公务员期刊网 精选范文 集成电路的用途范文

集成电路的用途精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的集成电路的用途主题范文,仅供参考,欢迎阅读并收藏。

集成电路的用途

第1篇:集成电路的用途范文

【关键词】聚羧酸减水剂;耐久性;混凝土外观

中图分类号:TU37文献标识码:A 文章编号:

1 工程简介

乌鲁木齐市特变电工水木尚城小区二期工程,该工程2540.46㎡。工程采用100年设计基准期,混凝土设计采用以高性能混凝土技术为核心的综合耐久性技术方案,通过使用聚羧酸外加剂改善混凝土性能,在粉煤灰与矿粉的双惨技术及配合比的设计上使用低水灰比提高混凝土抗侵蚀破坏能力,从而提高混凝土耐久性。通过研究混凝土结构的耐久性,选择优质的材料,加强生产过程控制,过程使用的混凝土均满足了设计要求。

2 混凝土技术要求

强度等级C30;

混凝土抗碳化能力,以理论计算达到100年;

混凝土60天干缩率不大于0.015%;

混凝土电通量≤2000C;

a.采用粉煤灰与矿粉双掺技术,使用聚羧酸外加剂;

b.为保证混凝土外观总的胶凝材料用量应控制在360~400kg/m3;

c.用水量应控制在150 kg/m3左右,水灰比≤0.45;

d.现场塌落度应控制在180±30㎜。

3 试验用原材料指标及混凝土设计试验方法

试验用原材料:

水泥:复合P.C32.5R(产地天山水泥),其物理化学性能:三氧化硫3.0%,氯离子含量0.02%,碱含量0.77%,初凝时间153min,终凝时间227min,抗折强度3天4.1MPa,28天8.0 MPa,抗压强度3天19.9 MPa,28天39.8 MPa。

粉煤灰:石化电厂F类Ⅱ粉煤灰,化学成分及物理性能:游离氧化钙0.3%,细度8.1%,需水量比103%,烧矢量1.7%,三氧化硫0.8%,氧化钙7.14%,含水率0.1%,氯离子0.01%。

矿粉:宝新盛源(产地新疆乌鲁木齐)S75,比表面积:416㎡/kg,流动度比99%,氯离子0.01%,碱含量1.4%,活性7

天59%,28天95%。

砂:产地米泉砂场,细度模数2.8;表观密度2640kg/m3;堆积密度1680 kg/m3;含泥量1.1%。

卵石:产地米泉砂场,粒颈20-40mm,表观密度2680 kg/m3;堆积密度1560 kg/m3;含泥量0.1%,压碎值指标4%,针、片状5%。

外加剂:产地新疆精细化工有限责任公司;外加剂性能指标:游离子氧化钙0.02%,总碱量0.96%,碱水率27%,泌水率比0%,含气量2.1%,抗压强度7天159 %,28天143 %,收缩率64%。

4 混凝土设计及试验方法

预拌混凝土性能应参照GB/T50080-2002《混凝土拌合物性能试验方法标准》及GB/T50081-2002《普通混凝土力学性能试验方法标准》,混凝土耐久性采用电通量ASTM1202,氯离子扩散系数评价依据NTBUILD443。

试验配合比及性能检测见表1、表2。

表1 试验配合比

表2 混凝土性能检测

检验结果表明试验编号2,3作为实际生产的理论配合比比较合适。

5 生产控制

严格按GB14902要求进行以下质量管理:

塌落度的控制:生产的塌落度由试验员进行监控,每日进行砂石含水率监测。检验结果及时反馈给塌落度监控员进行调整,每次发混凝土第一车取样进行开盘鉴定,每成型一组试体并检测其塌落度,雨天加大对砂石材料含水检测频率及混凝土塌落度监测频率。

强度质量管理:混凝土强度统计评定时预拌混凝土品质最重要的指标,由于影响混凝土强度的因素复杂,因此强度大小混凝土质量是否控制良好的综合评定指标。以试样的试体强度检测结果每半个月定期进行统计分析,判断强度的稳定性,及时找出强度波动的原因,指导混凝土生产。为及时准确判断混凝土质量是否出现异常、合格与否,通过7天强度推断28天强度的方法加强控制。

含气量的管理:试验频率为每个工作班不少于2次,混凝土含气量的稳定性,确保混凝土外观符合要求。

混凝土温度管理:白天每2小时到现场测一次温度,晚上3小时测一次,发现混凝土入模温度有可能超标。及时采定的应急降温措施,防止产生裂缝。

其他方面:因使用聚羧酸外加剂,生产线及运输车辆应进行不同品种外加剂转换使用时,车辆及拌楼必须清洗。现场的混凝土应色泽均匀,和易性良好,不能有泌水,运输过程中不得加水。

6 实际生产情况

实际生产的混凝土28天强度均在40—42MPa之间,强度判定,满足了设计要求,混凝土抗渗性能、电通量、60天混凝土缩率、氯离子渗透系数均满足设计要求。

7 结论

(1)通过试验采用多元素胶凝材料与聚羧酸减水剂的合理匹配,使混凝土性能大幅度提高,即满足了设计及施工强度要求,又提高混凝土耐久性。

(2)矿物外加剂的双掺量使混凝土抗氯离子渗透性得以提高。同时水灰比情况下加入矿粉的混凝土其28天电通量比单惨入粉煤灰小。

第2篇:集成电路的用途范文

如今,全球正迎来电子信息时代,这一时代的重要特征是以电脑为核心,以各类集成电路,特别是大规模、超大规模集成电路的飞速发展为物质基础,并由此推动、变革着整个人类社会,极大地改变着人们的生活和工作方式,成为体现一个国家国力强弱的重要标志之一。因为无论是电子计算机、现代信息产业、汽车电子及消费类电子产业,还是要求更高的航空、航天及军工产业等领域,都越来越要求电子产品具有高性能、多功能、高可靠、小型化、薄型化、轻型化、便携化以及将大众化普及所要求的低成本等特点。满足这些要求的正式各类集成电路,特别是大规模、超大规模集成电路芯片。要将这些不同引脚数的集成电路芯片,特别是引脚数高达数百乃至数千个I/O的集成电路芯片封装成各种用途的电子产品,并使其发挥应有的功能,就要采用各种不同的封装形式,如DIP、SOP、QFP、BGA、CSP、MCM等。可以看出,微电子封装技术一直在不断地发展着。

现在,集成电路产业中的微电子封装测试已与集成电路设计和集成电路制造一起成为密不可分又相对独立的三大产业。而往往设计制造出的同一块集成电路芯片却采用各种不同的封装形式和结构。今后的微电子封装又将如何发展呢?根据集成电路的发展及电子整机和系统所要求的高性能、多功能、高频、高速化、小型化、薄型化、轻型化、便携化及低成本等,必然要求微电子封装提出如下要求:

(1)具有的I/O数更多;(2)具有更好的电性能和热性能;(3)更小、更轻、更薄,封装密度更高;(4)更便于安装、使用、返修;(5)可靠性更高;(6)性能价格比更高;

2未来微电子技术发展趋势

具体来说,在已有先进封装如QFP、BGA、CSP和MCM等基础上,微电子封装将会出现如下几种趋势:

DCA(芯片直接安装技术)将成为未来微电子封装的主流形式

DCA是基板上芯片直接安装技术,其互联方法有WB、TAB和FCB技术三种,DCA与互联方法结合,就构成板上芯片技术(COB)。

当前,在DCA技术中,WB仍是主流,但其比重正逐渐下降,而FCB技术正迅速上升。因为它具有以下优越性:

(1)DCA特别是FC(倒装芯片)是“封装”家族中最小的封装,实际上是近于无封装的芯片。

(2)统的WB只能利用芯片周围的焊区,随着I/O数的增加,WB引脚节距必然缩小,从而给工艺实施带来困难,不但影响产量,也影响WB质量及电性能。因此,高I/O数的器件不得不采用面阵凸点排列的FC。

(3)通常的封装(如SOP、QFP)从芯片、WB、引线框架到基板,共有三个界面和一个互联层。而FC只有芯片一个基板一个界面和一个互联层,从而引起失效的焊点大为减少,所以FCB的组件可靠性更高。

(4)FC的“引脚”实际上就是凸点的高度,要比WB短得多,因此FC的电感非常低,尤其适合在射频移动电话,特别是频率高达2GHz以上的无线通信产品中应用。

(5)由于FC可直接在圆片上加工完成“封装”,并直接FCB到基板上,这就省去了粘片材料、焊丝、引线框架及包封材料,从而降低成本,所以FC最终将是成本最低的封装。

(6)FC及FCB后可以在芯片背面直接加装散热片,因此可以提高芯片的散热性能,从而FC很适合功率IC芯片应用。

通过以上对DCA及FCB优越性的分析,可以看出DCA特别是FCB技术将成为未来微电子封装的主流形式应是顺理成章的事。

2.2三维(3D)封装技术将成为实现电子整机系统功能的有效途径

三维封装技术是国际上近几年正在发展着的电子封装技术,它又称为立体微电子封装技术。3D已成为实现电子整机系统功能的有效途径。

各类SMD的日益微型化,引线的细线宽和窄间距化,实质上是为实现xy平面(2D)上微电子组装的高密度化;而3D则是在2D的基础上,进一步向z方向,即向空间发展的微电子组装高密度化。实现3D,不但使电子产品的组装密度更高,也使其功能更多,传输速度更高、相对功耗更低、性能更好,而可靠性也更高等。

与常规的微电子封装技术相比,3D可使电子产品的尺寸和重量缩小十倍。实现3D,可以大大提高IC芯片安装在基板上的Si效率(即芯片面积与所占基板面积之比)。对于2D多芯片组件情况,Si效率在20%—90%之间,而3D的多芯片组件的Si效率可达100%以上。由于3D的体密度很高,上、下各层间往往采取垂直互联,故总的引线长度要比2D大为缩短,因而使信号的传输延迟线也大为减小。况且,由于总的引线长度的缩短,与此相关的寄生电容和寄生电感也大为减小,能量损耗也相应减少,这都有利于信号的高速传输,并改善其高频性能。此外,实现3D,还有利于降低噪声,改善电子系统性能。还由于3D紧密坚固的连接,有利于可靠性的提高。

3D也有热密度较大、设计及工艺实施较复杂的不利因素,但随着3D技术日益成熟,这些不利因素是可以克服的。

总之,微电子封装技术的发展方向就是小型化、高密度、多功能和低成本。

参考文献

[1]微电子封装技术[M].中国电子学会生产技术学分会丛书编委会.中国科学技术大学出版社.

[2]金玉丰.微系统封装技术概论[M]科学出版社.2006第1版.

第3篇:集成电路的用途范文

由于电子级硅片的质量要远高于太阳能级硅片,因此一些制作太阳能电池的企业就利用电子级硅片的报废片,经过一系列加工,使之变成太阳能级硅片的原料。电子级硅片从原料的生产到最后制作成集成电路,有多达二三百个步骤,制作太阳能电池的企业进口的电子级报废片可谓种类繁多,五花八门。

只有了解了各种不同类型的硅废料以及它们的加工处理过程,才能更好地对其进行归类。

定义及废硅料的分类

要想对硅废料进行归类,首先要知道单晶硅片的制作过程。如图1至图6所示。

图l:硅砂

图2:多晶硅

图3:拉单晶硅棒

图4:已抛光的单晶硅片

图5:印刷好的芯片

图6:切割下来的芯片

其次,要了解什么样的硅属于硅废料。特别要指出的是本文中所称的“废硅料”是指制作电子级硅片在加工过程中产生的报废品,而非太阳能级的硅废料。即生产电子级硅片(空白硅片、硅片或原料晶圆)的厂家及生产半导体芯片(成品晶圆)的厂家的报废料。根据硅材料与硅芯片生产厂家的不同可分为两类:

原生型废硅料

原生型废硅料是指由多晶硅从拉制单晶硅棒到制作成电子级裸片或空白片过程中所产生的报废料,即多晶硅通过拉晶、切片、研磨、抛光等物理方法制成初成品过程中所产生的报废料。按形状不同,大致可分为以下几种:

碳头料:碳在多晶硅提纯过程中起引晶作用,也就是硅包围在碳的周围结晶生成多晶硅,因此多晶硅靠近碳的地方黏附碳头,形状为不规则块状。如图7所示。

锅底料:指在拉成单晶硅棒后,残留在石英坩锅底上的硅料。由于锅底的多晶硅料还未完全拉成单晶硅,所以锅底料应为多晶硅。而且由于锅底的多晶硅料在拉晶时多晶硅熔融在石英坩锅上,因此灰色的硅料上会有白色的石英坩锅残余附着在上面。

头尾料:在拉单晶硅棒时拉制无位错单晶的工艺需要会产生头尾尖尖的部分(形状类似于削好的铅笔),加工成硅片前必须将此头尾部分切除,这切除下来的部分即为头尾料。由于头尾料已是单晶硅棒的一部分,因此头尾料一般为单晶硅。但尾料是锅底料的上面部分,与其粘连,所以有时尾料可能会存在一定的多晶硅。如图8所示。

切割型碎片:即在将单晶硅棒切割成硅片过程中所产生的碎片。如图9所示。

研磨型废片:即在圆片研磨过程中由于表面划坏等原因产生的废片。一般为圆形,而非碎料,表面呈深灰色,没有光泽。

抛光型废片:圆片在抛光过程中由于表面出现崩口等原因而产生的废片。一般亦为圆形,表面如镜子般光亮,但颜色比一般的镜子略黑。由于抛光产生的表面崩口只有在显微镜下才看得出,因此用肉眼很难辨别废片与正品片的差别。

成品型废硅片

成品型废硅片是指在空白硅片的基础上通过扩散、外延、氧化、涂层、光刻等化学方法制成半导体芯片过程中产生的报废品。根据外观颜色图案的不同,大致分为以下5种:

扩散型废片:将硅片放人石英管中加人硼、磷等扩散杂质加热至1000℃以上。使杂质原子均匀地向硅片内部扩散。

外延型废片:为了让硅片表面平整性特别是电阻率的均匀性能更好满足芯片制作的需求,让硅片在外延炉内用化学汽相沉积方法在硅片表面再生长上一层需要的薄层硅。外延片的衬底不同于一般的硅片,而是掺了较多量杂质的电阻率较低的所谓重掺片。

氧化型废片:将原料晶圆在氧气或水蒸汽中氧化,使晶圆表面形成一层二氧化硅。氧化片根据氧化层的厚薄不同会呈现不同颜色。

涂层型废片:在氧化层的基础上涂一层介质层。这些片子根据涂层的物质不同会呈现不同颜色(如涂氮呈金色、涂铝呈银白色等)。

电路型废片:已制有集成电路的废晶圆。如图10所示。太阳能行业对电子级废硅料的处理方法

由于电子级硅料纯度远高于太阳能级的硅料,闪此在太阳能电池使用的硅材料严重紧缺时,电子级硅废料就被广泛应用于太阳能电池的制作过程。当然,并不是所有的废硅料都能被太阳能行业利用,一些重掺片、扩散层及金属层过多等原因产生的废料就作为垃圾被处理掉。这就需要繁复的人工分拣,逐片检测,将值得利用的废料作为原料进行回收,根据废料形状不同分为以下两种处理方法:

废整片的处理方法

将完整的电子级废硅圆片经过表面处理、划片后直接作为太阳能级硅片来使用。由于电子级的硅片都是圆形(面积大能制作出更多芯片),而太阳能级的硅片是准方形的(节省电池空间),所以必须要划成一定尺寸后才能使用。这类硅材料还必须符合四个条件:①完整的圆片②属于原生型硅料③硅片的电阻率在0.5至3欧姆・厘米范围内④硅片厚度一般在280um以上。

废碎(块)料的处理方法

对符合回收条件的电子级废硅碎料或块料作为原料重新回炉后使用。回炉前必须经一系列处理,根据废硅料的两种类型有不同的处理方法。

1)原生型废硅料的处理:适当清洗、烘干即可。

2)成品型废硅片的处理:根据加工到不同工艺步骤的废料进行不同处理,通过一系列化学方法(与直接使用的成品型废硅整片的处理方法相同)恢复其原生型硅料的本来面貌,才能回炉作为太阳能级硅片的原料。

废硅料的归类

对电子级废硅料的处理需要用氢氟酸、浓磷酸、硝酸等会对环境造成严重污染的化学品才能完成,并且一些不符合处理要求的废料只能作为垃圾被处理掉。这就需要海关在该类商品进口时严格把关。而严格把关的前提及基础就是要对这些品种繁多的废硅料进行正确的税则归类。下面按照废硅料的不同分类,通过表格形式让大家有一个直观的了解。(如表所示)

根据海关总署归类问答书2006―99号及117号的意见精神,原生型废硅片由于已不是按原用途使用,因此不能归人品目3818项下,应根据其实际用途按照原料归人品目2804项下(未改变其商品属性)。而成品型废硅片由于已改变其商品属性,因此应归入税号38256900。

废硅料的辨别

通过上面的表格我们了解到不同种类的原生型废硅料有着不同的税率,成品型废硅料是禁止进口商品,而正品硅片是零税率商品。而某些类型的废硅片由于与正品外观相同,那么海关在实际操作过程中,有什么简单易行的辨别方法将其区分开呢?

从形状上将电子级与太阳能级硅片区分开

由于用途的不同,电子级硅片为圆形,而太阳能硅片为准方形(切去四个边角的正方形)。如图11所示。

从级别上将单晶硅与多晶硅区分开

电子级硅片由于工艺上的要求,必须是单晶硅片;而太阳能级硅片可以是单晶硅片,也可以是多晶硅片(外观呈不规则块状花纹)。如图12所示。

从不同包装方式上将正品与废品区分开

电子级硅片在制作成集成电路的过程中必须在无尘室中进行,因此半导体企业进口的正品片不能直接接触空气,全部是真空密封包装,一般为涂铝的塑料袋装,里面一片片隔开,这种包装的毛重要远远大于净重;而电子级废片是用在太阳能电池上,对包装要求不高,可以直接接触空气,进口时片子一片片叠加在一起,远看像一个大的圆柱形,所以毛净重相差不大。太阳能级的正品方片(品目3818)并非无尘包装,因此不能用此方法。

第4篇:集成电路的用途范文

关键词:化工企业;自动化仪表;检修维护

一、化工仪表及自动化的概念

化工自动化通常指的是通过使用自动化设备,代替人的劳动,从而提高劳动生产率的生产模式。它包括自动化生产多方面的内容,暨自动操作、自动控制、自动保护以及自动检测等多项内容。这种生产模式与传统的劳动密集型生产模式相比具备更多优势,例如提高生产率,降低生产成本等。此外,化工自动化生产还能提高安全生产系数,降低工人劳动强度。而自动化仪表的应用,则是化工自动化生产的一个重要组成部分。它本身自成体系,也属于整个自动化系统的一部分。自动化仪表完成了整个自动化生产流程中的测量、显示、记录、控制、报警等功能。其核心作用就是完成信息形式的转换,无论是数字量还是模拟量信号,都可以通过仪表实现信号的输入输出功能,其中信号用频率域和时间域表达均可。

二、 化工自动化仪表的分类

自动化仪表有多种分类方式。主要根据组成、用途、供能、参数、系统等加以区别。其中,依据不同组成形式的仪表可区分为单元组合式、集中分散式、电子综合控制组装式、基地式等。依据具体用途的不同可分为检测用仪表、传输转换仪表、显示仪表以及调节控制仪表和执行器。依据能源来源不同可以分为气动、电动和液动三类。而根据参数可分为压力仪表、温度仪表、液位仪表、流量仪表等。依据使用系统的不同,可以根据安全系统和生产系统对其加以区分。

三、化工自动化仪表的发展趋势

化工自动化仪表是一项非常实用的技术,在我国很早就已投入应用。这项技术首先应用于我国的冶金、能源、化工等领域及其他相关领域。早期工业上应用的热工表即为自动化仪表的初期形态,包括了液动和气动两种主要形式。但是由于早期技术的局限性,仪表体积相对较大,使用不够灵活且可实现功能较少,局限了其在工业领域的应用范围。在工业中只能作为检测记录和简单控制的工具。后期通过技术的完善,经历了具备压力信号和远程发送器的气动仪表等阶段,逐渐演变成了实现可调节功能的电子仪表,利用各种电子仪器对工业仪表进行控制。伴随着集成电路和半导体技术的发展,诞生了计算机信息技术,随之又诞生了自动化技术,两种技术相互促进,互为补充,加速了化工行业发展进程。

四、化工自动化控制仪表优势功能

化工自动化控制仪表主要特点是采用先进的微电脑芯片及技术,减小了体积,并提高了可靠性及抗干扰性能。

1、仪表有了可编程功能

计算机的软件进入仪表,可以代替大量的硬件逻辑电路,这叫硬件软化。特别是在控制电路中应用一些接口芯片的位控特性进行一个复杂功能的控制,其软件编程很简单(即可以用存储控制程序代替以往的顺序控制) 。而如果带之以硬件,就需要一大套控制和定时电路。所以软件移植入仪器仪表可以大大简化硬件的结构,代替常规的逻辑电路。

2、仪表有了记忆功能

以往的仪表采用组合逻辑电路和时序电路,只能在某一时刻记忆一些简单状态,当下一状态到来时,前一状态的信息就消失了。但微机引入仪表后,由于它的随机存储器可以记忆前一状态信息,只要通电,就可以一直保存记忆,并且可以同时记忆许多状态信息,然后进行重现或处理。

3、仪表有了计算功能

由于自动化化仪表内含微型计算机,因此可以进行许多复杂的计算,并且具有很高的精度。在自动化仪表中可经常进行诸如乘除一个常数、确定极大和极小值、被测量的给定极限检测等多方面的运算和比较。

4、仪表有了数据处理的功能

在测量中常常会遇到线性化处理、自检自校、测量值与工程值的转换以及抗干扰问题。由于有了微处理器和软件,这些都可以很方便的用软件来处理,一方面大大减轻了硬件的负担,又增加了丰富的处理功能。自动化仪表也完全可以进行检索、优化等工作。

五、化工企业自动化仪表的常见问题

1、化工企业自动化仪表制造质量问题

在化工企业自动化问题中,仪表自身问题是其中很重要的一类问题。这类问题的产生是由于在自动化仪表的生产制造过程中,厂家并不能够完全做到遵守科学严谨的工作态度,降低了自身对于产品质量的要求,从而使生产出的仪表等产品本身存在质量隐患和问题,导致化工企业生产过程中自动化仪表发生问题的概率大幅增加。

2、化工企业自动化仪表安装使用问题

在实际的化工企业自动化仪表安装过程中,也会伴随发生各种各样的问题。由于在化工企业自动化仪表安装中,有各种必须遵循的技术规范和行业规范。如果安装过程中不严格按照规范内容去执行,就会造成各种安装上的缺陷。而在企业生产过程中,某些企业为了片面的追求利润,减少时间成本,不去遵守相关的行业规范,不按照规定去安装自动化仪表。安装过程中出现的各类安装缺陷,会成为企业生产过程中巨大的安全隐患。

3、化工企业自动化仪表的具体操作问题

企业自动化仪表的操作工作是技术类工种。它本身对从业人员的技术水平要求较高,工作量要求较大。当操作人员在化工企业自动化仪表的操作过程中进行不恰当操作时,就会造成各类操作相关的问题。例如,因误操作造成仪表故障,延误了整个企业的生产流程,就会对企业的正常生产造成严重的损失,更会威胁到设备安全和操作员工的生命安全,对企业造成了巨大的安全隐患。

六、仪表故障判断的各项关键点

1 在检查仪表前需要确认被检查仪表是否有相对应图纸以及相关的技术资料。由于在故障排查的过程中,有可能需要进行拆卸以及更换部分零件,包括电路板以及芯片等。所以在进行这部分拆卸时,一定要做好标记,以保证被拆卸部分的仪表能够在维修完成后被准确安装回原位。

2 当技术人员对故障判断包括集成电路接触不良时,一定要采取恰当的措施。如果用镊子挤压,会造成使插座中弹簧片永久变形的不可修复情况。而且这种情况会进一步破坏集成电路,并造成其与插座间形成更多的接触不良。此时正确的处理方法应当是:使用棉签蘸无水乙醇进行擦拭,并等待一定时间,直到集成电路的管脚向内压少许时,才能再将其插入到插座中。

3在检测过程中,如果发现问题出现在某管脚电压电波或者脉冲信号上,一定要先对所连元器件的电路进行判断并进行分析,判别相应元器件是否有问题。排除阻值改变、电阻烧损、电容击穿、老化等问题后,才能判断确实是集成电路故障。

4在使用电烙铁是,一定要注意以下几点:当焊接仪表上的电路管脚时,要避免使用大瓦数的电烙铁,通常是小于45w的。为防止焊接过程中,结成电路发生损坏,焊铁外壳在焊接时必须接地,并且要控制相应的焊接时间,甚至可将烙铁的插头拔下来进行焊接,以避免更换的集成电路在焊接过程中由于过热以及静电感应等现象发生损坏。

5维修人员在维修过程中,必须做到心中有数。尤其是在遇到需要拆卸和更换元器件时,要吃透原理,了解元器件的结构、原理和用途。否则,盲目进行维修,可能会衍生其他问题或者故障扩大化。这是相关技术维修人员在维修过程中尤其要注意的,只有提高自身理论水平,才能防止此类问题的发生。

七、总结

二十一世纪,化工自动化程度越来越高,仪表的种类越来越多,更新换代的速度也越来越快。为减少自动化仪表在实际运行过程中故障发生率,仪表检修维护人员必须按照相关规定定期对仪表进行检修及校正工作,同时还要做好自动化仪表的日常维护工作,发现故障及时处理。以确保自动化仪表的准确性与化工生产的安全进行。

参考文献:

[1]厉玉鸣.化工仪表及自动化[M].3版.化学工业出版社,1999.

[2]孔祥波.化工生产控制自动化及仪表研究[M].甘肃科技,2009.

[3]田永奇.浅析化工设备的维护及检修[J].科技致富向导,2011(27)

第5篇:集成电路的用途范文

[关键词] 电路系统 可靠性 降额设计

[Abstract] With the rapid development of science and technology, the requirements of product reliability is Proposed higher and higher. The circuit system is the most important component of electrical products, its reliability design is important. For circuit system, the measures of reliability design are described, with simplified circuit design, component derating using, PCB board design , software design.

[Key words] Circuit system Reliability Design of Reducing Rating

0.引言

随着科学技术的迅速发展,对产品的可靠性提出越来越高的要求。所谓可靠性是指“产品在规定的条件下和给定的时间内,完成规定功能的能力”。[1]它不但直接反映系统各组成部件的质量,而且还影响到整个系统质量性能的优劣。电路系统是电器产品的最重要组成部分,容易受到热、湿度、振动、电磁波等干扰的影响,其自身的组成元件也存在老化、失效等问题,进而影响到产品的正常运行。因此,电路系统的可靠性设计尤为重要。如何来提高电路系统的可靠性,本文通过简化电路设计,元器件降额使用,PCB板设计的可靠性措施、软件可靠性措施等方面来阐述。

1.简化电路设计

在保证系统性能要求的前提下,尽可能使系统结构简单化,具体的措施有:

①尽量用软件代替硬件功能,尽可能减少系统元件的数量及其相互间的联接。例如采用集成了A/D,PWM,Flash和SRAM等必要功能的MCU芯片;

②尽量采用简单电路代替复杂电路,用集成电路代替分立元件电路;

③尽可能采用经过考验的可靠性有保证的元器件以及功能电路;

④尽可能采用模块化设计,其中包括硬件模块化设计和软件的模块化设计。

2.元器件降额使用

降额设计,主要是指构成仪器的元器件工作时所承受的工作应力(电应力和温度应力)适当低于元器件规定的额定值,以达到延缓其参数退化,增加工作寿命、降低基本故障率,提高使用可靠性的目的。

通常元器件有一个最佳降额范围。在此范围内,元器件工作应力的降低对其失效率的下降有显著的改善,电路的设计易于实现,且不必在设备的重量、体积、成本方面付出大的代价。但过度的降额会使元器件的正常特性发生变化,甚至有可能找不到满足设备或电路功能要求的元器件;过度的降额还可能引入元器件新的失效机理,或导致元器件数量不必要的增加,结果反而会使设备的可靠性下降。根据产品的不同用途及其重要性,一般降额设计分为三个等级。

a.Ⅰ级降额

Ⅰ级降额是最大的降额,对元器件使用可靠性的改善最大。超过它的更大降额,通常对元器件可靠性的提高有限,且可能使设备设计难以实现。适用于下述情况:设备的失效将导致人员伤亡或装备与保障设施的严重破坏;无法或不宜维修;系统对设备的尺寸、重量有苛刻的限制。

b.Ⅱ级降额

Ⅱ级降额是中等降额,对元器件使用可靠性有明显改善。Ⅱ级降额在设计上较Ⅰ级降额易于实现。用于下述情况:设备的失效将可能引起装备与保障设备的损坏;有高可靠性要求,且采用了某些专门的设计;需支付较高的维修费用。

c.Ⅲ级降额

Ⅲ级降额是最小的降额,对元器件使用可靠性改善的相对效益最大,但可靠性改善的绝对效果不如Ⅰ级和Ⅱ级降额,在设计上最易实现。适用于下述情况:设备的失效不会造成人员和设施的伤亡和破坏;设备采用成熟的标准设计;故障设备可迅速、经济地加以修复;对设备的尺寸、重量无大的限制。[2]

对于失效率高、重要元器件一定要进行降额设计。下面列举集成电路、晶体管、二极管的降额设计。

2.1集成电路

集成电路芯片的电路单元很小,在导体断面上的电流密度很大,因此在有源结点上可能有很高的温度。高结温是对集成电路破坏性最大的应力。集成电路降额的主要目的在于降低高温集中部分的温度,降低由于器件的缺陷而可能诱发失效的工作应力,延长器件的工作寿命。

中、小规模集成电路降额的主要参数是电压、电流或功率,以及结温。大规模集成电路主要是降低结温。降低结温可采取以下措施:

a.器件应在尽可能小的实用功率下工作;

b.采用去耦电路,减少瞬态电流冲击应;

c.器件的实际工作频率应低于器件的额定频率,原因是当工作频率接近器件的额定频率时,功耗将会迅速增加;

d.应实施最有效的热传递,保证与封装底座间的低热阻,避免选用高热阻底座的器件。

2.2晶体管

高温是对晶体管破坏性最强的应力,因此晶体管的功耗和结温须进行降额;电压击穿是导致晶体管失效的另一主要因素,所以其电压须降额。功率晶体管有二次击穿的现象,因此要对它的安全工作区进行降额。其降额准则如表1所示。

2.3 二极管

二极管的降额要求类似于晶体管,其功率(或电流)、结温及反向电压必须进行降额。

二极管允许的总耗散功率(或电流)与环境温度(或壳温的)的关系可用“功率(或电流)-温度负荷曲线”表示,图1为整流二极管电流--温度负荷曲线。小电流或小功率二极管最大额定电流或功率对应的环境温度范围通常在-55°C~+25°C之间,当超过了温度上限后,其允许的电流或功率将线性下降,直至下降到0,此时的环境温度(或壳温)对应于二极管的最高结温。曲线斜线部分的斜率约等于热阻的倒数,它与器件的物理常数有关。

图1 整流二极管电流--温度负荷曲线

降额设计是可靠性设计的重要措施之一,但在降额设计中应注意到降额幅值越大将带来仪器的体积、重量和成本的增加,在有些应用情况下将受到限制。

3.PCB板设计的可靠性措施

在PCB板上除了尽量减少元件器的便用量及元件的降额使用,还可以通过以下措施来提高系统的可靠性:

①在PCB板上,弱信号的走线尽可能短而宽,且两边用较粗的地线(不小于3mm)进行屏蔽保护,以防止其他电路的漏电流及电磁干扰进入信号电路。

②为了保证信号的无失真放大,信号线应尽可能宽,并尽量减少过孔。为此,在双面PCB板中,顶层(元件面)基本上均排布信号线和电源线,而底层(焊接面)应尽可能增大接地面积,地线面积应占整体印制板面积的40%,这也是一种屏蔽手段,同时从插件输入的地线出发,形成一个地线回路,在三层印制板中则增加了一个中间层次(电源层),所有的5V和12V的电源线均排布在该层,元件面与焊接面则于双面PCB板相似。

③运算放大器的输入端与输出端应尽可能远离,否则会在两端之间产生杂散电容,会使输出信号返回到输入端而产生自激振荡。

④PCB板中条状线不要长距离平行,否则会在两线之间形成电感耦合及寄生电容耦合。

⑤微弱信号经过的过渡孔、信号放大电路的正负输入端都在元件面走线,在焊接面用地线包围,过孔必须两面焊接,提高焊点的可靠性。

⑥每个集成电路芯片的正负电源端都有0.1μF的电容并联接地去耦,且此电容排布在尽可能接近芯片的电源端,这样可以消除芯片周围分布电容的影响。

⑦PCB板上有多种电源,每个电压源均要在入口处设置去耦电路,防止互相干扰。常用RC滤波电路,如图2所示,其中C1滤除高频干扰,电容值在PF级,C2滤除低频干扰,电容值在μF级。

图2 RC滤波电路

⑧在PCB板的装配工艺上,不用集成电路管座,集成电路直接焊在PCB板上,这样可以抗冲击与振动,同时避免了管座与集成电路之间产生的分布电容的影响。

4.软件可靠性措施

提高电路系统可靠性还可以通过一些软件的措施来实现。通常采用的软件措施有:数字滤波技术、冗余技术、看门狗(Watchdog)技术等。

4.1数字滤波

数字滤波是通过一定的计算或判断程序减少干扰信号在有用信号中的比重,即提高信噪比,它实际上是一个滤波程序。与传统的模拟滤波器相比,它具有灵活、方便、功能强、可靠性高、稳定性好的优点。在一定程度上,可以完全取代模拟滤波器。

4.2冗余技术

冗余技术包括指令冗余和数据冗余。指令冗余是在双字节指令和三字节指令之后插入两条空操作指令NOP,可保护其后的指令不被拆散;或者在一些对程序流向起决定作用的指令之前插入两条NOP指令,该指令就不会被前面执行下来的失控程序拆散,并将被完整执行,从而使程序走上正轨。数据冗余是将原始数据(包括状态标志、工作变量、计算结果等)以数据块的形式同时存放在RAM的不同区域,当原始数据被破坏时,可启用备份数据。备份数据的存放地址要与原始数据的地址有一定的距离,以免被同时破坏。

4.3 看门狗技术

看门狗(Watchdog)内置有定时器,每个程序运行周期都得对它重置初值,一旦程序跑飞,进入死循环,定时器溢出将MCU复位,从而退出不正常的运行状态。但是这样做必须注意系统的可重入性,对于与历史状态相关的系统,可以结合数据的冗余技术,启用备份数据来保证为保证其重入性能。

4.4 软件陷阱

为了防止程序跑飞到ROM的盲区,还可以设置软件陷阱。软件陷阱是用一条引导指令强行将捕获的程序引向一个指定的地址,在那里有一段专门对程序出错进行处理的程序。如果把这段程序的入口标号为ERR,则软件陷阱就是一条“LJMP ERR”指令。为加强其捕获效果,一般还在它前面加多条NOP指令:

5.结束语

在一个具体的系统设计中,为提高系统的稳定性和可靠性,往往要综合采用多种措施来达到满意的效果,这是全面提高系统可靠性的必由之路。系统不同,其具体的控制对象就可能不同,运行环境也会千差万别,因而其面临的主要干扰问题就不同,采取的措施也就不同;但仅采取某项措施就希望全面提高系统的可靠性常常是不现实的,而要针对主要问题综合采取相应措施提高可靠性。

参考文献:

[1]王锡吉.电子设备可靠性工程[M].西安:陕西科学技术出版社,2005.

[2] GJB/Z 35-93《元器件降额准则》.

第6篇:集成电路的用途范文

本文介绍《流水灯电路的组装与调试》项目的由来、设计思路、电路原理图、工作原理、组装所需的元器件清单、实际组装和调试的过程等。展现了一个完整的一体化教学项目,适用于有一定理论知识与技能操作基础的学生。

关键词:流水灯;NE555;CD4017;组装与调试

【分类号】TP368.1

前言

我们学校历来非常重视教学模式的改革和创新。我们教研组的老师也经常进行集体备课,教学模式的探索和教学资源的优化。我们这次的教学任务《流水灯电路的组装与调试》就进行了新的探索和尝试。首先,我介绍一下这次任务的由来,我们在进行疏散演习的时候,同学就会发现楼道里的指示灯并不很明显,处在中间的同学不容易找到出口,同学就提出了一个想法,我们能不能自己设计一个动态的流水灯,辅助这个疏散灯,这样使同学更容易找到安全出口。于是,我们就有了这次的项目。一般的一体化教学任务是由企业的生产实践中的典型工作任务提炼而来的。虽然他有针对性和实践性,但是缺少了学生的参与在里面。而我们这次,就进行了二者有机的集合,广泛征求了学生的意见和想法,由教研组老师进行讨论,最后确定了基本方案,由老师带领学生进行了电路的设计。我们将这次任务设计成引导型,开发型的。在电路的设计当中我们预留了许多可以改进的地方,给同学一个发挥的空间,让他们对电路进行改进。这样让他们觉得设计电路并不难,引发他们对电路设计的兴趣,从而,引起他们对专业课深入学习的兴趣。

一、设计思路

1. 十个LED灯相继被点亮,形成流水灯。

2. 要做双面印制电路板,电路元件要兼顾贴片式的和通孔的。(为了增加一定的组装难度,也为了让学生发现它的不完美,从而进行改进)

3.可以一块电路板单独使用,也可以级联起来多个一起使用。

4.不需要程序设计,只用硬件电路实现。(适用于职校二年级的学生,还没有学到程序设计,也为后面的继续学习打下伏笔)

二、电路原理图

由NE555、CD4017和三极管控制的流水灯电路原理图如下图所示,该电路图由专业老师带领兴趣小组的同学进行设计,用Protel DXP 2004 软件画出来的。

三、电路工作原理

1.CD4017的用途和引脚功能

1)CD4017的用途

CD4017集成电路是十进制计数/时序译码器,又称十进制计数/脉冲分频器。它是4000系列CMOS数字集成电路中应用最广泛的电路之一,其结构简单,造价低廉,性能稳定可靠,工艺成熟,使用方便。目前世界各大通用数字集成电路厂家都生产4017,在国外的.产品典型型号为CD4017,在我国,早期产品的型号为C217、C187、CC4017等。

2)CD4017C管脚功能

CMOS CD4017采用标准的双列直插式16脚塑封,如下图。

其引脚功能如下:①脚(Y5):第5输出端;②脚(Y1):第1输出端,③脚(Y0):第0输出端,电路清零时,该端为高电平;④脚(Y2):第2输出端;⑤脚(Y6):第6输出端;⑥脚(Y7):第7输出瑞;⑦脚(Y3):第3输出端;⑧脚(Vss):电源负端;⑨脚(Y8):第8输出端,⑩脚(Y4):第4输出端; 11脚(Y9):第9输出端,12脚(Qco):级联进位输出瑞,每输入10个时钟脉冲,就可得一个进位输出脉冲。因此,进位输出信号可作为下一级计数器的时钟信号,13脚(EN):时钟输入端,脉冲下降沿有效;l4脚(CP):时钟输入端,脉冲上升沿有效;(15)脚:清零输入端,在“R”端加高电平或正脉冲时,CD407计数器中各计数单元输出低电平“0”,在译码器中只有对应“0”状态的输出端YO为高电平,16脚(VDD):电源正端,3―18V直流电压。

CP端在输入时钟脉冲的上升沿计数,时钟允许端EN为0时允许时钟脉冲输入,为“1”时,禁止时钟脉冲输入。在输入时钟脉冲的作用下,Q0―Q9的十个输出端依次为高电平。 R为复位端, 当R=1时, 计数器清零,Q0为1,其余Q1―Q9均为0。CO为进位输出端,CD4017计满10个数后,C0端输出一个正的进位脉冲。

2.NE555引脚功能

NE555是一种应用特别广泛作用很大的集成电路,属于小规模集成电路,在很多电子产品中都有应用。NE555的作用是用内部的定时器来构成时基电路,给其他的电路提供时序脉冲。NE555时基电路有两种封装形式有,一是DIP双列直插8脚封装,另一种是sop-8小型(smd)封装形式。

Pin 1 (接地) -地线(或共同接地) ,通常被连接到电路共同接地点。

Pin 2 (触发点) -这个脚位是触发NE555使其启动它的时间周期。触发信号上缘电压须大于2/3 VCC,下缘须低于1/3 VCC 。

Pin 3 (输出) -当时间周期开始555的输出脚位,移至比电源电压少1.7伏的高电位。周期的结束输出回到O伏左右的低电位。于高电位时的最大输出电流大约200 mA 。

Pin 4 (重置) - 一个低逻辑电位送至这个脚位时会重置定时器和使输出回到一个低电位。它通常被接到正电源或忽略不用。

Pin 5 (控制) -这个接脚准许由外部电压改变触发和闸限电压。当计时器经营在稳定或振荡的运作方式下,这输入能用来改变或调整输出频率。

Pin 6 (重置i定) - Pin 6重置锁定并使输出呈低态。当这个接脚的电压从1/3 VCC电压以下移至2/3 VCC以上时启动这个动作。

Pin 7 (放电) -这个接脚和主要的输出接脚有相同的电流输出能力,当输出为ON时为LOW,对地为低阻抗,当输出为OFF时为HIGH,对地为高阻抗。

Pin 8 (VDD) -这是555个计时器IC的正电源电压端。供应电压的范围是+4.5伏特(最小值)至+16伏特(最大值)。

3.电路工作原理

本流水灯电路由振荡电路、译码电路和光源电路三部分组成。本文选用的脉冲发生器是由NE555与R21、R22、W1及电容器C2组成的多谐振荡器组成。主要是为灯光流动控制器提供流动控制的脉冲,灯光的流动速度可以通过电位器W1进行调节。由于W1的阻值较大,所以有较大的速度调节范围。

灯光流动控制器由一个十进制计数脉冲分配器CD4017和若干电阻组成。CD4017的CP端受脉冲发生器输出脉冲的控制,其输出端(Q0~Q9)将输入脉冲按输入顺序依次分配。输出控制的脉冲,其输出控制脉冲的速度由脉冲发生器输出的脉冲频率决定。10个电阻与CD4017的10个输出端Q0~Q9相连,当Q0~Q9依次输出控制脉冲时10个发光二极管按照接通回路的顺序依次发光,形成流动发光状态,即实现正向流水和逆向流水的功能。电源电路所采用的电源为6V。

四、PCB板图

用Protel DXP 2004 软件设计的双面PCB板图,正面是十个发光二极管,其余元器件都在反面。发光二极管、电容器、电位器采用通孔的,其余元器件都采用贴片式的。

五、元器件清单

六、电路的组装与调试

1.电路的组装方法和步骤

1)按照电路图明细表的型号及规格对所有的元器件进行编号,将所有元器件按先小后大、先低后高、先一般后特殊的顺序依据图示方向装接到件1(印制板)对应位置上,静电敏感器件最后要在防静电工作台上进行操作装接(图中IC1、IC2为静电敏感器件)。

2)贴焊电阻器R1--R22。

3)贴焊贴片三极管VT1-VT10。

4)将电容器C1-C2、电位器W1、插座J1、发光二极管VD1-VD10元器件的引线浸锡。

5)电容器C1、C2引线腿成型。

6)插焊电容C1-C2、电位器W1、插座J1元器件,插装时应注意电位器中心头方向,并将电位器W1、插座J1紧贴印制板放正、放平。

7)在防静电工作区台上贴焊IC1、IC2静电敏感器件,按图示方向贴装后,采取对角焊接原则,即先焊接一个引脚,调整器件使之所有的引脚与印制板上所对应焊盘对齐后,再焊接另一个引脚,然后再逐个焊接,

8)将VD1-VD10发光二极管插焊在印制板的背面,插装时将二极管短引线腿插入印制板标志圆缺的一侧,并确保发光二极管高度一致。

9)严格按照图纸技术要求施工。

10)所有元器件焊接位置应确保正确,焊点光滑、平整、牢固。

2.电路调试与故障排除

本电路无需多少调试,只要检查电路有无插错元器件,检查元器件的极性有无接错,电路连接是否正确,焊接是否良好,无虚焊等缺陷,然后接通电源+6V, 观察灯闪是否按照从第1组到第10组灯顺序依次点亮成流水状即可。如有问题,先用万用表电压档测量IC (CD4017)的(14)脚的时钟信号是否正常。如正常,则是CD4017及其后面的电路问题,需检查元器件是否插错,电路连接是否正确,焊接是否到位等。如不正常,则是该振荡器没有产生振荡,说明IC(555)及其电路有问题,需检查相应元器件及其电路。

七、成品图片展示

这是学生完成的作品,95%以上的学生都能一次性组装调试成功,有个别学生的有点小问题,经过修复,最后也都调试成功,同学们对这次实训项目都很满意。

八、总结

通过这次教学项目,锻炼了学生综合运用所学知识,发现,提出,分析和解决实际问题的能力。这次课设在老师的指导下以及各个小组人员的共同努力下,顺利地完成,这次项目,不仅提高了学生的动手能力,更培养了团队精神,让学生在独立思考解决问题的同时,又相互配合,顺利完成项目。

同时很多同学也提出了改进意见:

(1)所有元器件都用贴片式的

(2)用不同颜色的发光二极管

(3)用5伏电压,带USB接口

(4)印制板的尺寸和形状进行改变

经过同学们的实验,有些方面已经实现。

参考文献:

[1] 康华光主编. 电子技术基础(模拟部分第五版).高等教育出版社, 1999.6

第7篇:集成电路的用途范文

引言

随着控制技术的发展,集成化程度的提高,各类电子设备也趋于功能强大、体积小、重量轻的方向发展。贴片器件的迅速发展及推广,成为广大电气设计者的首选。近年来航空、航天用各类电子设备也广泛采用贴片器件,尤其是大部分的核心器件类似于DSP、FPGA等。由于军用电子设备必须通过比民用设备更为严酷的环境试验考核和更高的可靠性要求。所以贴片器件的焊接质量至关重要,成了高可靠性的重要工艺控制环节;加上部分电路板器件安装的特殊要求,高焊接质量的贴片机无法使用,只能采用手工焊接方式。虽然手工焊接是最为传统的焊接方式,但是受到焊接者的焊接经验、焊接温度、焊接时间、焊接方法等方面的主观的限制,所以焊接质量也层次不齐。本文主要针对贴片器件的手工焊接技术进行了探讨,对于贴片器件焊接质量的检验方法提出了更高的要求,即需要制定一套详细的检验方法或采用一些先进的方法和仪器设备用来检测贴片器件焊接质量,减少由于虚焊带来的故障和报废。

一、手工焊接

(一)手工焊接的一般步骤

手工焊接是一种技术成熟的、操作方便、灵活的一种焊接方式,目前大部分军用电子产品还是采用这种焊接方式,焊接过程一般都采用以下步骤。

1、焊接准备

贴片器件焊接一般需要的工具有:恒温电烙铁、松香、焊锡、热枪、特细橡胶棒、高放大倍数放大镜或显微镜系统。

2、贴片的固定

有两种方法:一是用少许普通胶水涂在集成电路和塑封部分,把集成电路正对焊盘固定在电路板上,待胶水变干将集成电路固定好,防止施焊时集成电路移动。二是集成电路正放在电路板焊盘上,用烙铁固定好IC四个角的引脚。

3、焊接引脚

在引脚上涂上松香水,起助焊的作用,而且焊接时松香还可以防止集成电路过热。用电烙铁给一排的引脚同时加热,然后加焊锡丝,使焊锡熔化并完全浸润焊点和引脚。一排引脚同时焊好,移去焊锡丝和电烙铁,一般情况下焊锡会把引脚同时焊在一起。

4、吸锡整理

用金属编制带或多芯导线把一排引脚上的多余焊锡吸干净,引脚间不需连接的地方焊锡被吸走,只有焊盘和引脚处才留下焊锡,这样被焊接在一起的引脚就会正常分开。最后,再用酒精棉球或毛刷沾酒精清洗松香清除引脚间的多余物。

(二)手工焊接的不足

手工焊接方式虽然操作方便、灵活,不受环境、地域和特殊焊接工艺的限制,但也有其自身的不足,主要体现在以下几个方面。

1、焊接过程和吸锡过程时间控制没有直观的时间量来控制,主要靠焊接者的直觉和经验。整个焊接过程和吸锡过程的时间不要太太长,控制在几秒钟时间为宜,否则过热容易损坏集成电路,焊接时时间不够又极易出现虚焊。

2、焊接温度控制不能保证真正的“恒温”,因为焊接时间的长短、焊锡量的多少都将直接影响焊接温度。如果焊锡较多温度就会升高,焊锡过少松香就很容易烧焦,可能会造成芯片或印制电路板的损伤。

3、不能保证焊接质量,手工焊接很容易出现不同程度的连焊和虚焊,因为焊接时焊锡的多少,只能凭借焊接者的个人主观判断,所以焊接时焊锡过多容易出现连焊的现象,这样可能会造成不同程度的短路现象,焊锡过少就会出现不能程度的虚焊,比如个别引脚的脱焊、和虚焊,这些情况可能在测试初期不一定能发现,但是在经历环境试验的任何一个阶段都可能出现故障。

二、贴片器件的拆除及返修

对于需要手工焊接的大型贴片器件在失效后的拆除一般情况也只适合手工拆除的方法。手工拆除的方法也很多,本文主要介绍比较常用的几种。

拉线法:取一根长度和粗细合适的漆包线,将其一端刮干净上锡后,从集成块引脚的底部穿过,并将这一端焊在电路板的某一焊点上,用手拿着漆包线的另一端,用电烙铁加热1引脚,同时用手轻轻向外拉漆包线(向外拉线时,略向上用力),当1脚焊锡熔化后,该脚即被拉起离开电路板。采用同样的方法焊开其他引脚,直到集成块的每个脚都与电路板分开后,即可取下集成块。这种方法比较慢,但比较可靠。需要注意的是必须等所有焊锡完全熔化后,才能用力拉漆包线,否则会造成焊盘起皮、断落。

堆锡法,首先用烙铁在集成块四周引脚上加满焊锡。然后用电烙铁头在集成块四周焊锡中快速移动,使四周的焊锡全部熔化,这时用镊子轻轻将集成块取下,或者同时用两把烙铁对集成块加热,这样提高了拆卸速度,这种方法简便快捷,但是必须掌握好“度”,也就是是说,既要是焊锡全部熔化,也不能加热太久,否则就有可能造成电路板的严重损坏。

分离法,分离法也简称破坏法,这种方法就是用合适的工具(类似平口的斜口钳等)沿集成电路引脚的根部将引脚剪断,用镊子拆下集成块除引脚的部分,然后再用镊子和尖头烙铁将引脚一根根的拆下,这种分离拆除法适合贴器件较长的情况,可以很好的保护印制板不受到损坏,但是拆卸下来的芯片受到破坏,可能无法进行正常器件测试和失效分析,除非特殊情况,一般不建议采用此方法。

整体加热法,这种方法是指先将该大型集成帖片器件周围的电子元器件等保护一起来,最为简单而常用的方法就是将多层纸胶带贴在需要拆卸器件的周围(还可以采用硅橡胶等在需要拆卸器件的周围形成保护层),然后用热抢档位为380-400度均匀加热需要拆卸器件所有的焊接引脚,待焊锡熔化时轻轻用镊子取走该帖片器件,之后再用吸锡带或多股镀银线等清除焊盘上多余的焊锡,并用酒精清洗焊盘,这种方法适合该大型集成帖片器件周围空间较大,而且帖片器件引脚较短的情况。

三、贴片器件焊接质量的检验方法

目前手工焊接主要的检测方法有目视检测法、性能测试法和直接检查引脚法。

目视检测法是主要是指借助高放大倍数的放大镜灯或显微镜显示系统进行目视检查,检查过程就是将焊接并清洗之后的电路板放在高放大倍数的放大镜灯或显微镜系统下面,通过放大的方法很容易观测出芯片引脚直接是否有连焊或者脱焊的情况。缺点是不能发现虚焊的情况。

性能测试法是指根据所焊接芯片的性能指标参数、以及在该电路板中的功能用途加电测试的方法,如果该芯片在电路中功能得以实现,初步判断焊接合格,比如DSP、FPGA就可以通过软件的加载、烧写和系统电性能测试的方法来确定焊接质量的好坏,缺点是不能发现更为深层次的虚焊。深层次的虚焊只能同各种环境试验同步考核。

直接检查引脚法一般是指借助于细的橡胶棒等(注意头部应圆润光滑不锋利)工具轻轻的拨动芯片的引脚,来检查焊接质量的方法。通常情况下对于焊接质量好的引脚是无法拨动的,但是对于脱焊和焊锡很少造成的虚焊的引脚就很容易发现,当橡胶棒接触到该类引脚时就会观察到引脚偏向侧边或出现弹性的运动,这种情况多为引脚脱焊或虚焊。缺点是如果拨动时用力不当,会造成引脚的损伤。

以上三种方法是检查这种大型贴片芯片焊接质量的常用方法,通常情况下将方法一和方法二结合起来使用,就可以检查出焊接质量的好坏。第三种方法主要用于排故时(已经发现该芯片无法实现预期功能出现故障了)使用,正常情况下不推荐使用。

四、发展前景与展望

目前手工焊接质量的检验方法,不管是目视检测法还是性能测试法都无法直观的判断出深层次的虚焊情况,而借用细橡胶棒等直接检查引脚焊接情况的方法不仅效率低,而且容易造成贴片器件引脚的损伤,并且大多这种损伤都是不可逆、不可直接发现的,所以除非排故需要,并不推荐使用。

据不完全统计,目前很大一部分电路板的报废都是由于大型集成贴片器件的虚焊造成的。所以迫切需要一种类似于金属件的“探伤技术”的设备出现,这样在集成帖片器件手工焊接结束后,先通过检验设备对器件的每一个引脚进行“探伤”,只有“探伤”合格的产品才进行下步工序的调试及后续的环境试验。这样由于深层次的虚焊造成的故障就可以得到很好的控制。

五、结束语

本文通过对大型集成贴片器件的手工焊接、维修及拆除、检测技术的探讨以及各种方法的优缺点比较,在一定程度上对于手工焊接起到了技术指导作用。同时对于目前贴片器件的检验方法方面提出了更高的要求与未来发展方向的展望。

参考文献:

[1]葛瑞.表面组装焊接技术新发展.电子工艺技术,1999.20.

[2]Bob Willis.正确选择波峰焊接工艺参数.电子工程专辑,1997,2:118-119.

第8篇:集成电路的用途范文

关键词电机 矢量控制 仿真

中图分类号:TM3文献标识码:A

1 电机测试台的用途

电机测试台广泛用于电动机生产厂家对电动机进行产品性能测试和质量测试,而高性能的测试台需要对电机的驱动进行准确的控制,利用高性能的控制方法控制交流电动机,能够满足系统的要求。电机测试台最重要的部分是交流部分,交流部分的好坏直接关系到电机测试台的性能。目前、交流电动机的控制方法已有很多方法,例如,直接转矩控制、神经网络控制以及模糊矩阵控制等等。本文主要是从矢量控制的角度出发,对交流电机的控制控制进行了讨论。

2 交流电机控制的发展现状及展望

异步电动机矢量变换控制方法在七十年代提出之后,即得到了迅猛的发展。直流电机相对于交流电机而言,具有更优良的动态调速特性。矢量变换控制就是是利用坐标变换的方法将交流电机模拟成为直流电机,分别控制励磁电流分量与转矩电流分量,从而获得与直流电动机一样良好的动态调速特性。由于此方法采用了坐标变换,所以对硬件设施的性能要求较高。

良好的硬件设备是保障矢量控制法可以得到应用的关键,尤其是要不断提高控制系统的可靠性和实时性好。这是是对控制系统的基本要求也是其关键要素。电机控制系统的发展经历了分立元件的模拟电路阶段、集成电路阶段、大规模集成电路解读以及专用集成电路阶段。到目前为止,电机控制电路大多为模拟数字混合电路。因其不但可以提高系统的可靠性和实时性,同时体积更小,研发成本更少,得到了迅速的发展。作为专用集成电路(ASIC)电机控制专用集成电路品种、规格繁多,产品资料和应用资料十分丰富。但同时由于各厂商之间无统一标准,有一定的技术壁垒。由于当前电机控制的总是朝向多样化发展、并且愈来愈复杂化,直接利用厂家的产品有时候并不能够满足要求。因此许多时候需要工程师自行开发产品。DSP就是一种非常好的开发工具。DSP(digital signal processor)是一种独特的微处理器,是以数字信号来处理大量信息的器件。其工作原理是接收模拟信号,转换为0或1的数字信号,再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。它的强大数据处理能力和高运行速度,是最值得称道的两大特色。

硬件的发展对电机控制系统发展的影响是深远的。不过目前国内与发达国家在点击控制系统的差距仍然很大。目前在DSP技术方面,德州仪器公司处在领先地位,国内的企业想要赶超,还需要很长的路要走。不过,由于电机控制系统技术的不断提高,电机控制系统的市场还有更大的发展,国内企业定将获得更多的市场份额。

3 矢量控制的基本思路

对电机进行控制,最重要的是要对转速进行控制,而转速的控制是通过对转矩的控制实现的。通过控制定子磁势Fs模值大小或控制转子磁势Fr模值及他们在控制在空间的位置,就能达到控制电机转矩的目的。控制Fs的模值大小,或控制Fr的模值大小,可以通过控制各相电流的幅值大小来实现,而在空间上的位置角s、r,可以通过控制各相电流的瞬时相位来实现。因此,只要能够实现对异步电动机定子各相电流(iA,iB,iC)的瞬时控制,就能实现对异步电动机的有效控制。

采用矢量变换控制方式是如何实现对异步电机定子电流的瞬时控制呢?异步电动机三相对称定子绕组中,通入对称三相正弦交流电流iA,iB,iC时,则形成基波合成旋转磁势,并由他建立相应的旋转磁场ABC,其旋转的角速度等于定子电流的角频率s。然而,产生旋转磁场不一定非要三相绕组不可,除单相外任意多相对称绕组,通入多相对称正弦电流,均能够产生旋转磁场。一个具有位置互差90o两相定子绕组、,当通入两相对称正弦电流i、i时,则产生旋转磁场。如果这个旋转磁场的大小,转速及转向与上述三相交流绕组所产生的旋转磁场完全相同,则可以认为上述两套交流绕组等效。由此可知,处于三相静止坐标系上的三相固定对称交流绕组,以产生同样的旋转磁场为准则,可以等效为两相对称固定交流绕组,并且可知三相交流绕组中的三相对称正弦交流iA,iB,iC与二相对称正弦交流电流i、i之间存在确定的变换关系

4 交流矢量控制仿真

根据矢量控制基本思路可以利用Matlab/SIMULINK软件,对电机交流控制系统进行仿真。建立出来的系统模型如图所示。

在此系统模型中,最重要的是电流调整器。电流调整器的作用是为了为其后所接的IGBT三相桥提供驱动信号。它将反馈得到的电流信号与电流给定值向比较,得到电流信号的差值。此差值通过一个继电器,输出高低电平信号。这每一路信号都分别直接或是通过一个反门接到同一个桥的上下桥臂上。这样就保证了同一桥的上下桥臂上加的是一个互补的驱动信号。这就避免了同一桥的上的两个IGBT同时导通,防止了直通现象的产生,避免三相桥过热烧毁,同时也使得各个器件能够有效导通。由此可以得到电磁转矩的波形,如下图所示:

通过仿真实验获得的上述仿真曲线可以看到仿真模型的与实际调速系统运动过程基本吻合。充分验证了在异步电机矢量变换数学模型的基础上结合MATLAB/SIMULINK建立的仿真模型的正确性。我们由此可以得到以下结论:

(1)交流电机和直流电机共同的运动机械特性,是交流电机矢量控制的实质和关键。

(2)坐标变换从物理上必须遵守旋转磁场等效原则和功率不变原则,从数学上看就是通过系统状态的相似变换,达到状态重构和参数重构的目的,使数学模型变得简洁易解。

(3)磁链的观测认识矢量控制中的难点。由于直接测量存在着脉动分量等问题,现在大都采用的是间接测量,但仍然存在着其准确性易受参数变化的影响等问题。

(4)利用MATLAB/SIMULINK仿真,可以看出矢量控制交流电机可以得到非常良好的动态性能。

参考文献

[1] 张胜涛,王莉.基于模糊自适应整定PID控制的交流电动机矢量控制系统.电气时代,2004(6).

[2] 姬宣德,何大庆,韩英.基于MATLAB 的矢量控制系统仿真.矿山机械第33卷. 2005(1).

[3] 黄真,胡雄辉,申群太.交流电动机调速传动技术的发展.湖南电力,2004(2).

[4] 肖金凤,盛义发,徐祖华.电机控制的现状与研究动向.电机技术,2005(3).

第9篇:集成电路的用途范文

关键词 :低噪声放大器 射频 ADS 仿真优化

引言

低噪声放大器是射频接收前端的主要部分。它位于接收机的最前端,这就要求它的噪声系数越小越好,为了抑制后面各级噪声对系统的影响,要求它有一定的增益。由于噪声指标和增益指标此消彼长,设计时需要根据具体用途来选择合适的指标。本文用安捷伦科技有限公司的ADS仿真软件给出一种设计方法,可以使噪声和增益指标最佳化。

1.设计指标

2. 管芯及材料的选择

本文设计的低噪声放大器工作在:2.4GHz-2.48GHz频段,由于频段较高,本设计中介质基板选择高端PCB厂商Arlon公司的DiClad527介质板材,介电常数为2.55,厚度为1.016mm,铜皮厚度0.1mm,损耗因子0.0022。根据本设计中低噪声放大器的预期指标,在满足一定增益的同时还要有较低的噪声系数,管芯选择安捷伦公司的型号为ATF-34143的增强模式PHEMT(Pseudomorphic High Electron Mobility Transistor)其性能参数和封装形式如图1 :

3. 电路稳定性设计

电路设计前要确保电路的绝对稳定,这里的稳定不单指在工作频段能稳定,更重要的是在全频段内稳定。在ADS中:K=stab_fact(S), stab_fact(S)函数返回Rollett稳定因子。K>1 时电路绝对稳定。用ADS在1GHz-10GHz扫描,图5.6为ATF-34143在1GHz-10GHz内的稳定性图,由图可以看出1GHz-5GHz,管芯的K<1,电路不稳定,容易自激。需额外加入稳定电路。稳定电路如图5.7。对该电路的电阻,电容和电感进行调谐,使电路在整个频带内绝对稳定(K>1)。图5.8给出稳定电路的仿真结果。可以看到稳定电路在0GHz-18GHz内绝对稳定。

4. 偏置网络设计

偏置网络的设计是影响低噪声放大器性能的一个重要因素,很多电路最后设计的性能不良往往归结于直流偏置网络设计的不当。参考ATF-34143的相关资料,选定直流工作状态: ,在该工作状态下,管子的噪声最小,而增益较高。首先选用ph模型设置偏置电路,采用自偏压电路,设计电路图:图中优化电阻R1、R2、R3设定2个优化目标,名称分别为:VC和IC.IDS.i。

5 .输入输出端口的匹配网络设计

用,时的S参数模型替换直流仿真时的ph模型。对于LNA,如果输入口有一定的失配,反而可以调整器件内部各种噪声之间的相位关系,从而降低噪声系数。为了获得最小的噪声系数,有个最佳值,此时LNA达到最小噪声系数,即达到最佳噪声匹配状态。其中是最佳信源反射系数,当匹配状态偏离最佳时,LNA的噪声系数将增大。可以从器件的Datasheet文件中获得。为最小噪声的最优匹配系数。这个系数可以进行输入匹配电路的设计,该系数可以利用软件仿真获得。经仿真得 = 0.564/-87.2。输入反射系数S[1,1]设置为的共轭,用来进行50Ω匹配。调谐得到C1=8.2pF,L=27nH。根据噪声最小原则设计输入匹配电路。

6. 低噪声放大器的整体优化

以上完成了管芯选择、稳定性设计、输入输出端的电路匹配,此时需要进一步优化,设定优化目标,得最终电路原理图。低噪声放大器在0GHz-4GHz频带内绝对稳定。和均小于-15 dB,增益>14dB,噪声系数NF<0.7dB。增益平坦度≤±1dB,完全满足设计指标的要求。

参考文献

[1] 黄智伟.无线发射与接收电路设计.北京航空航天大学出版社.2004.

[2]王志强.无线接收机结构设计.微电子学.2004,34(4):455-459.

[3]Reinhold Ludwig,Pavel Bretchko.射频电路设计―理论与应用.电子工业出版社.2002

[4]吴建辉,茅洁.射频电路PCB设计.电子工艺技术.

[5]姜雪松,王鹰.电磁兼容与PCB设计.机械工业出版社.2008.2

[6][日]市川裕一,青木 胜.高频电路设计与制作.科学出版社.2004.

[7][英]Tim Wiliams. 电路设计技术与技巧. 电子工业出版社.2006.5