电路通过在主电路中附加电容、电感及二极管等无源元器件,使主开关具有零电压、零电流开关条件,并且由于能将缓冲电路上的储能全部传递给负载,从理论上讲缓冲电路是没有损耗的,这也有利于提高变换器的效率。

    图1中所示的是一种新颖的无源无损缓冲电路拓扑,可分别应用于Buck电路和Boost电路,特别是在高开关频率和中大功率场合。该缓冲电路能使主开关S在零电流开通(ZCON)和零电压关断(ZVOFF)条件下工作,极大降低了开关管在这种同时处于高电压和大电流换流条件下的电路中所承受的应力,而且还能有效地抑制主二极管D的反向恢复电流。这种缓冲电路拓扑相对简单,使用的元器件数目较少,具有较强的工程实用价值。2无源无损缓冲电路工作过程分析以Buck电路为例,图2和图3分别描绘了该无源无损缓冲电路各阶段的工作过程与相应波形。

图2

    阶段1〔t0,t1〕——零电流开通t0时刻S导通,由于缓冲电感Lr的存在,开关管中的电流缓慢上升,S获得了零电流开通(ZCON)条件。该阶段中,输入电压直接施加在Lr上,其电流线性下降,因此S中的电流线性上升。另一方面,阶段1也是D进行反向恢复的过程。由于Lr的存在,极大抑制了D的反向恢复电流,并使反向恢复过程中的电压尖峰大大削弱。在分析中不考虑反向恢复过程,t1时刻当Lr中的电流下降到零时D截止,阶段2开始。

    阶段2〔t1,t2〕——Cr复位t1时刻Cr上电压为Vin,Cs上电压为0,通过Lr的电流为0。在由S,Lr,Cs,Ds2,Cr构成的谐振回路中,Cr中的电荷将通过Cs和Lr释放掉,Cs上电压开始上升,D开始承受反向压降,其变化规律满足式(1),即

vD=Vin-vCr+vCs    (1)

t2时刻Cr上的电压降为0,为S的零电压关断(ZVOFF)创造条件,这时通过S的电流达到最大值,即

同时Lr上的电流也达到反向最大值。

阶段3〔t2,t3〕——Lr复位t2时刻当Cr上的电压降为0后,Ds1导通,此时Lr上的电流最大。Lr和Cs通过Ds1及Ds2构成谐振回路,存贮在Lr中的能量通过谐振释放到Cs中,Cs上的电压继续上升。由于Lr仅同Cs进行谐振,因此阶段3的持续时间要长于阶段2。t3时刻当Lr中电流降为0,Ds1及Ds2截止,谐振过程结束。Cs上的电压达到最大值,即

在此阶段中,D所承受反向电压的变化规律为

vD=Vin+vCs    (4)

阶段4〔t3,t4〕缓冲电路停止工作,电路进入正常的PWM开通阶段。与普通硬开关PWMBuck电路导通阶段不同的是,由于在本阶段开始时D承受的反向电压达到峰值并大于输入电压Vin,这并不是一个稳定的状态,这部分多余的能量将通过D的结电容与Lr经Vin构成谐振回路而释放掉,vD振荡下降,到t4时刻稳定在输入电压Vin。

阶段5〔t4,t5〕——零电压关断t4时刻vgs=0,由于Cr的存在,S获得了零电压关断(ZVOFF)。S关断后,电流I全部转移到Cr中,其端电压迅速上升。t5时刻当其电压上升到(Vin-vCs?peak)时,本阶段结束,阶段6开始。

阶段6〔t5,t6〕t5时刻Ds3导通,Cs开始放电,通过Lr的电流逐渐增大。同时Cr继续充电。为了在下一个开关周期中使S获得零电流开通条件,Cr的端电压必须在本阶段中达到输入电压Vin,为此需要满足式(5),即

若式(5)中的I=Imin,则式(5)转换为

(Imax/Imin)<kc    (6)

t6时刻当vCr等于Vin时,Ds2导通,本阶段结束,阶段7开始。

阶段7〔t6,t7〕本阶段中,Cs继续放电,使通过Lr中的电流继续增大。同样,为了在下一个开关周期中使S获得零电流开通条件,通过Lr的电流必须在本阶段中达到I,这需要满足式(7),即

t7时刻当缓冲电感电流iLr达到I时,Ds1及Ds2截止,本阶段结束。

阶段8〔t7,t8〕本阶段中,通过Lr的电流iLr恒为I,Cs继续放电,其端电压线性下降。t8时刻当vCs降为0时,Ds3截止,D导通,本阶段结束。

阶段9〔t8,t0〕缓冲电路停止工作,电路进入正常的PWM关断阶段,直到S下一次开通。

设ωr=,Zr=,则S导通过程中缓冲电路工作时间ton=t3-t0,即

3 无源无损缓冲电路参数设计

缓冲电路的参数设计思路及过程如下。

当S在硬开关条件下开通时,由于D的反向恢复过程造成较大的电流和电压过冲,使得S的损耗大大增加。加入缓冲电路后,因Lr的存在使得通过S的电流在开通时缓慢上升,另一方面,开通过程中其漏源电压也不再被嵌在Vin,从而能降低损耗。假设S漏源电压在时间ton内线性下降到0,则开通损耗可以用式(10)表示,即

S关断时,对于MOSFET而言,由于Cr的存在使相当一部分电流从缓冲电容Cr中流过,即

is=I-Cr(dvds/dt)    (11)

有效降低了关断损耗。由米勒效应可知

dvds/dt=ig/Cdg    (12)

式中:ig=(Vt+I/gfs)/Rg;

Cdg为米勒电容;

Vt为MOSFET开启阈值电压;

gfs为跨导;

Rg为栅极驱动电阻。

因此,MOSFET关断损耗可以用式(13)估算,即

Woff=(ICdg/ig-Cr)Vin/2-Wcd    (13)

式中:Cr<ICdg/ig-2Wcd/Vin,否则Woff=0;

Wcd是漏源寄生电容中存储的能量。

忽略漏源寄生电容中存储的能量Wcd,加入该无源无损缓冲电路后主开关MOS管的损耗即可按式(14)估算,即

因此,从减小MOSFET开关损耗的角度考虑,缓冲电容Cr可以取得最优值,即

Cropt=(ICdg/ig)=(IRgCdg/Vdrive)    (15)

式中:Vdrive为驱动电路输出的驱动信号高电平值。

据式(14),缓冲电感Lr增大,MOS管的开关损耗变小;另一方面,由式(8)和式(9)可知,在其它条件不变的情况下,Lr越大,缓冲电路在MOS管开通和关断过程中工作的时间ton与toff就越长,为保证电路正常工作,须满足

ton≤DminTs,toff≤(1-Dmax)Ts    (16)

因此,缓冲电感Lr的取值应在保证适当的ton及toff的条件下尽可能的大,以降低S损耗。式(8)中当I=Imax时ton最大,式(9)中当I=Imin时toff最大,即为缓冲电路工作时间的最差情况,在该条件下将式(8)及式(9)代入式(16),可求得谐振角频率ωr的最大值,记为ωrm。于是,可知缓冲电感Lr的最优值Lropt为

Lropt=1/wrmCropt    (17)

式中:ωrm为ωr的最大值;

Cropt为Cr的最优值。

综上所述,该无源无损缓冲电路的参数可以按照下面的步骤进行设计。

1)设Zr=,式(7)得以满足,这是为了在阶段7中使Lr中的电流能恢复到I,以保证S在下一次开通过程中获得零电流开通条件。

2)可取x=Cr/Cs=0.05,x的取值须满足式(6),x<kc=4.5,同样是为了保证S的ZCON条件。较小的x值使得该条件更容易满足。另一方面,由式(3)及式(4)可知,较小的x值还有利于降低D的电压应力。

3)按照前述的方法求出满足ton≤DminTs,toff≤(1-Dmax)Ts条件的最大的ωr值ωrm。

4)按照式(18)、式(19)和式(20)计算经过优化后的Cr,Cs和Lr参数,即

Cropt=IRgCdg/Vdrive    (18)

Lropt=1/wrmCropt    (19)

Csopt=Cropt/0.05    (20)

4 实验结果

一个400V输入,110V/10A输出的带有该无源无损缓冲电路的Buck变换器验证了其工作原理和优点。

该变换器的规格和按照前述方法设计的缓冲电路的主要参数如下:

输入电压Vin400V;

输出电压Vo110V;

输出电流Io0~10A;

开关频率fs100kHz;

满载效率94%;

主开关SIRFPS37N50A;

整流二极管DDSEI30-06A;

滤波电感L300μH;

辅助二极管Ds1~Ds3HFA25TB60;

谐振电容Cr3.3nF,Cs66nF;

缓冲电感Lr1μH。

图4给出了样机在1000W输出时缓冲电感Lr上的电流波形,可以看出,与图3中分析的理论波形一致,S实现了ZCON。所设计的缓冲电路的状态仅在S换流过程中发生改变,其持续时间并不影响主电路正常的PWM工作模式。图5所示为S栅极驱动电压和漏源电压对比波形,由图5中可以看出,在S关断过程中,首先栅极驱动电压下降到S的开通阈值,在此过程中漏源电压几乎保持不变,然后S关断,此时漏源电压迅速上升,从而实现了ZVOFF。图6中为D两端的电压波形,由于Lr的存在抑制了D的反向恢复电流,使D关断时的电压尖刺被大大削弱,在实验波形中几乎已看不到。D反偏时端电压的振荡和开通时存在的电压缓降过程与图3中的理论分析一致。

第2篇:集成电路工艺与设计范文

集成电路是当今信息技术产业高速发展的基础和源动力,已经高度渗透与融合到国民经济和社会发展的每个领域,其技术水平和发展规模已成为衡量一个国家产业竞争力和综合国力的重要标志之一[1],美国更将其视为未来20年从根本上改造制造业的四大技术领域之首。我国拥有全球最大、增长最快的集成电路市场,2013年规模达9166亿元,占全球市场份额的50%左右。近年来,国家大力发展集成电路,在上海浦东等地建立了集成电路产业基地,对于集成电路设计、制造、封装、测试等方面的专门技术人才需求巨大。为了适应产业需求,推进我国集成电路发展,许多高校开设了电子科学与技术专业,以培养集成电路方向的专业人才。集成电路版图设计是电路设计与集成电路工艺之间必不可少的环节。据相关统计,在从事集成电路设计工作的电子科学与技术专业的应届毕业生中,由于具有更多的电路知识储备,研究生的从业比例比本科生高出很多。而以集成电路版图为代表包括集成电路测试以及工艺等与集成电路设计相关的工作,相对而言对电路设计知识的要求低很多。因而集成电路版图设计岗位对本科生而言更具竞争力。在版图设计岗位工作若干年知识和经验的积累也将有利于从事集成电路设计工作。因此,版图设计工程师的培养也成为了上海电力学院电子科学与技术专业本科人才培养的重要方向和办学特色。本文根据上海电力学院电子科学与技术专业建设的目标,结合本校人才培养和专业建设目标,就集成电路版图设计理论和实验教学环节进行了探索和实践。

一、优化理论教学方法,丰富教学手段,突出课程特点

集成电路版图作为一门电子科学与技术专业重要的专业课程,教学内容与电子技术(模拟电路和数字电路)、半导体器件、集成电路设计基础等先修课程中的电路理论、器件基础和工艺原理等理论知识紧密联系,同时版图设计具有很强的实践特点。因此,必须从本专业学生的实际特点和整个专业课程布局出发,注重课程与其他课程承前启后,有机融合,摸索出一套实用有效的教学方法。在理论授课过程中从集成电路的设计流程入手,在CMOS集成电路和双极集成电路基本工艺进行概述的基础上,从版图基本单元到电路再到芯片循序渐进地讲授集成电路版图结构、设计原理和方法,做到与上游知识点的融会贯通。

集成电路的规模已发展到片上系统(SOC)阶段,教科书的更新速度远远落后于集成电路技术的发展速度。集成电路工艺线宽达到了纳米量级,对于集成电路版图设计在当前工艺条件下出现的新问题和新规则,通过查阅最新的文献资料,向学生介绍版图设计前沿技术与发展趋势,开拓学生视野,提升学习热情。在课堂教学中尽量减少冗长的公式和繁复的理论推导,将理论讲解和工程实践相结合,通过工程案例使学生了解版图设计是科学、技术和经验的有机结合。比如,在有关天线效应的教学过程中针对一款采用中芯国际(SMIC)0.18um 1p6m工艺的雷达信号处理SOC 芯片,结合跳线法和反偏二极管的天线效应消除方法,详细阐述版图设计中完全修正天线规则违例的关键步骤,极大地激发了学生的学习兴趣,收到了较好的教学效果。

集成电路版图起着承接电路设计和芯片实现的重要作用。通过版图设计,可以将立体的电路转化为二维的平面几何图形,再通过工艺加工转化为基于半导体硅材料的立体结构[2]。集成电路版图设计是集成电路流程中的重要环节,与集成电路工艺密切相关。为了让学生获得直观、准确和清楚的认识,制作了形象生动、图文并茂的多媒体教学课件,将集成电路典型的设计流程、双极和CMOS集成电路工艺流程、芯片内部结构、版图的层次等内容以图片、Flash动画、视频等形式进行展示。

版图包含了集成电路尺寸、各层拓扑定义等器件相关的物理信息数据[3]。掩膜上的图形决定着芯片上器件或连接物理层的尺寸。因此版图上的几何图形尺寸与芯片上物理层的尺寸直接相关。而集成电路制造厂家根据版图数据来制造掩膜,对于同种工艺各个foundry厂商所提供的版图设计规则各不相同[4]。教学实践中注意将先进的典型芯片版图设计实例引入课堂,例如举出台湾积体电路制造公司(TSMC)的45nm CMOS工艺的数模转换器的芯片版图实例,让学生从当今业界实际制造芯片的角度学习和掌握版图设计的规则,同时切实感受到模拟版图和数字版图设计的艺术。

二、利用业界主流EDA工具,构建基于完整版图设计流程的实验体系

集成电路版图设计实验采用了Cadence公司的EDA工具进行版图设计。Cadence的EDA产品涵盖了电子设计的整个流程,包括系统级设计、功能验证、集成电路(IC)综合及布局布线、物理验证、PCB设计和硬件仿真建模模拟、混合信号及射频IC设计、全定制IC设计等。全球知名半导体与电子系统公司如AMD、NEC、三星、飞利浦均将Cadence软件作为其全球设计的标准。将业界主流的EDA设计软件引入实验教学环节,有利于学生毕业后很快适应岗位,尽快进入角色。

专业实验室配备了多台高性能Sun服务器、工作站以及60台供学生实验用的PC机。服务器中安装的Cadence 工具主要包括:Verilog HDL的仿真工具Verilog-X、电路图设计工具Composer、电路模拟工具Analog Artist、版图设计工具Virtuoso Layout Editing、版图验证工具Dracula 和Diva、自动布局布线工具Preview和Silicon Ensemble。

Cadence软件是按照库(Library)、单元(Cell)、和视图(View)的层次实现对文件的管理。库、单元和视图三者之间的关系为库文件是一组单元的集合,包含着各个单元的不同视图。库文件包括技术库和设计库两种,设计库是针对用户设立,不同的用户可以有不同的设计库。而技术库是针对工艺设立,不同特征尺寸的工艺、不同的芯片制造商的技术库不同。为了让学生在掌握主流EDA工具使用的同时对版图设计流程有准确、深入的理解,安排针对无锡上华公司0.6um两层多晶硅两层金属(Double Poly Double Metal)混合信号CMOS工艺的一系列实验让学生掌握包括从电路图的建立、版图建立与编辑、电学规则检查(ERC),设计规则检查(DRC)、到电路图-版图一致性检查(LVS)的完整的版图设计流程[5]。通过完整的基于设计流程的版图实验使学生能较好地掌握电路设计工具Composer、版图设计工具Virtuoso Layout Editor以及版图验证工具Dracula和Diva的使用,同时对版图设计的关键步骤形成清晰的认识。

以下以CMOS与非门为例,介绍基于一个完整的数字版图设计流程的教学实例。

在CMOS与非门的版图设计中,首先要求学生建立设计库和技术库,在技术库中加载CSMC 0.6um的工艺的技术文件,将设计库与技术库进行关联。然后在设计库中用Composer中建立相应的电路原理图(schematic),进行ERC检查。再根据电路原理图用Virtuoso Layout Editor工具绘制对应的版图(layout)。版图绘制步骤依次为MOS晶体管的有源区、多晶硅栅极、MOS管源区和漏区的接触孔、P+注入、N阱、N阱接触、N+注入、衬底接触、金属连线、电源线、地线、输入及输出。基本的版图绘制完成之后,将输入、输出端口以及电源线和地线的名称标注于版图的适当位置处,再在Dracula工具中利用几何设计规则文件进行DRC验证。然后利用GDS版图数据与电路图网表进行版图与原理图一致性检查(LVS),修改其中的错误并按最小面积优化版图,最后版图全部通过检查,设计完成。图1和图2分别给出了CMOS与非门的原理图和版图。

第3篇:集成电路工艺与设计范文

关键词:版图设计;集成电路;教学与实践

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)06-0153-02

目前,集成电路设计公司在招聘新版图设计员工时,都希望找到已经具备一定工作经验的,并且熟悉本行业规范的设计师。但是,IC设计这个行业圈并不大,招聘人才难觅,不得不从其他同行业挖人才或通过猎头公司。企业不得不付出很高的薪资,设计师才会考虑跳槽,于是一些企业将招聘新员工目标转向了应届毕业生或在校生,以提供较低薪酬聘用员工或实习方式来培养适合本公司的版图师。一些具备版图设计知识的即将毕业学生就进入了IC设计行业。但是,企业通常在招聘时或是毕业生进入企业一段时间后发现,即使是懂点版图知识的新员工,电路和工艺的知识差强人意,再就是行业术语与设计软件使用不够熟练、甚至不懂。这就要求我们在版图教学时渗入电路与工艺等知识,使学生明确其中紧密关联关系,树立电路、工艺以及设计软件为版图设计服务的理念。

一、企业对IC版图设计的要求分析

集成电路设计公司在招聘版图设计员工时,除了对员工的个人素质和英语的应用能力等要求之外,大部分是考查专业应用的能力。一般都会对新员工做以下要求:熟悉半导体器件物理、CMOS或BiCMOS、BCD集成电路制造工艺;熟悉集成电路(数字、模拟)设计,了解电路原理,设计关键点;熟悉Foundry厂提供的工艺参数、设计规则;掌握主流版图设计和版图验证相关EDA工具;完成手工版图设计和工艺验证[1,2]。另外,公司希望合格的版图设计人员除了懂得IC设计、版图设计方面的专业知识,还要熟悉Foundry厂的工作流程、制程原理等相关知识[3]。正因为其需要掌握的知识面广,而国内学校开设这方面专业比较晚,IC版图设计工程师的人才缺口更为巨大,所以拥有一定工作经验的设计工程师,就成为各设计公司和猎头公司争相角逐的人才[4,5]。

二、针对企业要求的版图设计教学规划

1.数字版图设计。数字集成电路版图设计是由自动布局布线工具结合版图验证工具实现的。自动布局布线工具加载准备好的由verilog程序经过DC综合后的网表文件与Foundry提供的数字逻辑标准单元版图库文件和I/O的库文件,它包括物理库、时序库、时序约束文件。在数字版图设计时,一是熟练使用自动布局布线工具如Encounter、Astro等,鉴于很少有学校开设这门课程,可以推荐学生自学或是参加专业培训。二是数字逻辑标准单元版图库的设计,可以由Foundry厂提供,也可由公司自定制标准单元版图库,因此对于初学者而言设计好标准单元版图使其符合行业规范至关重要。

2.模拟版图设计。在模拟集成电路设计中,无论是CMOS还是双极型电路,主要目标并不是芯片的尺寸,而是优化电路的性能,匹配精度、速度和各种功能方面的问题。作为版图设计者,更关心的是电路的性能,了解电压和电流以及它们之间的相互关系,应当知道为什么差分对需要匹配,应当知道有关信号流、降低寄生参数、电流密度、器件方位、布线等需要考虑的问题。模拟版图是在注重电路性能的基础上去优化尺寸的,面积在某种程度上说仍然是一个问题,但不再是压倒一切的问题。在模拟电路版图设计中,性能比尺寸更重要。另外,模拟集成电路版图设计师作为前端电路设计师的助手,经常需要与前端工程师交流,看是否需要版图匹配、布线是否合理、导线是否有大电流流过等,这就要求版图设计师不仅懂工艺而且能看懂模拟电路。

3.逆向版图设计。集成电路逆向设计其实就是芯片反向设计。它是通过对芯片内部电路的提取与分析、整理,实现对芯片技术原理、设计思路、工艺制造、结构机制等方面的深入洞悉。因此,对工艺了解的要求更高。反向设计流程包括电路提取、电路整理、分析仿真验证、电路调整、版图提取整理、版图绘制验证及后仿真等。设计公司对反向版图设计的要求较高,版图设计工作还涵盖了电路提取与整理,这就要求版图设计师不仅要深入了解工艺流程;而且还要熟悉模拟电路和数字标准单元电路工作原理。

三、教学实现

1.数字版图。数字集成电路版图在教学时,一是掌握自动布局布线工具的使用,还需要对UNIX或LINUX系统熟悉,尤其是一些常用的基本指令;二是数字逻辑单元版图的设计,目前数字集成电路设计大都采用CMOS工艺,因此,必须深入学习CMOS工艺流程。在教学时,可以做个形象的PPT,空间立体感要强,使学生更容易理解CMOS工艺的层次、空间感。逻辑单元版图具体教学方法应当采用上机操作并配备投影仪,教师一边讲解电路和绘制版图,一边讲解软件的操作、设计规则、画版图步骤、注意事项,学生跟着一步一步紧随教师演示学习如何画版图,同时教师可适当调整教学速度,适时停下来检查学生的学习情况,若有错加以纠正。这样,教师一个单元版图讲解完毕,学生亦完成一个单元版图。亦步亦趋、步步跟随,学生的注意力更容易集中,掌握速度更快。课堂讲解完成后,安排学生实验以巩固所学。逻辑单元版图教学内容安排应当采用目前常用的单元,并具有代表性、扩展性,使学生可以举一反三,扩展到整个单元库。具体单元内容安排如反相器、与非门/或非门、选择器、异或门/同或门、D触发器与SRAM等。在教授时一定要注意符合行业规范,比如单元的高度、宽度的确定要符合自动布局布线的要求;单元版图一定要最小化,如异或门与触发器等常使用传输门实现,绘制版图时注意晶体管源漏区的合并;大尺寸晶体管的串并联安排合理等。

2.模拟版图。模拟集成电路版图设计更注重电路的性能实现,经常需要与前端电路设计工程师交流。因此,版图教学时教师须要求学生掌握模拟集成电路的基本原理,学生能识CMOS模拟电路,与前端电路工程师交流无障碍。同时也要求学生掌握工艺对模拟版图的影响,熟练运用模拟版图的晶体管匹配、保护环、Dummy晶体管等关键技术。在教学方法上,依然采用数字集成电路版图的教学过程,实现教与学的同步。在内容安排上,一是以运算放大器为例,深入讲解差分对管、电流镜、电容的匹配机理,版图匹配时结构采用一维还是二维,具体是如何布局的,以及保护环与dummy管版图绘制技术。二是以带隙基准电压源为例,深入讲解N阱CMOS工艺下双极晶体管PNP与电阻匹配的版图绘制技术。在教学时需注意晶体管与电阻并联拆分的合理性、电阻与电容的类型与计算方法以及布线的规范性。

3.逆向版图设计。逆向集成电路版图设计需要学生掌握数字标准单元的命名规范、所有标准单元电路结构、常用模拟电路的结构以及芯片的工艺,要求学生熟悉模拟和数字集成单元电路。这样才可以在逆向提取电路与版图时,做到准确无误。教学方法同样还是采用数字集成电路版图教学流程,达到学以致用。教学内容当以一个既含数字电路又含模拟电路的芯片为例。为了提取数字单元电路,需讲解foundry提供的标准单元库里的单元电路与命名规范。在提取单元电路教学时,说明数字电路需要归并同类图形,例如与非门、或非门、触发器等,同样的图形不要分析多次。强调学生注意电路的共性、版图布局与布线的规律性,做到熟能生巧。模拟电路的提取与版图绘制教学要求学生掌握模拟集成电路常用电路结构与工作原理,因为逆向设计软件提出的元器件符号应该按照易于理解的电路整理,使其他人员也能看出你提取电路的功能,做到准确通用规范性。

集成电路版图设计教学应面向企业,按照企业对设计工程师的要求来安排教学,做到教学与实践的紧密结合。从教学开始就向学生灌输IC行业知识,定位准确,学生明确自己应该掌握哪些相关知识。本文从集成电路数字版图、模拟版图和逆向设计版图这三个方面就如何开展教学可以满足企业对版图工程师的要求展开探讨,安排教学有针对性。在教学方法与内容上做了分析探讨,力求让学生在毕业后可以顺利进入IC行业做出努力。

参考文献:

[1]王静霞,余菲,赵杰.面向职业岗位构建高职微电子技术专业人才培养模式[J].职业技术教育,2010,31(14):5-8.

[2]刘俐,赵杰.针对职业岗位需求?摇探索集成电路设计技术课程教学新模式[J].中国职业技术教育,2012,(2):5-8.

[3]鞠家欣,鲍嘉明,杨兵.探索微电子专业实践教学新方法-以“集成电路版图设计”课程为例[J].实验技术与管理,2012,29(3):280-282.

[4]李淑萍,史小波,金曦.微电子技术专业服务地方经济培养高技能人才的探索[J].职业技术教育,2010,13(11):13-16.

第4篇:集成电路工艺与设计范文

关键词:Actel Fusion;温度自动控制;无线传输;远程监控

引言

西安邮电学院于2006年引进北京航天时代电子公司第772所一条闲置集成电路生产前端工艺线(14台工艺设备),建立了集成电路工艺实验室,为微电子学、集成电路设计、系统集成以及电子信息类相关专业学生提供集成电路工艺生产实习及实践环境。在这14台工艺设备中,有高温双管扩散炉L4513Ⅱ一12/ZM 3台,主要供学生进行半导体工艺中扩散工艺的相关实验。这四台设备均为上个世纪80年代生产的卧式高温炉设备。设备的温控部分为模拟控制,其精度低、工作稳定性及可靠性差、能耗大,操作复杂。

“以Actel混合信号Fusion为基础的无线扩散炉温自动监控系统”的目标是对双管扩散炉温控部分进行改造,实现数字式自动控制,以提高炉体的精度,降低能耗。该项目的开发和研究对于保证我院微电子学专业等专业的集成电路工艺实践教学有重要的实用价值和现实意义。

Actel FUSion芯片

Actel Fusion系统芯片(PSC)是全球首个混合信号FPGA器件,将可配置模拟部件、大型Flash内存构件、全面的时钟生成和管理电路,以及高性能可编程逻辑集成在单片器件中,Actel Fusion可与Actel的软MCU内核同用,为数模混合设计者提供了一个良好的可编程系统芯片平台。

Actel Fusion系列芯片以Flash为基础的FPGA将配置信息储存在片上Flash单元中,一旦完成编程后,配置数据就会成为FPGA结构的固有部分,在系统上电时并无需载入外部配置数据。以Flash为基础的Fusion无需额外的系统元件,如传统SRAMFPGA配置用的串行非挥发性内存(EEPROM)或以Flash为基础的微控制器,它们都是用来在每次上电时对传统SRAMFPGA加载程序的。增加的融合功能可在电路板上省去多个附加元件,如Flash内存、分立模拟IC、时钟源、EEPROM,以及实时时钟等,从而减低系统成本和电路板空间需求。

本设计选用的是Fusion系列得AFS600芯片,该芯片内部有60万可编程的逻辑门,具有4Mbit的用户可用的Flash Memory、lkbit的FlashROM、108kbit的RAM;2个PLL,最高频率可达350MHz;支持多种I/O电平标准,其中差分的I/O标准有:LVPECL、LVDS、BLVDS、M-LVDS;具有AES、FlashLock加密技术;集成了独特的模拟部分,分辨率高达12位、采样率高达600kbps、30个输入通道、2.56V内部参考源的A/D;可实现电压、温度、电流检测。

本设计在Actel Fusion开发平成的,具有良好得可移植性和集成性。下面首先介绍本系统用到的主要资源。

可编程的多路ADC模块

Actel Fusion器件集成了频率达600ksps且可配置的12位逐次逼近(SAR)模数转换器(ADC)。这种模拟电路非常灵活,能支持MOSFET栅极驱动输出和多个模拟输入,输入电压在-12V到+12V之间,更可选配预调器,以便对各种模拟系统直接连接及控制,如电压、差分电流或温度的监控等。

本设计中,充分的利用了该款芯片的多路模拟输入优点,将模拟电压引脚以及温度引脚都是用了,实现温度的传感器电压信号输入以及手动控制的电压信号的输入。这样可以减少外部电路的复杂性,同时提高系统的稳定性。

内置的8051单片机模块

Actel Fusion芯片提供了大量的MCU微处理机控制。单元本设计中使用的8051单片机是将单片机的硬件电路通过调用51单片机IP核的方式烧写在FPGA电路内部。软件编程的程序烧写在芯片内部的Flash中。大大的方便了编程以及程序的烧写。在这里也体现了单芯片的解决方案的优越性。

丰富的PLL资源

本设计中,很多模块都需要不同频率的工作时钟。该芯片内提供了可配置的锁相环资源,可以提供频率范围很宽的时钟输出。为整个系统的搭建提供了丰富的不同频率时钟资源,使得我们的难度降低了不少,极大地缩短了开发周期。

系统硬件及软件设计

系统由Actel Fusion开发板,数据采集部分、无线收发部分、报警电路、手动控制和初始化,继电器电路和控制软件和通信软件等构成,其总体设计框图如图1所示。

数据采集电路

现场的温度数据经过热电偶的冷端补偿和毫伏放大电路后,将温度信息转换成电压量然后送控制系统分析处理。

无线收发电路

无线收发部分采用的无线传输模块是由西安达特科技公司出品的DTZ-01A ZigBee无线数据发送接收模块,不需要外部组件。可以很好的实现数据的透明传输。用来发送现场的温度数据到远端的计算机上,通过VB编写的软件实现温度的远端监控。

报警电路

语音报警的设计是在温度超过设定温度值一定范围的时候,发出警告信息,包括红灯亮起,同时蜂鸣器给出报警声音。硬件电路上包括开发板上提供的蜂鸣器和外挂的发光二极管,来完成报警的功能。

PS2键盘数据输入

本设计中控制数据的输入是通过外挂的PS2键盘实现。将键盘直接接到开发版提供的PS2键盘接口上,通过芯片内部的PS2硬件电路驱动和51编程的软件驱动实现键盘数据的输入。

LCD显示

本设计我们选用的是640×480点阵的LCD显示屏幕,可以在一个屏幕上同时显示出10路的温度信息以及其他的控制信息。驱动LCD屏幕是通过8051编程实现的。

FPGA内部电路设计与实现

FPGA内部硬件电路设计,主要是用Verilog HDL硬件电路描述语言实现的系统硬件的电路的设计,其中有一些模块是调用的IP核实现的(core 8051模块、锁相环和ADC模块)。FPGA内部电路由ADC模块、信号毛刺去除模块、宽度可调脉冲(PWM)模块、10路PWM控制信号选择模块、PS2硬件驱动模块、50Hz时钟信号产生模块、报警电路模块(FPGA实现)、LCD显示模块和Core8051模块构成。

系统控制软件

控制软件部分由主函数、选择通道子函数、设置通道参数子函数、显示设定数据子函数、显示通道温度数据子函数、显示控制数据子函数、PID控制子函数、串行发送子函数和LCD显示子函数构成。软件流程图如图2所示。

系统实现

该控制系统主要完成的功能有各个通道的控制参数的输入、对高温模拟扩散炉的控制、现场温度温度信息的远程监控。图3为现场控制台的显示界面,从图中可以看出10个通道的控制参数,通道状态以及现场的温度信息。图4为远程计算机的监控画面,从远程计算机可以直观的观测现场各个通道的温度信息,并具有查看历史温度信息功能。

结语

通过3个多月的努力,完成了系统的设计。我们充分利用了Actel Fusion开发板提供的硬件资源,完成整个系统的搭建。

系统实现的是同时对多路温度的控制,充分的利用了芯片的处理多路模拟信号的优点。

第5篇:集成电路工艺与设计范文

【关键词】微电子;延伸领域;发展方向

1.引言

微电子技术是随着集成电路,尤其是大规模集成电路发展起来的一门新技术。微电子产业包括系统电路设计,器件物理,工艺技术,材料制备,自动测试及封装等一系列专门的技术的产业。微电子产业发展非常迅速,它已经渗透到了国民经济的各个领域,特别是以集成电路为关键技术的电子战和信息战都要依托于微电子产业。

微电子技术是微电子产业的核心,是在电子电路和系统的超小型化和微型化的过程中逐渐形成和发展起来的。微电子技术也是信息技术的基础和心脏,是当今发展最快的技术之一。近年来,微电子技术已经开始向相关行业渗透,形成新的研究领域。

2.微电子技术概述

2.1 认识微电子

微电子技术的发展水平已经成为衡量一个国家科技进步和综合国力的重要标志之一。因此,学习微电子,认识微电子,使用微电子,发展微电子,是信息社会发展过程中,当代大学生所渴求的一个重要课程。

生活在当代的人们,没有不使用微电子技术产品的,如人们每天随身携带的手机;工作中使用的笔记本电脑,乘坐公交、地铁的IC卡,孩子玩的智能电子玩具,在电视上欣赏从卫星上发来的电视节目等等,这些产品与设备中都有基本的微电子电路。微电子的本领很大,但你要看到它如何工作却相当难,例如有一个像我们头脑中起记忆作用的小硅片―它的名字叫存储器,是电脑的记忆部分,上面有许许多多小单元,它与神经细胞类似,这种小单元工作一次所消耗的能源只有神经元的六十分之一,再例如你手中的电话,将你的话音从空中发射出去并将对方说的话送回来告诉你,就是靠一种叫“射频微电子电路”或叫“微波单片集成电路”进行工作的。它们会将你要表达的信息发送给对方,甚至是通过通信卫星发送到地球上的任何地方。其传递的速度达到300000KM/S,即以光速进行传送,可实现双方及时通信。

“微电子”不是“微型的电子”,其完整的名字应该是“微型电子电路”,微电子技术则是微型电子电路技术。微电子技术对我们社会发展起着重要作用,是使我们的社会高速信息化,并将迅速地把人类带入高度社会化的社会。“信息经济”和“信息社会”是伴随着微电子技术发展所必然产生的。

2.2 微电子技术的基础材料――取之不尽的硅

位于元素周期表第14位的硅是微电子技术的基础材料,硅的优点是工作温度高,可达200摄氏度;二是能在高温下氧化生成二氧化硅薄膜,这种氧化硅薄膜可以用作为杂质扩散的掩护膜,从而能使扩散、光刻等工艺结合起来制成各种结构的电路,而氧化硅层又是一种很好的绝缘体,在集成电路制造中它可以作为电路互联的载体。此外,氧化硅膜还是一种很好的保护膜,它能防止器件工作时受周围环境影响而导致性能退化。第三个优点是受主和施主杂质有几乎相同的扩散系数。这就为硅器件和电路工艺的制作提供了更大的自由度。硅材料的这些优越性能促成了平面工艺的发展,简化了工艺程序,降低了制造成本,改善了可靠性,并大大提高了集成度,使超大规模集成电路得到了迅猛的发展。

2.3 集成电路的发展过程

20世纪晶体管的发明是整个微电子发展史上一个划时代的突破。从而使得电子学家们开始考虑晶体管的组合与集成问题,制成了固体电路块―集成电路。从此,集成电路迅速从小规模发展到大规模和超大规模集成电路,如图1所示。

图1 集成电路发展示意图

集成电路的分类方法很多,按领域可分为:通用集成电路和专用集成电路;按电路功能可分为:数字集成电路、模拟集成电路和数模混合集成电路;按器件结构可分为:MOS集成电路、双极型集成电路和BiIMOS集成电路;按集成电路集成度可分为:小规模集成电路SSI、中规模集成电路MSI、大规模集成电路LSI、超导规模集成电路VLSI、特大规模集成电路ULSI和巨大规模集成电路CSI。

随着微电子技术的发展,出现了集成电路(IC),集成电路是微电子学的研究对象,其正在向着高集成度、低功耗、高性能、高可靠性的方向发展。

2.4 走进人们生活的微电子

IC卡,是现代微电子技术的结晶,是硬件与软件技术的高度结合。存储IC卡也称记忆IC卡,它包括有存储器等微电路芯片而具有数据记忆存储功能。在智能IC卡中必须包括微处理器,它实际上具有微电脑功能,不但具有暂时或永久存储、读取、处理数据的能力,而且还具备其他逻辑处理能力,还具有一定的对外界环境响应、识别和判断处理能力。

IC卡在人们工作生活中无处不在,广泛应用于金融、商贸、保健、安全、通信及管理等多种方面,例如:移动电话卡,付费电视卡,公交卡,地铁卡,电子钱包,识别卡,健康卡,门禁控制卡以及购物卡等等。IC卡几乎可以替代所有类型的支付工具。

随着IC技术的成熟,IC卡的芯片已由最初的存储卡发展到逻辑加密卡装有微控制器的各种智能卡。它们的存储量也愈来愈大,运算功能越来越强,保密性也愈来愈高。在一张卡上赋予身份识别,资料(如电话号码、主要数据、密码等)存储,现金支付等功能已非难事,“手持一卡走遍天下”将会成为现实。

3.微电子技术发展的新领域

微电子技术是电子科学与技术的二级学科。电子信息科学与技术是当代最活跃,渗透力最强的高新技术。由于集成电路对各个产业的强烈渗透,使得微电子出现了一些新领域。

3.1 微机电系统

MEMS(Micro-Electro-Mechanical systems)微机电系统主要由微传感器、微执行器、信号处理电路和控制电路、通信接口和电源等部件组成,主要包括微型传感器、执行器和相应的处理电路三部分,它融合多种微细加工技术,并将微电子技术和精密机械加工技术、微电子与机械融为一体的系统。是在现代信息技术的最新成果的基础上发展起来的高科技前沿学科。

当前,常用的制作MEMS器件的技术主要由三种:一种是以日本为代表的利用传统机械加工手段,即利用大机械制造小机械,再利用小机械制造微机械的方法,可以用于加工一些在特殊场合应用的微机械装置,如微型机器人,微型手术台等。第二种是以美国为代表的利用化学腐蚀或集成电路工艺技术对硅材料进行加工,形成硅基MEMS器件,它与传统IC工艺兼容,可以实现微机械和微电子的系统集成,而且适合于批量生产,已成为目前MEMS的主流技术,第三种是以德国为代表的LIGA(即光刻,电铸如塑造)技术,它是利用X射线光刻技术,通过电铸成型和塑造形成深层微结构的方法,人们已利用该技术开发和制造出了微齿轮、微马达、微加速度计、微射流计等。

MEMS的应用领域十分广泛,在信息技术,航空航天,科学仪器和医疗方面将起到分别采用机械和电子技术所不能实现的作用。

3.2 生物芯片

生物芯片(Bio chip)将微电子技术与生物科学相结合的产物,它以生物科学基础,利用生物体、生物组织或细胞功能,在固体芯片表面构建微分析单元,以实现对化合物、蛋白质、核酸、细胞及其他生物组分的正确、快速的检测。目前已有DNA基因检测芯片问世。如Santford和Affymetrize公司制作的DNA芯片包含有600余种DNA基本片段。其制作方法是在玻璃片上刻蚀出非常小的沟槽,然后在沟槽中覆盖一层DNA纤维,不同的DNA纤维图案分别表示不同的DNA基本片段。采用施加电场等措施可使一些特殊物质反映出某些基因的特性从而达到检测基因的目的。以DNA芯片为代表的生物工程芯片将微电子与生物技术紧密结合,采用微电子加工技术,在指甲大小的硅片上制作包含多达20万种DNA基本片段的芯片。DNA芯片可在极短的时间内检测或发现遗传基因的变化,对遗传学研究、疾病诊断、疾病治疗和预防、转基因工程等具有极其重要的作用。生物工程芯片是21世纪微电子领域的一个热点并且具有广阔的应用前景。

3.3 纳米电子技术

在半导体领域中,利用超晶格量子阱材料的特性研制出了新一代电子器件,如:高电子迁移晶体管(HEMT),异质结双极晶体管(HBT),低阈值电流量子激光器等。

在半导体超薄层中,主要的量子效应有尺寸效应、隧道效应和干涉效应。这三种效应,已在研制新器件时得到不同程度的应用。

(1)在FET中,采用异质结构,利用电子的量子限定效应,可使施主杂质与电子空间分离,从而消除了杂质散射,获得高电子迁移率,这种晶体管,在低场下有高跨度,工作频率,进入毫米波,有极好的噪声特性。

(2)利用谐振隧道效应制成谐振隧道二极管和晶体管。用于逻辑集成电路,不仅可以减小所需晶体管数目,还有利于实现低功耗和高速化。

(3)制成新型光探测器。在量子阱内,电子可形成多个能级,利用能级间跃迁,可制成红外线探测器。

利用量子线、量子点结构作激光器的有源区,比量子阱激光器更加优越。在量子遂道中,当电子通过隧道结时,隧道势垒两侧的电位差发生变化,如果势垒的静电能量的变化比热能还大,那么就能对下一个电子隧道结起阻碍作用。基于这一原理,可制作放大器件,振荡器件或存储器件。

量子微结构大体分为微细加工和晶体生长两大类。

4.微电子技术的主要研究方向

目前微电子技术正朝着三个方向发展。第一,继续增大晶圆尺寸并缩小特征尺寸。第二,集成电路向系统芯片(system on chip,SOC)方向发展。第三,微电子技术与其他领域相结合将产生新产业和新学科,如微机电系统和生物芯片。随着微电子学与其他学科的交叉日趋深入,相关的新现象,新材料,新器件的探索日益增加,光子集成如光电子集成技术也不断发展,这些研究的不断深入,彼此间的交叉融合,将是未来的研究方向。

参考文献

[1]高勇,乔世杰,陈曦.集成电路设计技术[M].科学出版社,2011.

[2]常青,陶华敏,肖山竹,卢焕章.微电子技术概论[M].国防工业出版社,2006.

[3]王颖.集成电路版图设计与TannerEDA工具的使用[M].西安电子科技大学出版社,2009.

[4]毕克允.微电子技术[M].国防工业出版社,2000.

[5]于宝明,金明.电子信息[M].东南大学出版社,2010.

[6]王琪民,刘明候.秦丰华.微机电系统工程基础[M].中国科学技术大学出版社,2010.

第6篇:集成电路工艺与设计范文

关键词:嵌入式系统;硬件低功耗;软件低功耗;集成电路工艺

中图分类号:TP274;TP3680

引 言

经过近几年的快速发展,嵌入式系统(Embedded System)已经成为电子信息产业中最具增长力的一个分支。随着手机、PDA,GPS、机顶盒等新兴产品的大量应用,嵌入式系统的市场正在以每年30%的速度递增(IDC预测),嵌入式系统的设计也成为软硬件工程师越来越关心的话题。

在嵌入式系统设计中,低功耗设计(Low Power Design)是许多设计人员必须面对的问题。其原因在于嵌入式系统被广泛应用于便携式和移动性较强的产品中,而这些产品不是一直都有充足的电源供应,往往是靠电池来供电的;而且大多数嵌入式设备都有体积和质量的约束。另外,系统部件产生的热量和功耗成比例,为解决散热问题而采取的冷却措施进一步增加了系统的功耗。为了得到最好的结果,降低系统的功耗具有下面的优点:

(1) 电池驱动的需要。在强调绿色环保时期,许多电子产品都采用电池供电。对于电池供电系统,延长电池寿命,降低用户更换电池的周期,提高系统性能与降低系统开销,甚至能起到保护环境的作用。

(2) 安全的需要。在现场总线领域,本安问题是┮桓霆重要话题。例如FF的本安设备,理论上每个网段可以容纳32个设备,而实际应用中考虑到目前的功耗水平,每个网段安装10个比较合适。因此降低系统功耗是实现本安要求的一个重要途径。

[JP2](3) 解决电磁干扰。系统功耗越低,电磁辐射能量越小,对其他设备造成的干扰也越小。如果所有的电子产品都能设计成低功耗,那么电磁兼容性设计会变得容易。[JP]

(4) 节能的需要。特别是对电池供电系统,功耗与电压的平方成正比即:P=V2fC+P┆static,б虼私谀芨为重要。

1 功耗产生的原因

[BT3]1.1 集成电路的功耗

目前的集成电路工艺主要有TTL和CMOS两大类,无论哪种工艺,只要电路中有电流通过,就会产生功耗。通常,集成电路的功耗主要有4个:

(1) 开关功耗。对电路中的电容充放电而形成,其表达式为:

(2) 静态功耗和动态功耗。当电路的状态没有进行翻转(保持高电平或低电平)时,电路的功耗属于静态功耗,其大小等于电路电压与流过电流的乘积;动态功耗是电路翻转时产生的功耗,由于电路翻转时存在跳变沿,在电路翻转瞬间,电流比较大,存在较大的动态功耗。目前大多数电路都采用CMOS工艺,静态功耗很小,可以忽略。起主要作用的是动态功耗,因此从降低动态功耗入手来降低功耗。

(3) 短路功耗。因开关时由电源到地形成的通路造成的,其表达式为:

(4) 漏电功耗。由亚阈值电流和反向偏压电流造成。目前大多数电路都采用CMOS工艺,故漏电功耗很小,可以忽略。

1.2 电阻的功耗和有源器件的功耗

通常为负载器件和寄生元件产生的功耗。有源开关器件在状态转换时,电流和电压比较大,将引起功率消耗。另外, CMOS电路中最大的功耗来自于内部和外部的电容充放电产生的功耗。

2 硬件低功耗设计

[BT3]2.1 选择低功耗的器件

选择低功耗的电子器件可以从根本上降低整个硬件系统的功耗。目前的半导体工艺主要有TTL工艺和CMOS工艺,CMOS工艺具有很低的功耗,在电路设计上尽量选用,使用CMOS系列电路时,其不用的输入端不要悬空,因为悬空的输入端可能存在感应信号,它将造成高低电平的转换。转换器件的功耗很大,尽量采用输出为高的原则。

嵌入式处理器是嵌入式系统的硬件核心,消耗大量的功率,因此设计时选用低功耗的处理器;另外,选择低功耗的通信收发器(对于通信应用系统)、低功耗的访存部件、低功耗的电路,目前许多通信收发器都设计成节省功耗方式,这样的器件优先采用。

2.2 选用低功耗的电路形式

完成同样的功能,电路的实现形式有多种。例如,可以利用分立元件、小规模集成电路,大规模集成电路甚至单片实现。通常,使用的元器件数量越少,系统的功耗越低。因此,尽量使用集成度高的器件,以减少电路中使用元件的个数,减少整机的功耗。

2.3 单电源、低电压供电

一些模拟电路如运算放大器等,供电方式有正负电源和单电源两种。双电源供电可以提供对地输出的信号。高电源电压的优点是可以提供大的动态范围,缺点是功耗大。例如,低功耗集成运算放大器LM324,单电源电压工作范围为5~30 V。当电源电压为15 V时,功耗约为220 mW;当电源电压为10 V时,功耗约为90 mW;当电源电压为5 V时,功耗约为15 mW。可见,低电压供电对降低器件功耗的作用十分明显。因此,处理小信号的电路可以降低供电电压。

2.4 分区/分时供电技术

一个嵌入式系统的所有组成部分并非时刻在工作,基于此,可采用分时/分区的供电技术。原理是利用“开关”控制电源供电单元,在某一部分电路处于休眠状态时,关闭其供电电源,仅保留工作部分的电源。

2.5 I/O引脚供电

嵌入式处理器的输出引脚在输出高电平时,可以提供约20 mA的电流,该引脚可以直接作为某些电路的供电电源使用,如图2所示。处理器的引脚输出高电平时,外部器件工作;输出低电平时,外部器件停止工作。需要注意,该电路需满足下列要求:外部器件的功耗较低,低于处理器I/O引脚的高电平输出电流;外部器件的供电电压范围较宽。

2.6 电源管理单元设计

处理器全速工作时,功耗最大;待机状态时,功耗比较小。常见的待机方式有两种:空闲方式(Idle)和掉电方式(Shut Down)。其中,Idle方式可以通过中断的发生退出,中断可以由外部事件供给。掉电方式指的是处理器停止,连中断也不响应,因此需要进入复位才能退出掉电方式。

为了降低系统的功耗,一旦CPU处于“空转”,可以使之进入Idle状态,降低功耗;期间如果发生了外部事件,可以通过事件产生中断信号,使CPU进入运行状态。对于Shut Down状态,只能用复位信号唤醒CPU。

2.7 智能电源设计

既要保证系统具有良好的性能,又能兼顾功耗问题,一个最好的办法是采用智能电源。在系统中增加适当的智能预测、检测,根据需要对系统采取不同的供电方式,以求系统的功耗最低。许多膝上型电脑的电源管理采用智能电源,以笔记本电脑为例,在电源管理方面,Intel公司采取Speed Step技术;AMD公司采取Power Now技术;Transmeta公司采取Long Run技术。虽然这三种技术涉及到的具体内容不同,但基本原理是一致的。以采用Speed Step技术的笔记本电脑为例,系统可以根据不同的使用环境对CPU的运行速度进行合理调整。如果系统使用外接电源,CPU将按照正常的主频率及电压运行;当检测到系统为电池供电时,软件将自动切换CPU的主频率及电压至较低状态运行。

2.8 降低处理器的时钟频率

处理器的功耗与时钟频率密切相关。以SAMSUNG S3C2410X (32 b ARM 920T内核)为例[8],它提供了四种工作模式:正常模式、空闲模式、休眠模式、关机模式,各种模式的功耗如表1所示。[HJ1][HJ]

由表1可见,CPU在全速运行的时候比在空闲或者休眠的时候消耗的功率大得多。省电的原则就是让正常运行模式远比空闲、休眠模式少占用时间。在类似PDA的设备中,系统在全速运行的时候远比空闲的时候少,所以可以通过设置,使CPU尽可能工作在空闲状态,然后通过相应的中断唤醒 CPU,恢复到正常工作模式,处理响应的事件,然后再进入空闲模式。因此设计系统时,如果处理能力许可,可尽量降低处理器的时钟频率。

另外,可以动态改变处理器的时钟,以降低系统的总功耗。CPU空闲时,降低时钟频率;处于工作状态时,提高时钟频率以全速运行处理事务,实现这一技术的方法。通过将I/O引脚设定为输出高电平,加入电阻R1,将增加时钟频率;将I/O引脚输出低电平,去掉电阻R1,可降低时钟频率,以降低功耗。

2.9 降低持续工作电流

在一些系统中,尽量使系统在状态转换时消耗电流,在维持工作时期不消耗电流。例如,IC卡水表、煤气表、静态电能表等,在打开和关闭开关时给相应的机构上电,开关开和关状态通过机械机构或磁场机制保持开关的状态,而不通过电流保持,可以进一步降低电能的消耗。[JP]

3 软件低功耗设计

3.1 编译低功耗优化技术

编译技术降低系统功耗是基于这样的事实:对于实现同样的功能,不同的软件算法,消耗的时间不同,使用的指令不同,因而消耗的功率也不同。对于使用高级语言,由于是面向问题设计的,很难控制低功耗。但是,如果利用汇编语言开发系统(如对于小型的嵌入式系统开发),可以有意识地选择消耗时间短的指令和设计消耗功率小的算法来降低系统的功耗。

3.2 硬件软件化与软件硬件化

通常的硬件电路一定消耗功率,基于此,可以减少系统的硬件电路,把数据处理功能用软件实现,如许多仪表中用到的对数放大电路、抗干扰电路,测量系统中用软件滤波代替硬件滤波器等。

需要考虑,软件处理需要时间,处理器也需要消耗功率,特别是在处理大量数据的时候,需要高性能的处理器,这可能会消耗大量的功率。因此,系统中某一功能用软件实现,还是用硬件实现,需要综合计算后进行设计。3.3 采用快速算法

数字信号处理中的运算,采用如FFT和快速卷积等,可以大量节省运算时间,从而减少功耗;在精度允许的情况下,使用简单函数代替复杂函数作近似,也是减少功耗的一种方法。

3.4 软件设计采用中断驱动技术

整个系统软件设计成处理多个事件,在系统上电初始化时,主程序只进行系统的初始化,包括寄存器、外部设备等,初始化完成后,进入低功耗状态,然后CPU控制的设备都接到中断输入端上。当外设发生了一个事件,产生中断信号,使CPU退出节电状态,进入事件处理,事件处理完成后,继续进入节电状态。

第7篇:集成电路工艺与设计范文

[关键词]集成电路布图设计,法律保护,知识产权

一、引言:保护的意义

集成电路,按照《简明大不列颠百科全书》的解释,是指利用不同的加工工艺,在一块连续不断的衬底材料上同时做出大量的晶体管、电阻和二极管等电路元件,并将它们进行互联。[1]1958年,世界上第一块集成电路诞生,引发出一场新的工业革命。集成电路的发明和发展,导致了现代电子信息技术的兴起。在当代世界新科技革命发展进程中,以集成电路为基础、以计算机和通讯技术为主体的电子信息是最活跃的先导技术,同时又是一种崭新的具有巨大潜力的生产力。而从生产的规模和市场的效应来看,2000年世界上集成电路的销售额约为2000亿美元,目前世界集成电路的人均消费量大约为20-30块。[2]中国的集成电路产业起步于60年代,虽然在发展速度上滞后于发达国家,但也已经初具规模并在不断壮大之中。有人认为,“集成电路工业不仅是现代国际技术经济竞争的制高点,而且是影响各国未来‘球籍’的基本因素。如果把石油比作近现代工业的血液的话,那么完全可以把小小的芯片(集成电路)比作先导和超现代工业和生活的某种‘母体’,它是一个国家高附加值收益的富源,也是其综合国力的基石。”[3]因此,从国家的产业政策导向来看,我们需要为集成电路工业的发展提供制度上的激励,而最根本的促进措施就是在集成电路的最初开发完成(形成布图设计)的时候赋予开发者一定的权利,使相关保护可以延及于其后的生产过程。

而从动态的市场交易层面来考察,我们也可以发现对集成电路布图设计进行保护的意义。依照科斯定理,技术发展与创新的背后是巨大而复杂的创造性劳动投入与资本投入,这需要仰仗市场来收回成本与获取收益,而一个重要的前提是解决市场交易双方的产权问题。[4]这一点不仅对含有集成电路的最终产品是重要的,对作为中间产品的集成电路布图设计同样重要。因为在社会化大生产的条件下,专业的分工越来越细致,交易不只是在产品最终完成之后才发生,而是与生产的过程相交织。例如一个手机的生产厂商可能只进行各个部件的组装,而核心的芯片以及其他的外壳等可能都是由别的开发商完成的。因此在这里明确集成电路布图设计的知识产权就是非常重要的,实际上这也是任何涉及基础性技术的生产领域必然要首先解决的问题。

对集成电路布图设计进行保护的另一个基本考虑是维护投资者的利益。这也是当代知识产权立法的一个渐变的趋势,在数据库保护和药品专利授予等方面也有所体现。集成电路布图设计的创造是一个以大量资金为依托、以相当的智力投入为主导、以丰富的相关技术来支撑,并仍然有失败风险的研发过程。[5]而新产品一旦上市,不法厂商利用先进的设备和技术,对该芯片进行解剖、显微拍照、逐层腐蚀和分析,或者利用激光技术逐层扫描、拍照,将芯片的布图设计复制出来,很快就能仿制出该芯片并大量生产,并以较低的价格占领原开发者的市场。[6]在这种情况下,知识产权法应当为付出大量投资和智力劳动并最早生产出有益的集成电路产品的主体提供恰当的保护。

对集成电路布图设计进行法律保护的意义还在于通过国际贸易学习和研究国外先进的集成电路技术,减少我国产业发展的成本。如何在落后的高新技术领域实现突破,真正利用好后发优势,是每一个发展中国家都必须审慎考虑的问题。笔者个人以为,在集成电路技术领域我们可以采用“欲擒故纵”的策略。首先明确我们保护集成电路布图设计知识产权的立场,然后利用“反向工程”进行我们自己的创新。当然,这种创新的实行以及其后对创新产品的布图设计保护还需要我们的企业加强法律意识投资,与外国厂商合作时签订明确的合同,避免不必要的利益纠纷。在这方面,国家专用集成电路系统工程研究中心的实践已经提供了较好的可资借鉴的经验。[7

第8篇:集成电路工艺与设计范文

过去几年中全球IC产业一直处于优质发展态势,不仅产业发展稳定,而且增长迅速,随着制造业大规模向中国大陆地区转移,中国也顺利成章地成为IC产业的消费制造集中地。分析机构指出,2010年,整个远东地区(不含日本)IC市场规模将占全球60%,市场规模达到2794亿美元,中国将占其中的50%以上;到2012年,整个远东地区的IC市场规模将达到3342亿美元,占全球市场份额2/3。实际上,2007年中国IC市场发展远远超出预期的650亿美元,据工信部统计,2007年,中国集成电路进口额达到1284亿美元,其中约70%以上用于出口产品加工,已经占据全球市场的34%。而同期石油进口为862亿美元,农产品411亿美元,铁矿砂为308亿美元,集成电路的进口额分别是石油的1.5倍、农产品3.1倍、铁矿砂的4.2倍。我国已经成为全球最大的IC贸易国。使用这些IC制造的各式电子产品2007年实现销售额约8000亿美元,以销售额排名、前4位分别是手机、网络交换设备、平板电视、笔记本电脑。其中3件属于消费电子产品,可见消费电子仍是IC产业的主要推动力。

回顾过去20年半导体IC产业的发展,产业链从最初的垂直整合到现在的水平整合轨迹清晰。一方面,随着竞争的加剧,产品利润下降,IC产业开始大规模重组整合,2006年-2007年,合并、收购、重组的新闻不绝于耳。飞利浦半导体被私募基金105亿美元收购就是很鲜明的例子;另一方面,制造工艺不断演进,从90nm、65nm、45nm到未来的32nm、22nm,使得一些原本拥有雄厚实力的芯片设计公司放弃了IC制造封测的环节,比如TI在前不久就宣布32nm之后将不再涉足IC制造,到了32nm、22nm阶段,垂直整合型的IC制造公司可能只会剩下Intel一家。现在,中国已经成为全球最大的集成电路的市场,份额进一步的扩大,虽然在IC设计领域我国还十分薄弱,但是IC产业无疑是我国对外贸易的支柱产业之一。中国是全球集成电路产业转移的目的地,全球范围来看,芯片制造将向少数大厂集中,Fabless而将成为主要的商业模式。

集成电路技术发展驱动力的变迁

20世纪60年代,戈登・摩尔提出了著名的“摩尔定律”。直到现在,这一定律都在见证半导体产业的飞速发展。由于晶体管特征尺寸的减小,可以带来集成电路密度和性能上的提高,以及分摊在单元功能上成本的下降。因此,自集成电路诞生之日起,半导体产业的竞争就始终聚焦在加工尺寸的微细化上。自从上世纪80年代,CMOS(互补金属氧化物半导体)工艺成为主流工艺技术之后,CMOS一直捍卫着摩尔定律。然而,芯片的进一步小型化遇到越来越多的技术局限。在传统硅芯片技术上所能取得的进步受到物理法则的限制也越来越严重,随着集成电路的主流加工工艺进入纳米级(

CMOS工艺遵循等比例缩小的原则,其特征尺寸已从20世纪50年代初期的约125μm进化到现在的90nm技术代,在集成电路工业大生产中获得了巨大成功。然而,当器件特征尺寸缩小到65nm技术以后,继续缩小加工尺寸将遇到一系列器件物理的限制和互连问题的严重影响:从器件角度看,纳米尺度CMOS器件中的短沟效应、强场效应、量子效应、寄生参量的影响、工艺参数涨落等问题对器件泄漏电流、亚阈值斜率、开态/关态电流等性能的影响越来越突出,电路速度和功耗的矛盾也将更加严重。随着集成度和工作频率增加,功率密度增大,导致芯片过热,可引起电路失效。另一方面,进入纳米尺度后,互连电阻及互连电容不仅对电路速度的影响更为明显,而且会对信号完整性产生影响,逐渐成为影响电路最终性能的重要因素。

将CMOS技术推到现在的极限上,现在的技术或者工艺和材料都要发生巨大的变化,需要很多的努力,目前科学家们正在努力,前景不可预知。然而,就IC产业来讲,CMOS工艺技术的不断改进接近极限能够继续维持对收益的贡献吗?我们来看表4、5

从晶圆的价格表中,我们可以很清楚地看到,当IC制造工艺从130nm转为90nm的时候,成本成本可以降低33%,到65nm成本可以下降25%,但是再往后,工艺的进步对成本的贡献就大幅下降,到22nm功率时,成本仅仅比32nm下降了3.3%,几乎没什么贡献!此外,从晶体管的密度来看,130nm~22nm,每平方毫米晶体管的平均数量,从94K增加到1566K,这是一个很惊人的密度,但与此同时晶体管的利用率却在下降,从86%下降到了51%。那么问题出来了,CMOS工艺技术进步使成本下降幅度有限,同时晶体管的利用率在下降,那么等比例缩小的经济价值体现在什么地方呢?与此同时,IC设计业者也明显发现,伴随着IC制造工艺的进步,在IC设计制造过程中,制造、封测的成本在缓慢下降,但是研发成本在不断上升,从130nm~22nm,IC设计成翻了一倍。这将使得设计工具和设计人员变得越来越重要,系统设计人员的理念也将因此而发生巨大转变。

由此可见,在未来的十几年中,技术储备将能够保证摩尔定律继续前进,但是工艺进步、功耗的降低对IC产品成本的贡献将变得越来越有限,虽然新工艺、更窄的线宽是惹眼的卖点,但不要对新工艺的附加价值报太大期望。研发成本将占到销售额的30%,这使得创新的架、具有创新精神的IC设计人员与和创新的IC设计工具变得尤为重要。

低功耗设计需要EDA工具的全力配合

1984年出现第一个商用的设计IC的EDA工具

1986年出现第一个真正意义上商用EDA工具供应商Tangent

1988年Cadence公司成立,不久以后收购Tangent

20世纪80年代末期到90年代初,工艺慢慢过度到0.75μm,Cadence开始迅速增长,同时Biopolar工艺开始接近极限,CMOS工艺展露崭露头角,在0.35μm工艺时期,Cadence在EDA设计工具领域占有绝对优势

20世纪90年代中期,随着PC的迅速发展,CMOS工艺开始朝向0.35μm发展

Arcsys(就是后来的Avant)、Synopsys公司相继出现,开始在0.35μm~0.25μm工艺领域发力

Cadence和Avant公司开始了长期的专利诉讼(最终胜诉),但在0.25μm工艺阶段,Cadence市场份额大幅下滑

世纪交替之初,工艺过度到0.18μm,Magma公司出现,很大程度上是因为该公司在Timing-Driven Layout技术方面占据领先。

早期的IC设计EDA工具基本围绕着Palace & Route发展,随着工艺的进步,Timing & Verification、RET/DFM都在影响着今天的IC设计。消费电子产品成为IC设计的新驱动力已经获得广泛共识,这使得功耗问题和产品上市时间成为困扰设计人员的最主要问题,实际上,今天面临的问题与上世纪80、90年代交替时遇到的问题相似,功率密度不能有效控制导致工艺停滞不前,迫使业界从Biopolar技术向CMOS工艺转移。而今天面对同样的工艺问题,在目前还没有一个可替代的技术的情况下,EDA设计工具将扮演非常重要的角色,现在的EDA工具很大程度上仍然围绕在Palace & Route这一问题附近,如果要进一步降低IC的功耗,就需要在更高的设计链层面进行综合考虑,从这点上说EDA工具需要有长足的进步。尽管针对低功耗和快速上世需求的EDA工具、解决方案不断推出,但是核心问题――低功耗设计在EDA层面仍然有许多工作要做。

尽管从全球范围来看半导体工艺和技术的演进脚步有暂时放缓的迹象、次贷危机延长了产业调整的周期,但是换一个角度来考虑,这不正是我国IC设计业者的一次机会吗?一方面巨大的需求和产业的转移使得本土IC设计业者能够更加贴近客户,另一方面,EDA设计工具的缓慢发展和芯片设计成本的上升,给了设计人员展示自己的更大舞台。本土设计人员可以藉此机会消化、吸收先进的设计思想,掌握先进的设计工具,拉近与其他竞争对手的差距,提高我国的IC设计水平。早日把我国从IC消费大国变成IC设计、消费大国。

新闻

捷码科技推出自动平面布局综合产品Hydra

第9篇:集成电路工艺与设计范文

中图分类号:TN432 文献标识码:A 文章编号:1009-914X(2015)44-0267-02

一、引言

随着砷化镓集成电路工艺的技术革新,尤其是新型的E/D PHEMT工艺平台的出现和成熟,使得多种器件可以在同一个标准工艺平台上被加工出来,0.5um线条的E/D PHEMT砷化镓材料技术及工艺可将增强型和耗尽型器件集成在同一个晶圆上,可将多种不同功能的电路集成到在一颗芯片上,这也是目前射频前端简化设计的主流趋势。

二、电路设计

该芯片应用于满足802.11 b/g/n标准的无线局域网,用于无线射频信号的收发[1],该芯片内部电路主要包含SP3T开关、2.4~2.5GHz低噪声放大器、SPST旁路开关和用于驱动低噪放和开关的逻辑转换电路。

2.1 射频开关设计

在本电路中,射频开关部分的主要作用是切换射频支路并隔离各个通道干扰,本芯片中的开关电路主要有两部分,一部分是切换RX、TX、BT到天线ANT支路的SP3T开关,另外一部分是用于旁路LNA的SPST开关。由于本电路的核心指标为接收通道的噪声系数和发射通道的功率容量,因此插损和功率处理能力指标是开关电路中FET管尺寸优化选择的主要依据。

在确定选择双栅结构的器件基础上,再根据插损指标和饱和电流优化器件尺寸,0.5um栅长的D-FET饱和电流约为230mA/mm,按照电流有效值和特性阻抗乘积约等于有效功率的计算方法,1mm以上的器件可以满足28dBm左右的功率处理能力要求,然后根据foundry提供的砷化镓双栅结构场效应管两端口等效开关模型来仿真插损指标。

2.2 低噪声放大器设计

用于接收支路最前级的低噪声放大器是影响接收信号灵敏度的最关键元器件,本设计中,接收支路的低噪声放大器的设计决定了整个电路的噪声系数和增益,为了使用方便,低噪放的前后级匹配电路全部在片上实现,且本工艺平台中E-mode PHEMT器件具有正向开启电压的特点,有利于单电源工作,因此选用E-mode器件作为低噪放的核心有源器件。

由于设计要求所有匹配电路都集成在片上,因此整个芯片的布局较为紧凑。如果选用片上平面螺旋电感,在该频段,电感所占面积较大,损耗较大,影响噪声系数性能,因此,最终选用体电阻作为栅极偏置电路元件,并根据晶体管尺寸大小和电路进一步优化选择合适的阻值,以同时达到扼流和选择工作点的作用,经过ADS仿真,电阻值选择4.5K欧姆左右,栅极工作点在+0.4V,工作电流约为15mA。

此外,在低噪声有源偏置电路设计中考虑了一个温度补偿作用,如下图1所示,Q1和Q2组合成标准的电流镜电路,R1电阻分压起负反馈作用,为低噪声放大器提供稳定的Vgs。由于有源偏置电路的晶体管和低噪声放大器的晶体管有相同的加工工艺与过程,因此具有相类似的温度特性,这就使得温度变化时电流镜电路 Vbias和 Vgs 能够互相制约[2]。

2.3 逻辑电路设计

驱动电路部分采用的是经典的DCFL式逻辑电路,这种电路其中具有构成器件少、级间可直接耦合、单一电源工作以及功耗低等优点[3],可降低砷化镓逻辑电路规模。

倒相器的上升时间和下降时间由负载管和驱动管的电流能力来决定,也即是由两个管子的宽长比来决定,这样,通过计算不同宽长比时的上升下降时间,就可以得到满足设计要求所需的器件尺寸。本电路中实际设计的逻辑电路包含倒相电路和一个三输入与门的功能,如下图2所示。

在驱动电路设计中,选择适当的电阻和倒相电路有源器件尺寸的比例关系,可以优化控制电平的高低门限。本设计中,在保证承受发射功率所需工作电压的前提下,电路可满足0/2.8V-3.3V驱动信号标准。

三、封装及测试结果

针对该芯片的主要用途在于WIFI无线传输系统中的收发终端设备中,设计人员开发了适用于该芯片管脚功能的QFN1.5mmX1.5mm-12L的小尺寸塑封形式,根据管脚定义,合理的分配了Leadframe支架结构,在使得芯片内部良好接地的同时,又保证了芯片封装尺寸的余量,同时开发了弹簧接触式测试夹具,可做到进行无损伤外观测试。

小信号主要性能如下表1所示:

四、结论

采用0.5um线条的砷化镓PHEMT E/D-mode工艺设计的2.4GHz WIFI用接收前端集成电路,具有增益高、噪声低、发射损耗小、功耗低等优点。在2.2-2.6GHz工作频率范围内,增益大于12.5dB,噪声系数小于2dB,输入输出电压驻波比小于2:1,发射通道和蓝牙通道插损小于0.7dB,发射通道和蓝牙通道功率容量大于+28dBm,并集成驱动器和匹配电路,使用方便,适用于满足802.11 b/g/n协议下的2.4GHz WIFI无线传输系统。

参考文献

[1] RTC6627,Highly integrated,Receive Path Front End Module, Data Sheet,RichWave.