公务员期刊网 精选范文 微波技术的基本原理范文

微波技术的基本原理精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的微波技术的基本原理主题范文,仅供参考,欢迎阅读并收藏。

微波技术的基本原理

第1篇:微波技术的基本原理范文

关键词: 无线电力传输技术 电磁感应 射频 原理与应用前景

1.引言

自17世纪人类发现如何发电后就用金属电线来四处传输电力。时至今日,供电网、高压线已遍布全球的角角落落。在工作和生活中,越来越多的电器给我们带来极大便捷的同时,不知不觉各种“理不清”的电源线、数据线带来的困扰也与日俱增。不过,这些年的科技发展表明,在无线数据传输技术日益普及之时,科学家对无线电力传输(Wireless Power Transmission,WPT)的研究也有了很大突破,从某种意义上来讲,无线电力传输也不再是幻想——在未来的生活中摆脱那些纷乱的电源线已成为可能。

2.无线电力传输的发展历史

19世纪末被誉为“迎来电力时代的天才”的名尼古拉·特斯拉(Nikola Tesla,1856—1943)在电气与无线电技术方面作出了突出贡献。他1881年发现了旋转磁场原理,并用于制造感应电动机;1888年发明多相交流传输及配电系统;1889—1890年制成赫兹振荡器;1891年发明高频变压器(特斯拉线圈),现仍广泛用于无线电、电视机及其他电子设备。他曾致力于研究无线传输信号及能量的可能性,并在1899年演示了不用导线采用高频电流的电动机,但由于效率低和对安全方面的担忧,无线电力传输的技术无突破性进展[1]。1901—1905年在纽约附近的长岛建造Wardenclyffe塔,是一座复杂的电磁振荡器,设想它将能够把电力输送到世界上任何一个角落,特斯拉利用此塔实现地球与电离层共振。

2001年5月,法国国家科学研究中心的皮格努莱特,利用微波无线传输电能点亮40m外一个200W的灯泡。其后,2003年在岛上建造的10kW试验型微波输电装置,已开始以2.45GHz频率向接近1km的格朗巴桑村进行点对点无线供电。

2005年,香港城市大学电子工程学系教授许树源成功研制出“无线电池充电平台”,但其使用时仍然要将产品与充电器接触。

2006年10月,日本展出了无线电力传输系统。此系统输出端电力为7V、400mA,收发线圈间距为4mm时,输电效率最大为50%,用于手机快速充电。

2007年6月,美国麻省理工学院的物理学助理教授马林·索尔贾希克研究团队实现了在短距离内的无线电力传输。他们给一个直径60厘米的线圈通电,6英尺(约1.83米)之外连接在另一个线圈上的60瓦的灯泡被点亮了。这种马林称之为“WiTricity”技术的原理是“磁耦合共振”。

2008年9月,北美电力研讨会的论文显示,他们已经在美国内华达州的雷电实验室成功地将800W电力用无线的方式传输到5m远的距离。

2009年10月,日本奈良市针对充电式混合动力巴士进行了无线充电实验。供电线圈埋入充电台的混凝土中,汽车驶上充电台,将车载线圈对准供电线圈就能开始充电。

3.无线电力传输的基本原理

3.1电磁感应——短程传输

电磁感应现象是电磁学中最重大的发现之一,它显示了电、磁现象之间的相互联系与转化。电磁感应是电磁学中的基本原理,变压器就是利用电磁感应的基本原理进行工作的。利用电磁感应进行短程电力传输的基本原理如图1所示,发射线圈L1和接收线圈L2之间利用磁耦合来传递能量。若线圈L1中通已交变电流,该电流将在周围介质中形成一个交变磁场,线圈L2中产生的感应电势可供电给移动设备或者给电池充电。

3.2电磁耦合共振——中程传输

中程无线电力传输方式是以电磁波“射频”或者非辐射性谐振“磁耦合”等形式将电能进行传输。它基于电磁共振耦合原理,利用非辐射磁场实现电力高效传输。在电子学的理论中,当交变电流通过导体,导体的周围会形成交变的电磁场,称为电磁波。在电磁波的频率低于100khz时,电磁波就会被地表吸收,不能形成有效的传输,当电磁波频率高于100khz时,电磁波便可以在空气中传播,并且经大气层外缘的电离层反射,形成较远距离传输能力,人们把具有较远距离传输能力的高频电磁波称为射频(即:RF)。将电信息源(模拟或者数字)用高频电流进行调制(调幅或者调频),形成射频信号后,经过天线发射到空中;较远的距离将射频信号接收后需要进行反调制,再还原成电信息源,这一过程称为无线传输。中程传输是利用电磁波损失小的天线技术,并借助二极管、非接触IC卡、无线电子标签,等等,实现效率较高的无线电力传输。

具体来说,整个装置包含两个线圈,每一个线圈都是一个自振系统。其中一个是发射装置,与能量相连,它并不向外发射电磁波,而是利用振荡器产生高频振荡电流,通过发射线圈向外发射电磁波,在周围形成一个非辐射磁场,即将电能转化为磁场。当接收装置的固有频率与收到的电磁波频率相同时,接收电路中产生的振荡电流最强,完成磁场到电能的转换,从而实现电能的高效传输。图2是一个典型的利用电磁共振来实现无线电力传输的系统方案。电磁波的频率越高其向空间辐射的能量就越大,传输效率就越高。

3.3微波/激光——远程传输

理论上讲,无线电波的波长越短,其定向性越好,弥散就越小。所以,可以利用微波或激光形式来实现电能的远程传输,这对于新能源的开发利用、解决未来能源短缺问题也有着重要意义。1968年,美国工程师彼得格拉提出了空间太阳能发电(Space Solar Power,SSP)的概念。其构想是在地球外层空间建立太能能发电基地,通过微波将电能送回地球。

4.无线电力技术的应用前景

无线电力传输作为一种先进的技术一般应用于特殊的场合,具有广泛的应用前景。

4.1给一些难以架设线路或危险的地区供应电能

高山、森林、沙漠、海岛等地的台站经常遇到架设电力线路困难的问题,而工作在这些地方的边防哨所、无线电导航台、卫星监控站、天文观测点等需要生活和工作用电,无线输电可补充电力不足。此外,无线输电技术还可以给游牧等分散区村落无变压器供电和给用于开采放射性矿物、伐木的机器人供电。

4.2解决地面太阳能电站、水电站、风力电站、原子能电站的电能输送问题

我国的新疆、西藏、青海等地降雨量少、日照充足且存在大片荒芜土地,南方部分地区水力、风力资源丰富,这些地区有利于建造地面太阳能发电站或水电站、风力电站。可是,这些地区人烟稀少、地形复杂,在崇山峻岭之中难以架设线路,这时无线输电技术就有了用武之地。采用无线输电技术,还可以把核电站建在沙漠、荒岛等地。这样一方面便于埋葬核废料,另一方面当电站运行发生故障时也可以避免对周围动植物的大量伤害和耕地的污染。

4.3传送卫星太阳能电站的电能

所谓卫星太阳能电站,就是用运载火箭或航天飞机将太阳能电池板或太阳能聚光镜等材料发送到赤道上空35800km的地球静止同步轨道上。在太空的太阳光线没有地球大气层的影响,辐射能量十分稳定,是“取之不尽”的洁净能源。并且一年中有99%的时间是白天,其利用效率比地面上要高出6—15倍[3]。在那里利用太阳能电池板把阳光直接转变为电能,或者用太阳能聚光镜把阳光汇聚起来作为热源,像地面热电厂一样发电。这样产生的电能供给微波源或激光器,然后采用无线输电技术将大功率电磁射束发送至地面,接收到的微波能量经整流器后变成直流电,由变、配电设施供给用户。

4.4无接点充电插座

随着无线电力技术的发展,一些小型用电设备已经实现了无线供电。如:电动牙刷、“免电池”无线鼠标、无线供电“膜片”/“垫”等。无线供电“膜片”/“垫”是一种家用电器无线供电方式,用一片图书大小的柔软塑料膜片就可对家电进行无线供电,可为圣诞树上的LED、装饰灯、鱼缸水中的灯泡、小型电机、手机、MP3、随身听、温度传感器、助听器、汽车零部件、甚至是植入式医疗器件等供电。

4.5给以微波发动机推进的交通运输工具供电

现在大部分交通运输工具燃烧石油产品,其发动机叫做柴油发动机、汽油发动机等。与此类比,以微波作为能源推进的发动机叫做微波发动机。微波是工作频率在0.3—300GHz的电磁波,不能直接用它来驱动电动机,因为要设计出在如此高的频率下工作的发动机非常困难。如果思路加以改变,把微波能量转变为直流电流的整流器,那么微波就可以直接作为交通工具的能源了。煤、石油、天然气的存储量有限,而日消耗量巨大,总有耗尽之日,到那时卫星太阳能电站可望成为能源供给的主干,通过无线输电技术就可以直接把微波能量输给交通运输工具。

4.6在月球和地球之间架起能量之桥

世界人口的不断增长和地球资源的日益耗尽,太阳系中其他星球的开发利用是人类一直以来的夙愿。月球是地球的天然卫星,其上资源丰富,地域辽阔,是首先要开发的星体。未来人类对月球的利用主要是移民和资源获取。月球的土壤里富含SiO2,是制造太阳能电池的原料。如果先在月球上建立起工厂,然后把太阳能电站直接建在月球上,比起建在地球静止同步轨道上要容易些,借助于微波束或激光束把电能发送到地球。

5.结语

随着无线电力传输技术的不断发展与成熟,不但使人们未来的生活有望摆脱手机、相机、笔记本电脑等移动设备电源线的束缚,享受在机场、车站、酒店多种场所提供的无线电力,而且可用于一些特殊场合,如人体植入仪器如心脏起搏器等的输电问题、新能源(电动)汽车、低轨道军用卫星、太阳能卫星发电站等。在世界经济迅速发展的今天,节能和新的、可再生能源的开发是摆在能源工作者面前的首要问题。太阳能是取之不尽、用之不竭的干净能源。除核能、地热能和潮汐能之外,地球上的所有能源都来自太阳,建造卫星太阳能电站是解决人类能源危机的重要途径。要将相对地球静止的同步轨道上的电能输送的地面,无线输电技术将发挥至关重要的作用。从长远来看,该技术具有潜在的广泛应用前景。但是,每一种无线传输方式,都有一系列问题需要解决,如电能传输效率问题,电力公司如何收费和计费,能量传输所产生的电磁波是否对人体健康带来危害,等等。不管怎样,一旦这项技术能够普及,就会给人们的生活带来巨大的便利。

参考文献

第2篇:微波技术的基本原理范文

关键词:数字微波通信技术 卫星数字通信技术 广播传输

中图分类号:TN914.3 文献标识码:A 文章编号:1007-9416(2014)05-0056-01

1 引言

在广播传输中,为了促进传输质量的提高,为人们接收广播创造良好的条件,离不开相关技术的运用。数字微波通信与卫星数字通信技术在通信领域具有重要意义,对提高传输质量具有重要作用,是广播传输中不可忽视的技术类型。下面将结合广播传输的实际工作,对这两种技术的运用进行探讨分析。

2 数字微波通信技术在广播传输中的运用

2.1 基本的原理

在空气中传播的时候,微波与光波的传播特性相同,呈现出直线前进的方式。传播中如果遇到阻拦就会被反射或者阻断。数字微波通信的方式主要是视距通信,传输中容易受到多种因素的负面影响,例如地球曲面等。如果需要进行远距离通信,应该采用接力传输的方式,对信号进行多次中继转发,从而满足传输工作的需要,到达指定的地点。在数字微波传输线路中,终端站位于线路的两端,而中继站则位于传输线路上,一般隔50km设置一个,整条线路上设有几个甚至几十个。它们的作用是接收数字信号并进行放大,转发至下一个中继站,通过这种方式达到提高数字信号传输质量的目的。数字微波通信常用频段为1.4GHz、4GHz、7GHz、8GHz、13GHz、15GHz,广播系统常用8GHz频段。

2.2 功能与特征

微波频率高,波长较短,可用频带宽,频率在300MHz―300GHz之间,具有其他电波不可比拟的优势。数字微波信息容量大,传播质量高,满足实际工作的需要,包括卫星数字通信系统在内的数字通信系统都工作在微波地段。另外,数字微波网络组网灵活,传播质量高,建设速度快,能够节约投资,受自然环境的影响较小,具有较强的抵抗自然灾害的能力,是网络传输的重要方式,得到十分广泛的运用。

2.3 具体的运用

数字微波通信通过地面视距进行广播节目信息传送,传输过程中运用数字化处理技术,这样不仅能够抵抗传输中遇到的干扰,还能够提高传输质量,更好满足广播传输的需要。广播电台运用多路数字传输终端设备,设备包括发端机和收端机,并拥有数字微波接口和光端接口。发端机可将信号、数据转换成数字序列,送往微波调制机和光调制机传送,然后通过功放和天线发射出去。收端机将收到的码流进行信道解码,纠错解码电路。对广播电台节目信号来说,它能够通过数字微波通信系统完成,传输线路两端设有传输设备,发挥各自的功能,完成信号的传输,满足广播对信号的需要。

3 卫星数字通信技术在广播传输中的运用

3.1 基本的原理

广播卫星有C波段和Ku波段转发系统,发射站将广播电台播控中心送来的信号进行处理,调制、上变频、高功率放大后,向卫星发射C波段和Ku波段信号。同时也接收卫星下行转发的微波信号,监测卫星转播节目质量。星载转发器接收地面上行站送来的微波信号,经放大、变频、放大后,发射到地面服务区。

3.2 功能与特征

卫星数字通信能够实现两个或者多个地面站的长距离大容量通信,是广播传输的主要方式之一,具有自身显著的特征,其覆盖面积十分广泛,信息传输质量高,能够节约投资,方便维护,信号容易处理,可以满足更多用户的需要,在实际工作中得到广泛的运用。

3.3 具体的运用

3.3.1 卫星数字广播

在广播电台数字传输系统中,卫星数字广播传输是不可缺少的。整个节目的采集、制作、播控,所有节目信号通过光缆、微波传输至卫星地球站,实现广播电台节目全面上星。

3.3.2 卫星转播车

在传输过程中有多种不同的传播方式,卫星、地面微波、地面电信线路都能够实现传播,传播内容包括视频、音频、网络节目。在具体运用中,主要为大型转播现场提供综合传输信号,同时可以作为现场视频、音频信号采集、播控平台,能够实现四路标清视频转播信号,多路音频转播信号的采集,控制。

3.3.3 现场直播车

通过运用该方式,能够实现广播节目、网络视频、音频直播,系统包括车载平台、节目操控系统、电信传输系统等。通过现场直播车的支持,能够为节目直播提供平台,为频道提供现场直播机房,有线数据通讯,卫星传输等,还能够为电台网站多路视频直播信号采集系统,控制系统等等,满足现场直播的需要,更好的为观众接收节目提供方便。

4 结语

总之,数字微波通信与卫星数字通信技术具有自身的显著特点和优势,满足广播传输的需要,在具体运用中具有重要作用。今后随着技术的发展和进步,多元化、网络一体化是这些技术的发展趋势。在具体工作中,通过这些技术的运用,不仅会提高系统集成化水平,使系统的功能进一步增大,增强广播传输的安全性,还会提高广播传输的质量,更好的满足人们需要,推动广播传输的进一步发展。

参考文献

第3篇:微波技术的基本原理范文

关键词:卫星数字通信技术;广播传输;运用

1卫星数字通信的概述

卫星数字通信是航天技术与电子技术相结合而产生的一种新型的通信方式,有着重要的作用。卫星数字通信通过中继站和终端站来实现通信目的的,具体来说卫星数字通信的中继站是人造卫星,终端站为地面站,可以有多个终端站,来实现两个或者多个终端站之间的通信,这种通信具有容量大、区域广的特点[1]。在卫星数字通信中应用的人造卫星叫做通信卫星,它与地球的自转的周期与方向同步,所以也叫做地球同步卫星,通信卫星始终固定在天空中某一位置上,方便地面与卫星的通信。卫星数字通信技术是我国广播电视节目传输中应用到的主要技术之一,随着数字技术的发展,它在广播电视传输中的优势更加鲜明。与微波数字通信传输相比其优势具体表现在:一是覆盖面广;二是投资成本低且建设快;三是传输信号的质量高;四是便于维护;五是运行成本低。与模拟卫星广播相比其优势具体表现为:一是可以节省卫星频率资源;二是,节省运行成本;三是节目信号质量高;四是数字信号处理与开发更加方便。

2卫星数字通信系统的基本原理

2.1卫星数字通信系统的组成。在广播传输中卫星数字通信系统主要由卫星上行发射站、测控站、星载转发器以及卫星接收站这四部分组成。广播数字卫星上设有C波段转发系统和Ku波段转发系统[2],上行发射站的主要作用是发射C波段信号和Ku波段信号,并接收卫星下行转发的微波信号。具体机制为:上行发射站将广播控制中心发送来的各种信号进行处理与调制,将上频率与高功率进行放大后,将上行C波段信号和Ku波段信号通过定向天线发射给卫星。上行发射站接收卫星下行转发的微波信号的作用是对卫星转播节目的质量进行监测。星载转发器的作用是将地面上行站发送的上行C波段信号和Ku波段信号进行接收,并将接收的上行微波信号进行放大以及变频处理后,再进行放大,然后将经过一系列处理的信号发射给地面服务区。星载转发器相当于中继站一样发挥作用,它的优点是保障广播信号以最低的附加噪声和失真进行传送。

2.2卫星上行发射站系统。广播电视台的覆盖性广的特点,起到最重要作用的部分是卫星上行站系统,上行站的设备一旦发生故障就会导致整个广播电视信号的传输会全部中断,这就要求在上行站应用的设备安全性、稳定性、以及可靠性要非常高,并且要存有备份。广播卫星上行发射站可以将一路或者多路信号传送到卫星,卫星转发其在广播电视卫星中设有C波段信号转发系统和Ku波段信号转发系统,它的作用是将上行发射站传送的信号进行接受,另外也将下行信号转发给广播地面接收站。卫星上行发射站的主要由天线分系统、高功率放大设备、低噪音接收设备、上下变频器调制解调器、系统监控设备以及附属设备构成的。其中天线分系统中天线的作用是将发射功率转化为电磁波能量由上行站传送给卫星,同时也会将及微弱的有空间卫星发出的电磁波能量进行转化,转化成为同频信号来传送到接收机。在卫星上行站系统中低噪声接收设备是进行第一级放大的,高功率放大设备是进行第二级放大的;上下变频器的作用是搬移在射频与中频之间的频谱;调制解调器的作用是对信号进行调制,将广播控制中心发出的信号调制后传输到空间卫星,可以降低信号传输的噪音干扰的影响;系统监控设备的作用是对上行站的所有关键设备进行监控,来方便掌握每台设备的工作状态以及主要指标特性等。

2.3星载转发器。星载转发器在数字卫星通信系统中有着重要的地位,起着中继站的作用,它的性能好坏可以对数字卫星通信系统的工作质量造成直接影响。所以星载转发器在放大和转发地面站传送的信号时其附加噪声以及失真性能应该保持最低。星载转发器的噪声包括非线性噪声和热噪声,其中非线性噪声的来源主要是转发器电路或者器件特性的非线性,而热噪声的来源主要是设备的内部噪声以及通过天线传来的外部噪声。转发器可以分为两大类:其一是透明转发器;其二是处理转发器。其中透明转发器的作用是将地面发来的信号进行低噪声、频率以及功率放大后进行转发,它主要应用于模拟卫星通信系统中。另外处理转发器不仅可以转发信号还可以进行信号处理,多应用于数字卫星通信系统中,它可以很好的消除噪声的积累。

3卫星数字通信系统在广播传输中的应用

3.1卫星数字广播。将卫星应用到广播节目的传输中,是为卫星应用技术的重大突破,并且卫星数字传输在广播节目中有着越来越重要的作用。节目信号到达播控系统后,数字矩阵被中控机房进行切换,然后将要输出主路和备路节目信号分别送到光端机和微波端机,通过光缆以及微波传输到云岗卫星地球站,卫星站接接收到来自主路和备路信号后,通过卫星上行系统来实现广播电台节目的全面上星[3]。

3.2卫星转播车与现场直播车。卫星转播车与现场直播车不仅丰富了节目的传输手段,而且保障了直播节目的安全播出。卫星转播车与现场转播车的车系统的作用有:一是,可以传输高质量无线数字,提供高质量的转播传输以及支持节目直播的制作;二是,还可以解决部分主要节目的应急制作以及传输问题;三是,具有采集、传送以及直播音频、视频、网络音频节目、网络视频节目的能力。卫星转播车和卫星直播车不仅可以组合使用,而且可以独立完成节目的直播与传送任务,它们的存在可以为广播节目的直播与传送提供一个强大而又灵活的移动技术平台。其中卫星转播车可以通过三种传送方式实现转播的目的,分别为卫星传送、地面微波传送、地面电信线路传送,它主要用在大型转播现场的,为现场提供移动技术平台,支持信号的双向传输。卫星转播车技术系统主要包括:车载传送系统、卫星转播车音频系统、以及固定地面站传送系统等。现场直播车主要应用在国际台各调频栏目在各直播现场提供一个移动技术直播平台。其系统主要包括车载音频系统、车载视频系统、传送系统等。现场直播车的传输能力也很强大,可以实现数据的双向传输,并可以进行多业务传输,现场直播车可以在大多数的传输环境中进行独立作业,能够很好的完成直播传输任务。

4结束语

卫星数字通信技术一定会有更加广阔的应用空间,在广播电视传输的作用也将会越来越不可替代,系统功能不断的完善不断的强大,会更加有效的推动广播传输的发展,因此我们需要更加重视这一技术的有效应用,让其在更多的领域内发挥作用。

作者:孙雪柳 单位:国家新闻出版广电总局763台

参考文献:

[1]喻强.数字卫星通信在广播传输中的应用[J].科技展望,2015,12:111.

第4篇:微波技术的基本原理范文

【关键词】变频技术;技术应用;谐波治理

伴随科技的不断发展,变频技术逐渐得到广泛应用,尤其是在节能、高效等方面,借助变频技术可获取极大的综合效益,同时这也是与人们日常生活息息相关的。然而,变频技术的实际应用还会产生一些问题,比如谐波危害、功率因数降低等,对其发展造成重大障碍,不利于真实作用的发挥。因此在实际情况中,有必要进行深入的研究,掌握有效谐波治理方法。现针对变频技术的实际应用及谐波治理措施作如下分析。

1变频技术应用

1.1节能

合理运用变频调速,可有效提升电机转速控制准确度,确保电机处在最佳的运行状态。例如风机水泵,根据流体力学的基本原理,轴功率和转速立方成正比关系。如果所需风量持续降低,风机的转速会有所降低,其实际功率会按照转速立方进行下降。因此,变频技术的节能效果是十分突出的。与之相似,很多负载电机都是按照最大的需求量来进行生产的,所以会存在很大的设计裕量。但是在实际情况中,轻载运行消耗的时间占比较大。若在此时运用变频调速,能极大提升工作实际效率。因此,该技术具有巨大的节能前景。

1.2工艺控制

从变频调速角度讲,其具备调速广度大、精确度高、动态响应良好等优势,在很多需要进行准确控制的情况中,变频器发挥着十分重要的作用,尤其是确保工艺质量与提升生产效率等方面。例如纺织行业,我国具有世界顶级强度的纺织品生产水平,市场遍布全球,产业规模十分宏大。在纺织业中,变频器应用极为广泛。纺织业必要机械设备当中,利用变频器的包括:螺杆挤出机、后加工机以及纺丝机等。这些机械设备虽然用途不同,但都需要对速度进行准确的控制。在实际情况中运用变频器可大幅提升产品的加工质量,减低人员的工作强度,从而提升整个产业的生产效率。

1.3变频家电

变频技术的应用及谐波治理文/李继承针对变频技术,从节能、工艺控制以及变频家电三方面对技术应用进行分析介绍,并在此基础上,提出一种全新的谐波治理方法,进而为变频技术的快速发展奠定良好基础。摘要对于我国绝大多数普通家庭,节能、提升家电应用性能、环保逐渐成为人们关注的焦点,在这种局势之下,变频技术正不断向家电领域发展。变频技术在降低能源消耗、缩减电压冲击、减小噪音、提升控制水平等层面均有着极大的优势与作用。例如变频微波炉,它将变压器换成变频器,借助相应的变频电路,将常规电源频率转换成高频率,通过这样的方式获取多样的输出功率,有效解决无法均匀加热的难题,进而真正实现了火力均匀调控。另外,与普通微波炉相比,全新的变频微波炉还具备体积较小、噪音低、节能效果突出等优势。就目前而言,我国为主要家电供应大国,尽管如此,但运用变频器的频率很低,与日本等发达国家相比,还存在较大的差距。统计得知,我国变频家电数量逐年增长,但市场份额并无太大变化,因此,新型变频家电仍具有巨大的发展潜能。

2变频器谐波治理

2.1谐波的产生

变频器电路主要由交流—直流—交流构成,外部输入工频电源,通过三相桥路不可控整流,形成直流电压信号,再经过滤波电容逆变,形成交流信号。电路的整流回路当中设置大电容,输入电流对应的波形是矩形波,其按照傅立叶级数被分解成谐波与基波,其中谐波的产生会对供电系统造成影响与干扰,所以在轻载运行过程中网侧电流会变成双尖峰脉冲,电流存在很大的畸变,进而对电网造成不同程度的谐波污染。对于主电路当中的逆变回路,其电流信号会受到载波的影响变成脉冲波形,针对功率相对较大的元件,其载波频率大多保持在2-3kHz范围内,但逆变元件的频率会大幅上身,可以达到15kHz左右。除此之外,高次谐波电流的存在会形成空间辐射,对周边的电气设备造成干扰与影响。

2.2谐波危害

2.2.1对电网造成危害谐波的产生会对电网元件造附加损耗,降低供电品质,影响设备运行。如果大量谐波经过中性线,还会引起串联谐振等问题,进一步放大谐波,使线路温度大幅上升,存在发生火灾的危险。2.2.2对电动机造成危害低次谐波会放大铜损,高次谐波会放大铁损,导致电动机温度快速升高;增加电动机的噪声;形成附加脉动转矩;无功分量持续变大;高频漏电流不断增大;谐波电压会对电动机绝缘元件寿命造成影响。

2.3谐波治理

对于变频器的整流电路而言,其输入侧会产生不同成都的电流畸变与电压畸变,若对功率因数校正进行增加,则会为电网带来很大的实际效益。伴随电力电子器件的不断发展,用于功率因数校正操作的控制器快速流入市场,所以,APFC(ActivePowerFactorCorrection,有源功率因数校正)经济成本大幅降低,稳定性有效提高。APFC的基本思路为:对完成整流的电流进行控制,使其与通过整流的电压波形保持一致,进而防止电流脉冲的产生,实现功率因数有效改善的目标。如今,基于单相电路的APFC已十分成熟,而三相APFC还有待提升,相关研究人员正积极加大这一方面的研究。针对单相APFC电路,其主电路为全波整流装置,作用在于完成直流和交流的变换,电压波形不会因为变换而失真;滤波电容以前设有变换器,作用在于DC/DC的变换。APFC基本原理为:完成电压输出以后,产生的误差信号通过相应的放大器送至乘法器,和整流电压进行相乘,产生基准电流信号,在与反馈信号共同组成一个电流环,实现PWM信号输出。在实际情况中,基准电流信号会受到许多控制作用,所以,如果它和实际电流完全相同,则可保证输出电压稳定,还能使输入电流变成正弦波,同时和电网电压用相,进而获得最佳功率因数。

3结束语

总而言之,变频技术具有节能效果显著、速度控制精准等优势,是当前电力电子技术快速发展的重要产物,在纺织业、家电等领域有着广泛的应用。但其存在的谐波问题对其发展造成一定阻碍,在实际工作中可采用APFC等技术进行有效治理,从而实现应用效益最大化的目标。

参考文献

[1]曾繁玲.变频技术的应用及谐波治理[J].电气开关,2015,10(05):31-34.

[2]吴金钟,赵玉芹,苏震.具有谐波治理功能的TSC就地动态无功功率补偿在冶金企业应用技术的研究[J].电气传动,2012,5(02):54-56.

第5篇:微波技术的基本原理范文

关键词:电力企业;计量资产管理;RFID技术;应用探究

引言

RFID技术是一种最新发展起来的高科技技术,通常被称作是电子标签,属于一种发展较为成熟的自动识别技术,它不用人的操作,利用射频信号就可以对目标对象进行自动识别的过程中获取相关信息和数据,而且可以对多种标签进行同时的识别,就算是运动快速的物体也能够进行有效识别,具有操作快捷、灵活、方便的特点,通常被应用到较为恶劣的工作环境中。电力企业发展中,计量资产的数量较为庞杂、变动频繁以及分布较广,应用RFID技术可以有效提升资产管理工作的质量和水平,有利于保障电力资产的可靠性和安全性。

1 RFID技术的基本原理

RFID技术可以根据工作状况的不同,灵活调整自身的工作频率,其主要分为高频、微波、超高频、低频等不同的系统。其中,高频通常为13.56MHz,微波通常为2.54MHz,超高频通常为840MHz,低频通常为125KHz。每种频率都有其不同的应用和管理形式,例如,较高的频段适合相对较远的距离,而且需要进行快速的识别,因此,高频段非常适用于电力计量资产的管理工作[1]。

RFID技术系统是由天线、识别器以及电子标签组成。要想在实际工作中有效的应用RFID技术,还需要借助相关的数据处理接口、中间设备以及软件管理系统。在具体的计量工作中,往往要识别和接受大量繁杂的电力数据,这时需要大量的识别技术,才能够有效实现信息的实时对应,对信息进行及时有效的分析和处理。

2 RFID技术的优势

2.1 提升电力工作的效率

在统计资产数据的过程中,以往都是配送或者计量设备入出库时进行逐一核对和依次处理,当管理人员面临的数量较多时,往往会增加工作量、延长工作时间、工作效率也极低[2]。相对于传统的资产管理方法来说,RFID技术并不用进行逐一核对和依次处理相关的计量设备。通过RFID技术的应用,发挥其多点读取的基本功能,对多种计量设备进行同时处理,极大的缩短了工作时间,并且工作效果也得到了成倍的提升。

2.2 减少信息管理工作的失误

在传统的信息管理工作中,都是通过人工记录的形式进行资产信息的管理,存在着时间长无法辨认字迹、保存难度大、易出现错别字等各种操作失误现象,导致资产管理中设备不明、物、帐不符等状况经常发生[3]。RFID技术系统中的电子标签有着唯一性的特点,能够对物、帐不符的问题进行有效解决,同时还可以有效防止水、油、化学品等物质的损坏,保证资产信息的完整性和有效性,减少信息管理工作中出现的失误,保证信息管理的质量和水平。

3 电力企业计量资产管理中RFID的具体应用分析

3.1 ID信息的初始化

在使用标签之前,要初始化标签上的信息,在标签中输入有关电力计量的内容,并且有效安排标签信息的基本属性,保证每个标签都具有相对应的ID信息,同时确保信息的唯一性,不要对其进行随意的更改[4]。在这一环节中,要重视信息管理的安全性,要想保证数据和信息的安全传输,必须要采取相关的加密措施,例如,加密输入到电子标签的各种信息,保证信息的稳定性,避免其他不良信号的影响,特别要防止传输过程中不要被恶意的篡改。

3.2 标签粘贴

在电力计量资产管理工作中,也要特别注意标签的粘贴工作,由于识别射线在进行标签的识别过程中,与射线垂直的部分所具有非常高分辨率,并且识别效果也是最佳的。所以,标签要尽量粘贴在能够与识别射线垂直的部分,而且要特别注意离金属远一些,有效减少外部信号的干扰,保证信息传输的安全性和精准性[5]。此外,还要防止电子标签不受到磨损,保证电子标签的有效性和完整性。

3.3 批量识别

电力计量资产信息是丰富多样的,因此,传输的数据也是多种多样的,需要运用能够进行大量识别的技术系统,才可以有效提升信息管理工作的效率,尽量多设置一些接收天线,构成一个相对较为稳定的接受信号的区域,保证可以同时接受大量的信息,而且传输数据的接口还应该具有批量数据实时传输的能力,确保工作效率的提高[6]。此外,将计算机和识别器进行有效连接,实现对计量信息数据的采集。在具体的识别过程中,要注重信息的可靠性和安全性,所以,应该在识别部分安置相关的屏蔽器,有效屏蔽其他不良信号的干扰,避免信号接收受到外部干扰,进而有效确保信息传输的稳定性和准确性。

4 结束语

总而言之,随着科学信息技术水平的不断提升,RFID技术也在不断地发展成熟,并且被广泛的应用到了各个领域发展中去,尤其受到了电力企业发展的高度重视。将RFID技术有效的应用到电力企业的计量资产管理工作中去,提升了电力企业管理的智能化水平,推动其进入了数字化和现代化,减少传统管理模式中的工作失误,使得信息管理质量和水平得到了极大的提升。此外,加密技术的使用,可以防止其他信号的干扰,保证信息传输的精确性,提升计量信息的可靠性和安全性,推动电力企业计量资产管理工作的顺利进行,促进电力企业的长期有效发展。

参考文献

[1]韩源.RFID技术在电力企业固定资产全寿命周期管理中的应用

[A].国网信息通信有限公司.电力行业信息化年会论文集[C].中国电机工程学会电力信息化专委会,2010:3.

[2]刘卿,张卫欣,刘紫熠.RFID技术在电力计量中应用的研究[J].中国电业(技术版),2014,01:11-14.

[3]蒋佩汪,钟经伟,文艺清.基于RFID技术的电力资产管理系统设计与实现[J].现代电子技术,2010,20:178-181.

[4]杨仕孟.基于RFID的计量资产管理系统的设计与实现[D].电子科技大学,2013.

[5]李国昌,杨云峰,李飞,等.RFID技术应用于电力计量器具管理的实现[J].中国电子商情(RFID技术与应用),2012,06:25-27.

第6篇:微波技术的基本原理范文

关键词:分析化学 微波消解 应用

一、微波消解技术的原理及特点

1.微波消解原理

微波是一种电磁波,频率范围为300~3×l05MHZ,微波消解炉的工作功率为2450MHZ。微波的方向性很强,频率很高,对被消解物质具有一定的穿透能力。微波在炉腔内形成一个微波场,此微波场以每秒24.5亿次的频率不断地改变其正负极性。微波消解罐中的样品处于具有极性分子的溶剂之中,这些溶剂的极性分子在微波场中也随之高频地改变方向,形成高速偶极旋转。分子间相互发生高速地碰撞与摩擦,微波能则转变为热能,因此样品在高温下与溶剂发生剧烈作用,与此同时又产生大量气体,在密闭的溶解罐中形成高压,样品在高温、高压状态下迅速消解。

2.微波消解的技术特点

微波消解具有优点如下:(1)微波具有很强的穿透力,直接作用于样品内部,使罐内外均匀受热,短时间即可以达到所要的温度。微波加热在微波罐启动10~15s便可奏效,而且热量损失极小,极大的缩短了消解时间。(2)密闭容器微波消解所用试剂量少,空白值显著降低,且避免了微量元素的挥发损失及样品污染,提高了分析的准确性。

二、微波消解在分析化学中的一些运用

1.微波消解技术在中药样品中的应用

目前,各国对进口中药的质量控制愈加严格,一般要求重金属含量在10~ 6数量级甚至更低。常用测定微量元素的方法有AAS,ICP- AES等,但在测定中会受到样品中未消解完全的有机质的影响。传统消解手段往往达不到相应的温度,而无法使样品消解完全。密闭微波消解中,容器内压力升高,使酸的沸点相应升高。如硝酸在1个大气压下,沸点是120 ℃,而当压力提升到5个大气压时,其沸点可达到176 ℃,可以大大加快样品的消解速度。此外,重金属元素如Cd,Hg,As,Sb,Bi 等均为易挥发元素,利用常压敞口消解很容易在消解过程中造成损失。

几乎所有的中药都需要经过预处理,破坏消化掉有机组分,将待测元素转化成无机化合物,然后制得适于进行ICP光谱测量的供试液。对于商品化仪器来说,样品处理无疑是中药微量元素分析重要的误差来源,因此,选择合适的样品处理方法较为重要。传统的消化方法耗时长、步骤繁琐、效率低、空白高、分析人员劳动强度大,而且开放系统的加热消解过程安全性差,有些酸如高氯酸使用时有时可能发生爆炸,产生危险,同时在消解过程中产生有害气体,对人体健康带来危害,为此分析工作者一直在寻找一种操作简便、效率高的消解方法,微波消解技术由此应运而生,并在近十几年来受到人们的普遍关注,逐渐成为一种常规的样品处理手段。

2.微波消解技术在地质样品和环境保护方面的应用

1985年,Smith等人首次将密闭微波消解引入地质样品的消解中,极大地加速了地质样品的处理过程。由于地质样品中的基体均较难消解,各地质样品间成分的差异虽然较大,但一般都含有硅酸盐,因此若想达到完全消解,需加入HF,此时对消解罐便会有特殊的要求。因此,在消解前,先将样品于混酸中浸泡一定时间后,再进行消解,往往可获得较好的消解效果。

美国国家环保局将微波辅助酸消解硅基和有机基体样品的全分解方法纳入了其标准方法3052之中,以此作为环境分析的一个标准方法。胡珊珊等采用微波消解-原子吸收光谱法和原子荧光光谱法测定土壤中铜、锌、铅、镉等重金属,并通过多种消解酸体系实验,进行比较选择最佳消解方法。

3.微波消解技术在食物样品及卫生检验的应用

对食品中重金属、有机农药残留及其它一些成分的监测,越来越受到人们的关注。食物样品中大部分为有机成分,在消解过程中有大量CO2产生,另外还有硝酸的还原产物NO2,因此当消解反应开始后,反应体系内压强会迅速增加,所以在消解时需控制微波辐射功率,防止发生危险。食物样品一般不含难消解的物质,为减少消解过程中体系内的气体量(大量的气体不利于消解结束时系统的降温和降压),在消解食物样品时,一般不加入HF和HClO4。研究表明,当食物中油脂含量较大时,应采用更大的消解压力、增加消解时间或加入H2O2等试剂以保证样品的完全消解。

目前在卫生检验领域中,微波消解方法无论是国家标准方法还是文献报道的方法大多数采用硝酸-过氧化氢法,当固体样品取样量在0.19g~0.59g时,加硝酸2ml~ 8ml,过氧化氢1ml~3ml,美国CEM公司推荐的方法则用6ml~8ml浓硝酸。而其中国家标准方法对某些样品的前处理规定为微波消解法,例如1998年中国标准出版社出版的《食品卫生理化检验标准手册》,对食品中总汞、锑测定的样品处理;2002年版《化妆品卫生规范》,对化妆品中的铅、砷、汞样品处理;2010年版《中国药典》附录,对样品中含有铅、镉、砷、汞、铜元素的处理。

4.冶金和其它样品的消解

对于一些常规方法很难消解的样品,使用微波消解作为样品的前处理手段,通常可以获得很好的效果。如石化产品,若采用压力溶弹消解需要5h~8h,而采用微波消解只需要1h~1.5h。在测定煤炭中含硫量的实验中,使用微波消解可避免常规方法造成的环境污染。采用分步微波消解,先以NaOH作为溶解试剂,再用HNO3为消解试剂,成功消解了硅含量较高的铝合金试样,解决了对铝合金中高含量硅测定时样品消解困难的问题。

三、结束语

随着国民经济的发展,人们对生活质量有了更高的需求,这就促使工业产品的分析、食品安全的检测与环境质量的监测更具有高效性与准确性。因此,作为新技术手段的微波消解技术在近年得到了迅猛的发展,在许多领域都有广泛的运用。但微波检测仪器还需要不断的改进,笔者认为微波消解技术与后续检测仪器的联用技术将成为最具意义和最活跃的研究方向。

参考文献

第7篇:微波技术的基本原理范文

【关键词】 光OFDM系统 高速光传输系统 关键技术 研究

Key Technology of OFDM-based high-speed optical transmission systems Miao Benshu Naval Communication Engineering Design Studio Beijing 100841

Abstract: At present, high-speed optical transmission system has begun to widely used orthogonal frequency multiplexing technology, effectively promotes the development of the high speed optical communication, OFDM system integrates the advantages of optical communications and wireless OFDM technology, not only greatly improve the transmission rate and high resistance to dispersion ability, and enhance the spectrum efficiency. In this paper, we will briefly introduce the optical OFDM system and its principle, analyze the simulation performance of optical OFDM system, and discuss the key technology of high speed optical transmission system based on OFDM.

Key words: Optical OFDM system; high speed optical transmission system; key technology; research

光OFDM系统的研发与使用有效推动了高速光传输系统的发展,满足了当代通信的要求,该系统以直接检测OFDM系统(DD-OFDM)和相干检测OFDM系统(CO-OFDM)的原理为基本理论,集合了这两种系统的优势,但是基于光OFDM系统的高速光传输系统的关键技术尚且存在一些不足,本文将在分析这些问题的基础上提出改善措施。

一、光OFDM系统及其原理

OFDM正交频复用技术是一种正交频复用技术,也称作多载波调制(MCM)技术。光OFDM系统主要是由直接检测OFDM系统(DD-OFDM)和相干检测OFDM系统(COOFDM)组成的,其基本理论是直接检测OFDM系统(DDOFDM)和相干检测OFDM系统(CO-OFDM)的原理,也就是将高速数据流经串并变换,变换成若干并行低速的子数据流,然后将这些并行数据分配到大量彼此正交的子载波上进行并行传输;在频域上可描述为:在频域内将给定信道分成许多正交的且相互重叠的子信道,在每一个信道上使用一个子载波进行调制,个子信道载波互相正交,并进行传输。光OFDM系统具有许多优势,传输速率很快,抗色散能力和抗衰能力强,频谱效率非常高,系统兼容性良好。据科学研究表明,光OFDM系统使用了多进制调制技术MQPSK和MQAM、循环前缀(CP),这样就可以抵抗乱码干扰(ISI)。此外,光OFDM系统集合了光通信与无线OFDM技术的优点,频谱效率非常高,可以达到10bit/s/Hz甚至更高。而且使用CP技术以后,光OFDM系统不需要复杂的CD补偿和色散管理,既提高了数据传输速度,也净化了网络环境。

另一方面,光OFDM系统使用了DSP技术,该技术不仅可以消除CD对传输信号的不利影响,而且能够优化光OFDM系统的性能。

二、光OFDM系统的仿真性能

仿真技术是用模拟装置组成的试验系统研究真实系统的技术方法,光OFDM系统的仿真性能是由该系统的系统装置所决定的,其主要装置包括发射机、调制器、接收机等。要实现光OFDM系统的仿真性能就要遵循基本原理,充分发挥发射机、调制器、接收机的作用,发射机和调制器一般都安装在直接检测OFDM系统,接收机组装在相干检测OFDM系统,这样分工可以减轻光OFDM系统的符合,提高数据信号的传输速度,避免乱码干扰。

三、基于OFDM的高速光传输系统的关键技术

基于OFDM的高速光传输系统的关键技术主要包括多进制调制技术、循环前缀CP技术、光通信与无线OFDM技术、CP技术、DSP技术、光线链路技术、卫星通信技术与微波技术。这些技术虽然各有优势,但也存在一些缺陷,因此,在使用这些技术的时候应注意扬长避短。多进制调制技术MQPSK和MQAM可以灵活转换数据信号,但是不能单独使用,需要和CP技术相互作用才能传输信号。光通信与无线OFDM技术可以实现光信号的无线传输,但是信号传输质量不稳定,容易受到外界的干扰,因此要加强这两种技术的抗衰能力。DPS技术基本已成熟,可以消除CD对传输信号的不利影响,加强了光OFDM系统的抗干扰能力,但是还需要进一步优化,增强该技术的抗色散能力。

光纤链路技术需要光发射机、光纤光缆和光接收机的辅助,其中的光发射机一般由调制器、光源以及驱动器组成,可以实现对信号的调制,然后将光信号耦合进光纤中进行传输。光线光缆是光纤传输网络中的传输通道,将经过光发射机调制的光信号以光纤光缆为载体实现远距离传输的目的。把耦合的光信号传输到光检测器上,实现输送信息的功能。光接收机主要由光放大器与光检测器组成,主要负责光电转换。把以光纤为载体传输的信号进行转换,把光信号转换为电信号,再经过放大电路对微弱的电信号进行放大,传送到用户端。随着光OFDM系统的不断优化,光纤链路技术已经开始融合SDH技术,SDH具有传输容量大、行业标准统一、网络保护功能强大等显著优势,它在PDH基础上对数据信号的帧结构、复用方式、传输速率等级和接口码型等特性进行了统一规范。SDH发展方向为基于SDH的多业务传送平台(MSTP)。MSTP能够基于155/622Mb/s、2.5Gb/s、和10Gb/s等多种线路速率实现,既保留了固有的TDM交叉能力和传统的SDH/PDH业务接口,能够满足业务的需求,又提供ATM处理、Ethernet透传以及Ethernet L2交换功能来满足数据业务的汇聚、梳理和整合的需要。光纤链路技术传输数据信号的容量比较大,不易受大气的干扰,具有良好的抗干扰能力,但是存在强度低、质地脆、切断熔接技术与耦合复杂、容易被挖断等缺陷,因此需要提高光纤的质地与机械强度,遵循高内聚与低耦合的原则。

微波通信技术是直接以微波作为介质进行的通信,使用该技术时要注意发信设备与接收设备系统的组合质量。其发信设备分为直接调制式发信机和中频调制式发信机。中频调制式发信机的数字基带信号调制是在中频(70MHz或140MHz)实现的,能获得较好的调制特性和设备兼容性,因而中大容量的数字微波设备大多采用。微波频率为0.3GHz-300GHz,但当下能够使用的范围仅有1GHz-40GHz,工作频率越高越能获得较宽的通频带与较大的通信容量。收信设备和解调设备组成了微波的接收设备系统,目前,收信设备都采用外差式收信方案。由射频系统、中频系统和解调系统三大部分组成。来自接收天线的微弱微波信号经过馈线、微波滤波器、微波低噪声放大器和本振信号进行混频,变成中频信号,再经过中频放大器放大、滤波后送解调系统实现信码解调再生。微波通信技术有许多优点,也存在不少的缺点,其优点是能够进行直线通信,规划频率,传输质量好,信号稳定可靠,抵抗自然灾害的能力很强。但是,该技术在电波波束方向不能受到阻挡,容易受到地球曲面的影响和空间传输的损耗,所以,要在每隔几十千米的位置建立中继站,方能延伸电波。而且,微波电路建设工程要在无线电管理部门的严格管理之下进行,不能在同一微波电路上使用相同的频率。

卫星通信技术已全面向数字化方向发展,目前,卫星通信技术均采用DVB标准,该系统可以灵活传送MPEG-2标准的数据信号,使用统一的MPEG-2传送TS复用,运用Si系统提供数据信号的细节信息,并使用统一的一级RS前向纠错系统和统一的加扰系统。卫星通信传输比较稳定,可以节约成本,但是,卫星通信往往存在星蚀、日凌中断和雨衰现象,因此要将卫星链路建设在大气层以上的宇宙空间,并建立多条卫星路径,以提高卫星数据信号的传输质量。

四、结束语

综上所述,使用正交频复用技术OFDM推动了高速光通信的发展,提高了传输速率、抗色散能力和抗衰能力以及频谱的效率,系统兼容性良好。光OFDM系统主要是由直接检测OFDM系统和相干检测OFDM系统组成的。基于OFDM的高速光传输系统的关键技术主要包括多进制调制技术、循环前缀CP技术、光通信与无线OFDM技术、DSP技术、卫星通信技术与微波技术,每一种技术各有优劣,因此在使用集成技术要充分发挥每一种技术的优势,完善各种技术的不足,全面优化光OFDM系统,提高数据信号传输质量。

参 考 文 献

[1]张静. 光OFDM若干关键技术研究[D]. 电子科技大学, 2013.

[2]刘欣. 基于OFDM技术的光传输系统的研究[J]. 数字技术与应用, 2015(7):34-35.

[3]陶心一. 光OFDM传输系统的分析与实现[D]. 北京邮电大学, 2011.

[4]宁婧. 基于OFDM的高速光传输系统的关键技术研究[D]. 北京邮电大学, 2010.

第8篇:微波技术的基本原理范文

【关键词】 皮肤病;微波治疗;寻常疣

DOI:10.14163/ki.11-5547/r.2015.12.077

皮肤病不仅发病机制复杂, 且治疗难度大。伴随现代医疗技术的不断发展, 出现了较多的治疗方法, 其中就以微波治疗法效果最为显著。目前微波治疗技术已经被越来越多地应用于各类皮肤病的治疗。故本文为具体探讨微波治疗法的应用效果, 抽取了49例皮肤病患者的临床资料作为研究对象, 现报告如下。

1 资料与方法

1. 1 一般资料 抽取本院在2013年1月~2014年3月收治的49例皮肤病患者作为研究对象, 其中男24例, 女25例, 年龄4~67岁, 平均年龄(44.42±3.87)岁, 所有患者均符合关于皮肤性疾病的相关诊断标准, 其中传染性软疣14例, 尖锐湿疣12例, 寻常疣10例, 皮赘6例, 黑头粉刺3例、栗丘疹2例、皮质囊肿2例。

1. 2 方法 患者入院后, 对其进行常规检查, 以明确受损位置、出现病变的原因、面积与损伤的程度, 结合患者情况选择合适的治疗设备、微波的探头与操作的功率、具体治疗时间等, 如关于微波探头大小应结合患者的实际情况确定, 若患者皮损的直径≥2 mm, 则选双机探头, 若

1. 3 疗效判定标准[3] 若患者的皮损处恢复正常, 且治疗处瘢痕与色素均消失, 则为治愈;若患者的皮损范围减少>70%, 且治疗处的色素与瘢痕情况有明显改善, 则为有效;若患者的皮损范围减少

2 结果

所有患者疗效显著, 总治愈率高达100%, 其中, 45例患者为1次治愈, 1次治愈率为91.84%, 3例患者经1次治疗后治愈, 1例患者经3次治疗治愈。

3 讨论

微波是电磁波中的一种高频率波, 以局部热效应为基本原理[4], 有着独特的非热效应与热效应, 可实现对相关生物组织的均匀加热, 对凝固组织的内外同热, 治疗效果显著。微波治疗法, 是近些年来紧随现代医疗技术进步而逐渐发展成的一项新型医疗技术, 在本次研究中, 所有皮肤疾病患者均接受微波疗法, 取得了极为满意的治疗效果, 总治疗效果高达100%, 其中又以1次治愈患者最多, 占了总数的91.84%, 总体效果显著。同时, 经分析发现, 利用微波疗法治疗临床的各类皮肤疾病患者, 主要有以下几个优点:①具有良好的止血效果, 且微波治疗几乎不会出血, 同二氧化碳激光治疗法相比较, 其血管封闭功能更为显著, 特别是对于诸如血管瘤与皮损等血管丰富的组织, 微波治疗法更为适用;②操作简单便捷, 安全性高, 容易掌握, 而且对患者皮损周围的组织损伤较小, 且在治疗中不会产生烟雾或是异味, 不会对环境造成任何污染, 环保型较好[5];③治疗时间短, 仅仅只需要几秒或是十几秒的时间, 就可完成治疗, 而且不会出血, 治疗后愈合也比较快, 不会给患者造成较大痛苦, 患者与医生都比较容易接受。然而, 在肯定其效果的同时, 还需注意相关事项, 比如, 在治疗之前应仔细询问患者是否有心脏病、高血压、出血性疾病和出血倾向。操作期间不可将微波探头触及到患者皮损之外的组织, 以免造成不必要的损伤, 治疗期间注意观察患者的面部表情;治疗结束后告诉患者治疗部位不要沾水, 术后治疗处若结痂, 应让其自然脱落, 以免出现复况;治疗1周后来院复查。对于瘢痕体质的患者, 最好不要采用微波疗法, 以免留下萎缩型瘢痕或是色素沉着斑等。

综上所述, 积极采用微波疗法用于皮肤性疾病患者的治疗中, 不仅有着较高的1次治愈率, 且对患者的损伤小, 出血少, 愈合快, 术后复发率也比较低, 总体治疗效果良好, 值得临床大力推广。

参考文献

[1] 李书云.微波治疗皮肤病 235 例疗效评价.大家健康(下旬版), 2013, 21(3):94-95.

[2] 刘雁.微波治疗皮肤病800例分析.基层医学论坛, 2012, 16(13):1705-1706.

[3] 张蕊.微波治疗皮肤性病临床分析.黑龙江医药科学, 2014, 37(4):82.

[4] 马笑宇.微波治疗120例皮肤性病疗效分析.大家健康, 2013, 7(8):100.

第9篇:微波技术的基本原理范文

数字微波通信,是指利用微波频段的电磁波传输数字信号的一种通信方式。具有两大技术特征:(1)它所传送的信号是按照时隙位置分列复用而成的统一数字流,具有综合传输的性质。(2)它利用微波信道来传送信息,拥有很宽的通过频带,可以复用大量的数字电话信号,可以传送电视图像或高速数据等宽带信号。由于微波电磁信号按直线传播,所以数字微波通信可以按直视距离设站。数字微波通信主要是用来传送长途电话信号、电视信号、数据信号、移动通信系统基地站与移动业务交换中心之间的信号等可以用于通向沙漠、孤岛等特殊地理位置的通信以及内河航运的船舶电话系统等。在军事上,数字微波通信可构成专向通信,如海、陆、空三军基地的通信交流等,也可以用于野外战斗通信网的干线通信和支线通信。因而,数字微波通信技术在整个国家通信传输体系中占用重要的地位。

2数字微波通信技术的基本原理分析

微波在空气环境中的传播性与光波在空气环境中的传播今本上表现为同等的状态,都在空气环境中呈现出直线的前进并且延伸到空间当中,如果出现阻挡,则将会导致微波发生一定程度的反射,影响其传输性能的实现。从这一方面来说,按照当前的技术条件,建立在适当范围内的通信是数字微波通信技术的关键。而由于受到客观因素的影响,信号质量就会变得很差。如受地球表面传输和空间传输较大的衰落问题影响,信号质量就会变得很弱,甚至中断。如果想在不影响信号质量的前提下进行远距离的通信与传输,那么就必须要通过对传输信号进行反复的中继转发,才能达到接力传输的重要目的。换言之,就是在应用数字微波通信技术进行视频和音频信号的传输过程中,设置相应的终端站点,使数字微波传输线路的两端位置传输顺畅。另外,对于数字微波的传递,还需要在传输线路的延伸空间内设置一定的中继站站点,而对于所设置的中继站点之间的间隔应当在50m以内。因此,按照上述的原理,在确保中继站站点能够将传输过程中流经该站点的数字信号加以有效地接受和处理的同时,从而才能够实现对数字信号传输质量的有效保障。而在电视直播中最常运用的一项主要技术就是数字微波通信技术。微波传输技术是无线、直线传输,发射天线和接收天线要在可视范围内,中间不能有建筑物阻挡。微波传输首先要架通微波的收发点、中转点。微波使用的频率范围从300MHz到10GHz。如果频率太低,就容易受到干扰;如果频率太高,磁波传输能力就会下降,传不了很远,因此最好在可用频率范围内选择低的频率。在使用频率方面,大城市使用无线电频率的部门很多,频率占用范围宽。但是,由于无线电的传输距离很有限,所以在很大程度上,微波的使用要受场地制约,即使在一个城市中也都要设置多个中转点。在实际工作中,单独使用数字微波传输主要用是于大型晚会或者是体育赛事的直播。通常的情况下,当微波传输在拍摄某些大景和大范围移动机位时,此摄像机微波发射端和系统接收端使用的是微波全向天线。例如在北京奥运火炬传递的直播中,移动微波车全程跟随火炬传递,其作为一路重要的信号源再接入最后一级切换台。

3无线摄像机微波传输系统

无线摄像机微波传输系统分为模拟和数字两种传输方式。其中,模拟传输技术对多路反射信号的影响非常明显,一般在室内无法使用。而在室外拍摄时,为了能够收到较好的信号接收效果,一般都采用定向跟踪,但是需要配备有经验的天线操作员。因而,模拟微波摄像机在实际使用中没有能够得到广泛的推广。近年来,随着科学技术的不断进步,人们将数字电视地面传输技术引入到了无线摄像中,数字微波摄像机能够使用全向发射天线,而在接收端主要是利用多个天线进行分集接收,在有效的覆盖范围内信号质量一般比较稳定。这种无线微波摄像系统,既可以在室外,又可以在室内应用,而且在运动拍摄时也不需要天线跟踪。因此,无线摄像机数字微波系统被广泛的应用。

4数字微波通信技术在电视直播中的应用形式

4.1无线摄影机数字微波系统的基本应用方式

在目前数字微波通信技术的支持下,无线电摄像机数字通信技术的运用在电视直播中是最基本、本、最普遍的。然而在整个数字微波通信系统的运用过程中,只需要用分级是信号接收设备和微波发射单元设备。在电视直播的过程中,无线电摄像机数字通信技术是目前进行电视直播、新闻报道过程中最为常用的,同时也是综合运用优势最明显的。对于摄像设备与卫星通信设备的间隔距离在几千米以内或者是在同一可视范围内的情况下,可以通过对无线摄像机数字通信技术的综合应用来实现电视直播的目的。在日常生活中我们经常可以通过电视看到各种各样的新闻或者体育直播,如春节联欢晚会、奥运会等。那么电视直播是如何实现的,因此,以一场晚会的电视直播为例。在晚会的电视直播中,为了最大限度的保证电视直播的质量,就要求摄像工作人员可以提前将微波摄像机装置带入晚会的现场,并且还可以将其放在晚会前台相对平坦的地方,以实现摄像的效果。在此基础上,微波天线可以接受来自前方摄像工作者所拍摄到的晚会现场实况,并将相应的数据资料传输到下变频设备当中。在下变频设备与分级信号接收单元的有效联动中实现对视频信号和音频的可靠性传输。通过以上的信号传输,然后将所传输的音频和视频信号加以整理按照便携式卫星站点、卫星信号接收机房的方式加以传递。因此,通过此种方式,实现了对整个晚会运行的状况进行及时高效的直播。

4.2结合摄像设备反向控制单元的应用方式

通过对摄像设备反向控制单元的有效利用,从而使电视直播后方的音频及视频编辑人员能够很好的实现对电视直播前方摄像设备的工作人员的远程调度与控制。根据电视直播过程中,对于播出画面的取景构图艺术和清晰度以及对音频质量辨析度等过多个方面的节目制作需要,后方编辑工作人员引导电视直播前方的摄像设备操作人员有效地展开各项工作。在电视直播的过程中,其所涉及到的相关技术标准的掌握则全部由电视直播后方机房内的相关技术工作予以完成。从这一方面来说,整个电视直播节目的制作所表现的机动性与灵活性,都是建立在摄像设备反向控制单元的基础上的。与此同时,通过运用摄像设备反向控制单元的方式实现了电视直播前方数据传输和后方编辑制作的双向性。总之,这一过程就是在无线数据发射机的基础上,将数据资料传送到摄像机设备当中,从而实现了整个电视直播的反向控制。

4.3结合信号中继系统的电视直播应用方式

数字微波通信技术与信号中继单元的合理有效的运用,实现了对视频信号和音频信号传输距离的延长。由此可知,电视直播前方摄像设备通过微波发射机,将视频和音频信号发送至分级式接收机设备当中。在此基础上,将接收的这部分信号传输至信号中继内部,然后再通过调制与调解的方式,输出一COFDM格式所表现的综合信号。在中继系统的电视直播应用方式的作用下,为了达到更好的直播效果,中继系统需要放置在较高且无明显阻碍物的区域内,以防止中继系统信号的转发能力受到削弱。在当前技术条件的支持下,数字微波通信技术综合信号中继系统的电视直播应用方式在直播中具有明显的综合优势,值得特别关注。

4.4结合光纤延伸单元的应用方式

光纤延伸单元分为移动单元和固定单元。移动单元与天线和下变频器相连接,一般置于拍摄现场附近,通过光纤连接到固定单元并经分集信号接收机重建音视频信号,光纤延伸单元可将传输距离最大延伸到30km。比如在一些大型的体育赛事或者是大型的晚会中,摄像人员可以在现场进行拍摄,然后将信号传输到附近架设的微波天线,通过光纤将视频或者是音频信号直接传输到后方的演播室。

5结语