公务员期刊网 精选范文 生物医学纳米技术范文

生物医学纳米技术精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的生物医学纳米技术主题范文,仅供参考,欢迎阅读并收藏。

第1篇:生物医学纳米技术范文

[中图分类号] R445.9[文献标识码]A [文章编号] 1005-0515(2010)-9-220-01

纳米( nanometer, nm)是一个长度单位, 即十亿分之一米( 1× 10- 9m)。纳米技术(Nanotechnology) 是指在 0.1~ 100 nm空间尺度上操纵原子和分子对材料进行加工, 制造具有特定功能的产品或对物质及其结构进行研究的一门综合性的高新技术学科[1-2]。纳米技术是一门交叉性很强的综合学科,在 20 世纪 90 年代获得了开创性的进展,研究的内容涉及现代科技的广阔领域。纳米技术的发展正越来越成为世界各国科技界所关注的焦点, 谁能在这一领域取得领先, 谁就能占据 21 世纪科学的制高点。随着纳米技术的发展, 纳米电子学、 纳米生物学、 纳米材料学、 纳米医学等分支学科也相继建立和发展起来。尤其重要的是这些学科正在发生相互融合、 相互渗透[3- 4]。

纳米技术与医学的结合形成了新兴边缘学科--纳米医学, 纳米生物医学是纳米科技和生物医学结合的产物, 是纳米科技的一个核心领域, 即在分子水平上利用分子工具和人体相关的知识, 从事疾病的检测、诊断、 治疗、预防和保健等。生物医学起源于诊断, 没有很好的诊断就不可能有很好的预防和治疗。目前随着科技的发展, 生物医学诊断得到了前所未有的发展, 各种检验诊断手段、仪器已是各式各样, 在其迅猛发展的过程中纳米材料起到了关键作用。正是纳米技术在医学检测和诊断中的应用使人们在分子水平上对疾病有了更深的认识,更好的维护和提高了人类的健康水平 。

1纳米探测技术在医学检测和诊断的应用

纳米探针是一种探测单个活细胞的纳米传感器,探头尺寸仅为纳米量级,当它插入活细胞时,可探知会导致肿瘤的早期DNA损伤,而且纳米探针据不同的诊断和检测目的, 将其植入并定位于体内不同部位, 或随血液在体内运行, 随时将体内各种生物信息反馈于体外的记录装置。该技术有着很高的灵敏性,可在含有 10 个原子/分子的1 cm3气态物质中, 在单个原子或分子层次上准确获取其中1个。医生可通过检测人的唾液、血液、 粪便和呼出气体等, 发现人体中只有亿万分之一的各种疾病或带病游离分子, 用于肿瘤细胞的诊断与治疗。

扫描探针显微镜目前已经用于人体多种正常组织和细胞的超微形态学观察 ,而且可以在纳米水平上揭示肿瘤细胞的形态特点。通过寻找特异性的异常结构改变 ,以解决肿瘤诊断的难题。另一种新型的纳米影像学诊断工具 - - 光学相干层析术(OTC)已研制成功。OTC的分辨率可达纳米级 ,较 CT 和核磁共振的精密度高出上千倍 ,并且它不会像 X线、 CT、 磁共振那样杀死活细胞。

2纳米生物芯片在医学检测和诊断的应用

纳米生物芯片与传统的生物芯片相比, 纳米生物芯片具有以下几个特点:(1)采用微电子,高产而成本低;(2)高度敏感性;(3)减少了样品的数量;(4)使用纳米尺度上的固定方法, 可以自主组装。这类型的生物芯片可以在血流中探测病毒、 细菌和异常细胞。 能即时发现病毒和细菌的入侵, 并予以歼灭。也可以沿血液流动并跟踪镰状细胞贫血患者的红细胞和感染了病毒的细胞。目前, 电场作用下自动寻址的细胞芯片已研究成功, 既可用于基因功能研究与蛋白质亚细胞定位, 又可用于监测基因与蛋白质的瞬间表达[5]。

3纳米细胞检疫器 ( 纳米秤) 在医学检测和诊断的应用

纳米秤又称纳米细胞检疫器,能称量10-9g的物体,即相当于1个病毒的质量。利用它可发现新病毒, 可定点用于口腔、 咽喉、食管、 气管等开放部位的检疫。

4纳米传感器在医学检测和诊断的应用

纳米材料用于生物传感器是由 Alarie 和 Vo- Dinh 等人[6]于 1996年提出的。纳米生物传感器利用其细小的尖端(仅为纳米量级)插入活细胞内, 而又不干扰细胞的正常生理过程, 以获取活细胞内多种反应的动态化学信息、 电化学信息及反映整体的功能状态, 以便深化对机体生理及病理过程的理解, 例如利用纳米生物传感器可以探知会导致肿瘤的早期 DNA损伤等; 此外, 纳米生物传感器和新的成像技术还能对疾病进行早期的检测和治疗[7]。

5纳米金属在医学检测和诊断的应用

PCR 技术发展至今, 不仅仅是实验室的“宠儿” ,而是已经成为了诊断、治疗、科研开发等等各个生命科学领域的“必杀锏”。但是经过近二十年的发展, PCR 技术依然存在这样或那样的问题, 比如准确性, 利用 PCR 技术来诊断疾病, 假阴性、假阳性等现象屡见不鲜。造成这一问题的原因一般认为是由于在体外复制过程中缺少在 DNA复制过程中担任“检测师”的 SSB蛋白[8]。

解思深院士及来自中科院上海应用物理研究所以及上海交大的研究人员应用纳米技术升级了 PCR 技术, 完成了“点金术”: 他们将几千个直径为 0.3 纳米的金原子堆积在一起, 做成一个个直径约几或十几纳米的纳米金球, 加入 PCR反应, 结果发现纳米金减少了 PCR 复制过程中的出错率, 并且提高了复制的速度和效率, 这一研究获得了国际同行的认可。通过应用纳米技术 ,在DNA 检测时 ,可免去传统的 PCR扩增步骤 ,快速、 准确 ,易实现检测自动化。这是一项新颖且重要的方法, 它为分子生物学中最为重要的标准方法 PCR 开拓了进一步改进的途径, 具有较大应用价值[8]。

6磁性纳米材料在医学检测和诊断的应用

纳米磁性颗粒在生物检测上的应用是仅次与荧光材料。各种磁性生物探针, 磁性跟踪材料都已发展到了实用阶段。洪霞等选用葡聚糖包覆超顺磁性的 Fe3O4 纳米粒子, 通过葡聚糖表面的醛基化实现与抗体的偶联, 制得了 Fe3O4 /葡聚糖/抗体磁性纳米生物探针, 在组装有第二抗体和抗抗体的全层析试纸上进行的层析实验表明该探针完全适用于快速免疫检测的需要, 达到了层析免疫检测的目的[9]。

7纳米吸附材料在医学检测和诊断的应用

实验表明,做细胞分离的试剂聚乙烯吡咯烷酮可将表面包覆单分子层的直径 30 纳米粒子均匀分散到含有多种细胞的聚乙烯吡咯烷酮胶体溶液中, 通过离心可以使所需要的细胞分离。杨箐等撰文对聚合物纳米粒子在基因治疗中的应用作了探讨, 证明了纳米聚合物粒子具有很好的吸附包覆作用, 并已应用到动物型基因治疗的实验研究[10]。美国科学家把某种纳米颗粒 “粘”在生物分子上, 然后利用纳米颗粒的发光特性研究生物分子的活动情况。比人体细胞小得多的纳米颗粒可以被送进人的组织、 器官内, 用光线从人体外部向内进行照射, 体内的纳米颗粒也会发光, 这样就可以达到追踪病毒的效果。另外, 纳米材料其他很多特性在生物医学检验中越来越多的被应用, 如比利时的德梅博士等制备出多种对各种细胞器敏感程度和亲和力差异很大的金纳米粒子-- 抗体复合体纳米材料, 与细胞器结合后在光镜和电镜下很容易分辨各种细胞内结构。

随着人们对疾病防治及保健概念的转变 ,医学实验诊断技术也必然向着相应的方向发展。纳米技术与生物医学的结合, 为医学界提供了全新的思路, 纳米材料在医学领域的应用取得了显著效果。但纳米材料应用还很有限, 尤其是在生物医学方面还需大量临床试验予以证实,使得纳米材料在生物安全性方面的应用有待进一步提高。同时由于相关技术的不断突破 ,必然促使纳米医学实验诊断技术加速发展。随着纳米材料在生物医学领域更广泛的应用, 医学检验和诊断将变得节奏更快、 效率更高、更准确。

参考文献

[1] Keahler T. Nanotechnology: basic concepts and definitions [J]. Clin. Chem, 1994, 40(9):1797- 1799.

[2] 白春礼. 纳米科技-全面理解内涵, 促进健康发展[J]. 学会月刊,2001( 11) : 10- 12.

[3] ZhongguoYi Xue. Application of nanobiological technology in medicine and its advances in China. Ke Xue Yuan Xue Bao, 2006, 28 (4): 579- 582.

[4] 张立德, 牟季美.纳米材料和纳米结构[M] . 北京:科学出版社, 2001.

[5] Bouchie A. Microarrays come alive[J]. Nature, 2001, 411:107- 110.

[6] Alarie JP, Vo Dinh T. Antibody based submicrion biosensor forbenzo[a]pyrene DNA aduct[J]. Polycydic Aromat comp, 1996, 8:45-52.

[7] 郭梦金 ,张欣杰.纳米技术在医学中的应用现状及展望[J].河北化工, 2007 , 30 (3):16-17.

[8] 言民, 唐雪云,冼燕娥,等. “金”对人体是否具有医学和美容价值 [J].医疗保健器具,2006,7:42-45.

第2篇:生物医学纳米技术范文

【关键词】医学;职业技术教育;生物医学工程

【中图分类号】R318.0-4 【文献标识码】B【文章编号】1004-4949(2014)02-0316-02

基金项目:重庆市教委人文社科基金资助项目(10SKS02)

随着近20年来世界范围内高新技术的迅猛发展,职业教育在形式和数量上都有了突飞猛进的增长。基于此,联合国教科文组织(UNESCO)推出最新版本“国际教育标准分类”ISCED1997,虽然将高等职业教育仍定位于ISCED5为“第三级教育第一阶段”,但是作为“不直接通向高等研究资格证书”(not leading directly to an advanced research qualification)获得的教育层次,它将初版中分属两个不同层次的大学专科(原ISCED5)和本科(原ISCED6)以及“所有博士学位以外的研究课程”(原ISCED7中的博士前课程部分)纳入了同一层次之中,从此突破了高等职业教育(尤其是在中国)仅仅局限于专科层次的教育瓶颈,为各类职业教育建立本科乃至硕士层次的教育提供了可能[1]。与普通本科教育并行的“立交桥式”发展之路由此拉开序幕。目前我国由于临床医学、中医学、口腔医学、药学等专业要求学生掌握一定的科学技术知识以达到“能进入一个高精技术要求的专门职业”。医学本科院校在医学主干专业的人才培养定位与水平上均高于医学类高职高专院校。本文将以生物医学工程学的国内外现状为例,来探索职业教育互补于普通医学本科教育的发展之路。

1生物医学工程国内外发展现状

生物医学工程学是理、工、医相结合的边缘学科,是多种工程学科向生物医学领域渗透的产物。它是运用现代自然科学和工程技术的原理与方法,从工程学的角度,在不同层次上研究人体的结构、功能及其相互关系,揭示其生命现象,为防病治病、促进健康提供新技术手段的一门综合性的高技术学科。

1.1 80年代起生物医学工程学步入新起点 50年代是生物医学工程学发展的初期,工程技术与生物医学间的交差、渗透是从临床医学开始的,其中尤以人工器官的出现,可视为现代医学的一个重大特征。在经历了60年代的早期发展和70年代以医学影像技术为代表,所标志的生物医学工程学取得突破性进展的基础上,80年代起,生物医学工程学除继续向临床领域横向扩展外,开始在向纵深方向发展方面出现新的转折。如医学影像技术中的MRI、DSA、ECT、彩色多普勒超声诊断装置、图像文档与通讯系统等;出现了全实验室自动化系统、体外碎石机和除颤器等治疗装置以及微波、射频、激光、超声等各种治疗技术。

1.2 90年代与更多的学科交叉、融合 组织工程:是生物医学工程、细胞生物学、分子生物学、生物材料、生物技术、生物化学、生物力学,以及临床医学等学科间的不断交叉、渗透与融合,而形成的新的前沿科学。所涉及的组织有软骨、皮肤、胰腺、肝脏、肾脏、膀胱、输尿管、骨髓、神经、骨骼肌、肌键、心瓣膜、血管、肠、等,其中皮肤已有初步产品进入临床应用。我国自90年代初开始了有关的基础研究工作,并列入了国家重点基础研究发展规划(973),成为国家的重点支持项目。生物芯片:在实施人类基因组计划的推动下,DNA微探针阵列的基因芯片是最重要的生物芯片之一。它可以在同一时间内分析大量的基因,实现生物基因信息的大规模检测。微米/纳米技术:是指量度范围分别在0.1?100微米(?m)和0.1?100纳米(nm)内的物质或结构的制造技术。其最终目标是,人们将按自己的意志直接操纵单个原子、分子或原子团(小于10nm)、分子团,制造具有特定功能的产品,包括纳米材料学、纳米电子学、纳米机械学、纳米生物学、纳米显微学等等新的高技术群。我国在大尺寸纳米氧化物材料制备方面,已成功地研制出致密度高、形态复杂、性能优越的纳米陶瓷,从而进入了国际领先行列。日本研制出的“万能医用微型机器人”,可在不损害任何人体器官的情况下,沿着血管或胃肠道行进到发病部位进行检查,医生可指令机器人取组织样品、直接释放药物、清除血栓、切断或接通神经和进行细胞操作等精细手术。家庭保健工程(Home Health Care, HHC):美国、日本和欧洲等均已将HHC作为重要内容列人21世纪的生物医学发展战略,成为优先资助的领域之一。即将家庭保健管理系统、疾病早期预报、家庭治疗和康复仪器、家庭急救支援系统等技术和产品作为重点开发项目。我国开展HHC的研究与开发以家用治疗产品为最多。通过采用电话传输监护网的方式进行心脏监测和急救,已在我国北京、上海、天津、南京、广州等大城市相继开展起来。

1.3 生物医学工程学传统领域的发展 生物材料:自50年代出现合成高分子材料以来,生物材料取得了很大发展;如今,合成高分子材料,天然高分子材料,医用金属材料,无机生物医学材料,以及由活体材料和非活体材料构成的杂化生物材料,几乎在临床医学各个领域得到广泛的应用,并最终导致了标志着本世纪现代医学重大特征之一的人工器官的出现;在此基础上,90年代生物材料又在向着复合/杂化型、功能型和智能型的方向发展。医学影像技术:在生物医学工程学中,像X射线、超声波、磁共振、放射性核素、红外线等物理源的医学影像技术,对医学的发展起了很大的推动作用,数字化、网络化、综合化已成为目前医学影像技术的总体发展方向。生物医学工程学所涉学科尚有生物力学、医学电子学、人工器官等等。

2国内生物医学工程专业建设情况

生物医学工程专业属工科专业,具有很强的多学科交叉性和前沿性,强调数理科学、电子信息和计算机技术等理工科知识与生物医学知识的有机结合。本专业课程设置除数理化及工程基础课外,主要专业课程有:电路、信号与系统,模拟与数字电子技术,数字信号处理,生物医学传感器与检测技术,微机原理与应用,单片机在医学中的应用,生命系统分析与仿真,生物医学信号处理,生物医学仪器,医学成像技术,医学图像处理,医学超声波,工程生理学,人体解剖学,组织胚胎学,自动控制,计算机与信息系列课程等,并开设多个专业课程设计,做到教学与实验设计并重。目前国内开设生物医学工程专业的学校,一部分是医科院校,一部分是各大综合类院校。排名前十的有浙江大学、四川大学、上海交通大学、东南大学、西安交通大学、天津大学、清华大学、华中科技大学、南方医科大学、大连理工大学。而在香港大学,生物医学工程学由工程学院与医学院合办,学生将学习到有关工程和生命科学的原理,理解不同类型的先进医学工程系统之设计和运作,掌握工程技术在医学领域的应用。

3医学职业教育可以在生物医学工程专业中寻找“立交桥式”发展契机

医学职业教育类院校,应该与本科院校错位发展。以生物医学工程专业为例,应该培养计算机网络技术服务和各类大型医疗设备的操作与维护方面的专业人才;计算机网络技术包括:数字化医学中心,医学图象处理及多媒体在医学中的应用,生物信息的控制及神经网络生物医学信号检测与处理。要求学生深入掌握电子技术,计算机技术,信息处理理论医学与工程相结合的科研能力,解决生物医学领域中的科学研究,医疗仪器研制,产品开发以及大型医疗设备的操作,维修管理等问题,同时也能胜任其他领域的电子技术及计算机技术。学生主要学习生命科学、电子技术、计算机技术和信息科学的基本理论和基本知识,受到电子技术、信号检测与处理、计算机技术在医学中的应用的基本训练,具有生物医学工程领域中的研究和开发的基本能力。

3.1 生物信息技术 实现生物技术和信息技术以及其他学科的有机结合,发展生物信息高通量、高效、快速的提取方法,发展疾病检测的新方法和新技术,发展研究药物与靶标作用的新方法,发展基因组数据、蛋白质组数据和结构基因组数据的计算机处理、分析和可视化方法,解析生物大分子结构和功能之间关系等,提高生物信息处理、分析和利用的水平,为我国生命科学和生物技术的源头创新奠定基础。

3.2 医学图像与医学电子学 医学图像处理和分析、计算机辅助诊断和治疗、医学物理等,以及生物、医学和工程学等领域理论和方法,并通过这些学科的交叉形成了新型学科。

3.3 生物与医学纳米技术 包括纳米生物材料、纳米生物器件研究、纳米生物技术在临床诊疗中的应用、纳米材料与器件的计算模拟。

3.4 生物与医学纳米技术 生物医用材料研究,用于人体、器官的诊断、修复、替换或增进其功能。

3.5 医学信息学及工程 应用系统分析工具这一新技术来研究医学的管理、过程控制、决策和对医学知识科学分析。

4以生物医学工程为例,探讨医学职业教育的前景

生物医学工程专业修业年限为四年或五年。授予学位是工学学士。就业前景良好,由于科学技术的发展,各类大型医疗设备的应用越来越广泛,大型医疗设备的操作、维修及管理人员是各大医院及公司急需的人才。毕业后可从事医学机构中医疗器械的维护、使用、销售和和医疗电子系统的开发与维护,辅助医生观察、诊断、治疗疾病。职称由卫生部组织统一考试评定,颁发临床医学工程技术(初级士、初级师、中级等)证书。

医学职业教育不仅要解决国家发展急需的基层卫生人才的培养问题,更重要的是要引领区域经济向先进领域拓展,提升地方行业水平。建设西部教育高地,需要在技术类专业中大胆创新,走别人没有走过或者没有走出规模的路。其重要意义体现在以下几点:①医学应用技术类专业虽然具有办学成本高、难度大等不利因素,但也具有技术含量高、可直接转化为现实生产力的巨大优势。②医学应用技术类专业走向产业化,对引领区域经济发展、拓展地方行业布局和提升地方行业水平都具有重要的现实意义。③医学应用技术类人才培育专业群的建成,将为地方输出高素质的技能型人才,同时也能提供高水平的就业岗位,有助于拉动地方经济,整体提高地方生产力。④医学应用技术类专业人才的聚集,与提高区域人才质量、推动地方经济发展进程直接相关。斯坦福大学在成立之初不被看好,但坚持将硅谷建设与学校成长联系在一起,最终成为世界名校就是例证[2]。

5结语

在国家拉动内需、教育优先的有利政策指引下,在医学职业教育领域大力发展医学应用技术专业是切实可行的。用教学做一体化培养医学技术专业人才,为地方医学应用技术产业化发展提供智力支撑,其意义也是深远的。创立医学应用技术专业基本原则是按照专业设计,分步骤解决专业基本格局,建设教学做一体化生产性实训基地,逐步提升专业办学水平和内涵质量,最终构建具有影响力的专业群。在全国众多的医学类高职高专院校中同质化办学的现象非常突出,上海医疗仪器高等专科学校涉足生物医学工程领域外,还没有一所学校开设生物医学工程的相关专业[3]。现代医疗活动是建立在庞大的医疗仪器设备的辅助诊断和治疗基础上的,急需医学工程技术的大量人才。只有大力拓展医学相关技术领域的办学,才能真正在传统医学专业之外办出既有生命力又有制高点的医学职业技术教育。

参考文献

[1]Issenberg SB,Mcgaghie WC,Petmsa ER,Gordon DL,Scalse AJ.Features and uses of high―fidelity medical simulations that lcad to effective learning:a BEME systemic review.Medieal Teacher,2005;27:10-28.

第3篇:生物医学纳米技术范文

随着科学技术的进一步发展,微电子在人们日常生活工作中的应用愈加广泛,微电子产品的核心便是芯片,而随着IC设计与半导体加工工艺技术水平的不断提高,电子元件的尺寸越来越小,集成电路的规模越来越大,其复杂程度也越来越高,对半导体芯片的尺寸、性能及稳定性等有了更高的要求,如何生产出尺寸更小、功耗更低、性能稳定性更好的半导体芯片成为微电子技术发展的瓶颈。与此同时,纳米技术的飞速发展及其在各个领域内的应用,为微电子技术的突破性发展提供了机遇和条件。

纳米电子技术

纳米(nanometer)是一个长度计量单位,一纳米等于10亿分之一米,纳米技术是指在纳米空间内,通过特定的技术设计,实现原子或分子在纳米例子表面的排列组成,从而制造出具有特定性能的材料或器件的一门高新技术。纳米微粒的独特结构能使其产生小尺寸、宏观量子隧道、量子尺寸等多种效应,其材料表现出光、电、热、反射、吸收及生物活性等许多特殊的功能,作为介质扩散气体的速度极快,颗粒与生物细胞的物化作用很强,能很容易进入细胞内,且在使用时用量小、附加值极高,能够赋予材料意想不到的高性能。近年来,随着纳米材料和纳米技术的发展,其在各个领域内都有了较为广泛的应用。而随着微电子技术的发展,电子元件的尺寸不断缩小,集成电路的集成程度要求也越来越高,为了生产出能够适应电子元件及集成电路发展要求的半导体芯片,有着诸多特殊功能的纳米技术开始被应用于电子领域,纳米电子技术由此而生。

纳米电子技术是纳米技术与电子技术相结合的产物,它是在微电子产业发展较为成熟的条件下产生的,从某种意义上来说,纳米电子学是微电子学继续向更微小的世界的延伸。

纳米电子技术是以纳米粒子的量子效应为理论基础建立并发展起来的,也即是当电子元件的尺寸小到纳米量级时,其加工技术、运行机理等都与微电子器件有了极大差异,采用纳米技术研制出来的分子器件,不仅能够克服半导体加工工艺中的存在的问题和困难,与基于硅集成电路上的器件相比,其在传感、灵敏度、集成度等多方面都有更好的性能。

纳米电子技术应用现状

纳米电子技术虽然兴起的较晚,但其发展极为迅速,经过近些年来的发展,已经取得了一定的成果,当前,这些成果集中体现在纳米电子材料和纳米电子元件的应用上,同时这一技术在现代医学中也有了较为广泛的应用。

1. 纳米电子材料

当前常见的纳米电子材料有纳米半导体陶瓷材料、纳米硅材料和纳米硅薄膜,其中基于纳米技术的硅电子材料一起能耗低、运行时间短、反应速度快及运行可靠稳定,受外界环境影响小的优点,较为完美地契合了现代社会对电子技术的发展需求,与同等材料相比有着绝对的技术优势,且随着科研技术的进一步发展,其成本也有所降低,在电子领域内的应用前景十分广阔。

2. 纳米电子元件

纳米电子元件是在集成元件和超大规模集成元件的发展基础上开发研制出来的,当前利用纳米电子学已经研制成功了包括单电子晶体管、纳米发光二极管及超微磁场探测器等在内的各种纳米器件。

3. 纳米电子技术在现代医学中的应用

电子学的发展离不开包括生物学在内的基础学科的贡献,而现代电子科技产品在基础学科中的应用,也推动了基础学科的发展。随着纳米技术的发展,纳米电子技术也被广泛地应用在医学领域中,彩色多普超声诊断仪、伽马刀、磁共振成像(MRI)等高科技医学产品的问世及应用,都极大地推动了现代医学的发展。而应用了纳米技术的电子学与生物医学的结合将会把人们对于微小生物体的研究带入到一个全新的阶段。

纳米电子技术发展前景

1. 碳纳米管

碳纳米管是由石墨碳原子层卷曲而成的,其自身的拓扑机构及极好的机械强度和导电性,使其在光学、机械性能和电子特性上都有着明显的优势,应用碳纳米管可以推动单电子器件和纳米量子器件的研究和开发应用,其本身也是当前世界科学领域内研究的重点。

2. 纳米硅薄膜

硅在当前的半导体器件中的应用十分广泛,目前世界上的半导体器件有95%以上都是由硅做成的,纳米硅薄膜的工艺程序与硅器件及集成电路是相容的,其发展将为量子功能的进一步研制提供基础,并推动纳米电子技术向更高层次的发展。

3. 纳米生物电子

将纳米技术、电子技术与生物芯片相融合,其研制出的最大成果是纳米机器人,这种基于纳米电子技术的机器人能够进入到人体的血管中,成为人体内的清洁器,清除体内对人体有害的物质,保证人体新陈代谢,为人体健康提供了更高的保障。

结 语

第4篇:生物医学纳米技术范文

1、各国竞相出台纳米科技发展战略和计划

由于纳米技术对国家未来经济、社会发展及国防安全具有重要意义,世界各国(地区)纷纷将纳米技术的研发作为21世纪技术创新的主要驱动器,相继制定了发展战略和计划,以指导和推进本国纳米科技的发展。目前,世界上已有50多个国家制定了国家级的纳米技术计划。一些国家虽然没有专项的纳米技术计划,但其他计划中也往往包含了纳米技术相关的研发。

(1)发达国家和地区雄心勃勃

为了抢占纳米科技的先机,美国早在2000年就率先制定了国家级的纳米技术计划(NNI),其宗旨是整合联邦各机构的力量,加强其在开展纳米尺度的科学、工程和技术开发工作方面的协调。2003年11月,美国国会又通过了《21世纪纳米技术研究开发法案》,这标志着纳米技术已成为联邦的重大研发计划,从基础研究、应用研究到研究中心、基础设施的建立以及人才的培养等全面展开。

日本政府将纳米技术视为“日本经济复兴”的关键。第二期科学技术基本计划将生命科学、信息通信、环境技术和纳米技术作为4大重点研发领域,并制定了多项措施确保这些领域所需战略资源(人才、资金、设备)的落实。之后,日本科技界较为彻底地贯彻了这一方针,积极推进从基础性到实用性的研发,同时跨省厅重点推进能有效促进经济发展和加强国际竞争力的研发。

欧盟在2002—2007年实施的第六个框架计划也对纳米技术给予了空前的重视。该计划将纳米技术作为一个最优先的领域,有13亿欧元专门用于纳米技术和纳米科学、以知识为基础的多功能材料、新生产工艺和设备等方面的研究。欧盟委员会还力图制定欧洲的纳米技术战略,目前,已确定了促进欧洲纳米技术发展的5个关键措施:增加研发投入,形成势头;加强研发基础设施;从质和量方面扩大人才资源;重视工业创新,将知识转化为产品和服务;考虑社会因素,趋利避险。另外,包括德国、法国、爱尔兰和英国在内的多数欧盟国家还制定了各自的纳米技术研发计划。

(2)新兴工业化经济体瞄准先机

意识到纳米技术将会给人类社会带来巨大的影响,韩国、中国台湾等新兴工业化经济体,为了保持竞争优势,也纷纷制定纳米科技发展战略。韩国政府2001年制定了《促进纳米技术10年计划》,2002年颁布了新的《促进纳米技术开发法》,随后的2003年又颁布了《纳米技术开发实施规则》。韩国政府的政策目标是融合信息技术、生物技术和纳米技术3个主要技术领域,以提升前沿技术和基础技术的水平;到2010年10年计划结束时,韩国纳米技术研发要达到与美国和日本等领先国家的水平,进入世界前5位的行列。

中国台湾自1999年开始,相继制定了《纳米材料尖端研究计划》、《纳米科技研究计划》,这些计划以人才和核心设施建设为基础,以追求“学术卓越”和“纳米科技产业化”为目标,意在引领台湾知识经济的发展,建立产业竞争优势。

(3)发展中大国奋力赶超

综合国力和科技实力较强的发展中国家为了迎头赶上发达国家纳米科技发展的势头,也制定了自己的纳米科技发展战略。中国政府在2001年7月就了《国家纳米科技发展纲要》,并先后建立了国家纳米科技指导协调委员会、国家纳米科学中心和纳米技术专门委员会。目前正在制定中的国家中长期科技发展纲要将明确中国纳米科技发展的路线图,确定中国在目前和中长期的研发任务,以便在国家层面上进行指导与协调,集中力量、发挥优势,争取在几个方面取得重要突破。鉴于未来最有可能的技术浪潮是纳米技术,南非科技部正在制定一项国家纳米技术战略,可望在2005年度执行。印度政府也通过加大对从事材料科学研究的科研机构和项目的支持力度,加强材料科学中具有广泛应用前景的纳米技术的研究和开发。

2、纳米科技研发投入一路攀升

纳米科技已在国际间形成研发热潮,现在无论是富裕的工业化大国还是渴望富裕的工业化中国家,都在对纳米科学、技术与工程投入巨额资金,而且投资迅速增加。据欧盟2004年5月的一份报告称,在过去10年里,世界公共投资从1997年的约4亿欧元增加到了目前的30亿欧元以上。私人的纳米技术研究资金估计为20亿欧元。这说明,全球对纳米技术研发的年投资已达50亿欧元。

美国的公共纳米技术投资最多。在过去4年内,联邦政府的纳米技术研发经费从2000年的2.2亿美元增加到2003年的7.5亿美元,2005年将增加到9.82亿美元。更重要的是,根据《21世纪纳米技术研究开发法》,在2005~2008财年联邦政府将对纳米技术计划投入37亿美元,而且这还不包括国防部及其他部门将用于纳米研发的经费。

日本目前是仅次于美国的第二大纳米技术投资国。日本早在20世纪80年代就开始支持纳米科学研究,近年来纳米科技投入迅速增长,从2001年的4亿美元激增至2003年的近8亿美元,而2004年还将增长20%。

在欧洲,根据第六个框架计划,欧盟对纳米技术的资助每年约达7.5亿美元,有些人估计可达9.15亿美元。另有一些人估计,欧盟各国和欧盟对纳米研究的总投资可能两倍于美国,甚至更高。

中国期望今后5年内中央政府的纳米技术研究支出达到2.4亿美元左右;另外,地方政府也将支出2.4亿~3.6亿美元。中国台湾计划从2002~2007年在纳米技术相关领域中投资6亿美元,每年稳中有增,平均每年达1亿美元。韩国每年的纳米技术投入预计约为1.45亿美元,而新加坡则达3.7亿美元左右。

就纳米科技人均公共支出而言,欧盟25国为2.4欧元,美国为3.7欧元,日本为6.2欧元。按照计划,美国2006年的纳米技术研发公共投资增加到人均5欧元,日本2004年增加到8欧元,因此欧盟与美日之间的差距有增大之势。公共纳米投资占GDP的比例是:欧盟为0.01%,美国为0.01%,日本为0.02%。

另外,据致力于纳米技术行业研究的美国鲁克斯资讯公司2004年的一份年度报告称,很多私营企业对纳米技术的投资也快速增加。美国的公司在这一领域的投入约为17亿美元,占全球私营机构38亿美元纳米技术投资的46%。亚洲的企业将投资14亿美元,占36%。欧洲的私营机构将投资6.5亿美元,占17%。由于投资的快速增长,纳米技术的创新时代必将到来。

3、世界各国纳米科技发展各有千秋

各纳米科技强国比较而言,美国虽具有一定的优势,但现在尚无确定的赢家和输家。

(1)在纳米科技论文方面日、德、中三国不相上下

根据中国科技信息研究所进行的纳米论文统计结果,2000—2002年,共有40370篇纳米研究论文被《2000—2002年科学引文索引(SCI)》收录。纳米研究论文数量逐年增长,且增长幅度较大,2001年和2002年的增长率分别达到了30.22%和18.26%。

2000—2002年纳米研究论文,美国以较大的优势领先于其他国家,3年累计论文数超过10000篇,几乎占全部论文产出的30%。日本(12.76%)、德国(11.28%)、中国(10.64%)和法国(7.89%)位居其后,它们各自的论文总数都超过了3000篇。而且以上5国2000—2002年每年的纳米论文产出大都超过了1000篇,是纳米研究最活跃的国家,也是纳米研究实力最强的国家。中国的增长幅度最为突出,2000年中国纳米论文比例还落后德国2个多百分点,到2002年已经超过德国,位居世界第三位,与日本接近。

在上述5国之后,英国、俄罗斯、意大利、韩国、西班牙发表的论文数也较多,各国3年累计论文总数都超过了1000篇,且每年的论文数排位都可以进入前10名。这5个国家可以列为纳米研究较活跃的国家。

另外,如果欧盟各国作为一个整体,其论文量则超过36%,高于美国的29.46%。

(2)在申请纳米技术发明专利方面美国独占鳌头

据统计:美国专利商标局2000—2002年共受理2236项关于纳米技术的专利。其中最多的国家是美国(1454项),其次是日本(368项)和德国(118项)。由于专利数据来源美国专利商标局,所以美国的专利数量非常多,所占比例超过了60%。日本和德国分别以16.46%和5.28%的比例列在第二位和第三位。英国、韩国、加拿大、法国和中国台湾的专利数也较多,所占比例都超过了1%。

专利反映了研究成果实用化的能力。多数国家纳米论文数与专利数所占比例的反差较大,在论文数最多的20个国家和地区中,专利数所占比例超过论文数所占比例的国家和地区只有美国、日本和中国台湾。这说明,很多国家和地区在纳米技术研究上具备一定的实力,但比较侧重于基础研究,而实用化能力较弱。

(3)就整体而言纳米科技大国各有所长

美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域快速发展。随着纳米技术在癌症诊断和生物分子追踪中的应用,目前美国纳米研究热点已逐步转向医学领域。医学纳米技术已经被列为美国国家的优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对多种癌症进行早期诊断,而且,已能在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断。2004年,美国国立卫生研究院癌症研究所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、癌症研究与分子生物医学相结合,实现2015年消除癌症死亡和痛苦的目标;利用纳米颗粒追踪活性物质在生物体内的活动也是一个研究热门,这对于研究艾滋病病毒、癌细胞等在人体内的活动情况非常有用,还可以用来检测药物对病毒的作用效果。利用纳米颗粒追踪病毒的研究也已有成果,未来5~10年有望商业化。

虽然医学纳米技术正成为纳米科技的新热点,纳米技术在半导体芯片领域的应用仍然引人关注。美国科研人员正在加紧纳米级半导体材料晶体管的应用研究,期望突破传统的极限,让芯片体积更小、速度更快。纳米颗粒的自组装技术是这一领域中最受关注的地方。不少科学家试图利用化学反应来合成纳米颗粒,并按照一定规则排列这些颗粒,使其成为体积小而运算快的芯片。这种技术本来有望取代传统光刻法制造芯片的技术。在光学新材料方面,目前已有可控直径5纳米到几百纳米、可控长度达到几百微米的纳米导线。

日本纳米技术的研究开发实力强大,某些方面处于世界领先水平,但尚未脱离基础和应用研究阶段,距离实用化还有相当一段路要走。在纳米技术的研发上,日本最重视的是应用研究,尤其是纳米新材料研究。除了碳纳米管外,日本开发出多种不同结构的纳米材料,如纳米链、中空微粒、多层螺旋状结构、富勒结构套富勒结构、纳米管套富勒结构、酒杯叠酒杯状结构等。

在制造方法上,日本不断改进电弧放电法、化学气相合成法和激光烧蚀法等现有方法,同时积极开发新的制造技术,特别是批量生产技术。细川公司展出的低温连续烧结设备引起关注。它能以每小时数千克的速度制造粒径在数十纳米的单一和复合的超微粒材料。东丽和三菱化学公司应用大学开发的新技术能把制造碳纳米材料的成本减至原来的1/10,两三年内即可进入批量生产阶段。

日本高度重视开发检测和加工技术。目前广泛应用的扫描隧道显微镜、原子力显微镜、近场光学显微镜等的性能不断提高,并涌现了诸如数字式显微镜、内藏高级照相机显微镜、超高真空扫描型原子力显微镜等新产品。科学家村田和广成功开发出亚微米喷墨印刷装置,能应用于纳米领域,在硅、玻璃、金属和有机高分子等多种材料的基板上印制细微电路,是世界最高水平。

日本企业、大学和研究机构积极在信息技术、生物技术等领域内为纳米技术寻找用武之地,如制造单个电子晶体管、分子电子元件等更细微、更高性能的元器件和量子计算机,解析分子、蛋白质及基因的结构等。不过,这些研究大都处于探索阶段,成果为数不多。

欧盟在纳米科学方面颇具实力,特别是在光学和光电材料、有机电子学和光电学、磁性材料、仿生材料、纳米生物材料、超导体、复合材料、医学材料、智能材料等方面的研究能力较强。

中国在纳米材料及其应用、扫描隧道显微镜分析和单原子操纵等方面研究较多,主要以金属和无机非金属纳米材料为主,约占80%,高分子和化学合成材料也是一个重要方面,而在纳米电子学、纳米器件和纳米生物医学研究方面与发达国家有明显差距。

4、纳米技术产业化步伐加快

目前,纳米技术产业化尚处于初期阶段,但展示了巨大的商业前景。据统计:2004年全球纳米技术的年产值已经达到500亿美元,2010年将达到14400亿美元。为此,各纳米技术强国为了尽快实现纳米技术的产业化,都在加紧采取措施,促进产业化进程。

美国国家科研项目管理部门的管理者们认为,美国大公司自身的纳米技术基础研究不足,导致美国在该领域的开发应用缺乏动力,因此,尝试建立一个由多所大学与大企业组成的研究中心,希望借此使纳米技术的基础研究和应用开发紧密结合在一起。美国联邦政府与加利福尼亚州政府一起斥巨资在洛杉矾地区建立一个“纳米科技成果转化中心”,以便及时有效地将纳米科技领域的基础研究成果应用于产业界。该中心的主要工作有两项:一是进行纳米技术基础研究;二是与大企业合作,使最新基础研究成果尽快实现产业化。其研究领域涉及纳米计算、纳米通讯、纳米机械和纳米电路等许多方面,其中不少研究成果将被率先应用于美国国防工业。

美国的一些大公司也正在认真探索利用纳米技术改进其产品和工艺的潜力。IBM、惠普、英特尔等一些IT公司有可能在中期内取得突破,并生产出商业产品。一个由专业、商业和学术组织组成的网络在迅速扩大,其目的是共享信息,促进联系,加速纳米技术应用。

日本企业界也加强了对纳米技术的投入。关西地区已有近百家企业与16所大学及国立科研机构联合,不久前又建立了“关西纳米技术推进会议”,以大力促进本地区纳米技术的研发和产业化进程;东丽、三菱、富士通等大公司更是纷纷斥巨资建立纳米技术研究所,试图将纳米技术融合进各自从事的产业中。

欧盟于2003年建立纳米技术工业平台,推动纳米技术在欧盟成员国的应用。欧盟委员会指出:建立纳米技术工业平台的目的是使工程师、材料学家、医疗研究人员、生物学家、物理学家和化学家能够协同作战,把纳米技术应用到信息技术、化妆品、化学产品和运输领域,生产出更清洁、更安全、更持久和更“聪明”的产品,同时减少能源消耗和垃圾。欧盟希望通过建立纳米技术工业平台和增加纳米技术研究投资使其在纳米技术方面尽快赶上美国。

第5篇:生物医学纳米技术范文

由于篇幅限制,本文下面着重介绍聚合物纳米药物。迄今为止,用于纳米药物输送的载体主要是聚合物[12]。因为聚合物主要有以下优点:分子量大,由于EPR效应,作为载体能使药物在病灶部位停留较长时间,延长疗效。可通过调节聚合物物理化学性能和自身降解而达到缓释或控释药物的目的。易功能化,可把一些具有靶向作用或控释功能的组分键合在聚合物粒子表面。可调控的生物降解性,避免药物释放后聚合物载体材料在人体器官聚积,产生毒副作用。(1)聚合物键合药物。聚合物键合药物又称为聚合物前药,它们的生物活性取决于键合的小分子药物是否能够在病变区被及时释放出来。传统的小分子化疗药物在给药过程中遇到许多问题,如在水中溶解性和稳定性较差、体内迅速清除、毒副作用大等。聚合物键合药物采用化学桥联稳定药物分子,将小分子药物以可降解的化学键键合到聚合物骨架上,可以有效避免纳米颗粒在体内循环过程中不必要的药物泄露,而通过不同的化学键的选择,特别是那些对病变局部环境敏感的化学键,比如pH和酶敏感化学键,可以实现在肿瘤组织或肿瘤细胞内的可控释放,这使得其相对于通过物理相互作用包载型的纳米药物更加具有优势。常见的聚合物骨架包括聚乙二醇(PEG)、聚谷氨酸(PGA)、聚N-(2-羟丙基)甲基丙烯酰胺(HPMA)。Duncan等研发了一系列HPMA抗肿瘤键合药物,目前正在进行临床I、II期研究。化疗药物是以Gly-Phe-Leu-Gly键合到聚合物骨架上。通过细胞内溶酶体的酶解作用,键合的抗肿瘤药物可以被有效地释放出来,达到了细胞内给药的要求[13]。再比如将galactose键合到聚合物骨架上可以有效地增加这些纳米药物的肝靶向性[14]。(2)聚合物-蛋白质结合体:聚乙二醇和多糖经常用于制备蛋白质高分子共价结合体。获FDA批准可在临床上使用的聚合物-蛋白质结合体大多数是由聚乙二醇制备的(PEGylation)。PEGylation可增加蛋白质的水溶性和稳定性,又可降低其相应的免疫原和抗原性,从而延长药物在体内的循环半衰期[15,16]。如罗氏公司生产的PEGasys(PeginterferonAlfa-2a)可以使干扰素在血清中的半衰期提高50-70倍[17]。高分子蛋白质结合体的制备方法有:带有功能基团的高分子链与蛋白质活性部位直接连接;将与蛋白质具有特异结合作用的分子首先与高分子以共价键结合,而后实现高分子与蛋白质的特异性结合。目前关注的热点之一是对于具有治疗作用的蛋白质和催化功能的酶等生物特异性蛋白质,与高分子结合后如何保持其生物功能的问题。(3)RNA纳米颗粒:在药物开发史上,化学药物和蛋白质药物已出现,RNA药物或以RNA为目标的药物将是药物开发的第三个里程碑。RNA是由腺嘌呤(A)、尿嘧啶(U)、鸟嘌呤(G)和胞嘧啶(C)构成的一种核糖核酸高分子.与Watson-Crick的DNA碱基配对(A-T,G-C)的双螺旋链的结构不同,RNA的二级结构里经常出现一些非传统的碱基配对如环环相互作用。通过底端向上的“自组装”技术,包括模板法和非模板法,RNA分子可以构建种类繁多的和具有生物功能的纳米结构。RNA纳米治疗剂的独特之处在于,其支架、配体和治疗剂都是由RNA组成,由于其均匀的纳米级尺寸、良好的生物相容性、低毒性和目标特异性,使其有利于在活的机体内应用而不会在正常器官内积累[18],为癌症的治疗提供了参考意见。郭培宣等人于1986年构建phi29DNA组装马达,是至今所能构建最强大的生物马达。1987年郭等人[19,20]报道了phi29噬菌体中由pRNA(packagingribonucleicacid,简称pRNA)驱动的纳米马达。该纳米马达的功能是包裹DNA并将DNA运送到病毒衣壳中,ATP为这种RNA马达提供能量。随后,郭的研究团队证明pRNA分子可以经过改造构建成二聚体、三聚体和六聚体的纳米颗粒,从而开创了RNA纳米技术[21,22]。利用此技术,该团队研发了一系列多功能RNA纳米治疗剂,可用于靶向治疗肿瘤,且不会损伤正常组织。例如[23-26],利用重新改变结构的RN段携带多达4个治疗和诊断模块构建出了超稳定的X形RNA纳米颗粒。这些RNA纳米颗粒可纳入沉默基因的小干扰RNA,调控基因表达的micro-RNA,靶向癌细胞的核酸适体,或是能够催化化学反应的核酶[27]。(4)固体聚合物纳米粒子。其制备方法包括单体聚合成聚合物纳米粒子和聚合物后分散自组装形成固体纳米粒子。常见聚合物载体有聚氰基丙烯酸烷酯、聚乳酸、聚(乳酸-乙醇酸),以及天然大分子如壳聚糖和白蛋白等。药物通过物理吸附或化学键合方法引入载体。Abraxane是第一个获FDA批准的聚合纳米粒子药物,用于乳腺癌、肺癌和胰腺癌的治疗,由白蛋白纳米粒子和键合的paclitaxel组成,尺寸约130nm[28]。聚合纳米粒子作为药物载体除需具备生物相容性和生物降解性之外,单分散性要好。将纳米粒子表面接枝PEG可有效增强分散性和在体内的循环稳定性。此外,研发多功能纳米粒子以便提高靶向性也是当今研究的一个热点。(5)聚合物纳米胶束。常见小分子表面活性剂形成的胶束稳定性较差,不适于药物运输。而聚合物纳米胶束,具有载药量高、载药范围广、稳定性好,体内滞留时间长等优点[29,30]。常用于难溶性药物、大分子药物及基因治疗药物的载体,还可实现靶向给药,具有广泛的应用前景。聚合物纳米胶束通常是由具有亲水部分和疏水部分的两亲嵌段共聚物在水中自组装形成的纳米级大小的核-壳型胶束,尺寸大约20-100nm。其中亲水部分多由PEG组成,疏水部分多由聚乳酸、聚环氧丙烷、聚氨基酸组成。目前至少有6种聚合物纳米胶束抗肿瘤药物进行临床研究。纳米药物是具有巨大发展前景的新型药物,其在医药领域的发展必将引起疾病诊断和治疗的革命。目前,纳米医药技术的基础理论及纳米药物的制备工艺等还很不完善。基础理论方面,人们对纳米药物在体内的行为,包括组织分布、药代动力学和药效,以及它们与载体的化学结构和物理性能之间的相互关系,都缺乏深入和系统的研究;从制备工艺来讲,制备工艺要求操作方便、成本低、易于工业化放大生产,产品性能要稳定。因此,纳米技术在医药领域中的研究还需做大量的工作。其未来发展方向是增强载药量、提高靶向作用及控释能力、降低超敏反应[31]。

2纳米生物医用材料

纳米生物医用材料是纳米材料与生物医用材料的交叉,在人类康复工程中发挥重要作用。纳米生物医用材料将解决临床对伤口敷料、人造皮肤、人造血管和组织工程支架、高性能组织修复、器官替换的迫切需求[32-34],而且已显示出巨大的潜在应用价值。材料支架在组织工程中起着重要作用[35]。模仿天然的细胞外基质结构而制成的纳米纤维生物可降解材料已开始应用于组织工程的修复和再生。由于软骨再生能力有限,软骨组织工程领域的发展具有重要意义,特别是在治疗老龄化社会日益流行的大关节骨关节炎方面[36]。嵇伟平等采用塑性变形和化学处理方法在Ti6A14V合金上制得一种新型多孔纳米晶体,通过体外实验研究了成骨细胞在纳米Ti6A14V合金表面的黏附情况。结果表明,与普通钛合金相比,纳米表面钛合金早期就能使成骨细胞伪足伸展良好,促进成骨细胞紧密贴壁和早期融合,与细胞黏附相关的Integrinβ1的表达也高于普通钛合金,为将纳米技术应用到人工关节等植入器械领域提供了新的方向[37]。还可以将纳米骨材料[38]植入体内填充各类型的骨缺损,其网状结构可生长出很多新生的骨细胞,所有填的纳米骨材料,最后会降解消失,骨缺损部能完全被新生骨取代。目前医用纳米羟基磷灰石/聚酰胺66复合骨充填材料已投入市场,对骨缺损的恢复具有较好的作用。纳米技术与生物医学的结合,为医学界提供了全新的思路,在医学领域的应用已取得一定成果。但目前大多数研究还处于动物实验阶段,仍需大量临床试验予以证实,纳米材料应用的生物安全性也有待进一步提高。这就要求生物医学研究者与纳米材料的研究人员合作需进一步加强,制造出更先进的生物医用纳米材料。

3纳米诊断学

纳米诊断学是纳米生物技术在分子诊断中的应用,对于发展个性化治疗具有重要意义。目前纳米生物技术在临床诊断方面的研究主要集中在纳米生物传感器[39,40]和成像技术[41,42]、使用制造纳米机器人在细胞水平上进行维修,生物标志物的提取及测定等[43,44]领域,以疾病的早期诊断和提高疗效为目标。

3.1体外生物分子检测

超灵敏的生物分子检测方法可以服务于临床诊断[45,46]。由于待测分子含量很少,因此,对方法的检测灵敏度有很高要求。纳米材料特有的性质可以极大地提高分子检测的灵敏度和简便性[47,48],人们研究了各种各样的超微量生物分子检测的信号放大方法[49,50]。丁良等[51]利用纳米晶体中阳离子交换反应释放的阳离子来诱导荧光染料,用于痕量生物分子的检测,取得良好效果。实验表明基于ZnS纳米簇的阳离子交换放大器的检测性能优于酶联免疫吸附测定法(ELISA),检测限低1000倍。标志着利用便携式床旁检测设备检测生物标记物成为可能。

3.2体内诊断

3.2.1注射PEG-Glu-GNPs后肿瘤的轮廓很容易与周围组织区别开来,这种复杂的探针可以实现体内疾病的早期诊断,大大有助于癌症或癌转移的早期发现[52]。另外开发体内神经递质参与脑化学的监测是一项具有挑战性的工作,有助于进一步理解生物分子在病理和生理上的作用。Liu等[53]报道了一种新型的封装有金纳米颗粒的玻璃毛细管来感应大脑多巴胺,结果表明,全氟磺酸改进Au/GCNE可成功用于监测麻醉大鼠纹状体的多巴胺。Kempen等用光学显微镜和扫描电镜定位、观察金纳米粒子聚集的脑肿瘤模型,发现纳米颗粒仅在含有脑肿瘤细胞的区域内聚集,在正常脑组织周围没有发现[54]。3.2.2量子点(半导体纳米晶体)量子点是以CdSe为核、CdS或ZnS为壳的核-壳型纳米体,具有优良的光谱性能。水溶性的量子点在生物化学等研究领域显示了极其广阔的应用前景。它的细胞毒性低,可用于活细胞及体内非同位素标记的生物分子的超灵敏检测。李朝辉等[55]利用反相微乳液技术,以CdTe量子点为核,SiO2为壳,一步制备了表面带有氨基和磷酸基团的核壳型量子点荧光纳米颗粒.该颗粒水溶性好,大小均匀,有效改善了CdTe量子点的不稳定性,成功实现了对肝实质细胞的识别。由于量子点技术有其独特的标记特点,它必将成为今后生物分子检测的尖端技术,为DNA检测(DNA芯片)、蛋白质检测(蛋白质芯片)和探索蛋白质-蛋白质之间(抗原-抗体、配体-受体、酶-底物)反应原理提供更先进的方法。同时也将极大推动生物显像技术和生物制药技术的迅猛发展,给疾病的诊断和治疗带来巨大进步。3.2.3纳米磁性颗粒较大尺度的磁性纳米颗粒呈现铁磁性,在交变磁场的作用下可通过磁滞现象产热,用于癌症的靶向热疗[56]。而粒径小于20nm的磁性纳米颗粒通常显现出超顺磁性,可被广泛应用于临床诊断领域。目前在临床诊断方面较为成熟、发展较快的应用主要包括:磁共振成像、生物分离、细胞筛选等。(1)磁共振成像(MRI)作为一项新的医学影像诊断技术,近年来发展十分迅速,所提供的特有信息对诊断疾病具有很大的潜在优越性。利用超顺磁性氧化铁磁性纳米颗粒在生物体组织内的特异性分布,有助于提高该部位肿瘤与正常组织的MRI对比度,因而作为造影增强剂被应用于MRI,进行肿瘤及其他疾病的诊断[57]。(2)生物分离。因磁性纳米颗粒具有易操控性、比表面积大等优点,使功能化的磁性纳米颗粒的应用具有很大的吸引力[58]。当前磁分离的研究涉及生物领域的多个方面,如血液中金属离子的去除,蛋白质、核酸等的富集、固定化酶的回收与重复等[59]。Yan课题组[60]利用磁性氧化铁粒子作为载体固定蛋白酶A,并利用其能够与乙肝病毒表面抗原抗体发生特异性结合的性质,达到测定乙肝病毒的目的。(3)细胞筛选。当组织或血液中仅有微量癌细胞的时候,通过特定的技术就可以精确地检测到,从而实现对疾病的早期诊断和治疗,必将为病人获得宝贵的治疗时间,提高治愈率。所以细胞筛选具有重要的意义。免疫磁珠细胞筛选法可在几分钟内从复杂的细胞混合物中分离出很高纯度的细胞。Mousavi等[61]等开发了一种新型的与金纳米条结合的微流控芯片,利用高效免疫磁珠法捕捉人血中极少量的细胞,可以达到简单而有效的检测高纯度目标细胞的目的。可以预见,在未来,更加精确的细胞筛选技术将是一个非常热门的研究方向[62]。虽然功能化的磁性纳米材料已经有了广泛的应用,但如何设计更简单的制备过程和更新颖的功能化方式以使材料本身具有更好的分散性和使用寿命,仍是研究者们探索的方向.3.2.4纳米生物传感器在癌症研究领域,利用纳米技术制成的传感器可望使各种癌症的早期诊断成为现实[63]。纳米传感器灵敏度很高,在进行血液检测时,当传感器中预置的某种癌细胞抗体遇到相应的抗原时,传感器中的电流会发生变化,通过这种电流变化可以判断血液中癌细胞的种类和浓度。目前越来越多的风险投资正在涌入这一领域,但这一技术在实用中还有一些技术难题需要解决。今后可能会有多种纳米传感器集成在一起被置入人体,以用来早期检测各种疾病。3.2.5生物芯片生物芯片是基因生物学与纳米技术相结合的产物,它不同于半导体芯片,它是在很小的几何尺度的表面积上,装配一种或集成多种生物活性分子,仅用微量生理或生物采样,即可同时检测和研究不同的生物细胞、生物分子和DNA的特性,以及它们之间的相互作用,获得生命微观活动的规律。具有集成、并行和快速检测的优点,生物芯片技术已经成为21世纪生物医学工程的前沿科技。基于纳米结构阵列的蛋白质芯片和微流控芯片技术在诊断学和生物传感技术方面的应用具有巨大的潜力[64]。Ali等[65]制备的基于氧化镍纳米棒的微流控生物芯片,采用电化学检测法来测定人体血液中的总胆固醇浓度,线性范围为1.5-10.3mmol/L,灵敏度高达0.12mA•mmol-1•cm-2。DNA芯片技术可以快速分析大量的基因信息,从而使生物医学工作者可以研究并收集基因表达和变异信息,还可用于监测不同的人体细胞和组织基因表达,以检测癌症或其它疾病所对应的基因的变化。3.2.6纳米机器人纳米技术与分子生物学的结合将开创分子仿生学新领域。“纳米机器人”是根据分子水平的生物学原理为设计原型,设计制造可对纳米空间进行操作的“功能分子器件”。以色列科学家研发出一种“胶囊相机”,将摄像头内置入比普通感冒药稍大的胶囊内,以大约每秒14张照片的频率拍摄消化道内的情况,并同时传回外置的图像接收器,可进行人体消化道肿瘤监测。还可将纳米机器人注入人体血管内,进行全身健康检查,疏通脑血管中的血栓,清除心脏动脉脂肪沉积物,用于动脉粥样硬化的治疗;可吞噬病毒,杀死癌细胞;可将纳米机器人以插入导管的方式引入到尿道或胆道里内,直接到达结石所在的部位,并且直接把结石击碎,进行肾结石、胆结石的治疗;还可进行人体器官的修复工作、作整容手术、从基因中除去有害的DNA,把正常的DNA安装在基因中,这样可以从根本上治愈遗传缺陷或病毒,使机体正常运行。未来发展趋势是当机器人医生发现可疑病变组织后,立即能伸出“手”来取样进行活检。纳米机器人在体内的生物传感与智能配送生物活化剂有很大潜力[66]。

4纳米材料和纳米生物技术的安全性问题

随着纳米技术的迅速发展,不可避免地导致含有纳米颗粒的工业废水的排放[67],纳米材料的潜在的免疫毒性机制所引起的不良反应还没有得到足够的重视[68]。纳米颗粒可直接穿透人体皮肤引发多种炎症;可穿透细胞膜,将异物带入细胞内部,对人体脑组织、免疫与生殖系统等方面造成损害等。如二氧化钛容易在饮用水中聚集,从而污染环境、影响健康。接触二氧化钛纳米微粒后,人体肺部将可能出现炎症。银纳米颗粒目前已被大量使用。研究表明,即使它在环境中的聚集量很低,也会对水中无脊椎动物造成伤害。碳纳米管是工业和实验所需的材料,注射了碳纳米管的老鼠会产生动脉粥状化、线粒体脱氧核糖核酸损伤等反应。当摄入量较大时,对肌肉细胞也有毒性,会对人体健康有不利影响。但尽管纳米生物技术的应用有一定安全性的问题,它的应用也会越来越广泛,同时这也为纳米技术将来的发展指明了方向——如何提高其安全性问题是研究的目标之一。

5发展前景

第6篇:生物医学纳米技术范文

目前,国际医学行业面临新的决策,那就是用纳米尺度发展制药业。纳米生物医学就是从动植物中提取必要的物质,然后在纳米尺度组合,最大限度发挥药效,这恰恰是我国中医的想法,随着健康科学的发展,人们对药物的要求越来越高。控制药物释放减少副作用,提高药效,发展药物定向治疗,必须凭借纳米技术。纳米粒子可使药物在人体内方便传输。用数层纳米粒子包裹的智能药物进入人体,可主动搜索并攻击癌细胞或修补损伤组织,尤其是以纳米磁性材料作为药物载体的靶定向药物,称为"定向导弹"。该技术是在磁性纳米微粒包覆蛋白质表面携带药物,注射到人体血管中,通过磁场导航输送到病变部位,然后释放药物。纳米粒子的尺寸小,可以在血管中自由的滚动,因此可以用检查和治疗身体各部位的病变。利用纳米系统检查和给药,避免身体健康部位受损,可以大大减小药物的毒副作用,因而深受人们的欢迎。

2在涂料方面的应用;

纳米材料由于其表面和结构的特殊性,具有一般材料难以获得的优异性能。借助于传统的涂层技术,再给涂料中添加纳米材料,可获得纳米复合体系涂层,实现功能的飞跃,使得传统涂层功能改性从而获得传统涂层没有的功能,如;有超硬、耐磨,抗氧化、耐热、阻燃、耐腐蚀、变色等。在涂料中加入纳米材料,可进一步提高其防护能力,实现防紫外线照射,耐大气侵害和抗降解等,在卫生用品上应用可起到杀菌保结作用。

在建材产品如玻璃中加入适宜的纳米材料,可达到减少光的透射和热估递效果,产生隔热,阻燃等效果。由于氧化物纳米微粒的颜色不同,这样可以通过复合控制涂料的颜色,克服碳黑静电屏蔽涂料只有单一颜色的单调性。纳米材料的颜色不仅限粒径而变,而具有随角度变色的效应。在汽车的装饰喷涂业中,将纳米Tio2添加在汽车、轿车的金属闪光面漆中,能使涂层产生丰富而神秘的色彩效果,从而使传统汽车面色彩多样化。

3在化工方面的应用;

化工业影响到人类生活的方方面面,如果在化工业中采用纳米技术,将更显示出独特畦力。在橡胶塑料等化工领域,纳米材料都能发挥重要作用。如在橡胶中加入纳米Sio2,可以提高橡胶的抗紫外辐射和红外反射能力。纳米Al2O3和SiO2,加入到普通橡胶中,可以提高橡胶的耐磨性和介电特性,而且弹性也明显优于用白炭黑作填料的橡胶。塑料中添加一定的纳米材料,可以提高塑料的强度和韧性,而且致密性和防水性也相应提高。最近又开发了食品包装的TiO2.纳米TiO2能够强烈吸收太阳光中的紫外线,产生很强的光化学活性,可以用光催化降解工业废水中的有利污染物,具有除净度高,无二次污染,适用性广泛等优点,在环保水处理中有着很好的应用前景。4其他生活方面的应用:

纳米技术正在悄悄地渗透到老百姓衣、食、住、行各个领域。化纤布料制成的衣服虽然艳丽,但因摩擦容易产生静电,因而在生产时加入少量金属纳米微粒,就可以摆脱烦人的静电现象。不久前,关于保温被、保温衣的电视宣传,提到应用了纳米技术。纳米材料可使衣物防静电、变色、贮光,具有很好的保暖效果。冰箱、洗衣机等一些电器时间长了容易产生细菌,而采用了纳米材料,新设计的冰箱、洗衣机既可以抗菌,又可以除味杀菌。紫外线对人体的害处极大,有的纳米微粒却可以吸收紫外线对人体有害的部分,市场上的许多化妆品正是因为加入了纳米微粒而具备了防紫外线的功能。传统的涂料耐洗刷性差,时间不长墙壁就会变的班驳陆离,纳米技术应用之后,涂料的技术指标大大提高,外墙涂料的耐洗刷性提高很多,以前的电视、音响等家电外表一般都是黑色的,被称为黑色家电,这是因为家电外表材料中必须加入碳黑进行静电屏蔽。如今可以通过控制纳米微粒的种类,进而可控制涂料的颜色,使黑色家电变成彩色家电。

总之,在未来生活中,纳米技术将带给我们无限的舒心与时尚,使人类的生存的条件更加优越。

参考文献

[1]赵清荣:雷达与对抗[J],2001,(3):20-23。

[2]秦嵘等。宇航材料工艺[J],1997,(4):17-20。

[3]张立德,牟秀美,纳米材料学[M],沈阳;辽宁科学技术出版社1994。

[4]刘列,张明雪,胡连成,宇航材料工艺[J],1994,24。

论文关键词:纳米尺寸;性能

第7篇:生物医学纳米技术范文

关键词:纳米金刚石;应用;发展;性质;前景

1 引言

金刚石俗称“金刚钻”。也就是我们常说的钻石的原身,它是一种由碳元素组成的矿物,是碳元素的同素异形体。金刚石是自然界中天然存在的最坚硬的物质。金刚石的用途非常广泛,例如:工艺品、工业中的切割工具。

纳米金刚石,是新型纳米技术和传统的金刚石技术相结合的产物,纳米技术兴起于20世纪末,一经诞生便迅速发展,在多个领域都取得了显著成效,尤其在材料科学领域,对最硬材料金刚石的发展,更是有着不同寻常的意义,成绩斐然,本文主要对新型材料纳米金刚石的研究情况和未来前景展开研究,希望对今后的学习提供资料,为科研提供借鉴。

2 纳米金刚石的优点

纳米金刚石作为一种新兴材料,一经出现,便以其优异的性能广泛应用于半导体硅片抛光、计算机硬盘基片、计算机顶头抛光、精密陶瓷、人造晶体、硬质合金、宝石抛光等众多高科技领域。比如俄罗斯用纳米金刚石抛光石英、光学玻璃等,其抛光表面粗糙度达到1nm。精确度比起之前大大提高。

纳米金刚石在应用过程中,显示出很多的优点。因为本身具有超细、超硬的性能,使得光学抛光中一直以来让人头疼的难题便随之迎刃而解。精细抛光是光学抛光中的难题,原工艺方法是把磨料反复使用,需要耗时几十个小时,效率并不高。自从使用了纳米金刚石之后,就使的抛光速度大大提高。抛光相同的工件所需的时间才十几小时至几十分钟,效率提高了数十倍至数百倍。根据资料研究不难得出,纳米金刚石能够适应与满足超精加工发展的需求。

总之,纳米金刚石有以下优点:

(1).精确度高,纳米金刚石的分级准确,如大致范围是10nm,10~50nm等;

(2).组合方便,纳米金刚石较好的储存是含水悬浮方式,稳定性更强,更容易适应现实需要,

(3).纳米金刚石的表面和整体化学性质具有好的重复性和再现性,能够整体适应无机化学要求;

(4).干净整洁,有效防止表面污染,纳米金刚石使用过程中严格按照微电子技术的规范,不含化学不纯物等杂质;

(5)摩擦性好,.纳米金刚石成本在稳定的条件状态下,与静压合成金刚石的微粉和膏体有可比性。表面修饰的纳米金刚石微粒在油中的抗磨减摩性。

3 纳米金刚石使用中的问题

作为一种新型的纳米材料,纳米金刚石不但具有金刚石的特性,而且具有小尺寸效应、大比表面效应和量子尺效应等纳米材料的特性。优异的电子、机械和化学性能使得纳米金刚石在电子、机械、化学、化工和医疗等很多领域都有着很好的应用前景,受到了广泛的关注。但是,由于纳米金刚石表面能级高以及合成过程中诸多因素的影响等原因,粒子极易团聚,如果分散不好,纳米金刚石的硬团聚和软团聚等问题得不到解决,在实际使用过程中往往会导致粒子失去其作为纳米粉体的许多优越性,其良好的性能不能得到充分的发挥,其应用因此受到制约,无法满足使用的要求,由此也暴露出很多的缺点和问题,因此在实际的操作运行过程中,要注意对其进行解团聚及分级处理。

纳米粉体分级的方法主要有干法和湿法两种。在干法分级中于由粒子间相互附着,分散凝聚是干法分级难以解决的问题。而在湿法分级中,作为介质水本身就是一种较好的分散剂, 且利用添加表面改性剂制得分散性好的料浆,因此在实际运行中,拟采用湿法离心分级方法,试图达到使用的要求。又由于纳米金刚石特有的性能,所以分级前必须解决其团聚及分散性问题,即要先采用机械及化学的方法对其表面改性处理。

4 纳米金刚石前景

随着二十一世纪的经济发展,科技水平的不断提高,现实需要的不断变化,关于新材料的研发是我国重点发展的高新技术领域之一,而纳米材料又是其中的佼佼者。跟据权威机构的有关材料,截止到2010年全世界纳米材料市场规模已超过2000亿美元。随着国际科技进步及工业向高精尖的发展,纳米技术已成各国竞相发展的重要领域之一。真正批量生产粒径为几个纳米的材料只有纳米金刚石等少数几种,可见纳米金刚石的发展前景是非常宽广的。

另外,值得注意的是,纳米金刚石应用在肠胃疾病、肿瘤、皮肤病等医学领域的治疗方面,还可以作为葡萄糖氧化酶的载体,可制成性能优良的血糖测定传感器等,来测定人体血糖血压等相关数据的变化和发展,从而达到预报病情的目的,提醒医生病人身体机能发生的变化,及时采取措施,防止糖尿病、高血压、高血脂等高危病的进一步发展,除此之外,纳米金刚石在医学上还有多种应用,因此我们可以看出,纳米金刚石在生物医学等领域几有较好的应用前景,将来的发展前途不可限量。

5 结语

纳米金刚石作为一种新型的材料,在实际应用过程中,已经展示了良好的应用前景,引起了人的高度重视。随着对纳米材料研究的日趋深入,必将对科学技术产生深远的影响。不过由于纳米金刚石是一个比较新的研究领域,研究涉及到物理、化学、化工、材料等众多学科,到目前还未形成完整的理论体系。也不可以避免的暴露出一些问题,因此,我们要加大对纳米技术研究的关注程度和投资力度。采取有效措施,趋利避害,保证纳米技术已在材料、微电子学、生物工程、医学等领域得到广泛应用。

参考文献

[1]李泉,曾广赋,席时权.纳米粒子[J].化学通报,1995(6):29-34.

[2]柳闽生,杨迈之等.半导体纳米粒子的基本性质及光电化学特性[J].化学通报,1997(1):20-24.

[3]郭永存,李植华,张广云.金刚石的人工合成与应用[M].中国科学出版社,1984:1~3.

[4]袁公煜.人造金刚石合成与金刚石工具制造[M].中南工业大学出版社,1992:15~18.

[5]谢有赞.金刚石理论与合成技术[M].湖南科学技术出版社,1993.

[6]王和照,张建军.金刚石薄膜的性质及其应用[J].新技术新工艺,1994,4~28.

[7]张文军等.硼掺杂及未掺杂金刚石薄膜的电学和光电导特性[J].半导体学报,1995,10

[8]苏提,陈本敬.热丝CVD金刚石薄膜Auger电子能谱分析[J].人工晶体学报,1995,01:5~35.

第8篇:生物医学纳米技术范文

过去,人们只注意原子、分子,或者宇宙空间,常常忽略他们的中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度的范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家。他们发现:一个导电,导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电,也不导热。材料在尺寸上达到纳米尺度,大约是在1~100纳米这个范围空间,就会产生特殊的表面效应,体积效应,量子尺寸效应,量子隧道效应等及由这些效应所引起的诸多奇特性能。拥有一系列的新颖的物理和化学特性,这些特性在光、电、磁、催化等方面具有非常重大应用价值。

近年来,已在医药、生物、环境保护和化工等方面得到了应用,并显示出它的独特魅力。

1医学方面的应用:

目前,国际医学行业面临新的决策,那就是用纳米尺度发展制药业。纳米生物医学就是从动植物中提取必要的物质,然后在纳米尺度组合,最大限度发挥药效,这恰恰是我国中医的想法,随着健康科学的发展,人们对药物的要求越来越高。控制药物释放减少副作用,提高药效,发展药物定向治疗,必须凭借纳米技术。纳米粒子可使药物在人体内方便传输。用数层纳米粒子包裹的智能药物进入人体,可主动搜索并攻击癌细胞或修补损伤组织,尤其是以纳米磁性材料作为药物载体的靶定向药物,称为"定向导弹"。该技术是在磁性纳米微粒包覆蛋白质表面携带药物,注射到人体血管中,通过磁场导航输送到病变部位,然后释放药物。纳米粒子的尺寸小,可以在血管中自由的滚动,因此可以用检查和治疗身体各部位的病变。利用纳米系统检查和给药,避免身体健康部位受损,可以大大减小药物的毒副作用,因而深受人们的欢迎。

2在涂料方面的应用;

纳米材料由于其表面和结构的特殊性,具有一般材料难以获得的优异性能。借助于传统的涂层技术,再给涂料中添加纳米材料,可获得纳米复合体系涂层,实现功能的飞跃,使得传统涂层功能改性从而获得传统涂层没有的功能,如;有超硬、耐磨,抗氧化、耐热、阻燃、耐腐蚀、变色等。在涂料中加入纳米材料,可进一步提高其防护能力,实现防紫外线照射,耐大气侵害和抗降解等,在卫生用品上应用可起到杀菌保结作用。

在建材产品如玻璃中加入适宜的纳米材料,可达到减少光的透射和热估递效果,产生隔热,阻燃等效果。由于氧化物纳米微粒的颜色不同,这样可以通过复合控制涂料的颜色,克服碳黑静电屏蔽涂料只有单一颜色的单调性。纳米材料的颜色不仅限粒径而变,而具有随角度变色的效应。在汽车的装饰喷涂业中,将纳米Tio2添加在汽车、轿车的金属闪光面漆中,能使涂层产生丰富而神秘的色彩效果,从而使传统汽车面色彩多样化。

3在化工方面的应用;

化工业影响到人类生活的方方面面,如果在化工业中采用纳米技术,将更显示出独特畦力。在橡胶塑料等化工领域,纳米材料都能发挥重要作用。如在橡胶中加入纳米Sio2,可以提高橡胶的抗紫外辐射和红外反射能力。纳米Al2O3和SiO2,加入到普通橡胶中,可以提高橡胶的耐磨性和介电特性,而且弹性也明显优于用白炭黑作填料的橡胶。塑料中添加一定的纳米材料,可以提高塑料的强度和韧性,而且致密性和防水性也相应提高。最近又开发了食品包装的TiO2.纳米TiO2能够强烈吸收太阳光中的紫外线,产生很强的光化学活性,可以用光催化降解工业废水中的有利污染物,具有除净度高,无二次污染,适用性广泛等优点,在环保水处理中有着很好的应用前景。

4其他生活方面的应用:

纳米技术正在悄悄地渗透到老百姓衣、食、住、行各个领域。化纤布料制成的衣服虽然艳丽,但因摩擦容易产生静电,因而在生产时加入少量金属纳米微粒,就可以摆脱烦人的静电现象。不久前,关于保温被、保温衣的电视宣传,提到应用了纳米技术。纳米材料可使衣物防静电、变色、贮光,具有很好的保暖效果。冰箱、洗衣机等一些电器时间长了容易产生细菌,而采用了纳米材料,新设计的冰箱、洗衣机既可以抗菌,又可以除味杀菌。紫外线对人体的害处极大,有的纳米微粒却可以吸收紫外线对人体有害的部分,市场上的许多化妆品正是因为加入了纳米微粒而具备了防紫外线的功能。传统的涂料耐洗刷性差,时间不长墙壁就会变的班驳陆离,纳米技术应用之后,涂料的技术指标大大提高,外墙涂料的耐洗刷性提高很多,以前的电视、音响等家电外表一般都是黑色的,被称为黑色家电,这是因为家电外表材料中必须加入碳黑进行静电屏蔽。如今可以通过控制纳米微粒的种类,进而可控制涂料的颜色,使黑色家电变成彩色家电。

总之,在未来生活中,纳米技术将带给我们无限的舒心与时尚,使人类的生存的条件更加优越。

论文关键词:纳米尺寸;性能

第9篇:生物医学纳米技术范文

[关键词] 胶质瘤;纳米粒子;纳米技术;治疗

[中图分类号] R94 [文献标识码] A [文章编号] 1673-7210(2016)10(a)-0032-04

Progress of brain-targeted nanoparticles in glioma therapies

YANG Weili1 WANG Guangtian1 YU Hui1 CHANG Naidan1 LIANG Ling2 LIU Xiaoying1 LI Minghui1 PENG Haisheng1

1.Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Heilongjiang Province, Daqing 163319, China; 2.Cardiac Care Unit, Daqing Oil Field General Hospital, Heilongjiang Province, Daqing 163001, China

[Abstract] Successful treatment of glioma is one of the greatest challenges in the field of medicine. The incidence is growing fast year by year. Annually, there are approximately 13 000 cases of patients diagnosed with glioblastomamultiforme. The 1-year and 5-year survival rates of glioblastomamultiforme are 29.3% and 3.3% respectively. The prognosis of patients with malignant glioma is still poor. As its highly proliferative, infiltrative and invasive property, it's urgent to search effective strategies to control the gliomas. What's more, the non-specific, non-targeted nature of anti-tumor agents led to the low efficiency of drug delivery to glioma. Besides, the presence of the blood brain barrier is another obstacle for gliomas treatments. Hence, it's of great importance to find an effiecient gliomas therapeutic to overcome the BBB barrier. Nanotechnology has brought a new prospect in the treatment of glioma. This review focuses on the potential of various nanoparticles in the therapy of gliomas including dendrimers, receptor-mediated drug delivery systems.

[Key words] Glioma; Nanoparticles; Nanotechnology; Therapies

脑胶质瘤是最难治愈的恶性肿瘤之一,在中枢神经系统疾病的原发性肿瘤中占近80%[1]。传统的治疗手段是采用手术切除,手术切除后采用联合采用化学治疗方法以及放射治疗的方法继续对残余的肿瘤细胞进行治疗。神经外科专家拥有大批精密的手术仪器。然而,这些精密的仪器无法解决切除肿瘤后胶质瘤的侵袭,侵袭正常组织从而促进胶质细胞的再增长,影响了正常脑组织的重要的生理功能。精确的切除新生肿瘤部位和有效的治疗残余肿瘤细胞仍然是一大挑战。纳米技术对提高治疗肿瘤是一个重大的促进力,联合纳米粒子治疗已被广泛用于胶质瘤治疗[2]。

近年来随着科学技术的进步,分子生物学、细胞生物学、药理学和纳米技术的快速增长,胶质瘤的分子机制、复发治疗和其发病的原因得到了显著的发展,细胞受体、转运载体和酶[3-5],同时还有磁性吸附、超声渗透的热化学疗法以及细胞工程等为临床治疗和诊断胶质瘤提供了可能性[6-7]。在胶质瘤的治疗中有许多的不同的分子机制,如酪氨酸激酶抑制剂、血管内皮生长因子、受体抑制剂、mTOR抑制剂等[8]。然而,这些小分子在临床的治疗效果不理想。目前,很多研究者已经着力去发展新型药物转运系统,以找到有效治疗胶质瘤的突破口。

1 血脑屏障及其受体

脑是人体中枢神经活动的中心,也是神经系统最复杂的部分。脑组织处于稳定的内环境中,选择性地与周边环境进行物质交换,而维持这种稳定性的结构称为脑屏障。脑屏障由三部分构成:血-脑屏障(blood-brain barrier,BBB),血-脑脊液屏障(blood-cerebrospinal fluid)和脑脊液-脑屏障(cerebrospinal fluid-brain barrier)。其中血-脑屏障所起的屏障作用最大。BBB由脑的连续毛细血管内皮及其细胞间的紧密连接、完整的基膜、周细胞以及星形胶质细胞脚板围成的神经胶质膜构成,其中内皮是血脑屏障的主要结构。与其他器官的血管内皮相比,脑毛细血管内皮细胞之间没有开窗式缺损或孔隙,缺少胞饮作用的载体,且存在一系列酶系统阻止了一些物质的通过[9]。这些细胞彼此紧密连接、互相重迭,形成一条完整的带,围绕着整个毛细血管壁。脑毛细血管内皮细胞周围环绕着基膜、细胞外基质、周边细胞及早形胶质细胞足突,进一步构成屏障并调控其渗透性。血脑屏障的这种形态与结构决定了只有能自由扩散透过毛细血管上皮细胞膜的脂溶性成分才能被动透过BBB,而水电解质及大分子物质难以进入脑组织,这使得接近98%的小分子和100%的生物大分子药物难以进入脑内发挥作用,严重限制了脑部疾病的治疗[10]。基于血脑屏障上细胞所具有特定结构,根据主动靶向或者被动靶向机制设计了靶向纳米粒子用于脑胶质瘤的治疗。在药物进入到肿瘤细胞之前,药物不得不克服存在于脑肿瘤细胞和微血管之间第二道屏障――血脑肿瘤屏障。

Liu等[26]合成了Dendrigraft poly-L-lysines (DGLs)树状大分子,将肿瘤坏死相关细胞凋亡诱导配体(TRAIL)和DOX包裹于树状大分子,在树状大分子表面修饰肿瘤特异性靶向配体T7多肽以及转铁蛋白受体,制成双重靶向修饰的树状大分子。DGLs变成了一个潜在的基因载体。通过调整死亡受体的表达,DOX加强TRAIL抗肿瘤效果,同时激活凋亡通路,抑制了肿瘤细胞的生长[27]。

3 小结

统治方法效率低促进了新型药物的发展,新型药物能够提高抗癌药物进入肿瘤部位,减少正常组织的毒性。由于胶质瘤的复杂性和多种蛋白表达在胶质瘤细胞的表面,细胞膜上分子可能改变相同肿瘤在不同阶段,甚至相同肿瘤的不同部位。当今,在治疗脑肿瘤方面,通过在纳米粒子表面修饰的方法,纳米粒子能够高度地包载抗肿瘤药物、靶向配体。在诊断脑肿瘤方面,纳米粒子由于其靶向性、多功能化和成像性促进了纳米医学的快速发展[28]。

纳米粒子的多功能属性是研究者开展研究血脑屏障以及脑肿瘤兴趣的主要驱动力。纳米粒子有助于检测脑肿瘤的治疗和发展状况,可能会增加患者的生存率。所以,纳米药物在治疗胶质瘤方面,展示出了一个光明的前景。研究者现在已经设计了许多不同分子量的靶向肿瘤细胞的药物载体,随着临床肿瘤学领域的不断研究,许多用于生物靶向和磁性吸附成像的药物转运载体促进基于纳米粒子治疗脑肿瘤的纳米医学的进步。

[参考文献]

[1] Liu H,Zhang J,Chen X,et al. Application of iron oxide nanoparticles in glioma imaging and therapy: from bench to bedside [J]. Nanoscale,2016,8(15):7808-7826.

[2] Li M,Deng H,Peng H,et al. Functional nanoparticles in targeting glioma diagnosis and therapies [J]. J Nanosci Nanotechnol,2014,14(1):415-432.

[3] Peng Z,Shuangzhu Y,Yongjie J,et al. Retraction Note to:TNF receptor-associated factor 6 regulates proliferation, apoptosis, and invasion of glioma cells [J]. Mol Cell Biochem,2016,415(1-2):207.

[4] Hu G,Wei B,Wang L,et al. Analysis of gene expression profiles associated with glioma progression [J]. Mol Med Rep,2015,12(2):1884-1890.

[5] Dixit S,Miller K,Zhu Y,et al. Dual Receptor-Targeted Theranostic Nanoparticles for Localized Delivery and Activation of Photodynamic Therapy Drug in Glioblastomas [J]. Mol Pharm,2015,12(9):3250-3260.

[6] Mamani JB,Pavon LF,Miyaki LA,et al. Intracellular labeling and quantification process by magnetic resonance imaging using iron oxide magnetic nanoparticles in rat C6 glioma cell line [J]. Einstein (Sao Paulo),2012,10(2):216-221.

[7] Eldib M,Bini J,Faul DD,et al. Attenuation Correction for Magnetic Resonance Coils in Combined PET/MR Imaging: A Review [J]. PET Clin,2016,11(2):151-160.

[8] Zhao L,Shi X,Zhao J. Chlorotoxin-conjugated nanoparticles for targeted imaging and therapy of glioma [J]. Curr Top Med Chem,2015,15(13):1196-1208.

[9] Varatharaj A, Galea I. The blood-brain barrier in systemic inflammation [J]. Brain Behav Immun,2016.DOI:10.1016/j.bbi.2016.03.010.