公务员期刊网 精选范文 数字集成电路原理范文

数字集成电路原理精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的数字集成电路原理主题范文,仅供参考,欢迎阅读并收藏。

数字集成电路原理

第1篇:数字集成电路原理范文

输入与整流电路

220V交流市电经电源开关和保险管进入抗干扰抑制电路,由于SD4841P内置振荡器有频率抖动功能,产生的电磁干扰较低,抗干扰抑制电路也较简单,只有一个电感LF1构成。经处理的220V交流电压经D1-D4桥式整流、C1滤波,在C1两端得到约300V的直流电压,作为SD4841P供电及启动电压。

启动与稳压电路

300V直流电压一路经开关变压器初级①-②绕组加至IC1(SD4841P)⑥、⑦、⑧脚内部功率开关管(MOSFET)的漏极(D),另一路经启动电阻R2加到SD4841P③脚(Vcc),对③脚外接电容C3充电,当Vcc端充到12V时,电路开始工作。电路启动工作后,改由开关变压器辅助绕组③-④产生的感应脉冲电压经D6整流、R3限流及C3滤波后产生的直流电压为SD4841P③脚(Vcc)供电。

稳压控制电路主要由光电耦合器PC1(817C)和电流比较放大器U1(TL431A)等元件组成,稳压取样电压取自3.3V,经R7、R6分压加到TL431A控制端R,当因某种原因使开关电源次级输出电压升高时,KA 431的控制端R电压也随之升高,使KA 431的K端电压下降,光电耦合器PC1(817C)内的发光二极管发光增强,光敏三极管导通增强而内阻减小,SD4841P④脚(FB)反馈端电压升高,经SD4841P内部电路处理后,使功率开关管(MOSFET)导通时间缩短,经开关变压器电磁耦合后,使次级各组输出电压下降至额定值,从而达到稳定输出电压的目的。当输出电压降低时,稳压控制与上述过程相反。

保护电路

1.开关功率管保护:在开关变压器的①-②绕组中接有由R1、C2、D5组成的尖峰电压吸收电路,在SD4841P内部功率开关管截止瞬间,抑制开关变压器①-②绕组产生的反向尖峰电压,保护SD4841P内部开关管不被过高的尖峰电压击穿。

2.欠压锁定:电源启动工作时,300V电压通过启动电阻R2对SD4841P③脚(Vcc)外接的电容C3充电,当充到12V时,电路开始工作。电路正常工作后,如果电路发生保护,输出关断,由于电路此时供电由开关变压器辅助绕组③-④提供,SD4841P③脚(Vcc)电压开始降低,当Vcc低于8V时,控制电路整体关断,电路消耗的电流变小,又开始对SD4841P③脚(Vcc)外接的电容C3充电,启动电路重新工作。

3.过流保护:当电路发生过载,导致SD4841P④脚(FB)反馈端电压升高,当反馈端电压升高到反馈关断电压点时,输出关断。该状态一直保持,直到电路发生上电重启。如果次级整流管或变压器绕组短路,会启动异常过流保护。此时,不管前沿消隐时间,一旦过流,过350ns马上保护,且对每一个周期都起作用,发生该保护时,输出关断且一直保持此状态,直到发生欠压以后,电路启动。

4.过压保护:当SD4841P③脚(Vcc)上的电压超过过压保护点电压时,表示负载上发生了过压,输出关断。该状态一直保持,直到电路发生上电重启。

5.过热保护:当SD4841P内部温度过高时,为了保护电路不被损坏,过热保护电路动作,关断输出,该状态一直保持,直到发生欠压以后,电路启动。

第2篇:数字集成电路原理范文

>> “射频集成电路设计”课程教学改革初探 应用于相控阵收发组件的射频微波集成电路设计探讨 纳米尺度互连线寄生参数的仿真及应用于CMOS射频集成电路设计 模拟集成电路设计教学探讨 《集成电路设计》课程教学改革与探索 集成电路设计本科教学改革探索 集成电路设计与集成系统专业人才培养模式的探究 集成电路设计与集成系统专业CDIO培养模式的研究与实践 集成电路设计专业课程体系改革与实践 《数字集成电路设计原理》课程教学探索 集成电路设计作为专业核心课程设置的探讨 集成电路设计方法及IP设计技术的探讨 集成电路设计的本科教学现状及探索 模拟集成电路设计教学方法探讨 《专用集成电路设计》教学方法初探 结合集成电路设计大赛谈创新能力的培养 同步数字集成电路设计中的时钟偏移分析 《2012中国集成电路设计业发展报告》的统计及结论 模拟集成电路设计的自动化综合流程研究 以工程需求为导向的集成电路设计闭环教育研究 常见问题解答 当前所在位置:l.

[3]http://.cn/Info/html/n14730_1.htm.

[4]http:///info/20121026/227691.shtml.

[5]冯卫东.美科学家证实电路世界第四种基本元件存在[N/OL].科技日报,2008-05-06.

[6]李九生.“微波与射频技术”课程新式教学理念应用[J].科技信息,2010,(6).

[7]李金凤,王健,刘欢.“射频集成电路设计”课程教学改革初探[J].考试周刊,2012,(15).

[8]张银蒲.基于射频方向课程群的教学改革与创新[J].唐山学院学报,2013,(1).

[9]王立华.虚拟网络分析仪在射频电路设计中的应用[J].电子测量技术,2012,(4).

收稿日期:2013-09-10

第3篇:数字集成电路原理范文

关键词:集成电路;可测性设计

1.引言

集成电路测试关系到集成电路产品设计、生产制造及应用开发各个环节,如果集成电路测试问题解决得好,可以缩短产品的研制开发周期,降低产品的研制、生产与维修成本,确保产品的性能、质量与可靠性。在对有几千个或非门构成的电路在考虑和不考虑可测性设计条件下,测试生成的成本与电路规模的关系曲线如图(1)所示。图中DFT代表可测性设计,UT代表无拘束设计。从图中可看出,对于无拘束设计,有关的测试成本随电路规模的增大成指数上升;而采用可测性设计的电路,测试费用与规模基本上是线性增长关系。

图(1)测试生成成本与电路规模关系曲线图

因此深入电路系统的可测性理论与设计方法的研究,对于发展复杂性越来越大的现代电子电气装备,提高其可靠性,降低复杂电子电气系统全寿命周期费用有特别重要的战略意义、实际应用价值。

2.电路可测性设计概况

2.1电路可测性设计发展。电路系统测试与故障诊断于20世纪60年代在军事上首先开始研究以满足军事装备的维修与保养需要。美国国防部于1993 年2 月颁发MIL―STD―2165A《系统和设备的可测性大纲》,大纲将可测试性作为与可靠性及维修性等同的设计要求,并规定了可测试性分析、设计及验证的要求及实施方法。该标准的颁布标志着可测试性作为一门独立学科的确立。尽管可测性问题最早是从装备维护保障角度提出,但随着集成电路(IC)技术的发展,满足IC 测试的需求成为推动可测性技术发展的主要动力。从发展趋势上看,半导体芯片技术发展所带来的芯片复杂性的增长远远超过了相应测试技术的进步。因此,复杂芯片系统的测试和验证问题将越来越成为其发展的制约、甚至瓶颈。面对复杂性增长如此迅速的芯片技术,将测试和验证问题纳入芯片设计的范畴几乎成为解决该问题的唯一的途径,这也是目前可测性设计技术和相应的国际标准(IEEE1149)在近年来得到快速发展的原因。

2.2 电路可测性设计概念。可测试性设计(Design for Testability,简称DFT),指在集成电路的设计阶段就考虑以后测试的需要,将可测试设计作为逻辑设计的一部分加以设计和优化,为今后能够高效率地测试提供方便。DFT主要技术是:转变测试思想,将输入信号的枚举与排列的测试方法转变为对电路内各个节点的测试,即直接对电路硬件组成单元进行测试;降低测试的复杂性,即将复杂的逻辑分块,使模块易于测试;断开长的逻辑链,采用附加逻辑和电路使测试生成容易,改进其可控制性和可观察性,覆盖全部硬件节点;添加自检测模块,使测试具有智能化和自动化。

测试考虑是集成电路设计中最辣手的问题之一,设计的可测性是指完整测试程序的生成和执行的有效性。评价一个设计的可测性的基本要素有:故障诊断、功能核实、性能评估以及可控性和可观性。可测性设计通常包含三个方面:(1)测试矢量生成设计,即在允许的时间内产生故障测试矢量或序列。(2)对测试进行评估和计算。(3)实施测试的设计,即解决电路和自动测试设备的连接问题。可测性设计或面向测试的设计(DFT)通常包括设计测试电路和设计测试模版两类。测试电路的设计准则是:以尽可能少的附加测试电路为代价,获得将来制造后测试时的最大化制造故障覆盖率。其目的是简化测试、加速测试、提高测试的可信度。测试模版的设计准则是:选择尽可能短的测试序列,同时又拥有最大的制造故障覆盖率。

3.电路可测性设计方法简介

(1)扫描路径法。扫描路径法是一种应用较广的结构化可测性设计方法,由Williams和Angell于1973年提出的,主要是解决时序电路的测试问题。基于扫描路径设计的电路,只需对组合电路部分和不在扫描路径上的触发器进行测试,而处于扫描路径上的触发器的测试方法和测试图形是固定形式的,不需要测试生成。扫描路径法的优点:电路容易初始化;改善了电路的可测性;减少了测试生成过程;测试中把时序电路转化为组合电路,极大地降低了时序电路测试的复杂程度,得以广泛应用。扫描路径法不足之处:需要增加额外的电路面积和I/O引脚,而且串行扫描移入和移出方式导致测试时间非常长。扫描路径设计是以牺牲电路的其他方面为代价的,因而就有成本问题。

(2)边界扫描法。边界扫描法把扫描路径法扩展到整个板级或系统级,是JTAG(Joint Test Action Group)为了解决IC之间或PCB之间连接的测试问题提出的一种扫描方法。边界扫描标准对数字集成电路以及混合集成电路的数字电路部分提供规范化的测试存取端口和边界扫描结构,一是试图对板级、基于复杂的数字集成电路和高密度的表面贴片技术的产品提供测试解决方案,二是对具有嵌入式可测性设计特征的数字集成电路提供测试存取和测试控制方法。边界扫描法同扫描路径法类似,基于边界扫描设计法的元器件的所有与外部交换的信息(指令、测试数据和测试结果)都采用串行通信方式,允许测试指令及相关的测试数据串行送给元器件,然后允许把测试指令的执行结果从元器件串行读出。边界扫描技术中包含了一个与元器件的每个引脚相接,包含在边界扫描寄存器单元中的寄存器链,这样元器件的边界扫描信号可用扫描测试原理进行控制和观察,这就是边界扫描的含义。

(3)内建自测试法(BIST)。在电路内部建立测试生成、施加、分析和测试控制结构,使得电路能够测试自身,这就是内建自测试。BIST方法分为:在线BIST(测试在电路正常功能条件下进行)和离线BIST(测试不在电路的正常功能条件下进行)。离线BIST可以应用在系统级、板级和芯片级测试,也可以用在制造、现场和操作级测试,但不能测试实时故障。内建自测试克服了传统测试方法的缺点,如:测试生成过程长;测试施加时间长(随电路的大小呈指数增加);测试成本高(需要测试设备进行测试施加和响应的捕获);测试复杂度高;故障覆盖率低等。BIST存在一些优点,然而增加了芯片的硬件开销,而且可能对原电路的功能造成一定影响。BIST广泛用于集成电路可测性设计中。

4.结束语

数字系统的故障诊断和可测性设计的理论和实践一直是电子技术中一个非常活跃的领域。虽然,近年来可测性设计技术得到了较大的发展,但远远跟不上复杂性越来越大的实际电路系统测试与维修的需要,可测性理论与方法也还有待深入研究和进一步完善。因此加大电路系统的可测性理论与设计方法的研究力度,深入研究复杂电路系统可测性建模与评估方法,PCB、模拟与数模混合信号系统、芯片系统的可测性理论与方法,研制高质量、低成本的集成电路故障测试技术的发展变得越来越具有紧迫性和挑战性。

参考文献

[1] 刘峰,梁勇强.大规模集成电路可测性设计及其应用策略.玉林师范学院学报,2005,(5):29一33

第4篇:数字集成电路原理范文

一、数字逻辑门电路的基础知识

数字电路传输和处理的是数字信号,数字信号和模拟信号不同,模拟信号是连续变化的信号,而数字信号在时间上和数值上都是不连续的,是断续变化的离散信号。数字信号往往采用二进制数表示,数字电路的工作状态则用“1”和“0”表示。

1、与门由两个开关(A、B)相串联,通过一个电池和一个灯(F)连成的逻辑电路。只有当A与B都接通(即A=B=1)时,灯才亮(F=1),因而通常称为“与”电路。

2、“或”门是一个由两个开关(A、B)并联,通过一个电池与灯(F)连成的逻辑电路。当开关A或B任何一个接通或者两个都接通时,灯就亮,敬称之为“或”电路。

3、“非”门电路由联动开关组成。联动开关有两个触点,任一个接通,另一个就断开,当A接通时,A断开,电灯就不亮。若A断开,则A接通,电灯就亮。

在数字电路中。门电路不是用有触点的开关,而是用二极管和三级管组成。常用的是各种集成门电路门电路的输入和输出都是用电位的高低来表示的,而电位的高低则用1和0来区别,高电位为1,低电位为0,称为正逻辑系统。若高电位为0,低电位为1,为负逻辑系统。

二、数字逻辑门电路来控制的静音及话筒电路

逻辑门电路是构成数字电路的基本逻辑单元,掌握各种门电路的逻辑功能和电气特性。对于正确分析和使用数字集成电路是十分必要的。K90型电影放映扩音机,是为井冈山105型电影放映机配套而设计的单声道高保真全集成电路的扩音设备,机中静音和话筒电路的输出就是由数字逻辑门电路来控制的。

k90型电影放映扩音机静音及话筒控制的实际电路。门电路由CD40106BCD4013B CD4013B三块集成电路组成。CD40106B内部有6个“非”门电路,CD4013B内部有2个D主从型触发器,CD4011B内部有4个“与非”门电路。电路中只利用了3个,并把输入端连接起来,当“非”门使用。CD40106B CD4013B CD4013B三块集成电路的15脚接正15伏电压。脚接地。

静音时,门电路CD4013B的脚输出高电平,三极管1V1导通,将电子开关TC91 52的脚对地短路,切断信号。取消静音时,门电路CD4013B的④脚输出低电平,三极管lVl截止。电子开关TC9152接通信号。

话筒信号插入时,门电路CD4013B的脚输出高电平,使三极管4V2导通,继电器4K1工作,触点4K1(1)、4K1(2)断开。话筒信号经4N1、4N2两极运放放大后与其他信号一起在频率电路混合,最后经功放输出。门电路CD4013B的脚输出低电平时。4V2截止,4K1停止工作,4K1(1)、4K1(2)闭台,4N1、4N2两级运放的输出信号被对地短路,功放无话筒信号输入。

第5篇:数字集成电路原理范文

关键字:温度补偿;带隙基准源;精度

集成电路中的三种常用基准源中,掩埋齐纳基准源不兼容标准CMOS工艺,输出一般大于5V,XFET基准源也是不能兼容标准CMOS工艺,相比之下,带隙(Bandgap)基准源具有与CMOS工艺完全兼容,可以工作于低电源电压下,温度漂移、噪声和PSRR等性能满足大部分系统要求的优点[1]。

带隙基准源在模拟和数字集成电路中应用非常广泛,比如在数模转换器(digital-analog converters,DAC),模数转换(analog- digital converters,ADC),DC/DC转换器,AC/DC转换器,运算放大器,线性稳压器等电路中,基准电压的精度决定着这些电路的性能。随着集成电路规模的发展,电子设备的体积、重量和功耗越来越小,这对电源电路的集成化、小型化以及性能和精度提出了越来越高的要求[2]。本文在分析CMOS带隙基准源基本原理的基础上,比较了不同温度补偿设计的CMOS带隙基准源。

1 CMOS带隙基准源原理

为了提高CMOS带隙基准源的精度,除了选择上述几种补偿方法,还有一些不常用的技术:利用β的温度系数设计高阶补偿,设计专门的工艺误差补偿电路、校准电路减小电阻比值、增大双极晶体管的面积比值等电路。

4 结束语

随着集成电路规模的发展,一阶补偿的带隙基准源已经不能满足系统的要求,因此研究不同结构的高精度带隙基准源是非常有意义的。本文在分析CMOS带隙基准源基本原理的基础上,分析比较了不同补偿设计的带隙基准源。

参考文献

[1] Abraham I. Pressman,王志强等译,开关电源设计(第二版). 北京: 电子工业出版社,2005.

[2] P.R. Gray and R.G. Meyer,Analysis and Design of Analog Integrated Circuits. New York: Wiley,1993.

[3] 刘成,吴玉广. 峰值电流控制模式中斜坡补偿的分析. 控制系统,2008,9: 49-50.

[4] 朱樟明,张永泊,杨银堂等.一种具有省电模式的CMOS振荡器电路.固体电子学研究与进展.2008.28(1):109-112.

第6篇:数字集成电路原理范文

【关键词】电子综合技术;任务驱动;项目化;课程设计

一、《电子综合技术》课程定位

1.《电子综合技术》课程是电类相关专业的核心基础课程

在电子信息专业的课程体系中,《电子综合技术》是核心职业基础课程和特色课程之一。它将原有课程体系中的模拟电路、数字电路、电子课程设计、模电数电实验、电子仿真以及电测和电子技能初级中的相关内容进行有机的整合,通过该课程的学习和技能训练,一方面了解电子技术的基础知识、手段、应用及发展,使学生获得必要的电子技术通用知识和通用技能;另一方面也为学生学习后续的专业知识和专业技能打下扎实的基础。

2.《电子综合技术》是电子类专业岗位资格证书“PCB设计”、“电装中高级工”、“电调中高级工”考证的对口课程

电子信息专业的学生,要求毕业前必须获得电子组装与调试、PCB设计、电子维修等岗位资格证书中的一种。本课程所讲授的主要知识都与专业职业资格技能鉴定有着密切的联系,通过本课程的学习,学生能初步形成从工程实际中提出问题、以科学手段分析和解决问题的实践、创新能力。

3.《电子综合技术》是培养学生职业素养的重要课程

通过电子技术课程的学习和技能训练,有利于学生职业能力的提高和职业习惯的养成,通过严格执行考勤制度、进出实训或实际工作场地制度,不定期进行的设备整理测试训练;以及由分组讨论、任务分析、设计、组织实施、汇报点评等教学环节的教学做一体化教学实施,培养了学生的创新精神,同时使学生亲身体会了团队合作的重要性,提高了职业素养。

二、课程设计的理念

本课程设计的理念是淡化课程之间的界限,采用理论教学与实训操作相结合的"理实一体化"的模式,将模拟电路、数字电路、电子课程设计、模电数电实验、电子仿真以及电测和电子技能初级中的相关内容进行有机的整合,在教学过程中锻炼学生应用所学知识分析问题和解决问题的能力,培养科研素质和创新意识,注重学生综合应用能力的培养。

三、课程设计思路

1.根据专业培养目标和岗位能力要求,确定课程内容

以电子与信息技术专业领域职业岗位群的职业素质、职业能力培养为目标,将国家职业资格培训、技能鉴定与人才培养方案有机地结合起来,基于工作过程,分析行动领域、转化学习领域、开发学习情景和项目载体,突显“基础类课程综合化、技术类课程理实一体化、技能训练类课程项目化”的特点。根据人才培养目标,结合相关课程内容以及经济产业特点及学生的生源条件,确定课程标准。

2.课程知识和技能目标与典型电子产品生产工作过程相结合

结合符合企业、岗位要求的课程知识和技能目标,分析工程实际,得出典型电子产品生产工作过程包括:电子线路设计、PCB设计制作、元器件筛选、电子工艺技术、电子测量技术、调试排故技术、产品包装技术、技术文件准备及销售维护,并通过维护反馈对原设计进行改进,进一步提高产品质量,进入良性循环。

3.项目内容注重选取基础和特色典型电子产品

将来自于生产实际、常见典型产品及教师科研项目进行提炼,作为载体引入到电子技术的课程教学。典型电子产品注意选取基础电子产品和特色电子产品,并适当引入高端电子产品,以期通过电子综合技术课程教学,既保证基本知识、通用技能的获取以满足岗位基本要求,又学习先进的技术和时代倡导的发展理念,培养学生的创新精神,同时兼顾岗位性质不同涉及具有一定特色的电子产品。

4.采用多种教学方式,以技能训练带动课程知识学习

采用灵活多样的学习情景设计,如:元器件筛选、电子工艺、功能电路设计安装与调试等,均可设计为课程技能训练任务;考虑学生的认知规律和课程特点,采用多种教学方式,如:项目教学法、演示法、互动教学法、答辩式、演讲式、分组讨论法等,并通过来自生产实际的项目训练和安全用电知识传授,达到课程标准提出的职业能力要求。基础学习情境以训练主要知识点、基本技能和基本工艺能力为主,应用学习情境以训练学生综合应用能力、安装测试能力为主,综合学习情境以训练简单设计能力、创新能力和解决实际问题能力为主。每一个学习情境都包括了资讯、计划与决策、实施、检查与评估等环节,相当于进行了一个完整的工作过程。

四、课程目标

1.知识教学目标

(1)基本器件方面:了解常用半导体二极管、三极管、线性集成电路和常用数字集成电路的基本工作原理、特性和主要参数,并能合理选择和使用这些器件。

(2)基本电路原理及结构方面:熟悉共射、共集放大电路,差动放大电路,互补对称功率放大电路,负反馈放大电路,集成运算放大电路的结构、理解它们的工作原理、性能及应用。会用各种表示方法描述数字电路逻辑功能,能分析较复杂数字逻辑电路的逻辑功能。

(3)应用电路方面:整流滤波电路的结构、工作原理、性能及应用;熟悉三端稳压器件的应用;了解正弦和非正弦信号产生电路;运算放大器做比较器的应用;模拟信号的取样及放大电路。

2.技能教学目标

(1)掌握常用电子电路元器件、半导体器件的识别、使用和测试方法。

(2)掌握常用工具的使用方法;掌握手工焊接技能;掌握常用测试仪器的操作;掌握数字电路中常用仪器仪表的使用;学会电路的搭建和电路板的的制作。

(3)能够按照原理测试电路;能够独立按照要求调试电路;能够排除电路简单故障。

(4)了解单级放大电路的分析方法。能估算单级放大电路的电压放大倍数、输入和输出电阻,了解多级放大电路的分析方法。在深度负反馈条件下,掌握利用虚短或虚断估算电路电压放大倍数的方法。串联型稳压电路的计算。掌握理想运放的基本运算规则。能根据工作要求,完成简单数字逻辑电路的设计。能通过对数字集成电路芯片资料的阅读,了解数字集成电路的逻辑功能和使用方法;能分析和排除数字逻辑电路中出现的故障。

3.素质目标

(1)通过电子综合技术课程的学习,了解电子世界,了解电子电路的实际应用,激发同学们的学习兴趣,促使其加深认识所学专业,培养专业归属感。

(2)通过学习,加深学生对行业的认知,初步了解电子产品生产的工艺规范,提高实际操作技能,学会主动地学习,达到能够独立进行任务操作的水平。

(3)通过亲自动手制作和测试,加深对电子电路的了解,学习电子电路的设计与分析方法,培养独立思考、勤于思考、善于提问的学习习惯,进一步树立崇尚科学精神,坚定求真、求实和创新的科学态度。

(4)通过任务的完成,增强学生的自信心,加深对电子技术理论的理解与应用,培养学生的成就感、荣誉感和团结合作精神及纪律观念。

五、课程结构

本课程分两大模块——模拟电路、数字电路。每个模块由诺干项目,每个项目由3-5个任务。模拟电路部分有:半导体器件研究、稳压电源的研究、低频电压放大电路的研究、音频功率放大电路的研究和正弦振荡电路的研究等五个项目;数字电路部分有:门电路与组合逻辑电路的研究、触发器与时序逻辑电路的研究、脉冲信号的产生与整形电路的研究、集成数/模转换器与集成模/数转换器的研究等四个项目。并在课程最后设计综合项目:家用设备定时控制电路的制作。将基础知识、基本技能和综合素质的掌握贯穿于教学项目。

1.模拟电路模块

项目一:半导体器件研究 (8学时)(如表1所示)

项目二:稳压电源的研究 (8学时)(如表2所示)

项目三:低频电压放大电路的研究 (8学时)(如表3所示)

项目四:音频功率放大电路的研究 (20学时)(如表4所示)

项目五:正弦振荡电路的研究 (12学时)(如表5所示)

2.数字电路模块

项目一:门电路与组合逻辑电路的研究 (8学时)(如表6所示)

项目二:触发器与时序逻辑电路的研究 (16学时)(如表7所示)

第7篇:数字集成电路原理范文

关键词: 中职院校 电子技术 开放式实验

中职电子专业是一门专业难度相对比较大的课程,对学生有较高的要求。随着国家新课程改革标准的推行,现代电子技术专业教学内容与传统教学内容有着较大的出入。传统电子技术专业内容以电子技术与操作技术为主。教师在教学过程中只需依据课例进行授课并示范,而学生也只需记忆授课内容,便完成了教学目标。然而,现代电子专业课程则要求学生学习理论知识的同时,具备实际动手操作能力。因此,将开放式实验室应用到中职电子技术教学中具有非常重要的现实意义。

一、开放性实验室的必要性

(一)电子教学发展的要求。电子技术课程的内容具有一定的抽象性和很强的实用性。因此,教师在日常教学过程中如果采用传统教学模式,仅依靠教材知识则难以实现教学目标,技术与原理很难让学生掌握。因此,一定要改变传统教学模式,创新教学方法,以实现教学目标。针对此点,开放性实验室便有了用武之地。

(二)中职学生的学习要求。开放性实验室,主要目的在于培养学生实践能力,提高学习能力,并发挥实验室应有的价值。为使学生更好地学习,中职应重新设计教学课程,将之与电子电工实验室的使用有机结合,提高实验室的应用率,继而加大开发程度。教学过程中,教师要让学生的主体地位得到充分体现,对学生学习中的表现与状态给予充分重视,改变传统学生被动接受知识的状态。开放性实验室的建立是实现这一目标的很好途径。

二、开放性实验室的实施内容

随着时代不断发展,社会中各行各业飞速发展,使职业教育产生巨大压力,因此,中职只有改变教学模式,注重培养专业应用型人才,使学生动手能力得到增强,才能在一定程度上缓和这种压力。目前,最重要的是如何提高学生学习与动手操作的积极性,除此之外,日常教学过程中还要找出传统电子技术专业实验教学中的不足之处,如电子实验室中设备未能及时更新,陈旧的设备脱离时代;实验室没有做到合理管理,导致事故发生。另外,电子技术实验教学的教材脱离现实生活,教材中描述的场景与问题基本以模拟为主,让学生感到知识与实际生活脱节等问题。因此,应尽快改变电子技术实验课的教程,继而采用新的教学模式。这里,我们将开放性实验室作为新的教学方案,通过不断实验、研究与讨论,找出新方案的主要问题及对应解决办法,让方案帮助学生最有利地发展。

(一)大概目标。通过开展实验室电子技术技能课程,有效检验该教学方式的实用性与效果。通过范例实训,学生的学习积极性被充分调动起来。只有让学生主动参与,并结合教师引导,进一步分析处理,才能在此过程中收获知识。学生进行试验之前已初步掌握了部分电工基础知识。通过电子线路专业基础课程教学,学生了解部分基本分析电路的方法和基本技术与应用。学生拥有一定基础,再通过动手练习,让教学效果事半功倍,最后结合理论,提高实践有效性。

(二)实训:TTL逻辑探针。实训目标是要学生掌握数字信号的基本内容,并能明确模拟信号与数字信号之间的区别。此外,还要了解数字电路的基本逻辑知识,并在实际过程中进行操作。在此基础上,学生要能分析并了解TTL数字集成电路,并能绘制与工程相关,如电路原理、实物等的图,绘制上述两图,需要学生在理解前者的前提下,将集成电路的功能充分发挥出来才能完成后者。除了会制图,还要对集成电路中各管脚的功能了若指掌,正确理解数字集成电路的悬空脚。教学过程中应向学生提供任务指导书,内容主要包括背景、材料及要求等,并分解实训内容,结合学生当前学习水平,布置最合适他们的任务,不仅方便学生进行试验操作,还能提高试验成功率。成功的实验会让学生产生自我成就感,学生会感觉学习非常有趣。实验不仅促进师生之间的交流,教师还能从中总结新技能。

三、结论

随着时展,电子产业的发展越趋完整。中职作为培养企业高精尖人才的重要基地,是电子生产企业发展的核心。实际教学过程中,实施开放式实验室教学模式,能使学生专业技能得到切实提高。因此,开放性实验教学应得到大力推广并普及,帮助学生更有效地提高专业素养和专业技能。

参考文献:

第8篇:数字集成电路原理范文

在直流伺服控制系统中,通过专用集成芯片或中小规模的数字集成电路构成的传统PWM控制电路往往存在电路设计复杂,体积大,抗干扰能力差以及设计困难、设计周期长等缺点?因此PWM控制电路的模块化、集成化已成为发展趋势。它不仅可以使系统体积减小、重量减轻且功耗降低,同时可使系统的可靠性大大提高。随着电子技术的发展,特别是专用集成电路(ASIC)设计技术的日趋完善,数字化的电子自动化设计(EDA)工具给电子设计带来了巨大变革,尤其是硬件描述语言的出现,解决了传统电路原理图设计系统工程的诸多不便。针对以上情况,本文给出一种基于复杂可编程逻辑器件(CPLD)的PWM控制电路设计和它的仿真波形。

1 PWM控制电路基本原理

为了实现直流伺服系统的H型单极模式同频PWM可逆控制,一般需要产生四路驱动信号来实现电机的正反转切换控制。当PWM控制电路工作时,其中H桥一侧的两路驱动信号的占空比相同但相位相反,同时随控制信号改变并具有互锁功能;而另一侧上臂为低电平,下臂为高电平。另外,为防止桥路同侧对管的导通,还应当配有延时电路。设计的整体模块见图1所示。其中,d[7:0]矢量用于为微机提供调节占空比的控制信号,cs为微机提供控制电机正反转的控制信号,clk为本地晶振频率,qout[3:0]矢量为四路信号输出。其内部原理图如图2所示。

该设计可得到脉冲周期固定(用软件设置分频器I9可改变PWM开关频率,但一旦设置完毕,则其脉冲周期将固定)、占空比决定于控制信号、分辨力为1/256的PWM信号。I8模块为脉宽锁存器,可实现对来自微机的控制信号d[7:0]的锁存,d[7:0]的向量值用于决定PWM信号的占空比。clk本地晶振在经I9分频模块分频后可为PWM控制电路中I12计数器模块和I11延时模块提供内部时钟。I12计数器在每个脉冲的上升沿到来时加1,当计数器的数值为00H或由0FFH溢出时,它将跳到00H时,cao输出高电平至I7触发器模块的置位端,I7模块输出一直保持高电平。当I8锁存器的值与I12计数器中的计数值相同时,信号将通过I13比较器模块比较并输出高电平至I7模块的复位端,以使I7模块输出低电平。当计数器再次溢出时,又重复上述过程。I7为RS触发器,经过它可得到两路相位相反的脉宽调制波,并可实现互锁。I11为延时模块,可防止桥路同侧对管的导通,I10模块为脉冲分配电路,用于输出四路满足设计要求的信号。CS为I10模块的控制信号,用于控制电机的正反转。

2 电路设计

本设计采用的是Lattice半导体公司推出的is-plever开发平台,该开发平台定位于复杂设计的简单工具。它采用简明的设计流程并完整地集成了Leonardo Spectrum的VHDL综合工具和ispVMTM系统,因此,无须第三方设计工具便可完成整个设计流程。在原理设计方面,本设计采用自顶向下、层次化、模块化的设计思想,这种设计思想的优点是符合人们先抽象后具体,先整体后局部的思维习惯。其设计出的模块修改方便,不影响其它模块,且可重复使用,利用率高。本文仅就原理图中的I12计数器模块和I11延迟模块进行讨论。

计数器模块的VHDL程序设计如下:

entity counter is

port(clk: in std logic;

Q : out std logic vector(7 downto 0);

cao: out std_logic);

end counter;

architecture a_counter of counter is

signal Qs: std_logic_vector(7 downto 0);

signal reset: std_logic;

signal caolock: std_logic;

begin

process(clk,reset)

begin

if(reset=‘1')then

Qs<=“00000000”;

elsif clk'event and clk=‘1' then

Qs<=Qs+‘1';

end if;

end process;

reset<=‘1' when Qs=255 else

‘0';

caolock<=‘1' when Qs=0 else

‘0';

Q<=Qs;

cao<=reset or caolock;

end a_counter;

图2 PWM可逆控制电路原理图

    在原理图中,延迟模块必不可少,其功能是对PWM波形的上升沿进行延时,而不影响下降沿,从而确保桥路同侧不会发生短路。其模块的VHDL程序如下:

entity delay is

port(clk: in std_logic;

input: in std_logic_vector(1 downto 0);

output:out std_logic_vector(1 downto 0)

end delay;

architecture a_delay of delay is

signal Q1,Q2,Q3,Q4: std_logic;

begin

process(clk)

begin

if clk'event and clk=‘1' then

Q3<=Q2;

Q2<=Q1;

Q1<=input(1);

end if;

end process;

Q4<=not Q3;

output(1)<=input(1)and Q3;

output(0)<=input(0)and Q4;

end a_delay;

    图3为原理图中的若干信号的波形仿真图。

第9篇:数字集成电路原理范文

我当年就是怀着对集成电路未来的美好憧憬,幻想着IC从业者西装革履喝咖啡的小资生活。再加上那时开设该专业的还有清华、北大等“985工程”院校。于是我报考了这个前途无量的集成电路设计与集成系统(下简称集电)专业。

IC课堂知多少

前面提到了IC从业者,那IC究竟是什么呢?IC是半导体元件产品的统称。那学这个有什么用呢?比方说自称国产发烧级的小米手机,你知道它用的四核CPU是什么架构?28nm工艺又是什么工艺呢?更省电的电源管理芯片又是什么逻辑构造呢?这些在选择了集电专业后,你都会一一了解到。在不久的将来,也许你设计的芯片还会在流水线上量产呢。

既然这个专业那么有用,那它是学什么的呢?首先,要做的就是电路设计,根据市场的需求依据电路功能设计出电路;接下来就是前期电路功能的仿真(就是将电路原理图用专业软件模拟出电路所实现的功能,主要是为了节省研发经费和研发周期),检测其是否能达到所要的参数需求;再次,用专业的软件将电路版图画出来;最后,将画出来的版图进行后期仿真,与前期的仿真对比,看是否需要做出修改。若符合要求就生成版图文件交给晶圆厂进行量产,最后到封装测试厂完成芯片的最后一道工艺。

如今,集成电路设计与集成系统专业已走过了9年,它变得越来越适应就业市场的需求。目前该专业分为三个方向。第一个方向是设计。这个方向又分两类,数字集成电路设计是偏软件类;而模拟集成电路设计是偏硬件类。有设计就要有生产,该专业的第二个方向就是生产工艺。IC工艺能力决定了芯片的性能、功耗、散热等诸多因素。而第三个方向是集成电路的封装与测试。好的封装才能够使芯片发挥正常的功能,并保证其具有高稳定性和可靠性。而芯片是否达到预期的研发目标,则需要更多的测试才能确定。

集电专业开设的课程较多,光专业基础课就要分硬件和软件,加上计算机应用技术、模拟电路与数字电路、电路分析基础、信号与系统、集成电路应用实验、现代工程设计制图、微机原理与应用、固体电子学、电磁场与电磁波这些专业课,你会发现你的大学四年会过得格外充实。不过你放心,由于实验课很多,学习并不会觉得枯燥。

就拿集电专业的核心课程——集成电路工艺课来说吧。这门课教授我们如何把还只是一个概念的集成电路芯片从有到无的“变”出来。喜欢玩手机的同学一定听说过现在市面上最先进的高通的四核CPU吧,它的电路构成需要用到上百万个我们所熟知的晶体管、电阻、电容等元器件。可是我们的手机只有那么小,上百万个元器件怎么集中在那么小的一个芯片上呢?这就需要运用这门课所学的工艺技术,将这些元件制作在一小块硅片、玻璃或陶瓷衬底上,再用适当的工艺进行互连,然后封装在一个管壳内,使整个电路的体积大大缩小,引出线和焊接点的数目也大为减少。而这其中的奥妙,就需要你带着一份好奇心,步入大学的殿堂用心学习了!

前途宽广,钱途无量

目前,很多欧美IC巨头企业都在中国设有工厂或者研发机构,比如AMD、飞思卡尔、德州仪器、意法半导体、英特尔等。本土的IC公司也如雨后春笋般层出不穷,越来越多的海归人才带着国外的尖端技术和项目基金回国创业。这些电子厂都是离不开IC设计人才的。

2006年考研结束后,我只身南下,去上海找工作。在火车上,我接到了德州仪器的电话面试,可惜最后因为英语口语不过关被淘汰了,这也说明这个专业对于英语应用能力的要求还是比较高的。不过之后的半个月时间,各种面试电话就成了我幸福的烦恼,对于只是一名应届本科毕业生的我,有的公司甚至开出了4500元月薪的条件,这是当时很多毕业生想都不敢想的,更何况一年还发16个月薪水!由此可见,对于集电专业的毕业生,只要你做了充分的准备,就会有成百上千的大门向你敞开。选择做IC人,你将“钱途”无量!

集电专业的毕业生有较强的工作适应能力,就业范围宽,可从事集成电路设计与制造、嵌入式系统、计算机控制技术、通信、消费类电子等信息技术领域的研究、开发和教学工作。

选“山”拜师很重要