前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的重复的遗传学效应主题范文,仅供参考,欢迎阅读并收藏。
在高校遗传学教学中存在许多经典案例,如:果蝇的翅型、体色、眼色等性状的遗传;豌豆的性状遗传以及玉米籽粒的形状和颜色性状的遗传等。其中,还有一个非常重要的经典案例,即血型遗传。自20世纪初至今,ABO血型遗传一直是复等位基因的一个不可缺少的经典案例。随着科学技术的高速发展,血型的经典内涵得到不断提升,新的研究结果使血型遗传所涵盖的遗传学知识点越来越多,内容越来越丰富。因此,以我们身边最常见的表型--血型为案例开展遗传学教学不仅可以将复杂的知识点简单化、形象化,便于理解,还可以将繁多的基础知识串联起来,便于记忆。另外,以血型遗传作为经典案例在遗传学的教学中还可以不断加人新的研究和新的应用,使经典的内涵不断得到新的提升,让学生的视野接触到前沿的科学知识,为日后的科研接力打好基础。
1血型与遗传学之间的重要关系
开展案例教学,案例的选择是关键。血型是人类血液由遗传控制的个体性状之一,与人类的生活关系密切,用途广泛。自1900年到2005年,已检测出约29个血型系统[21。临床上最常用的有“ABO血型系统”、“Rh血型系统”、“MN血型系统”和“HLA血型系统”。这些血型系统涵盖了复等位基因、基因互作之上位效应等遗传学的孟德尔定律拓展原理,基因的表达调控及群体遗传等遗传学的精髓内容。透过这个知识窗口,可以看到遗传学在血型中的奥秘。
孟德尔遗传定律从建立、发展到不断拓展完善,一直都是贯穿高校遗传学教学的核心知识点。由于现在大学生从高中开始就接触孟德尔定律,如果大学教学还是重复高中阶段所涉及的内容,学生的学习兴趣难以提高。在高中知识的基础上,开展案例教学,引入现代遗传学在人类血型上的最新认识,则不但可以给学生一种似曾相识的感觉,还能自然地激起他们深入探索的兴趣。血型的遗传特征及生化基础可以清晰明了地向学生阐述清楚孟德尔定律的一些重要的延伸知识内容。从红细胞血型到白细胞血型,从常见的ABO血型到罕见的孟买、Rh血型,对于假基因、等位基因、复等位基因和拟等位基因等不容易理解的基因概念以及基因之间的相互作用都可以通过血型案例,把学生带入情境之中,在教师的指引下由学生自己依靠其拥有的基础知识结构和背景,在血型案例情境中发现、分析和解决问题,比较轻松地掌握这些容易混淆不清的概念和一些难以理解的遗传学现象,如非等位基因之间的相互作用之上位效应等。
此外,人的血红蛋白基因在不同发育时期的表达调控还涉及遗传学中的表型和基因型之间的关系,真核生物中的基因表达调控模式等知识点。对血型相关的一些遗传疾病进行分析,还可以引申出基因突变和染色体缺失突变及一些重要的遗传标记。血型的遗传学检测方法及临床上的输血原则和溶血、血型互配等现象也与受基因表达调控的红细胞的细胞膜糖基的特征和生化机制密切 相关,引导遗传学从理论到实验,再到实践中的应用。血型与疾病的关联分析,把科研思维引入高校遗传学教学中,让学生紧跟时展的步伐,理论联系实际,为日后的科研工作打好基础。
遗传学中两大重要的主题是遗传和变异,主要包括孟德尔遗传和连锁遗传、基因突变和染色体畸变。通过以复旦大学遗传学教学大纲为参考,与刘祖洞主编的《遗传学》和乔守怡主编的《现代遗传学》教材内容相比较发现,血型遗传案例除了与上述遗传学四大内容关联外,还涉及到基因的表达调控、群体遗传、表观遗传等知识点,其中大部分知识点都是要求学生重点掌握的内容。目前,血型案例所涵盖的主要遗传学知识内容及在遗传学学科中的重要意义的归纳见表1。因此,把血型作为经典案例,开展遗传学的案例教学既贴近生活,引发学生深刻的思考,又能代表性地进一步阐述探讨遗传学的生物知识。
2血型案例在遗传学教学中的开展
在以血型为案例的教学过程中,我们首先根据高校遗传学的教学目标和培养目标的要求,在学生掌握了一些遗传学的基础知识和理论知识的基础上,结合遗传学的教学进度逐步有序地进行介绍:1.血型基本知识介绍;2.红细胞血型的细胞膜糖基特征和生化机制;3.红细胞血型与输血;4.血型的遗传学规律特征,包括(I)ABO血型复等位基因遗传及其应用,(II)ABO血型基因的克隆,(III)ABO血型的遗传学鉴定;5.ABO血型的拓展,包括(I)孟买血型与拟孟买血型,(II)红细胞血型与白细胞血型。下面主表1血型与高校遗传学教学的重要关系
要选取两个方面阐述在遗传学教学中的开展过程。
2.1血型基本知识在教学中的开展
ABO血型系统是第一个被描述的红细胞血型系统,也是最具有临床意义的一个系统。因此,在进行血型基本知识介绍时往往以ABO血型为例。随着以分子生物学为基础的血型研究的发展,ABO血型的基因遗传背景目前已比较清楚。在介绍血型基因的基本知识同时也涵盖着遗传学知识的传播,而且随着血型基因知识的不断丰富完善,涵盖的遗传学知识也越来越广泛。
ABO血型由3个复等位基因控制,即iA、产和i°o在开展遗传学相关教学活动时,一般都用此作为分析生物界中复等位现象的经典例证。这些基础知识对于高校学生来说可能在高中的时候就已经获得。因此,在大学开展相关教学时,除了简单介绍这3个主要的复等位基因外,还可以深入讲述新的研究结果,到目前为止通过分子生物学方法已经确定了160多个^50等位基因,只是目前国际上以4川7基因作为等位基因的参比序列,其他基因均与其紧密相关,非常保守。在此基础上ABO血型又可分为许多亚群,其中A血型表现出最多的亚型。在红细胞血型系统中还有一种Rh血型,分为Rh阳性和Rh阴性。Rh血型主要由3个紧密连锁的基因D/d、C/c、E/e决定,这3个基因以单倍型方式传递,属于拟等位基因。这样在讲解原有知识基础上,又不局限于原有知识范围,由ABO血型到Rh血型,由复等位基因引出拟等位基因,在教学方法上可以通过相互比较,举例分析,扩大学生的知识面,提
高他们的学习兴趣。
人类的血型是不是一生恒定不变的?面对这个问题,很多学生都会认为血型是由遗传决定,不会改变。其实人类的血型也会发生变异,如急性白血病以及再生障碍性贫血可以使血型抗原减弱,骨髓增生异常综合征可以导致血型抗原丢失等。而且,健康人也存在血型变异的现象,但是这个是与细胞表面血型物质受到掩盖以及人体存在一些稀有ABO等位基因有关。这些新的知识可以向学生很好地展示“遗传和变异”,利用身边的血型案例调动学生的学习积极性,使他们积极主动地掌握遗传学的精髓。
此外,最近几年疾病引发基因甲基化和突变的研究'又可以结合表观遗传学的内容开展教学。
2.2红细胞血型的细胞膜糖基特征和生化机制在教学中的开展
人类ABO基因位于9号染色体长臂(9q34),其基因产物是一些专一性的糖基转移酶,可以催化血型抗原前体特定部位的糖基转移,从而控制ABO血型抗原的生物合成。其中4基因编码产物为N-乙酰-D-半乳糖胺转移酶(简称A酶),可以产生常见的A抗原;S基因编码产物ci-l,3-D-半乳糖转移酶(简称B酶),可以产生常见的B表面抗原;和S基因同时存在产生的等位基因,其编码产物具有A酶和B酶的特异性,在红细胞表面上产生不同强度的A和B抗原;而O基因则是第258位和第349位碱基缺失导致的密码子移位,使终止密码提前出现,合成了无酶活性的短肽,因而体内没有A酶和B酶,也不能催化糖基转移,只有前体物质H的产生为H抗原(图1)。因此ABO血型有时也称为八811型[71。这样,不同的、B、0基因编码不同的多肽,产生具有不同功能的糖基转移酶,非常简单地引出了遗传学中经典的基因与酶的关系的“一个基因一条多肽(一个基因一个酶)假说”,使学生很容易获得一个基因决定一条相应的多肽链(酶)的结构,并相应地
影响这个多肽(以及由单条或多条多肽链组成的酶)的功能这种遗传学思想,达到良好的教学效果。
此外,最新研究发现ABH抗原除表达在血细胞表面以外,还可以出现在除脑脊液外的分泌液中;有大约80%的个体具有产生这些可溶性抗原的遗传基因;这种分泌抗原的表达由双结构基因控制,即第19号染色体2个紧密连锁的Ft/n(用和基因座。ABO血型抗原都由前体H物质合成,SeAe基因和丑冷基因都可以控制合成H物质;简单来说,基因的表达决定体液中是否出现ABH抗原,H/h基因的表达决定红细胞上是否出现ABH抗原。但是,并不是所有带m基因的个体唾液中都分泌ABH物质,还要受到Wh基因的制约,其中hh型(即孟买型)均为非分泌型[7]。这样又引出了遗传学中一个很重要的概念--上位基因,很重要的遗传学现象--上位效应。这些属于遗传学中基因互作的重点内容,而且发生基因相互作用的非等位基因仍然遵循孟德尔分离和自由组合定律,后代的基因型及其比例是可预计的,所以在遗传学教学中还可用于亲子鉴定、重大遗传疾病的关联分析、人种演化、群体遗传分析等相关内容。
2.2相关技术的拓展应用
ABO血型的分子检测是分子遗传学教学中PCR技术拓展应用的案例。血型基因的表达影响血型的表现型,表型相同的个体其基因型不一定相同。如何区分iAiA、Pi0在表现型都是A型和iBiB、iBi0在表现型都是B型的个体,可以根据A、B、0血型基因碱基的差异,应用聚合酶链式反应-限制性片段多态性(PCR-RFLP)技术分型人类ABO血型的方法。这种方法可以对个体血型(血型基因型)进行判定:是属于AA型、AO型,还是BB型或BO型。在这个基础上,我们进行了改进,并结合教学进程,作为自选实验在学生中开设,获得了学生的好评。在135个学生中开展自选实验,其中有80%的学生选择ABO血型鉴定这个实验,并表示对这个实验很感兴趣。
此外,还可通过分析核苷酸来确定分泌型ABH血型的Se基因型。主要基因分型技术有:(l)PCR-序列特异性引物(PCR-SSP),这是一种新的基因多态性分析技术,根据基因座某一碱基的差异设计一系列引物,特异性引物仅扩增与其对应的等位基因, 而不扩增其他的等位基因;(2)PCR-DNA测序法,先通过PCR扩增基因的主要片段,然后测定序列;(3)PCR-限制性内切酶法,用对位点特异的限制性内切酶消化基因,再通过Southernblot分析来确定。目前,PCR-SSP常用于胎儿血型鉴定及白血病引起的血型抗原异常等血型鉴定。随着450基因结构和研究方法的迅速发展,AB0血型定型也将进入基因定型的时代,揭示更多的关于AB0基因和AB0血型表观遗传学等方面的奥秘。
在教学过程中还可以设计一系列与血型相关的论题,引导学生査阅相关方面的最新进展,总结出血型与人类疾病和性格之间的关系以及蕴涵的遗传学原理。学生可以分组制作PPT讨论,还可针对某一论题,学生组队分为正反两方,开展辩论式讨论。一学期可以安排一次课时(45分钟)开展辩论式讨论,前30分钟让学生正反方陈述观点,列举证据开展辩论,后15分钟用于总结和点评。在这个模式下,几乎所有的学生都积极主动地参与进来,将引导、鼓励与考评相结合,充分调动了学生学习的积极性[11]。开展“血型是否可以决定性格”类似专题的辩论式讨论,既增加了遗传学教学的兴趣性及可接受性,还可以使学生的思维在辨析中得到操练。正反两方队员通过收集资料和案例,与同学辩论解释的过程中,不仅掌握了深奥的科学知识,而且还与现实生活相联系,并且将遗传学应用于实际,填补了传统教学在知识灵活认知与实践中的不足。
3以血型为案例开展遗传学教学的优点
作为日常生活中被人们广泛熟知的遗传学常识,血型遗传学的研究历程符合遗传学的发展规律与教学规划,其作为遗传学教学案例有着不可替代的优势:
关键词:光遗传学;上转换纳米粒子;近红外光转换器;光调控;离子通道;生理活动
0引言
精准调控生物分子以及生理过程,对于理解疾病的发生发展和实施有效的治疗具有重大意义[1-2]。而离子通道作为细胞膜的主要成分,对于神经、肌肉等其它系统的电生理信号的传导和整合起到关键作用,它的活化或功能障碍会影响正常生理及病理进程,比如大脑思维,肌肉收缩和离子通道病[3-5]。目前,常用于离子通道调控的策略有以下几种:(1)化学分子作用,如离子通道激活剂或阻断剂;(2)基因工程干预,如特异性地表达、敲除或沉默目的基因来影响通道蛋白的活性;(3)物理电刺激,作用于特定的电压门控离子通道[6-9]。尽管这些方法都取得了一定的进展,但在实际应用中依然存在着许多挑战。例如,化学药物随血液循环的非识别性积累及作用难以避免,这极大地限制了调控的空间分辨率[10]。再者,化学或遗传扰动的不可逆性也阻碍了实际调控的时间准确性[7]。此外,尽管电学模式的物理刺激,尤其是对于深部大脑刺激而言,显示出很好的时空准确性和应用价值。但是,实际操作中需要高侵入性地在深层脑组织植入电极或芯片,会造成潜在的临床不良反应[11-12]。
因此,迫切需要开发精度高、损伤小的调控膜离子通道的有效技术。近年来,使用光来控制生物分子和生理过程已引起了广泛关注[13-15]。其中一种新兴的被称作光遗传学的生物技术被应用于神经科学领域,并且能高选择性地,甚至在毫秒级的时间分辨率下实现神经功能的操控[16-18]。更重要的是,通过基因工程对光敏视紫红质离子通道蛋白进行改造,使其在离子特异性以及光谱响应性2个方面进一步多样化。这为推动光遗传学在更复杂的生物体系应用的提供了机会,不仅在体外单细胞水平,还在自由活动动物上对脑回路介导的行为学进行调控[19-22]。然而,尽管这些技术取得了令人瞩目的成就,但目前报道的光敏感视紫红质蛋白,或其它用于膜通道调节的光遗传学工具主要是在可见光区工作。由于可见光组织穿透性不足,生物体吸收和散射严重,这些因素极大地限制了光遗传学在体内应用[18,23-25]。虽然有研究报道通过光学纤维或微型发光二极管植入可以做到深层脑组织刺激,但这种高度侵入性的手段会引起一定的安全隐患[26-27]。由此,开发新的光遗传学技术,使其能够在活体条件下无(微)创地、有效地调控深层部位膜通道具有重要意义。
值得注意的是,科学家们目前为实现体内有效的光遗传学刺激做出了多方面努力,其中将光敏离子通道蛋白激发波长移至近红外窗口(>700nm)被认为有利于更深的组织穿透能力[24,28-29]。比如通过基因工程化的策略,目前不同突变视紫红质离子通道蛋白的响应光谱已经从蓝光红移到黄光,甚至红光区域,但这些光遗传学体系仍局限在可见光波长范围内(表1)[30-31]。此外,通过使用近红外光响应纳米材料作为光转换器,进一步原位刺激光遗传学工具,可以增强光穿透能力进而调控离子通道的活性[32-34]。其中,镧系元素掺杂的上转换纳米粒子作为独特的光学材料被选为潜在的光纳米转换器。该材料具有将近红外光(如980或808nm)转换为紫外、可见或近红外区域的多种发射的性能(表2),鉴于其较少的散射和更深的组织渗透深度,已被广泛地应用于生物成像和纳米医学研究领域[35-39]。基于此,近年来人们将镧系元素掺杂的上转换纳米粒子与各种光敏离子通道蛋白结合,实现了近红外上转换的光遗传学调控,并取得了显著的研究成果[32,40-41]。
因此,我们聚焦于生物医学研究中将近红外上转换纳米转换器用于光遗传学调控的最新成果。首先,我们对特定功能的上转换纳米平台与光敏离子通道蛋白结合的策略进行了总结;其次,详细地介绍了上转换光遗传学的广泛应用以及可改进的技术;最后,关于进一步推进该技术向临床转化并克服当前挑战提出了建议和展望。
1开发上转换纳米粒子介导的近红外光遗传学平台
通过匹配不同光敏视蛋白的激活波长,选择适当的上转换纳米粒子作为近红外光转换器,这种组合策略可以灵活地实现特定离子通道的激活。2011年,Deisseroth等[53]在一项专利申请中首先提出了这个理念,并列举了各种上转换纳米粒子与细胞膜上光响应视蛋白表达的神经元组合并进行光调控的方法。在2013年,Han等在一项基金申请里介绍了用于体内神经元无光纤操控的上转换光遗传学设计。此后在2015年,不同研究团队分别报道了在体外体内成功地实现了上转换光遗传学调控的研究[54-55]。
例如,Yawo等[40]使用蓝色发光(发射峰在450和480nm)的上转换纳米材料NaYF4∶Yb/Sc/Tm@NaYF4,在近红外976nm激光照射下,可以有效地激活PsChR离子通道,并产生明显的动作电位;另外,利用发出绿光(550nm)的NaYF4∶Sc/Yb/Er作为近红外光转换器,进而可用于激活表达细胞中的C1V1或mVChR1离子通道蛋白(图1)。进一步地研究还证明,结合上转换纳米粒子的光遗传学调控效果显示了刺激的时间和功率依赖性。但是,该研究仍有待改进空间,比如上转换发光效率,纳米材料的生物安全性等方面。
(1)将上转换纳米粒子嵌入细胞可生长的膜载体。如图2a所示,Lee等[54]制备了上转换纳米材料(NaYF4∶Yb/Tm@NaYF4)混合嵌入聚乳酸-羟基乙酸(PLGA)聚合物的薄膜。这种0.5mm厚的薄膜不仅可用于神经元接触培养,还可以用作光遗传学调节的基础平台,将近红外激光转换为蓝光,随后激活表达有蓝色光敏通道视紫红质的蛋白(ChR2)的神经元。更关键地是,该体系通过1、5和10Hz的980nm脉冲激光刺激,实现了毫秒级分辨率的神经元活化响应。此外,Yawo等[40]比较分析了不同接触式细胞光遗传学调控平台的效率。根据图2b所示,方法一将上转换纳米粒子与神经元直接接触,而方法二在二者之间采用玻片间隔。实验结果发现两种方法均以激光功率依赖性的方式显示出光刺激下向内性的膜电流响应。但是,在相同的近红外激发功率下,方法一的效率明显高于方法二,说明需要将上转换纳米材料尽可能靠近地放置于光敏通道蛋白的位置,因为光子的功率密度与距离的平方成反比。
(2)将上转换纳米粒子制成微光极。Shi等[57]首先将UCNPs包装到玻璃微光极中,制成可植入的光转换器将近红外能量转换为可见光,然后刺激具有不同ChRs表达的神经元(图2c)。这些微型光学器件显示出极好的长期生物相容性,并且可以远程控制脑功能的调节,甚至用于复杂的动物行为学操控。
(3)直接利用细胞或生物体组织摄取上转换纳米粒子(图2d)。该方法在目前研究中最为常用,将功能修饰的上转换纳米粒子与所要调控的细胞孵育,或者直接通过注射的方式进入特定组织器官,待纳米粒子被有效摄入后,进行近红外激光照射并实现光遗传学调控。这种策略不仅可以达到亚细胞层面的精准光调控,而且在动物体内实验方面也易于实施。但是,局限也很突出,比如难以操作,生物安全患等方面。
2近红外上转换光遗传学体系在生物功能调控方面的应用进展
近红外上转换纳米技术和光遗传学的结合,从原理上克服了体内常用光遗传学研究中遇到的局限性,包括激发光的低穿透性或者光源植入的侵入性,为神经细胞或非神经体系中膜离子通道的调控提供了巨大的机会[32]。这种灵活的光学操控技术在神经科学领域取得了一系列成果,并进一步证明了其更广泛的适用性(表3)[34,69-70]。考虑到生物的内在复杂性,到目前为止,上转换光遗传学及其他调控技术,在详细阐明基本的生理、病理方面的探索仍然处于最初期阶段。因此,下面将着重讨论目前在不同生物模型上,采用近红外上转换光遗传学调节膜离子通道、钙信号以及相关生物学活性方面的研究进展。
2.1神经细胞膜电位
将光活性蛋白用于刺激活化或抑制神经活动是近年来神经学研究中的一大创新。这种光遗传手段由于具有较低的侵入性并且能够在时间与空间尺度精确地调节神经活动,因而在神经学研究中具有较为广阔的应用前景[23]。
早在2015年,Lee等[54]报道了通过UCNP进行神经调节的应用。该研究中视紫红质离子通道蛋白通过生物工程的手段表达于神经元细胞中,在近红外光(980nm)的照射下,这些神经元能够在毫秒范围内产生持续的神经脉冲信号。在之后的研究中,科研人员设计并制备了一系列发光性质不同的UCNPs,用于不同光敏离子通道的活化[15,31]。譬如,Han等[41]设计制备了IR806染料敏化的UCNP,通过800nm的近红外光激发,实现了对红光响应离子通道(ReaChR)的调节。实验中,染料敏化的UCNP被包覆于聚甲基丙烯酸甲酯(PMMA)薄膜中,用于海马神经细胞的培养。这些神经细胞能够实现精确的时空调节,以光强度依赖性地方式被激活并产生神经信号。除此之外,在976nm激发条件下能发射绿光(550nm)的UCNPs(NaYF4∶Sc/Yb/Er@NaYF4)也被用于刺激离子通道C1V1或mVChR1以产生光电流。而对于表达PsChR的神经元,则可以通过发射蓝光的UCNPs(NaYF4∶Sc/Yb/Tm@NaYF4)实现近红外光遗传学刺激。上转换纳米材料可调的光学性质和不同光敏离子通道蛋白的灵活搭配为近红外光遗传学体系提供了丰富多样的选择,极大地促进了后续在动物模型上的生理、病理研究。
2.2钙信号通路
不同于常见报道的UCNP-ChR体系,Zhou和Han等[55]展示了另一种基于上转换纳米颗粒的近红外光遗传学平台,被称作“Opto-CRAC”(图3a)。Opto-CRAC在细胞和活体环境中,通过近红外光照射而发出蓝光的UCNPs(NaYF4∶Yb/Tm@NaYF4)作用于经基因工程改造的光敏钙离子通道蛋白,既可以选择性地控制细胞内钙离子的流入以及受此过程调控的基因表达,进而调节机体的免疫炎症反应(图3(b~d))。通过对光信号的调节(如激光的脉冲、强度),该体系的光遗传模块LOVSoc能够可逆地产生持久且周期变化的钙离子信号。更为重要的是,Opto-CRAC介导的光致钙离子信号通路活化可以引发免疫细胞的特异性生理响应。通过使用近红外光激活光控-钙通道,可以促进树突状细胞的成熟及抗原的呈递,进而刺激T细胞的活化。通过这种手段实现了对细胞信号通路进行的精确操作,进而调控下游信号转导,方便其在动物生理/病理研究中发挥作用。
此外,斑马鱼活体模型广泛用于生命医药领域,比如生物造影,诊断治疗及生理病理研究[61]。目前,关于近红外光遗传学调控在斑马鱼模型中的可行性研究被Xing等[62]报道。该工作巧妙地设计了808nm激发的上转换光遗传学体系,实现了对离子通道ChR2的调节以及钙离子介导的肿瘤细胞命运调控(图4)。更为重要的是,该体系揭示了在体外和活体条件下,通过近红外光介导的离子通道的调节可引起细胞的凋亡,具有进一步在肿瘤治疗方面的应用前景。
2.3线虫行为学
除了能对细胞膜离子通道进行有效地调节外,在改进上转换光遗传学研究方面,Zhang等[58]通过利用准连续波的近红外激发手段,提高了上转换发光效率并在表达ChR2的线虫体内成功地实现光遗传学神经信号及行为学调控(图5(a,b))。最近的一项研究中,Gao等[67]采用线虫模型,借助近红外激发绿光发射的UCNP对表达有Crimson光敏离子通道的不同神经元(运动神经元或中间神经元)进行调控,实现了对线虫多种运动行为的控制(图5c)。这些工作不仅揭示了增强UCNP的多光子发光效率的可能性,还通过近红外光使线虫产生了受触动刺激的反应,展现出近红外光光遗传学这种非侵入性调控策略在不同活体动物模型应用上的优势和灵活性。
2.4鼠神经活性及行为学
鼠类模型在生化、医药研究中作为一种最为普遍的动物模型,对于光遗传学的转化研究更具价值[30]。尽管深层组织的光学刺激在鼠类模型中很大程度上需要特殊的光学设施,以及复杂的实验手术操作,但随着光遗传学和上转换纳米技术的发展,通过近红外光进行小鼠脑部功能的光遗传学调控已经成为可能。
Shi等[63]报道了一种基于UCNP的微型光极器件实现了远程光学控制小鼠脑部神经元(表达有多种视蛋白如ChR2或C1V1)的目标(图6)。机械激光投射系统通过发出的近红外光,可以有效地控制鼠的不同脑部区域的功能并产生神经脉冲活动,譬如脑部纹状体,中脑腹侧盖区以及视觉皮层。值得注意的是,在另一项工作中,Shi等[63]还通过设计制备不同光谱特征的UCNPs,实现了体外与体内条件下,神经细胞的多重刺激或抑制。上转换光遗传技术在小鼠神经活动刺激研究中的成功应用,极大地促进了基础生理调控以及神经科学的发展。
另外,McHugh及Liu[66]探究了将UCNPs作为光遗传调节器以微侵入注射式的方法调控小鼠脑部深层神经元功能的可能性(图7)。该研究中,近红外介导的光遗学传刺激能够引发脑部腹侧被盖区域多巴胺的释放。在此基础上,通过刺激脑部内侧隔核的抑制性神经元,可以诱导产生神经振荡。更为重要的是,研究中这种上转换光遗传体系还可以抑制癫痫小鼠海马体中的兴奋性神经元,实现记忆恢复,展现了其在神经疾病治疗方面的巨大潜力。
除了脑部神经活动调控,上转换光遗传体系还被成功地应用于小鼠的脊柱神经调节并用以控制小鼠的行为活动。Shi等[61]用聚丙烯以及UCNP制成光极器件,植入小鼠脊柱不同部位中(图8)。这些小鼠在已麻醉的情况下,通过近红外光的刺激,可以由肌电图观测到其腿部肌肉的活动。而自由活动的小鼠,在光的刺激下其运动行为还能被有效地抑制。这种柔性器件与上转换光遗传学的结合,还展现出较好的生物相容性。在长达4个月的植入期内未引起明显的炎症,适用于动物行为学的长期跟踪研究。
3近红外上转换光遗传学技术存在的问题及改进策略
尽管上转换光遗传学前景广阔,但目前仍然面临着纳米粒子生物安全性低,近红外光上转换效率低,以及持续照射引起的热效应显著等挑战[32,71]。为了解决这些问题,科学家们已经从各方面入手来改进这项技术,以期实现更高效,更精确地生物功能调控,并进一步使未来的临床转化研究成为可能。
3.1提高上转换效率
首先,上转换纳米材料的量子效率低是实现有效地光遗传学调控的最大限制因素。到目前为止,在低于100W·cm-2的激发光功率密度下,近红外到可见光上转换效率最高仅约为5%,而考虑到实际应用中,生物机体对于辐射暴露的最大允许剂量(例如980nm,皮肤组织MPE(maximumpermissibleexposure)<1W·cm-2)的限制,通常上转换效率会远远低于1%[72]。对此,许多研究团队提出了增强上转换效率的不同策略,包括合成核-壳结构或表面修饰来控制局部环境的猝灭效应,利用敏化剂/活化剂来改善能量转移效率,以及通过激发光源的工程化来促进光子转移等[73-74]。
将增强上转换发光效率的策略进一步应用于光遗传学调控的研究已有报道。Shi和Wang研究团队[65]最近通过合成核-壳-壳纳米结构,并优化Yb3+离子的掺杂含量,实现了3倍于传统核-壳结构纳米粒子的上转换发光增强,并将其进一步开发为一种可植入的光学传感器,用于对表达eNpHR氯离子通道的小鼠大脑活性及行为学进行光遗传学抑制。另外,Prasad等[59]在一项近红外光遗传学的工作中应用了新型的核-壳型上转换纳米粒子(NaYbF4∶Tm@NaYF4),这种材料的发光强度比传统NaYF4∶Yb/Tm@NaYF4纳米体系发光约高出6倍。此外,Zhang团队[58]通过使用准连续波作为激发光源来进行光遗传学实验,不仅提高了上转换蓝光发射,还降低了潜在的热效应,从而实现了有效的光遗传神经调控。
3.2控制热效应
利用近红外上转换技术可以有效地激活深层组织中的光敏膜离子通道。但应该指出的是,大部分上转换纳米粒子在980nm激光照射下可能会导致局部组织的热损伤[72]。为了避免这种热效应,在实际上转换光遗传学调控中,大部分的研究只能通过合理控制激光的功率以及照射时间来控制。除此以外,将上转换激发波长从980nm移至800nm,在很大程度上降低了机体组织水的热响应,可以极大地减少激光引起的热刺激[75]。例如,在Han等[64]的报道中,使用染料敏化的核/壳结构上转换材料,可以在800nm近红外光照射下激活海马神经元中的离子通道蛋白(ReaChR)。
3.3改善生物相容性
在生物医学乃至临床应用中,无机金属纳米材料在体内的生物相容性或潜在毒性是一个重要的问题[76]。迄今为止,尚无详尽的报道涉及上转换纳米粒子本身或用于表面功能化的相关试剂和配体的刺激性及长期毒性的研究,如免疫反应和诱变作用。但可以证实的是,上转换纳米材料的形貌尺寸、化学组成及表面修饰都影响其在体外和体内的安全性[76-80]。有一些常规的策略可以在一定程度上降低上转换纳米体系的毒性,比如制备超小尺寸纳米粒子(<10nm)以增强生物清除率[81];选择合适的配体进行表面修饰,例如聚乙二醇(PEG)、二氧化硅(SiO2)等安全性高的生物功能修饰剂;再者,通过增强上转换发光进而降低纳米材料的使用浓度,也是一种解决剂量依赖的毒性问题行之有效的方法[82-83]。另一方面,由于生物体本身没有光遗传学工具,而通过病毒或聚合物的基因转染手段在体内表达光敏蛋白也具有一定的安全性顾虑。
3.4实现特异性调控
尽管通过上转换光遗传学在神经元或非神经元调节方面取得了初步成功,但是目前在实际应用中光控生理功能的效率还受限于调控的精确性。主要表现在以下几个方面:
(1)光遗传学工具的离子选择性。目前广泛使用的光敏感视紫红质蛋白,尤其是阳离子通道蛋白(例如ChRs),其激活后对Ca2+、Na+或K+等的细胞内流缺乏选择性,因此难以做到精准控制生理信号。对于如何解决离子选择性问题,有以下两种可能的策略:一是对已有的ChRs进行基因工程改造,得到具有高离子选择性的突变体,但至今还鲜有相关报道;二是结合其他现有的光遗传学技术,构建离子选择性好的光遗传学工具。例如,基于特异性的Ca2+通道激活释放的光遗传学平台(Opto-CRAC),在体外和体内都体现出优秀的Ca2+信号调节能力[55,84];另外,近年来报道的热敏离子通道(TRPs)也极具潜力,有望实现高选择性的Ca2+信号调控。
(2)光遗传学调控的细胞/组织特异性。许多在细胞层面上的光遗传学研究表明,上转换纳米转换器尽可能地靠近膜离子通道蛋白,可显著提高光子能量转移的效率,对调控效果产生重要影响。目前已报道了不同的策略,被用于将上转换纳米粒子尽可能特异地连接在光敏蛋白表达的细胞膜上(图9)。其中包括抗原-抗体结合的策略,将UCNPs定位于细胞表面,还可以通过糖代谢标记技术来共价连接。
而在动物层面,目前通过使用靶向的光基因递送技术,如细胞/组织特异性慢病毒感染等可以实现特异性的光遗传学调控[85-87]。但在实际的神经科学领域应用中,需要借助于脑定位注射来实现精确光遗传学基因及上转换纳米体系在目的组织区域表达。由于大脑结构的复杂性,很难保证操作的精准度,这在光遗传学研究中也是一个很大的挑战。
(3)纳米粒子靶向性。除此以外,上转换纳米粒子的靶向能力是远程调控细胞/组织特异性离子通道的另一个限制因素[88-89]。例如,在深层脑区的光遗传学操作中,纳米粒子难以有效通过血脑屏障(BBB),因而只能通过注射的方法来输送上转换纳米颗粒。这种策略不仅增加了创伤性,还有可能引入一些潜在的不良反应。因此,开发完全无创的、可血液递送的上转换纳米平台,进而能够用于脑部的近红外光遗传学体系将是未来研究的一大方向。
3.5标准化上转换光遗传学设备
最后,除了对上转换纳米转换器和光遗传学工具的改进之外,可靠的光学调控仪器以及信号记录设备在实际的上转换光遗传学应用也亟待开发。迄今为止,用于上转换材料光学表征的大多数仪器都是实验室个人定制。此外,在动物模型中用于近红外激光介导的光遗传刺激、监测的专用仪器也非常有限[90-91]。因此,目前的上转换光遗传学研究的稳定性和重复性还不尽人意,亟待研发商用的、标准化的仪器(例如光谱仪,刺激器,显微成像系统及膜片钳设备等)。总体而言,由于近红外上转换光遗传学是一个多学科、高度交叉的领域,学术界和工业界的任何建设性合作与整合都将有利于该技术的转化应用。
关键词 药物成瘾,表观遗传学,组蛋白乙酰化,DNA甲基化。
分类号 B845
药物成瘾作为一种慢性复发性脑疾病。复吸率达95%以上。环境线索诱发的复吸一直是药物成瘾治疗的难题,大多成瘾者在经过戒毒治疗之后对环境刺激没有明显的渴求和复吸倾向,但离开戒毒所回到原来的生活环境之后,又会出现很高的复吸率。主要原因就是成瘾药物导致的异常记忆的长期存在所致。FosB是目前成瘾与学习记忆相关领域内发现保持时间最长的分子,但其时间长度显然无法与成瘾行为及成瘾记忆的长期性相匹配。成瘾记忆长期性的分子机制有待进一步探索。神经细胞中唯一保持稳定的就是染色体组,研究表明DNA甲基化等表观遗传学的改变是发育过程中细胞记忆的重要分子基础,进而维持细胞在分裂过程中保持表型的相对稳定,尤其是某些基因的甲基化能使该基因永久沉默和不再激活,有可能是细胞分化结束后记忆长期保持的重要分子机制。提示表观遗传变异的长时稳定性也许可作为成瘾长期性的非常重要的候选机制。因此,表观遗传学有可能为成瘾记忆长期存在的脑机制研究提供新视角,并且为药物成瘾的临床治疗提供新的思路。
2 成瘾记忆长期性分子机制的研究进展
2.1 学习记忆的异常改变是药物成瘾长期存在的重要原因
药物成瘾的形成是从偶尔或控制性使用药物发展到不可控制的强迫性使用药物的过程,其主要特征是产生不惜一切代价的觅药行为并长期保持这一行为。这一过程伴随着学习记忆功能的变化。大量研究表明,不论是学习记忆还是成瘾过程都使相应脑区结构和功能发生长时程变化从而导致行为改变。药物成瘾过程与学习记忆可能存在相同的神经生物学基础。行为学实验表明二者作用于相同的脑区,学习记忆过程中起关键作用的相关脑区(如,海马)参与成瘾药物的强化效应,在药物成瘾过程中起关键的作用的中脑多巴胺系统也参与学习记忆过程;电生理实验证明二者有相同的细胞机制,尽管成瘾药物主要通过中脑多巴胺系统产生强化作用,学习记忆过程主要发生于海马、杏仁核、前额叶皮层等脑区,但两个过程都在相应脑区出现细胞突触长时程增强(LTP)或长时程抑制(LTD)现象;分子生物学研究表明,学习记忆和成瘾的形成无论发生在哪一脑区,不论是通过何种信号转导机制最终大多汇聚于环一磷酸腺苷反应元件结合蛋白(CREB,cAMP-response element binding protein),并通过CREB调控相应的靶基因改变细胞的可塑性。此外,某些个体初次接触成瘾药物就能产生深刻记忆从而形成和维持强迫性用药行为;戒断很长一段时间的成瘾行为仍能由条件线索诱发。以上事实表明学习记忆功能的异常改变并长期保持是产生药物成瘾的重要原因。
2.2 成瘾相关记忆长期性的分子生物学机制
成瘾药物进入体内会导致海马、前额叶皮层、中脑腹侧被盖区(VTA)及伏隔核等学习记忆相关脑区的多巴胺、谷氨酸等神经递质释放的异常变化,通过作用于相应的受体引发一系列分子事件,包括激活细胞内信号转导通路,改变神经营养因子、转录因子、即刻早期基因或染色体的结构等,并最终引起突触的可塑性、甚至神经元的形态结构发生变化,从而导致成瘾记忆的长期存在。因此阐明成瘾记忆长期性与顽固性的分子机制是治疗药物成瘾的关键。
CREB是目前研究最多的与成瘾记忆密切相关的分子机制之一,大多数成瘾药物都可以通过直接或间接途径增加多巴胺的释放,然后通过作用于D1受体增加cAMP的释放从而活化PKA,使CREB磷酸化调控靶基因的转录,调节成瘾药物的行为效应。CREB也是哺乳动物长时记忆形成的必要环节,促进海马、杏仁核CREB的活动的动物学习记忆能力增强。因此,CREB在药物成瘾与学习记忆相关基因表达过程中起枢纽作用,参与成瘾记忆的形成。长期慢性成瘾药物处理可使cAMP/PKA/CREB通路的功能上调,导致异常的记忆形成。毋庸置疑,cAMP/PKA/CREB通路的变化是成瘾记忆产生的关键分子机制之一,但是CREB的变化在停止药物使用后几天内便恢复正常,不能解释药物戒断后很长一段时间内(甚至终身)成瘾记忆长期存在这一客观事实。可能的解释是CBEB的变化是启动而不是维持成瘾记忆长期存在的更加稳定的分子机制的必要环节。
FosB是目前成瘾与学习记忆领域内保持时间最长的分子,在成瘾药物急性作用下通过cAMP/PKA/CREB通路诱发即刻早期基因c-fos、c-jum的表达,但在数小时后便恢复到正常水平。FosB也是Fos蛋白家族成员之一,但对药物的急性效应无明显的反应。相反在成瘾药物的反复作用下,FosB的表达逐渐增加,而c-fos、c-jun的表达逐渐减少。FosB蛋白具有较高的稳定性,在停止药物后数月内都保持相对稳定。FosB一旦形成后便能调节许多靶基因表达,细胞周期素依赖激酶5(cdk5)基因便是其调控的最重要的靶基因之一,参与神经元的生长。因此,FosB的高表达能够增强突触的可塑性,甚至改变神经元的形态,维持成瘾记忆的长期性。但是FosB蛋白的变化在停止药物后只能保持几个月,其时间长度仍然无法与成瘾行为及成瘾记忆的长期性相匹配。
2.3 成瘾记忆长期性的表观遗传学研究
表观遗传学(Epigenetics)是研究核苷酸序列不发生改变的情况下,基因表达了可以遗传的变化的一门遗传学分支学科。其中DNA甲基化的改变一般不可逆转,是发育过程中细胞记忆的重要分子基础,维持细胞在分裂过程中保持表型的相对稳定。由此推测表观遗传学的变化,尤其是基因的甲基化能使该基因永久沉默和不再激活,有可能是细胞分化结束后记忆长期保持的重要分子机制。可以推测DNA甲基化等表观遗传学的改变可能是成瘾记忆长期存在的分子基础之一。
真核生物的遗传信息主要储存在染色体上,染色体的基本结构主要是H2A、H2B、H3、H4四种组蛋白构成的八聚体以及缠绕在上面的DNA所组成。染色体空间结构的变化调节转录因子与相关基因的结合,从而控制基因的表达。表观遗传学机制主要通过改变染色体的空间构型来影响基因的表达,主要包括DNA甲基化、组蛋白修饰(包括乙酰化、甲基化、磷酸化等)、染色体重塑和非编码
RNA(如RNAi)等作用方式。DNA甲基化、组蛋白修饰和染色质重塑之间是相互作用的,染色质的重塑和组蛋白的去乙酰化是相互依赖的,DNA甲基化可能需要组蛋白去乙酰化酶(HDACs)的活动或染色质的重塑中的成分参与。通常,DNA甲基化、组蛋白去乙酰化和染色质的压缩状态和DNA的不可接近性,以及基因处于抑制和沉默状态相关;而DNA的去甲基化、组蛋白的乙酰化和染色质松散状态,则与转录的启动、基因活化和行使功能有关。DNA甲基化是最早发现的基因表观修饰方式之一,可能存在于所有高等生物中。DNA甲基化能关闭某些基因的活性,去甲基化则诱导了基因的重新活化和表达。DNA的甲基化是在DNA甲基化转移酶(DNMTs)的作用下使CpG二核苷酸5’端的胞嘧啶转变为5I甲基胞嘧啶。乙酰化转移酶(HATs)主要是在组蛋白H3、H4的N端尾上的赖氨酸加上乙酰基,去乙酰化酶(HDACs)则相反。不同位置的修饰均需要特定的酶来完成,通过这些酶作用改变染色体的空间结构。
成瘾药物会导致VTA、NAe和其他相关脑区的mRNA水平的改变。这些基因表达的变化在戒断后可存月余。这些长时程的变化使人们将研究染色质重塑作为长时程甚至终身持续影响大脑奖赏区域的基因表达的分子基础。最近研究表明,早期接触成瘾药物不改变基因编码而调控基因活性的表观遗传学机制,对成熟的神经元具有长效作用从而增加成年后的成瘾易感性,并且在急性或慢性接触成瘾药物的过程中表现出不同的作用机制。
急性可卡因注射导致纹状体的e-Fos和FosB表达,并且这个现象与给药后30分钟内的H4乙酰化的短暂增加有关。CBP因为其内在的组蛋白乙酰化活性,在药物导致的FosB基因组蛋白乙酰化过程中起了重要的介导作用,并且也可能在其他基因中也起了类似的作用。急性可卡因注射也能诱导出e-Fos基因启动子的H3的乙酰化,并且这种作用需要蛋白激酶MSK1。相对于急性处理,慢性可卡因处理和自我给药可以激活或者抑制许多不同的基因。比如急性或者慢性处理都会产生FosB基因,但是急性暴露使H4产生乙酰化而慢性处理使H3产生乙酰化。慢性成瘾药物处理后特异性诱导的基因,比如Cdk5和Bdnf基因也表现出H3的乙酰化,并且得到证明的确是这种表观遗传学的变化引起来特定基因表达的变化。因为慢性处理后的戒断期,出现了可卡因引起的BDNF启动子的组蛋白乙酰化,组蛋白修饰的变化是先于这个区域BDNFmRNA和蛋白质的增加。
在急性和慢性给药引起的表观遗传学修饰不同,存在着由H4乙酰化向H3乙酰化的转变。在海马急性和慢性电刺激之后也会有这种类似的转变。这提示H3乙酰化可能象征着一种染色质变化的信号,代表持久稳固或者重复激活的基因的。HATs(组蛋白乙酰基转移酶)和HDACs(组蛋白去乙酰化酶)对于H3H4的特定乙酰基残余的催化反应的特异性现在知之甚少。急性或慢性处理之后,HATs或HDACs对于基因调控的截然相反的作用可能介导了H4乙酰化向H3乙酰化的转变。
全基因组水平的表观遗传修饰的检测手段使相关基因的筛查更为有效。可卡因调控Cdk5和Bdnf基因的组蛋白乙酰化,使应用染色体免疫沉淀芯片(ChIP on ChiD)或SACO[301的方法探索全基因组层面的染色质结构的检测方法显示出重要作用,提示染色质水平的失调可能导致可卡因成瘾。基因组层面的表观遗传学方法在发育和肿瘤生物学领域曾发现了许多令人振奋的结果,现在类似的研究正在成瘾研究中进行。现在Nestler的实验室初步鉴定了几百个慢性可卡因处理后显著过高或过低乙酰化的基因。
此外,慢性可卡因处理可引起甲基化CPG岛结合蛋白2(MeCP2)与甲基化CPG岛结合蛋白MBD1的高表达,通过蛋白去乙酰化酶抑制下游基因的表达参与成瘾过程。以上结果提示染色体重塑(组蛋白乙酰化与DNA甲基化)可能在成瘾记忆的形成与保持过程中起关键作用,从而为成瘾记忆长期性的分子机制提供了新的研究思路。目前研究初步发现组蛋白去乙酰化酶抑制剂(HDAC)参与苯丙胺行为敏感化的联想性学习记忆过程,这些结果表明表观遗传学的变化参与维持成瘾过程中神经适应性的变化。
尽管在许多成瘾关键因子中发现了表观遗传学修饰,但有证据表明这些修饰可能通过不同的作用机制起作用。转录因子FosB与成瘾状态的转换有关,在NAc能显示出在可卡因作用下大于25%的mRNA稳定状态所有变化。染色体免疫沉淀能显示其中一种mRNA的反应,可卡因能引起Cdk5基因14的FosB直接激活,而Bdnf基因则不是直接激活FosB,说明这些基因转录调控的变化不是通过相同的机制。Cdk5基因的激活部分介导了慢性可卡因引起的NAc中的树突可塑性。这些发现都支持这样一个模型:FosB的积累和特定启动子的染色体重塑因子相互作用在成瘾的发展和维持中发挥重要作用。
3 研究展望
表观遗传学和药物成瘾都不是新兴的研究领域,但是从表观遗传学角度研究成瘾问题,是近几年兴起的一个研究热点。从表观遗传变异解释药物成瘾的神经可塑性变化和精神依赖,为成瘾药物奖赏性的后天获得和成瘾相关记忆长时存在都提供了很有力的解释机制。目前对于成瘾进程中的一些关键因子的组蛋白乙酰化有了初步的研究,研究的结果使我们看到了更多表观遗传机制在药物成瘾研究领域的前景。
3.1 成瘾记忆再巩固过程的表观遗传机制研究
近几年来,记忆再巩固是学习记忆领域里的一个研究热点,结果表明记忆再巩固与记忆巩固存在部分共同的神经机制,但它不是巩固过程的延续,而是记忆过程中的一个独立现象,存在特有的神经机制。再巩固理论为成瘾记忆的长期性提供了一种新的解释机制,在特定环境使用成瘾药物会激活已经形成的成瘾记忆,被激活的记忆后会变得不稳定,在成瘾药物作用下能够促进记忆的再巩固过程,使原有的记忆痕迹更加牢固,多次结合后便产生病理性记忆,这种异常的再巩固机制可能导致成瘾记忆长期存在。
记忆再巩固过程需要合成新的蛋白质来维持原来的记忆的稳定,记忆提取激活后在外周或记忆相关脑区(如,海马、基底外侧杏仁核、伏隔核)注射蛋白合成抑制剂能阻断原来形成的成瘾记忆。ERK是参与成瘾记忆再巩固过程的重要分子,药物相关的环境线索在唤醒成瘾记忆时能够激活ERK的表达,记忆唤醒后抑制ERK通路可阻断记忆的再巩固过程,从而消除或减弱原来的成瘾记忆,抑制ERK通路下游的锌指蛋白(Zif268)的表达同样能干扰记忆的再巩固。说明ERK通路是成瘾记忆再巩固的关键环节,这种反复的再巩固过程和其积累效应会导致一段时间内相关记忆不容易消退致使成瘾记忆长期存在。记忆再巩固的表观遗
传机制研究可能是该领域研究的一个新的趋势。
3.2 成瘾过程中促进记忆的基因与抑制记忆基因的表观遗传学改变
许多基因参与记忆形成、巩固、保持与提取过程,一类是记忆促进基因(memory promoting genes),另一类是记忆抑制基因(memory suppressing genes)。目前大多数研究关注记忆促进基因在记忆形成过程中的作用,发现了一些在短时记忆转化为长时记忆过程中起关键作用的基因。相对于记忆促进基因研究取得的重要进展,目前对记忆抑制基因情况知之甚少,蛋白磷酸酯酶1(proteinphosl)hatase1,PP1)与cAMP反应元件结合蛋白2(CREB2)是目前已知的两个抑制长时记忆形成的分子,二者都是多巴胺受体激活后诱发的cAMP/PKA/CREB通路的重要环节,抑制PP1与CREB2基因的表达则促进短时记忆向长时记忆的转换。提示这种甲基化的发生与记忆形成过程中匹配的环境线索相联系,即在条件化的过程起重要作用。因此,综合研究成瘾药物作用先记忆促进与记忆抑制基因的表观学变化便于更清晰的阐明成瘾记忆长期存在的分子机制。
3.3 存在的问题
许多表观遗传调控子的特异性拮抗剂的缺乏阻碍了精神障碍相关的染色质重塑的研究。所有的可用的组蛋白去乙酰化酶(HDACs)的拮抗剂都是非特异性的,能够阻止所有一型和二型的HDACs。更别说一些特定的HDACs(比如三型HDACs:termedsirtuins酵素和二型HDACs:HDAC6)除了组蛋白还能使其他蛋白质脱去乙酰基,这就使对这些抑制剂的生物学作用的解释更加复杂化了。特定HDACs或其他染色质重塑的特异性抑制剂才能使我们区分出精神病理现象中表观遗传调控机制所起的特定的作用。
表观遗传学(epigenetics)是与遗传学(genetic)相对应的概念,是对经典遗传学的有益补充;其认为在不改变基因序列的条件下,生物体从基因到基因表型之间存在一种调控,这种机制即“表观遗传学”的含义。尽管已被提出70余年,但直到近10余年,随着科学家们对这种“获得性遗传”的进一步认识,才成为生命科学界最热门的研究之一。因此,研究者们转换思维,从表观遗传学角度对AD发病及治疗进行了研究,发现了一系列表观修饰的关键酶类,以及对这些酶类发挥影响的药物,从而为AD药物研发提供了新的思路和研究方向。本文拟就AD的表观遗传学治疗研究综述如下。
1阿尔茨海默病(AD)概况
阿尔茨海默病(AD)是一种以进行性认知障碍和记忆力损害为主的中枢神经系统退行性疾病。它是最常见的痴呆类型,西方国家[中50%?70%的痴呆属于AD。其病因及发病机制复杂,涵盖了遗传和环境的危险因素,涉及成千上万个基因表达的改变,以及多种信号途径的上调,如P淀粉样肽W-amyloidpeptide,Ap)的沉积、Tau蛋白过度磷酸化、炎症、氧化应激、能量代谢、血管因素及细胞凋亡周期异常等。ad的典型病理改变包括突触丧失、某些神经递质水平下降、神经元内异常物质沉积以及选择性脑神经细胞死亡,使大脑受累区域广泛萎缩,导致记忆力丧失伴行为改变和人格异常,严重者可影响工作及社会生活。受累区域常会出现A沉积、老年斑(senileplaques,SP)、神经原纤维缠结(neurofibrillarytangles,NFT)及Tau蛋白过度磷酸化等。疾病逐渐进展恶化,甚至累及生命。遗憾的是目前尚缺乏延缓或阻碍疾病进展的治疗手段。
在AD中,涉及神经元退行性改变的基因达200余个,越来越多的研究数据发现在没有基因序列改变的情况下,某些机制也可以决定致病基因何时或怎样表达,最终导致AD发病。因此,AD基因组并不能完全解释发病机制[14]。已知编码APP、PSEN1和PSEN2的基因仅可导致家族性早发型AD(early-onsetAD,EOAD);而大多数(约95%)AD均为晚发型AD(late-onsetAD,LOAD)或散发型。因此可以推断,表观遗传现象或环境因素参与了LOAD的致病。这就部分解释了为什么同一家族中有的家庭成员发病而另一些不发病;而且,在年轻的同卵双胞胎中基因组无实质上的差异,而在同一老年双胞胎中其基因表观遗传学上存在显著差异。
大量研究数据证实,基因-环境相互作用在AD的病理生理过程中发挥了关键作用营养物质、毒素、环境暴露及人的生活行为,都可以在不改变基因组序列的条件下使基因激活或沉默。目前已知的可调控基因转录和表达的表观遗传学机制主要分两大类:①基因选择性转录的调控:包括基因组DNA甲基化,多种组蛋白甲基化及乙酰化等修饰;②基因转录后的调控:包括微小RNA(microRNA,miRNA)和小干扰RNA(smallinterferingRNA,siRNA)等非编码RNA的调节,以及沉默的核糖体RNA(ribosomalRNA,rRNA)基因。除此之外,染色体重塑、基因印记、X染色体失活也属于表观遗传学范畴。
2表观遗传学
表观遗传学的涵义即在DNA序列不发生改变的情况下,基因的表达与功能发生改变,并产生可遗传的表型。基本机制即:通过多种基因修饰,影响基因转录和(或)表达,从而参与调控机体的生长、发育、衰老及病理过程。至此,表观遗传学的发现极大丰富了传统遗传学的内容,使人们认识到遗传信息可以有两种形式:即DNA序列编码的“遗传密码”和表观遗传学信息。它和DNA序列改变不同的是,许多表观遗传的基因转录和表达是可逆的,这就为许多疾病的治疗开创了乐观的前景。
2.1组蛋白修饰
组蛋白在DNA组装中发挥了关键作用,利用核心组蛋白的共价修饰传递表观遗传学信息。这些修饰主要包括组蛋白甲基化、乙酰化、磷酸化、泛素化、ADP-核糖基化及特定氨基酸残基N-末端的SUMO化;其中组蛋白氨基末端上的赖氨酸、精氨酸残基是修饰的主要靶点,这些组蛋白翻译后修饰(post-translationalmodifications,PTMs)对基因特异性表达的调控,是其表观遗传学的重要标志。正常机体内,组蛋白修饰保持着可逆的动态平衡。一般而言,组蛋白乙酰化是在组蛋白乙酰转移酶(histoneacetyl-transferase,HATs)的催化下,从乙酰辅酶A上转移乙酰基到组蛋白N-末端的赖氨酸残基上;由于乙酰化中和了组蛋白的正电荷,使组蛋白末端和相关DNA带负电荷磷酸基团之间的作用减弱,降低了组蛋白和DNA之间的亲和力,这种染色质构象的放宽有助于转录因子向靶基因片段聚集并利于转录的进行。而去乙酰化则是组蛋白去乙酰化酶(histonedeacetylases,HDACs)将乙酰基从乙酰化组蛋白转移到乙酰辅酶A上,形成了致密的染色质状态,从而使基因转录下降或沉默。
2.2DNA甲基化
DNA甲基化较组蛋白修饰更进一步,是表观遗传学的又一重要机制。DNA甲基化主要是在DNA甲基转移酶(DNAmethyltransferase,DNMTs,包括DNMT1、2、3a/b和4)催化下,将同型半胱氨酸(homocysteine,Hcy)-甲硫氨酸循环中S-腺苷甲硫氨酸(SAM)中的甲基,由四氢叶酸转移到胞嘧啶的第5位上形成5-甲基胞嘧啶(5-methylcytosine,5-mC)。其中,相邻的胞嘧啶-鸟嘌呤二核苷酸(CpGs)是最主要的甲基化位点。在人类基因组中,CpG以两种形式存在:一种分散存在于DNA中,其CpG70%?90%的位点是甲基化的;另一种CpG呈密集分布于一定区域,称之为“CpG岛”(CpGislands),通常位于或接近基因启动子区(promoterregions),在正常人体基因组中处于非甲基化状态。CpG岛中的胞嘧啶甲基化可以阻碍转录因子的结合,从而可致基因沉默。一般而言,高度甲基化的基因可致表达抑制,而低甲基化的基因可增强基因表达或过表达。
2.3非编码RNA
表观遗传学调控机制涉及RNA的主要包括:miRNA、siRNA以及维持细胞周期的沉默rRNA基因的一部分。
miRNA是较短的双链RNA分子,约有22个核苷酸,来源于机体自身基因即细胞核及细胞质中较大的RNA前体,有自己的启动子和调控元件。人类基因组中有约700?800个miRNA。这些小分子RNA在转录后通过绑定靶mRNA,从而抑制转录或诱导mRNA分裂降解。大多数miRNA具有高度保守性和组织特异性,可以调控机体中30%?50%的蛋白质编码基因。siRNA长短与miRNA相似,作用方式也有很多相同之处,区别在于siRNA可以体外合成,多由外源性导入或感染诱导产生。
重复rRNA基因的复制为真核生物核糖体提供了初始活性位点,在基因表达中是蛋白质合成的热点区。不同细胞类型可表现不同的活性rRNA比率,提示随着细胞发育分化,rRNA基因拷贝数比例会发生改变。沉默rRNA的表观遗传学方式在这个过程中发挥了重要作用,使活性和非活性rRNAs保持了动态平衡。
2.4染色质重塑、基因印记和X染色体失活
染色质重塑(chromatinremodeling)指基因复制、转录和重组等过程中,核小置和结构及其中的组蛋白发生变化,引起染色质改变的过程;主要机制即致密的染色质发生解压缩,暴露基因转录启动子区中的特定结合位点,使转录因子(transcriptionfactor,TF)更易与之结合。基因印记(geneticimprinting)指来自亲本的等位基因在发育过程中产生特异性的加工修饰,导致子代体细胞中两个亲本来源的等位基因有不同的表达方式,即一个等位基因有表达活性,另一等位基因沉默。X染色体失活指雌性哺乳动物细胞中两条X染色体的其中之一失去活性的现象,即X染色体被包装成异染色质,进而因功能受抑制而沉默化,使雌性不会因为拥有两个X染色体而产生两倍的基因产物。
3AD的表观遗传学3.1组蛋白修饰
研究显示,在AD中存在组蛋白的PTMs。组蛋白3(histone3,H3)磷酸化作为激活有丝分裂的关键步骤,可使AD海马神经元呈过磷酸化状态。对APP/PS1突变小鼠和野生型小鼠进行条件恐惧训练,结果显示前者乙酰化H4较野生小鼠组降低50%;之后对突变组进行HDAC抑制剂(histonedeacetylasesinhibitors,HDACIs)曲古抑菌素A的治疗,显示前者乙酰化H4水平出现了上升。在一项皮层神经元培养模型研究中,APP过度表达则可导致H3和H4乙酰化降低,以及c-AMP反应元件结合蛋白(cAMP-responseelementbindingprotein,CREB)水平下降;而CREB则是脑神经元中激活记忆相关基因,形成长期记忆的关键蛋白。总之,尽管在AD患者、AD动物模型及AD培养模型中,都出现了组蛋白修饰,但这个过程是极其复杂的,特异性位点会因功能状态不同而出现组蛋白乙酰化增加或减少。
3.2DNA甲基化
3.2.1相关基因的甲基化研究显示,尽管很难判
断AD中甲基化程度是升高还是下降,但12个甲基化的AD特异性基因表现出了显著的“表观偏移”;同时研究还发现,在DNMT1启动子内一些CpG位点也表现出年龄相关的表观偏移。研究还发现,叶酸、甲硫氨酸及Hcy代谢与DNA甲基化机制显著关联。例如,人类及动物模型叶酸缺乏将导致基因组整体低甲基化,而补充叶酸则可部分逆转甲基化程度。Smith等研究发现,衰老及AD人群中都出现了叶酸缺乏和甲硫氨酸-Hcy周期的改变。另一研究发现AD患者脑脊液(cerebro-spinalfluid,CSF)中叶酸显著下降,同样下降的还有CSF及脑组织中SAM。同时还观察到AD患者脑组织中S-腺苷同型半胱氨酸(SAH)及血浆中Hcy的升高,后者可抑制DNA甲基化。
目前已知的AD相关基因主要包括:p淀粉样蛋白前体(APP)基因、早老素1(PS1)和早老素2(PS2)基因、载脂蛋白E(ApoE)基因、p-分泌酶(BACE)基因、sortilin相关受体基因(sortilin-relatedreceptor1gene,SORL1)以及白介素1a(IL-1a)和白介素6(IL-6)基因等。其中,APP基因、BACE基因或PS1基因均存在可调控的CpG甲基化位点。有研究显示,一例AD尸检的大脑皮层中APP基因发生了完全去甲基化,而正常样本或匹克氏病(Pick’sdisease)患者样本则没有这种变化。实验发现,叶酸缺乏所致的BACE和PS1基因表达增强,可通过补充SAM而恢复正常。同样,体内实验发现,给予APP过度表达的转基因小鼠缺乏叶酸、B12及B6的饮食,可以使SAH升高并上调PS1和BACE的表达,以及促进A的沉积和出现认知障碍。在LOAD尸检标本中,研究者发现了著名的“年龄依赖的表观遗传学漂移”(age-dependentepigeneticdrift);对CpG岛异常的表观遗传学控制,可能促成了LOAD的病理变化,因此,“表观遗传学漂移”可能是LOAD个体易感的重要机制。
3.2.2Tau蛋白相关的甲基化Tau蛋白是一种微管结合蛋白(microtubulebindingprotein,MAP),它能与神经轴突内的微管结合,具有诱导与促进微管形成,防止微管解聚、维持微管功能稳定的功能。对记忆和正常大脑功能起重要作用。然而,在AD中,Tau蛋白不仅不再发挥正常功能,还会因异常磷酸化或糖基化等改变了Tau蛋白的构象,使神经元微管结构广泛破坏,形成以Tau蛋白为核心的NFT,最终导致神经元功能受损或神经元丢失。
人体在正常条件下,Tau蛋白启动子的AP2结合位点是非甲基化的,但SP1和GCF结合位点则被甲基化。而随着年龄的增加,SP1作为一种转录激活位点甲基化程度升高,GCF作为启动子抑制位点则逐渐去甲基化,因此总体而言Tau蛋白的基因表达是下调的。尤其在额叶及海马区域,正常Tau蛋白也出现了年龄相关的下降。蛋白磷酸酶2A(PP2A)是一种针对磷酸化Tau蛋白的去磷酸化酶,PP2A催化亚基的甲基化可以激活该酶。研究显示,在APP及PS1基因突变的转基因小鼠中,PP2A的甲基化程度显著下降,结果显示Tau蛋白磷酸化增高。对培养的神经元添加叶酸拮抗剂甲氨蝶呤,也可导致PP2A去甲基化,从而增加Tau蛋白的磷酸化程度。另外,还有研究显示,Hcy可以使PP2A的甲基化程度及活性下降,而添加叶酸和B12则可以逆转这个过程。总之,Tau蛋白的磷酸化和脱磷酸化间平衡是维持微管稳定性的关键因素;而其中磷酸化相关酶类的甲基化程度,成为影响Tau蛋白磷酸化的重要因素。
3.2.3异常的细胞周期和神经元凋亡研究证实,细胞周期异常和神经元凋亡是AD神经退行性变的常见机制。AD神经元中细胞周期及凋亡途径关键因子受DNA甲基化影响并发生上调。包括细胞周期素B2基因、caspase-1基因、caspase-3基因等。这些相关基因的低甲基化使细胞进入异常细胞周期。同样,高Hcy可使培养神经元凋亡,也间接证实了低甲基化导致异常细胞周期;而使用SAM还可起到拮抗细胞凋亡的效果。
3.3A与miRNA
研究发现,miRNA可以调节APP的表达、APP处理、A聚积以及BACE1的表达,从而导致A毒性改变或影响神经再生。因而,miRNA失调可使APP表达及处理过程发生改变,最终引起神经元存活率和神经再生程度的改变。针对全球AD人群和正常老年人群的对比研究发现,特异性miRNA水平存在显著差异。研究显示,在AD中APP相关miRNA显著下降,而APPmRNA水平则保持平稳,提示miRNA影响APP表达是通过抑制转录而不是促进APPmRNA的裂解;同时,在AD皮层中miRNA-106b出现显著下降。具体机制还有待进一步研究。
3.4AD与一碳代谢
叶酸代谢又称为一碳代谢,需要SAM提供甲基。诸多研究表明,AD患者常存在血浆及CSF中Hcy升高(两者浓度升高常呈正相关),血浆叶酸和B12水平下降,以及脑组织中SAM减少。早期暴露于缺乏叶酸及B族维生素饮食的动物,其AD相关基因在脑组织中发生了表观遗传学修饰。SAM作为甲基化过程最重要的甲基来源,其产生及循环依赖于甲硫氨酸循环的正常进行[11]。研究显示,AD患者CSF中SAM出现显著下降,口服SAM(1200mg,qd)4?8个月,可以使CSF中SAM浓度升高。同时,维生素B12缺乏可使SAM产生减少,从而影响甲基化。前瞻性队列研究表明,高Hcy与AD高风险显著相关,而较高的叶酸摄入量可以降低老年人的AD风险。叶酸缺乏导致的SAM缺乏以及Hcy升高,使甲基化水平下降;并且,Hcy影响SAM和SAH水平,后两者可调节DNA甲基化活性以及蛋白翻译后修饰。另外,研究还发现Hcy可通过抑制甲基化,降低PP2A甲基化程度,从而导致Tau蛋白过磷酸化、NFT及SP形成。因此,最关键机制即:叶酸/同型半胱氨酸代谢异常导致AD相关基因启动子的表观遗传修饰(CpG区域甲基化状态的改变),使基因沉默(高甲基化)或过度表达(低甲基化),最终发生AD。
4表观遗传学在AD诊疗中的应用研究
近年来,随着表观遗传学在AD研究中的不断进步,研究者已逐渐将其应用于AD的诊断及治疗中,尽管多数还处于临床前试验阶段,但表观遗传学应用于AD临床的前景是乐观并值得期待的。
4.1表观遗传学诊断手段
利用亚硫酸氢钠进行甲基化测序是检测DNA甲基化的金标准。该方法利用盐析法从血液中提取基因组DNA,经过亚硫酸氢盐处理后,变性DNA中胞嘧啶转换为尿嘧啶,而5-mC则不发生转换,因此在经过PCR扩增和DNA测序后,胸腺嘧啶则代表非甲基化胞嘧啶,而5-mC(主要为CpG二核苷酸)仍为胞嘧啶。继而由该方法延伸出多个DNA甲基化分析法,例如:甲基化特异性PCR(methylationspecificPCR,MSP)、结合亚硫酸氢盐限制性分析(combinedbisulfiterestrictionanalysis,COBRA)以及甲基敏感性单核苷酸引物(methylation-sensitivesinglenucleotideprimerextension,MS-SNuPE)等。然而,由于目前对AD相关基因甲基化的研究还不完善,只能在临床前研究中应用甲基化测序,用于对比分析AD中基因甲基化的真实状态。
实时基因成像(real-timegeneticimaging)技术是另一种判断基因表观遗传修饰的手段;该技术避免了尸检或动物研究,是一种新型的非侵入性的可视化基因调控检测。磁共振波谱(MRspectroscopy,MRS)即是这样一种特殊的磁共振成像,该技术可扫描到特定的蛋白,将来可使我们能够实现对基因表达变化的可视化实时检测,理论上而言可以追踪到DNA甲基化或组蛋白修饰的责任蛋白;因此,在一定程度上,将为AD的表观遗传学诊断和治疗提供新的手段[39]。
此外,另有研究发现,脂肪酸酰胺水解酶(fattyacidamidehydrolase,FAAH)参与了AD的发病,同时还发现FAAH易于从外周血中检出,并可作为一个新的潜在的AD生物标志物(biomarker),继而用于AD的预测或诊断。然而,由于一些AD相关蛋白或酶类在外周血中易降解,稳定的miRNA检测已成为反映疾病的重要手段。由于大多数AD患者外周血单核细胞中存在各种miRNA的表达上调(如miR-371、miR-517等),且与其在AD脑中高表达相对应,提示通过测定血浆及血单核细胞的miRNA谱变化,可作为AD诊断和病情评估的重要方法。
4.2AD的表观遗传学治疗
表观遗传学对研究AD的发病机制和病程转归,以及研发新的药物等方面开拓了广阔的空间。表观遗传学药物进入体内后,可充当基因转录或表达的“开关”,通过不同的基因修饰及调控基因表观修饰相关酶类的活性,继而达到在未改变DNA序列的情况下影响基因表型。因此,正是表观遗传学改变的“可逆性”,使与之相关药物的研发成为AD治疗研究的新方向和重点。
4.2.1HDACIs近年来,科学家们研发了多种新的HDACIs。根据化学形态主要分为4类:①短链脂肪酸类:如丁酸钠、苯丁酸盐和丙戊酸(valproicacid,VPA);②异轻肟酸(hydroxamicacid)类:如曲古抑菌素A(trichostatinA,TSA)、辛二酰苯胺异轻肟酸(suberoylanilidehydroxamicacid,SAHA);③环氧酮类:如trapoxinA和trapoxinB;④苯甲酰胺类:如MS-275。这些HDACIs与锌依赖性HDAC蛋白(zinc-dependentHDACprotein,I、II及IV类组蛋白亚型)相互作用;烟酰胺作为NAD+前体,可以抑制III类HDAC蛋白。其中,研究最广泛的是丁酸钠、苯丁酸盐、VPA、TSA和SAHA。
目前FDA批准上市的是SAHA,-种治疗T细胞淋巴瘤的新型化合物,不仅可增加组蛋白乙酰化水平,同时还可提高认知。在神经系统中,VPA具有抗惊厥和稳定情绪的作用,因此这些作用可能与引起组蛋白乙酰化改变有关;VPA还可以通过抑制GSK-3#介导的y-分泌酶裂解APP,从而抑制Ap的产生,减少A斑块,最终缓解AD模型鼠的认知功能障碍。Ricobaraza等研究显示,4-苯基丁酸乙酯(PBA)可通过降低GSD-3#来降低AD大鼠脑内Tau蛋白磷酸化,并可清除突触间A沉积,减轻内质网压力,从而恢复记忆并逆转学习障碍。而烟酰胺则可选择性降低Tau蛋白磷酸化并增加乙酰化的a微管蛋白。Fischer等也研究发现,非特异性HDACIs如VPA、TSA、4-苯基丁酸钠及伏立诺他等,都可以通过不同的表观遗传机制影响Ap沉积和Tau蛋白过磷酸化,并可改善学习和记忆力。另外,HDACi丙戊酸可以降低APP的表达,减轻大脑中的A肽斑块负担;研究还证实,HDACI治疗还可诱导树突发芽,增加突触数量,以及恢复学习行为和形成长期记忆。Zhang等报道,口服HDACIMS-275可改善神经炎症和脑淀粉样变,以及改善AD模型动物的行为能力。这些研究提示,HDACIs可通过调节HDAC蛋白活性和Tau蛋白磷酸化水平,从而用于AD的治疗.
HDACIs可选择性抑制HDACs,导致组蛋白乙酰化水平升高,恢复AD模型动物中组蛋白乙酰化水平及提高学习和记忆能力。例如:Guan等发现当脑内HDAC2过表达时,小鼠海马神经元树突棘密度降低、突触形成减少、CA1区LTP形成障碍、空间记忆和工作记忆损伤;而使用HDACIs则能够促进小鼠神经元树突棘和突触的形成,改善AD模型小鼠的学习和记忆减退状态。因此,HDAC2可能是HDACIs最适宜的治疗靶点之一,可能使脑神经元内合成新的蛋白以改善或恢复AD患者记忆。除此之外,HDACIs对基因表达的调节具有特异效应,可以在上调靶基因表达的同时下调其他基因;这种基因特异性常通过转录因子来调控,后者可以识别特定启动子和增强子序列,并赋予靶基因特异性(gene-specificeffects),使之对HDACIs具有敏感性[44],继而逆转表观遗传改变。同时,应用HDACIs治疗AD还应当考虑其是否可穿透血脑屏障,因此,最近的一项研究研发了一种可进入CNS(“CNS-penetrant”)的HDACIs(I类)EVP-0334,目前已进入I期临床试验用于AD治疗。
众所周知,AD大脑受累的主要区域为内侧嗅皮质、海马及杏仁核等。研究发现,与正常脑组织相比,AD患者皮质中HDAC6蛋白水平升高了52%,而海马中则升高了92%。HDAC6与Tau蛋白共同存在于核周,并发生相互作用;其中HDAC6具有独立的微管蛋白脱乙酰基酶的活性。使用HDAC6抑制剂Tubacin治疗或敲除HDAC6,并不能影响HDAC6与Tau蛋白的相互作用,但可以减少Tau蛋白磷酸化[55]。通过结合HDAC6,Tau蛋白可抑制脱乙酰酶活性,从而导致微管蛋白乙酰化增加;在Tau蛋白过表达的细胞中也可见这种增加;说明过量的Tau蛋白成为HDAC6的抑制剂,然而AD患者中正常Tau蛋白是减少的。文献显示,HDAC6的减少或丢失可改善联想和空间记忆形成[56,57],以及阻断A诱导的海马神经元线粒体运输障碍。最近有研究人员还发现,HDAC6无效突变(nullmutation)可以挽救神经元中Tau蛋白诱导的微管缺陷。他们采用遗传和药理学方法抑制HDAC6的tubulin特异性脱乙酰基酶活性,证实这种“挽救效应”有可能是通过增进微管乙酰化所介导的。这些研究结果表明,HDAC6有可能是AD和相关Tau病的一种独特的有潜力的药物靶点,HDAC6抑制剂有望成为AD治疗的新型药物。
目前研究证实,HDACIs可用来治疗神经变性病、抑郁、焦虑情绪、认知功能障碍及神经发育障碍,因此为AD的治疗提供广阔的前景。但现有的HDACIs存在生物利用度低、代谢快、低选择性等缺点。因此,研究开发结构新颖、副作用小、特异性及选择性高的HDACI具有重要的临床意义。
4.2.2饮食因素除此之外,饮食因素,例如叶酸、维生素B2、B6、B12、蛋氨酸、胆碱等都可以影响甲基供体SAM的形成,并影响DNMTs活性;同时,一些天然化合物,如异黄酮、黄酮、儿茶素、姜黄素、白藜芦醇等,可以改变表观遗传学机制,影响染色质修饰酶的活性,因此备受关注。
研究证实,传统用于抗肿瘤、抗氧化、抗炎、抗细胞凋亡及预防高脂血症的姜黄素,也可用于治疗AD:在体外实验中,姜黄素可抑制A聚集沉积、A#诱导的炎症、户分泌酶及乙酰胆碱酯酶的活性;而体内实验则证实,口服姜黄素可抑制AD动物脑组织中Ap沉积、Ap寡聚化及Tau蛋白磷酸化,并改善行为及认知。另有研究发现,姜黄素还可加速淀粉样斑块的分解,继而改善AD的空间记忆障碍。据Bora-Tatar等[65]报道,在33种羧酸衍生物中,姜黄素是最有效的HDAC抑制剂,甚至比丙戊酸和丁酸钠更强效;另有研究也发现,姜黄素可显著降低HDAC1、3和8蛋白水平,并可提高乙酰化H4水平。同时,姜黄素还是潜在的HAT抑制剂,2004年Balasubramanyam等[66]发现,姜黄素是p300/CREB结合蛋白HAT活性特异性抑制剂,对维持一定的CREB水平起到关键作用。因此,姜黄素对HDAC和HAT均有调节作用;作为已知的抗氧化剂,姜黄素可能是通过调节氧化应激,从而对乙酰化和去乙酰化具有双重调节作用。
AD表观遗传学改变受环境、营养因素等诸多因素共同作用,因此自孕前保健开始,直至子代的一生,都保持机体内外生存环境的良好,保证表观遗传学正常修饰及表达,在一定程度上可能会预防AD的发生。同时,由于目前糖尿病、肥胖、心血管疾病、高血压等都是公认的AD高危因素,通过表观遗传学机制防治这些疾病,也是降低AD的发生风险的重要手段。另外,提倡低热量、低胆固醇和富含叶酸、B族维生素及姜黄素等的饮食,以及降低血浆Hcy值,可能对保护大脑神经元,改善老年期认知,以及预防AD发生或逆转AD的表观遗传改变,起到一定的积极作用。
4.2.3其他因素由于DNA甲基化是可逆的,该过程的相关酶类也可作为AD治疗的研究靶点,例如DNMT抑制剂。然而,目前对DNMT抑制剂的研究多局限于肿瘤的治疗,因此对于AD的治疗作用还有待进一步研究。另外,研究发现AD中与APP裂解机制相关的多个miRNA也发生了改变,因此针对miRNA的AD表观遗传治疗成为重要研究方向。2006年,中国科学院上海生命科学研究院生物化学与细胞生物学研究所裴钢院士研究组研究发现,肾上腺素受体被激活后,可以增强y-分泌酶的活性,进而能够增加AD中Ap的产生。这项发现揭示了AD致病的新机制,提示肾上腺素受体有可能成为研发AD治疗药物的新靶点。
5展望
综上所述,在AD中,表观遗传学机制对疾病发生发展起到了关键作用,尤其是散发性AD。表观遗[8]传学调节障碍导致相关基因转录异常,引起关键蛋白或酶类异常,继而发生一系列病理生理改变,是AD发病的主要原因。表观遗传学改变可以通过表观遗传药物进行逆转,因而这不仅为AD的治疗开创了一片新天地,更引导医药行业进入了一个崭新的领域。
然而,使用表观遗传学药物治疗疾病也面临着一系列难题。对于目前可用的表观遗传学化合物如HDACIs及辣椒素等而言,主要的困难即缺乏针对不同脑区、不同神经元亚型或特异基因的“选择性”。
遗传病以及和遗传有密切关系的常见病、多发病,如高血压、糖尿病、精神发育不全、癌症等已成为人类健康和生命的主要威胁。这些疾病也会发生流行,但它们的流行方式,流行因素和传染病等的流行有很大不同。对这些新问题的探索就是遗传病流行病学的探究内容。
遗传病流行病学是人类群体遗传学的一个新分支,它是在人类群体遗传学和流行病学的基础上产生的。它探索的是和遗传有关的疾病的流行规律。它已经而且还将进一步阐明单基因遗传病和染色体病的传递规律和发病原因,这是优生学的重要依据之一。它目前的主要任务在于探索复杂性遗传疾病(包括高血压、糖尿病、精神失常和肿瘤)的遗传原因和环境因子,还可寻找其在中老年发病的复杂疾病的时态特征。
1遗传病的流行方式
遗传病分为单基因遗传病、多基因遗传病和染色体遗传病3大类。不同类型的遗传病在家系或由家系组成的群体中表现出各自不同的传递方式,此外某些遗传病的发生,还需环境定因子的诱发。遗传病是遵循一定的规律或条件而发生流行的。
1.1单基因病的流行方式
1.1.1常染色体显性遗传病(AD)其流行特征是摘要:(1)患者的双亲中,往往只有1个患病,且大多数是杂合子;(2)患者的同胞中,发病患者的数量约占1/2,且男女发病机会均等;(3)系谱中,连续几代都可看到发病的患者,但是,有时由于内、外环境的改变,致病基因的功能不一定表现(外显不全)。
1.1.2常染色体隐性遗传病(AR)其流行特征是摘要:(1)患者的双亲往往都是无病的,但他们都是携带者;(2)患者的同胞中,发病患者的数量约占1/4,且男女发病的机会均等;(3)系谱中看不到连续几代的常染色体隐性遗传病,往往表现为散发;(4)隐性基因的频率很低,为0.01~0.001。因此一个携带者或患者随机地和群体中一个成员结婚时,生出患儿的机会很小;但是若实行近亲结婚,则比例就会大大提高。
1.1.3X连锁隐性遗传病其流行特征是摘要:(1)人群中男性患者远多于女性患者,家系中往往只有男性患者;(2)双亲都无病时,儿子可能发病,女儿则不会发病,儿子假如发病,其致病基因是从携带者的母亲传来;(3)由于交叉遗传,男性患者的兄弟、外祖父、舅父、姨表兄弟、外甥、外孙等可能是发病的患者,其他的亲属不可能是患者。
1.1.4X连锁显性遗传病其特征是摘要:(1)此病代代相传,故患者的双亲一般有1人是本病患者;(2)致病的显性基因位于X染色体上,所以,女性患者和正常男性婚配所生子女中,女儿和儿子发病的机会都为1/2,男性患者和正常女性婚配,女儿全部发病,儿子都正常;(3)女性患者多于男性患者,但症状上男重于女;(4)连续几代相传。
1.1.5Y连锁遗传病其特征是摘要:父子、兄弟、祖孙、远祖远孙、叔侄、堂兄弟、远房叔侄或兄弟的相关都是1,而祖母孙、母子、外祖外孙、舅甥和兄妹的相关都是零。当在Y染色体上存在致病基因时,从优生角度考虑,此类家系应只生女孩,这样就杜绝了该有害基因在家系中的蔓延。
1.2染色体病的流行方式
1.2.1染色体数目异常导致的遗传病(1)性染色体数异常摘要:如45,X;47,XXX;47,XXY;47,XYY等。对于45,X的由来尚未弄清,也就是XO核型的遗传病流行学有待探索。47,XXY即为小症,其母亲生育年龄过大或许是一个因素,是该病流行的一个原因。(2)常染色体数目异常摘要:包括十几种综合征,在此仅举几例,从中我们可以窥见它们在遗传病流行学上的意义。①先天愚型摘要:患儿的核型有以下几型摘要:21-三体型摘要:母亲年龄过大是本病一个重要的流行因素,21-三体型先天愚型偶有能生育的,后代中约有1/2将发育成先天愚型儿,这是21-三体型先天愚型遗传流行的一个特征。嵌合型摘要:有的细胞核型正常,有的细胞核型为21-3体型。易位型摘要:其中较常见的有D/G易位,也就是14/21易位,患儿母亲核型常为D/G的平衡易位携带者,经常有自然流产史,所生小儿中约有1/3为先天愚型患儿,1/3为平衡易位携带者。G/G型易位,即21/22易位,频率比D/G易位低,这种易位型核型的产生,基本上也可经突变或遗传而来,和D/G易位型者基本相同。②18-三体综合征摘要:这种病也较为常见,新生儿中发病率为1/4500,即0.02%。③13-三体综合征摘要:这种病少见,新生儿中发病率为1/25000,即0.004%。
此外,尚发现过22-三体综合征等。常染色体三体综合征除21-三体征外,对其遗传病流行病学特征还很少探究,原因是病例罕见,患儿受到严重影响,经常过早夭折,因此难以进一步观察。
1.2.2染色体结构异常导致的遗传病染色体结构异常分为缺失、重复、倒位、易位、环形染色体和等臂染色体等。平衡易位除了能从祖代往下代传递外,可能还是造成重复和缺失的原因之一。除平衡易位外,其他类型染色体结构变异对个体的影响则较大,经常引起流产等现象。据报道,有自然流产史、死产史或有畸形生产史的夫妇(一般仅其中之一有畸变),染色单体畸变(包括断裂、碎片)和染色体畸变(包括断片、双着丝粒染色体、微小体等)数均较对照显著为高,可见有染色体结构畸变的双亲在遗传病流行中有着相当重要的意义。
1.3多基因病的流行方式在多基因遗传病中,当一对夫妇生出了第2个该病患儿,表明他们带有更多的和易患性有关的基因,其一级亲属患该病的风险将会增加。病情严重的患者,其一级亲属的患病风险性比病情轻的要高。当一种多基因遗传病的一般群体发病率有性别差异时,发病率低的某一性别患者的一级亲属发病率高。假如已发病,其一级亲属的发病率将比发病率高的另一性别患者的一级亲属为高。
2影响遗传病流行的几个因素
2.1突变突变造成的最大危害性是使群体的遗传负荷增加。除少数突变外,对生物自身来说,大多数突变都是有害的。由于突变造成某些性状使个体在成熟前过早夭折,某些性状降低了结婚的机会,以及另一些性状使个体的平均产子数较群体为低。由此,突变产生的不正常基因比正常个体传给后代的机会要小,致使代代相传时突变基因的频率降低。突变新问题使人类处于非常危险的境地,之所以如此,还有一个原因,就是环境的污染、生态平衡的破坏,致使人类基因突变率有增无减。
2.2隔离隔离的后果使遗传病的发病率显著提高,原因是隔离有类似于近亲婚配的效应。由于隔离,使纯合子的比例增加,而使杂合子的比例下降。假如在隔离人群内不实行随机婚配而实行近亲婚配,则遗传后果更为严重,实行近亲婚配隔离人群内的多种遗传病尤其是智力低下极为普遍。
2.3迁移迁移带来种群的混杂,迁移使大群体中的基因流向隔离群,从而打破了隔离的屏障,对抗隔离的有害影响。因此,迁移和混杂具有优生的功能。
基因多态性是指基因的某些位点可以发生中性改变,使DNA 的一级结构各不相同,但并不影响基因的表达,形成多态。基因的多态性可以看作是在分子水平上的个体区别的遗传标志,有很多表现的方式:最常见的是单核苷酸多态性(SNP),还有短片段重复序列、插入和缺失多态性等。与稀有和高外显率的致病性突变不同,SNP 广泛存在于人群中,是广义上基因点突变,其发生率在1%以上。易感基因的特点是基因变异本身,并不直接导致疾病的发生,而只造成集体患病的潜在危险性增加,一旦外界有因素介入,即可导致疾病发生。多基因病属高发疾病,严重影响着人类的健康。常见的多基因病及其诱发基因:
其一,精神分裂症。精神分裂症是一种严重的精神疾病,全世界约有1%的人患有这种疾病。表现为患者认知能力的障碍和大脑异常。目前认为,精神分裂症是一种多基因遗传病。经典的连锁分析和候选基因关联分析及最近的全基因组扫描,发现可能的精神分裂症易感基因主要包括:COMT,NRGI,DTNBP1,DISCI,G72,DAAO,RGS4 等;对患者死后脑组织的分子水平研究也发现一些易感基因:DLX1,REELIN,SEMAPHORIN3A 等。通过对精神分裂症患者和正常人的脑容量比较发现,精神分裂症患者的脑容量较小。一些研究中也发现,与大脑容量相关的易感基因GULP1 与精神分裂症也相关,人的GULP1 基因位于2 号染色体上。研究表明,GULP1 基因的两个单核苷酸多肽位点(SNP)rs2004888 和rs4522565 都显著的与精神分裂症有关。
其二,心血管疾病。冠状动脉硬化性心脏病(简称冠心病)是由遗传和环境因素共同所致的复杂疾病,许多研究表明血管紧张素转换酶(ACE)基因、血管紧张素原(AGT)基因及内皮型一氧化氮合酶(eNOS)基因多态性与基因型表达的冠心病相关。急性心肌梗死(AMI)也被证明是与环境相关的多基因病,其家族史被认为是一个独立的危险因素。随着近年来对基因组学和分子生物学的发展,确定了一系列的AMI易感基因及相关单核苷酸多肽(SNP)位点。
除上述致冠心病的易感基因外,还包括与男性AMI 相关的CX37 基因的C1019T 及AT1R 基因A1166C。原发性高血压(EHT)也是由遗传易感性和环境因素共同决定的疾病, 研究表明,AGT235M,ACEALUD 和ApoBXall 被证明与中国汉族人群原发性高血压有关。
其三,唇腭裂。唇腭裂是一种常见的先天畸形,发生率为0.1豫耀0.2豫。在不同人群中有15%耀20%的家族史,因此遗传因素被认为在唇腭裂的病因学中占重要地位。不同的人特定区域如1q,2p,4p,6p,14q,17q,19q 均发现与唇腭裂的发病相关的基因位点。在我国,非综合征型唇腭裂发病率较高。非综合征型唇裂伴或不伴腭裂指不伴发其它系统畸形的不属于任何综合征的唇裂、唇裂合并腭裂的总称,这是一种常见的颌面部先天畸形。已确定的非综合征型唇腭裂易感基因包括:定位于1p36.3,编码5,10原亚甲基四氢叶酸还原酶基因MTH-FR;定位于2p13,编码多肽类生长因子的基因TG原F琢;定位于1q32原1q41,编码蛋白质与DNA 结合域的干扰素调节因子IRF6;定位于4p16 的同源异型盒基因MSX1;定位于11q23 的脊髓灰质炎受体相关基因PVRL1 等。
其四,瘢痕疙瘩家系。瘢痕疙瘩是人类特有的一种创伤后病理性瘢痕愈合现象,其发病的主要因素,其遗传模式为常染色体显性遗传伴外显不完全,且瘢痕疙瘩的发病存在显著的种族差异。对日本家系和非洲裔美国人家系的易感基因定位研究,确定其易感基因位点分别与染色体2q23 和7p11存在连锁关系。
论文关键词:小麦,EST-SSR分子标记,可转移性,禾本科能源植物
能源问题是21世纪人类面临的严峻挑战之一[1]。随着社会与经济的发展,中国对能源的需求将会不断增加。植物能源是地球贮藏太阳能的一种形式,也是化石能源形成的前体,在太阳能、核能的大规模应用开发之前,植物能源是从化石能源到太阳能过渡期间的、能够进行大规模开发利用的可再生资源之一。生物燃料属于植物能源,是以生物质为载体的能源,直接或间接地来源于植物的光合作用。地球上的植物通过光合作用每年生产的生物燃料量,相当于目前人类每年消耗矿物能的20倍。因此,生物燃料的开发生物论文,将是人类利用可再生能源的主要途径[2]。
高大禾本科植物是最易获得、生产力高、储量丰富的木质纤维生物质之一,作为转化燃料乙醇的原料潜力巨大。以“能源草”作为生物质能源的原材料成本低、效率高,不占用耕地,可利用山坡边际土地,兼具水土保持的功效论文参考文献格式。燃烧后产生的污染物也很少,可有效减轻温室效应、降低环境污染。因此开发高产优质的禾本科能源植物已经成为当前生物质能研究的一个热点[3]。
斑茅(Saccharum arundinaceum)又名大密、笆茅、大巴茅,是甘蔗属多年生、密丛高大草本,秆直立,高可达4米以上,茎达2厘米,具有分蘖力强、根系发达、抗旱性强等特性[3]。中国芒(Miscanthus sinensis)、五节芒(Miscanthus floridulus)均为禾本科芒属植物,具有生长迅速、适应性强,种植成本低、利用率高等多种优势。目前,欧美多国已开始大面积种植芒属植物并大规模研究其作为能源作物的开发利用价值[2,4,5]。南荻(Triarrhena lutarioriparia Liu)是原产我国长江流域、伴生于芦苇丛中的高大草本植物,植物学分类归属禾本科荻属,具有水土保持、固堤防洪、净化水体和空气、维护自然生态系统等作用[6]。河八王(Saccharum arundinaceum)为甘蔗的杂交亲本[7],菅(Themeda villosa)及香根草(Vetiveriazizanioides)也曾作为水土保持及优良薪炭草种[8]。然而,这些禾本科植物均处于野生状态,遗传学研究报道极少生物论文,基因组资源极其匮乏,限制了该类植物的遗传改良。因此,借助现代分子遗传与育种学方法对其进行研究改良,培育适宜于大规模生产栽培的能源植物新品种,对于促进这些野生战略资源植物的开发利用,服务于国家经济建设具有重要意义。
SSR(Simple Sequence Repeats)即简单重复序列,又称微卫星(Microsatellites)DNA,是一种由1-6个核苷酸为重复单位组成的串联重复序列,同一类微卫星DNA分布在基因组的不同位置上,由于SSR重复次数的不同,而形成SSR座位的多态性[9]。EST-SSR来源于表达的基因片段,作为功能基因的一部分,具有很高的保守性,且可直接用于基因组作图和基因发掘,尤其可以用于比较基因组学研究[10]。SSR分子标记被证明是现今最可靠实用的DNA分子标记之一,已广泛应用于农作物的基因组学和遗传育种学研究。但是,根据传统方法,开发新的SSR分子标记费时费力且价格昂贵[11]。目前,SSR标记的通用性已被不少研究者证明,如Garcia-Moreno等人研究了向日葵SSR标记对红花的可转移性[12]生物论文,Rallo等人研究了橄榄SSR标记对洋橄榄的可转移性[13],Wang等人研究了红豆SSR引物对绿豆的可转移性[14]。
因此,借助与这几类草本植物亲缘关系较近、基因组学研究相对较为深入的、同属禾本科的小麦EST-SSR引物序列,开发可用于中国芒等野生能源植物的SSR分子标记,将大大地降低开发成本、提高实验效率。本研究旨在探测小麦EST-SSR引物对这几种有潜力禾本科能源植物的可转移性,开发出可靠的SSR分子标记,为这些能源植物的遗传育种研究奠定基础论文参考文献格式。
1材料与方法
1.1实验材料
1.1.1 植物样品
植物样品选用了中国科学院武汉植物园采集保存的、均属禾本科的7种多年生草本植物。其中斑茅为甘蔗属,中国芒和五节芒为芒属,河八王为河八王属,南荻为荻属,菅为菅属,香根草为金须茅属植物(表1)。于10月上旬采样,采集新鲜幼嫩叶片约2g,放入装有50g无水硅胶的密封袋中瞬时干燥,随后放入-20℃冰箱保存。另外,设置小麦品种中国春(CS)作为SSR扩增对照。
表1 供试的禾本科植物
编号
Code
名种
Species
拉丁名
Latin name
染色体数
Chromosome number
染色体倍数
Chromosome ploidy
A
斑茅
Saccharum arundinaceum
60
2X
B
中国芒
Miscanthus sinensis
38
2X
C
五节芒
Miscanthus floridulus
38
2X
D
河八王
Narenga porphyrocoma
30
2X
E
南荻
Triarrhena lutarioriparia
38
2X
F
菅
Themeda villosa
20
2X
G
香根草
Vetiveria zizanioides
20
2X
CS
小麦
Triticum aestivum
[关键词] 金钗石斛; DALP; 遗传多样性
[收稿日期] 2013-03-14
[通信作者] 虞泓,教授,Tel:(0871) 65034655,Fax:(0871) 68182565,E-mail:,
金钗石斛Dendrobium nobile Lindl多年生草本,为兰科Orchidaceae石斛属Dendrobium Sw植物。生于海拔500~1 700 m的山坡林中树上或路边岩石上。主要分布于云南、贵州、四川、湖北、广西、广东,海南岛和台湾等地[1-2]。金钗石斛为常用珍贵中药,在《神农本草经》中列为上品,具有滋阴清热,生津益胃,润肺止咳,明目强身等功效。现代药理学研究表明,石斛还具有抗肿瘤,抗衰老,增强机体免疫力,扩张血管及抗血小板凝集等作用[3-5]。在我国药典收载的5种石斛中,金钗石斛生物碱含量最高[6]。同时石斛在国际花卉市场上占有重要地位,具有很高的商业价值[7]。
Direct amplification of length polymorphisms (DALP)以通用测序引物M13为核心序列,在此基础上任意添加少数碱基形成引物,对样品基因组进行PCR扩增,得到相应的DNA指纹[8]。相比RAPD等分子标记,DALP包含了更多的信息量,有更高的可重复性和稳定性,是揭示生物居群遗传多样性及其遗传结构快速、有效、重复性好的可靠方法,适合于检测居群间和居群内的遗传变异[9]。DALP分子标记在物种鉴定、遗传多样性分析、系统与进化等研究得到广泛应用,可用来判断植物类群的分类地位、习性、系统、种子扩散机制、分布地区和演替阶段,对居群遗传分化程度的影响;近些年还被广泛应用于中草药植物遗传分析和药材鉴定,寻找中药材品种之间的遗传差异性[10-16]。
近年来,由于长期过度的开发,金钗石斛生境破坏和退化,加之生长缓慢等原因,金钗石斛也逐渐变为稀少。本研究试图利用DALP标记,对云南金钗石斛居群进行遗传结构和遗传分化分析,为金钗石斛种质资源的保护与可持续利用提供依据。
1 材料
金钗石斛7居群共83个个体分别采自贡山、景洪、思茅、腾冲、保山、屏边、文山等地区。以采自腾冲的喇叭唇石斛D.Lituiflorum居群10个个体,为比较。除景洪和思茅的部分个体外,试验所用样品均引种至云南昆明官渡区小哨乡白汉场英茂生物技术实验室基地(海拔2 100 m)。样品来源、编号和生境情况,见表1。
表1 金钗石斛和喇叭唇石斛居群的材料来源
Table 1 Origin of Dendrobium nobile and D.lituflorum
2 方法
2.1 金钗石斛的总DNA的提取 基因组DNA提取采用CTAB法[17],并稍作修改。0.5 g左右的植物叶片放到研钵中,加入适量PVP和2% β-巯基乙醇迅速研磨成糊状,然后加入4 mL预热到65 ℃的2×CTAB(含2% β-巯基乙醇)中,65 ℃水浴1 h,冷却,加入1/3体积5 mol・L-1的KAc冰浴1 h,4 ℃ 7 000×g离心3 min,取上清,CI(氯仿-异戊醇 24∶1)抽提2次,取上清加 3/4 体积的异丙醇,-20 ℃静置30~60 min,12 000×g离心10 min,70%乙醇洗2次,无水乙醇洗1次。加400 μL 1×TE,室温静置2 h,使DNA 充分溶解,1%琼脂糖凝胶电泳,溴化乙锭染色,用λDNA(25, 50, 100 mg・L-1)标定,利用Kodak 1D分析软件分析并标定到20 mg・L-1备用。
2.2 PCR扩增 反应体系:采用20 μL反应体系,其中模板DNA 60 ng, 2 μL 25 mmol・L-1 MgCl2,2 μL 10×Buffer, 1 μL 2.5 mmol・L-1 dNTPs (上海生工分装),4 μL 0.5 U・μL-1Taq酶(Shanghai Promega),1 μL 5 pmol选择性引物(上海生工合成),3 μL 5 pmol・L-1反向引物(上海生工合成)。引物序列见表2。本研究采用反向引物DALPR1分别与5个选择性引物组合进行DALP扩增。
表2 DALP引物组序号与序列
Table 2 Sequences of the primer groups
扩增程序:使用PE9700扩增仪(美国PE公司)。95 ℃预变性5 min;94 ℃变性30 s,50 ℃退火30 s,72 ℃延伸1 min,共35个循环;72 ℃延伸10 min。
产物检测:扩增产物在1×TBE,1.0%的琼脂糖凝胶中电泳,溴化乙锭染色, Kodak凝胶成像系统照像,检测DALP带型,再进行聚丙烯酰胺凝胶电泳及银染。
2.3 聚丙烯酰胺电泳 5%非变性聚丙烯酰胺凝胶(丙烯酰胺-甲叉双丙烯酰胺29∶1),上样量5 μL(样品 6×上样缓冲液 5∶1)。电泳条件 Bio-Rad垂直电泳仪(美国Bio-Rad公司) 1 000 V,150 min。
2.4 DALP银染 本实验采用快速银染法:①固定液(10%乙酸)洗脱直至溴酚兰颜色褪去,超纯水洗3次,每次不少于2 min。②染色液(0.1%的硝酸银,0.4%的甲醛) 染色40 min;水洗2 s立即拿出。③在显影液(3.0%碳酸钠,显影前加入0.4%甲醛,0.02% 10 g・L-1(硫代硫酸钠)中显影至带纹清晰,固定液(10%乙酸)固定5 min,超纯水洗10 min自然晾干,电泳图见图1。
图1 DALP电泳式样
Fig.1 The electrophoresis pattern of DALP
2.5 数据统计分析 利用Kodak 1D 分析软件分析,每个样品的扩增带按有或无记录,“有”赋值为1,“无”赋值为0,得到原始数据表征矩阵,弱带及重复性不好的条带不予统计。利用PopGene32共享软件统计多态条带比率(PPB),计算扩增产物的Shannon 信息指数,Nei′s 遗传相似系数,遗传距离(genetic distance),有效等位基因数(effective number of alleles),以及基因分化系数Gst等,同时结合Treeview软件对得到的遗传距离矩阵进行非加权配对算术平均法(UPGMA)聚类分析,构建聚类图。
3 结果
3.1 遗传多样性 金钗石斛7个居群,5组DALP引物扩增得到140条清晰条带,平均每个引物扩增条带数为28,其中102条为多态条带,多态比率为72.86%,平均每组引物扩增所得多态条带为20.4。7个居群的平均多态位47.96%,物种水平的多态位72.86%。其中思茅居群(NK)的多态位最高为68.57%,腾冲居群(NL)次之,为55.71%。居群的多态位在22.86%~68.57%,见表3。
在居群水平,平均观察等位基因数Na 1.479 6,平均有效等位基因数Ne 1.323 7,平均遗传多样性
表3 金钗石斛居群DALP遗传多态性
Table 3 Analysis of the genetic polymorphism of the 7 populations of Dendrobium nobile
指数H 0.186 1,平均Shannon 多样性指数I 0.273 9;在物种水平,Na 1.728 6;Ne 1.501 1;H 0.288 9;I 0.424 2,见表4。
表4 金钗石斛居群遗传多样性参数
Table 4 The parameters of population genetic diversity in Dendrobium nobile
3.2 遗传分化 总居群基因多样度Ht 0.281 3,各居群基因分化系数Hs 0.186 1,基因分化系数Gst 0.338 6。金钗石斛7个居群中,有66.14%的遗传变异来自居群内,33.86%的遗传变异来自居群间,居群间存在较高水平的遗传分化。
3.3 遗传关系 金钗石斛7居群和外类群喇叭石斛1居群中,贡山居群(NH)与腾冲居群(NL)之间的遗传一致度为最大值0.955 9,遗传距离为最小值0.045 1,这2个居群首先聚在一起,而金钗石斛各居群与外类群喇叭唇石斛NQ的遗传一致度最小,遗传距离最大。各居群的UPGMA聚类分析见图2。
4 讨论
4.1 金钗石斛居群间的遗传关系 UPGMA聚类图表明,7个居群的金钗石斛首先分别聚为3支,第1支是滇西地区的贡山居群(NH)、腾冲居群(NL)和保山居群(NN); 第2支是滇东南地区的屏边居群(NP)和文山居群(NX);第3支是滇南地区的景洪居群(NM)和思茅居群(NK)。金钗石斛7个居群的遗传距离与地理距离呈一定程度的正相关。这可能是由于较近的金钗石斛居群间基因交流发生的频率相对较高,使之保持了较近的亲缘关系。第1支滇西地区的贡山居群(NH)、腾冲居群(NL)和保山居群,与第2支滇东南地区的屏边居群(NP)和文山居群(NX))先聚在一起,此后才与第3支滇南地区的景洪居群(NM)和思茅居群(NK)相聚。滇西地区与滇东南地区的金钗石斛居群间,有相对较近的亲缘关系。这可能归因于在云南曾发生过的特殊地质事件[18],但具体原因仍需结合兰科石斛属植物的起源与分化事件进一步深入研究。最后,外类群喇叭唇石斛(NQ)与金钗石斛各居群的遗传距离较远,位于UPGMA聚类图的最外一支。
图2 金钗石斛7个居群及喇叭唇石斛1个居群UPGMA聚类图
Fig.2 Dendrogram of 7 populations of Dendrobium nobile and 1 population of D.lituflorum by UPGMA
4.2 金钗石斛的遗传多样性 DALP分析显示,金钗石斛物种遗传多样性指数分别为PPB 72.86%,H 0.288 9,I 0.424 2;居群水平指数分别为,PPB 47.96%,H 0.186 1,I 0.273 9。
目前,分子标记检测遗传多样性的方法很多,如等位酶,RFLP,RAPD,AFLP,DALP等。在以往的研究中发现,同一物种采用不同的方法检测其遗传多样性会得到不同的结果,这种差异是由所采用的检测方法本身的灵敏度和其他一些因素决定的[19-20]。因此,要对一个物种的遗传多样性进行评价,应该建立在用同一方法对大量不同类群进行分析总结的基础之上。以往做过植物等位酶分析,为植物遗传多样性分析积累了较为丰富的资料,为判定某一特定植物遗传多样性的相对水平提供了依据[20-23]。
过去20年中,RAPD和AFLP等技术大量应用于植物遗传多样性和居群遗传结构,由于技术自身存在缺陷等原因,例如RAPD分子标记存在稳定性不好,重复性差[24-27];AFLP分子标记不能确定连锁程度和位点的独立性,不能直接分开是选择还是居群间隔离导致的遗传变异[28],而且费时费力费钱。
采用DALP分子标记技术对金钗石斛的遗传多样性水平进行评估,还需要用此方法对石斛属、兰科甚至更广泛的类群作对比研究。
与用DALP标记过检测过的物种相比,金钗石斛其物种水平和居群水平的遗传多样性处于较低的水平[10-16, 18-20]。
4.3 金钗石斛的居群遗传结构 金钗石斛基因分化系数Gst 0.338 6。表明有66.14%的遗传变异来自居群内,33.86%的遗传变异来自居群间,居群间存在较高水平的遗传分化。
造成金钗石斛居群间的分化程度较高,而遗传多样性较低的因素可能是,金钗石斛分布范围较广,其数目巨大的微小种子可借助风力或其他途径传播到很远的区域,在较连续的分布区域内,金钗石斛的居群间可有较频繁的基因流动。近年来,大规模的人工采集、生态环境的破坏、生境片段化,使得金钗石斛居群的个体数量急剧减少。这可能导致遗传漂变和近交等不利因素的发生,必然致使金钗石斛居群遗传多样性降低,居群间遗传分化加大。
金钗石斛具有较强的无性繁殖能力。在条件适宜的情况下,多年生的老茎上会萌发出许多新的幼小个体,新个体利用老茎的养分进行生长发育,在老茎枯死后,这些小个体落入周围的环境继续生长,在老茎周围形成无性繁殖系[29]。特别是在居群破碎,虫媒传粉不充分,不能很有效的进行有性生殖时,这种克隆生长的习性尤为明显。这也导致了遗传多样性的丧失和居群间的分化。
金钗石斛居群个体数在极短的时间内迅速下降,个体所携带的等位基因可能只是原居群基因库中很小的一次抽样,当它们得以恢复重建同类居群时,就会引发“奠基者效应(founder effect),从而使该居群遗传多样性迅速下降。过度采挖后残留下来的破碎居群,经过一段时间的隔离,缺乏基因交流,在各自的小环境中繁衍进化,加深了居群间的分化程度。
4.4 金钗石斛的保护策略 金钗石斛对生境要求严格、生长缓慢、有性生殖效率不高,人为掠夺采集和破坏更加剧了金钗石斛的濒危。在本研究的7个居群中,思茅和腾冲居群的遗传多样性较为丰富,这与当地自然保护区较为有效的管理和保护有一定的关系;在人为破坏比较严重的屏边居群中,金钗石斛表现出了较低的遗传多样性水平。因此,建议对金钗石斛野生资源应保护和恢复其栖息环境,采取措施帮助野生残留居群恢复重建;积极开展种质资源的收集保存工作,并对石斛属植物进行更全面深入的研究,为石斛资源的可持续利用提供理论指导和依据。
[参考文献]
[1] 吉占和, 陈心启, 罗毅波,等.中国植物志.第19卷[M].北京: 科学出版社,1999.
[2] 冉懋雄.名贵中药材绿色栽培技术――石斛[M].北京:科学技术文献出版社,2002:5.
[3] 张明,陈仕江,李泉森,等.金钗石斛驯化栽培的基质研究[J].中药材, 2001, 24(9):628.
[4] 陈仕江,张明, 李泉森,等.植物生长调节剂对金钗石斛要用化学成分的影响[J].中草药, 2001, 32(10):884.
[5] 杨显志,邵华,周成,等.生物技术在药用石斛研究中的应用[J].中草药, 2002, 33(2):173.
[6] 张明, 陈仕江, 李泉森,等.不同栽培条件下金钗石斛总生物碱含量比较[J].中药材, 2001, 24(10): 707.
[7] 卢思聪.中国兰与洋兰[M].北京:金盾出版社,1994.
[8] Desmarais E, Lannelus I, Lagnel J.Direct amplification of length polymorphisms (DALP), or how to get and characterize new genetic markers in many species[J].Nucleic Acids Res, 1998, 26(6):1458.
[9] Perrot Minnot M J, Lagnel J, Desmarais E,et al.Isolation and characterization by direct amplification of length polymorphisms (DALP) of codominant genetic markers with Mendelian inheritance in Neoseiulus californicus (Acari: Phytoseiidae) [J].J Exp Appl Acarol, 2000, 24:795.
[10] Ha W Y, Yau F C F, But P P H, et al.Direct amplification of length polymorphisms analysis differentiates Panax ginseng from P.quinquefolius[J].Planta Med, 2001, 67(6)587.
[11] 夏惠茵,游仲辉,王骏,等.直接扩增长度多态性技术在人参与西洋参鉴定中的应用[M]//劭鹏柱,曹晖.中药分子.上海: 复旦大学出版社,2004:119.
[12] 王琼,程舟,张陆,等.野山人参和栽培人参的DALP指纹图谱[J].复旦学报:自然科学版,2004,43:1030.
[13] 李永谊,虞泓,朱荣勋,等.红景天属植物的DALP反应体系的建立[J].中草药,2005,3(3): 419.
[14] 王海英,虞泓,李南高,等.云南丽江山慈菇遗传多样性的DALP分析[J].云南植物研究,2005, 27(2):156.
[15] 汤洪敏,吴刚,虞泓.云南野生大白口蘑遗传多样性研究[J].菌物学报, 2007,26(1):128.
[16] 马云淑,李永谊,虞泓,等.正交实验法优化千金藤属植物的DALP反应体系[J].昆明医学院学报, 2007, 28(4):31.
[17] Dolye J J, Dolye J L.A Rapid isolation procedure for small quantities of fresh tissue[J].Phytochem Bull, 1987, 19: 11.
[18] 李恒.掸邦――马来亚板块位移对独龙江区系的生物效应[J].云南植物研究, 1994,增刊Ⅵ:113.
[19] 吴刚,虞泓,梁淑云,等.云南川百合DALP遗传变异分析[J].广东农业科学, 2009, 7:52.
[20] Ma Y S, Yu H, Li Y Y,et al.A Study of genetic structure of Stephania yunnanensis (Menispermaceae) by DALP[J].Biochem Genet, 2008,46:227.
[21] Qu Y, Yu H, Wu G,et al.Genetic diversity and population structure of the endangered species Psammosilene tunicoides revealed by DALP analysis[J].Bio Chem Syst Ecol, 2010, 38:880.
[22] 李昂.三种兰科植物的保护遗传学研究[D].北京:中国科学院植物研究所, 2001.
[23] 王海英.丽江山慈菇遗传多样性及其保护研究[D].昆明:云南大学, 2004.
[24] 丁长春.杏黄兜兰及其近缘种的保护遗传学研究[D].昆明:云南大学, 2004.
[25] 毛钧.大百合居群遗传与进化研究――兼论百合族5属的系统关系[D].昆明:云南大学, 2005.
[26] Rajeev K V, Kamel C, Prasad S H,et parative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys[J].Plant Sci,2007,173 :638.
[27] Skrede I, Carlsen T, Stensrud, et al.Genome wide AFLP markers support cryptic species in Coniophora (Boletales) [J].Fungal Biol,2012, 116:778.
[28] Excoffier L, Hofer T, Foll M.Detecting loci under selection in a hierarchically structured population[J].Heredity,2009, 103:285.
[29] 张明,银福军,陈仕江,等.金钗石斛根系的形态及解剖学研究[J].中国中药杂志,2001, 26(6): 384.
Study on population genetic variation of Dendrobium nobile in
Yunnan by DALP
ZHANG Ming-yu, YU Hong YUAN Feng
(Yunnan Herbal Laboratory, Institute of Herb Biotic Resources, Yunnan University, Kunming 650091, China)
[Abstract] The Direct Amplification of Length Polymorphisms was applied to assess genetic diversity and structure of 7 populations of Dendrobium nobile, comparing one population of D.lituflorum.The five primer combinations were amplified to produce 140 clear bands, and 102 polymorphic bands had been detected with each pair of primer producing 20.4 polymorphic bands on average.At species level, the percentage of polymorphic bands (PPB) was 72.86%, the Nei′s gene diversity index (H) was 0.288 9, and the Shannon′s information index (I) was 0.424 2.At population level, the average PPB was 47.96%, H was 0.1861, and I was 0.273 9 in 7 populations.The coefficient of gene differentiation (Gst) was 0.338 6 among populations of D.nobile.It showed that 33.86% of the total genetic diversity was attributable to genetic differentiation among populations, while the rest 66.14% was resided between individuals within population.
关键词 核转染仪 肝素酶基因 肝癌细胞
RNA干扰(RNA interferance,RNAi)是近些年在分子生物学中迅速发展起来的一项新技术,是基因功能研究最常用手段之一[1];它包括转录水平(Transcriptional gene silencing ,TGS)和转录后水平(post-transcriptional gene silencing, PTGS)2种基因沉默方式[2]。通常所说的RNAi指的是PTGS,通过基因编码区设计的小分子RNA(siRNA)能与对应的mRNA靶序列特异结合,并使靶序列降解,从而使基因沉默[1]。由于基因上游转录水平持续活跃,不停地产生大量mRNA,要使基因持久沉默,就得不停地给予外源性siRNA。因此,PTGS的干扰效率不高。研究发现植物细胞存在高效率的TGS现象,即在DNA水平上通过基因5’端启动子区域DNA甲基化或组蛋白去乙酰化形式使基因永久沉默;这种现象被称为siRNA指导下的DNA甲基化(siRNA-direct DNA methylation)或组蛋白修饰[3,4]。2004年Kawasaki 等[5]首次发现在人细胞也存在TGS现象。理论上讲,一次给予针对基因5’端启动子的siRNA,就可使该基因由于表观遗传修饰而保持持久沉默[6~8]。因此,TGS相对于PTGS的研究更具有经济性和临床应用前景[9]。肝素酶基因(heparanase gene,HPA)位于人染色体4q 21.3,其5’端启动子区域含有CpG岛,表明基因的表达受甲基化等表观遗传学机制调控[10];HPA在肝癌、乳腺癌、大肠癌、肺癌和淋巴瘤等多种肿瘤中都有高水平的表达[11~13],主要参与肿瘤转移和侵袭。然而,TGS的沉默对象是位于细胞核中的非编码DNA调控序列,siRNA必须进入细胞核内才能发挥作用。近年由于核转染技术发展,尤其是德国AMAXA公司研发的NucleofectorTM专利创新技术,它采用电穿孔技术与细胞类型特异的核转染溶液结合方法,直接将DNA序列转入细胞核内,即使是常规转染无法转染的原代培养细胞和不分裂细胞也可成功转染,其转染率可高达70%以上,速度快,转染2h后就能发挥作用,操作简单方便[14,15]。但目前尚未见该技术用于TGS研究,既往TGS研究采用常规脂质体转染技术。本研究采用HPA基因为模型,比较核转染仪辅助转染技术和常规脂质体转染技术在肝素酶基因沉默效果和沉默维持时间上的差别。
1 材料与方法
1.1 材料
DMEM培养基、胎牛血清、含100 U/mL青霉素、100 U/InL链霉素的青链霉素混合液均购自Gibco公司,SMMC-7721细胞(中科院上海细胞所),NucleofectorTM电转试剂盒(德国Amaxa公司),德国Amaxa公司单孔核电转仪,型号2b(北京达科维生物公司提供),Trizol试剂(invitrogen公司),逆转录试剂盒(fermentas公司),2×Taqmix(ABI公司),兔抗人肝素酶多克隆抗体、HPR标记羊抗兔抗体(Santa公司),PVDF膜( Santa 公司),发光试剂盒,Transwell小室(BD公司);Lipofetmiane 2000试剂盒(美国Invitrogen)。
1.2 方法
1.2.1 细胞培养 从液氮中取出SMMC-7721细胞,42℃热水迅速复苏,用高糖DMEM加10%的血清和1%的青链霉素混合液,放入37℃、5%CO2、常规湿度培养箱中培养。
1.2.2 干扰片段设计 针对肝素酶基因启动子区,分别设计多个干扰片段(siRNA),在预实验中筛选出干扰效果较理想的siRNA;TGS的 siRNA为:GAGGAAGUGCUAGAGACUCU;同时对HPA基因编码区设计RNAi片段:CCUUAAGAAGGCUGAUAUU(图1),整个设计合成由美国BIOO公司协助完成,设计完成后的siRNA经过DNAMAN软件与原基因组BLAST以后,与肝素酶基因的启动区完全匹配。
1.2.3 基因转染 实验分为3个组,核转染仪组,脂质体转染组及对照组(不含siRNA)。在转染前1 天,将对数生长期的SMMC-7721细胞按l×106个铺于10cm培养皿中,细胞生长至90%融合时进行转染,方法按照Amaxa电转染试剂盒产品说明书进行,即选择多个参数进行预实验,优化好转染参数,将培养在对数生长期的106个肝癌细胞与siRNA混合,加入转染液,重悬细胞,放入转染杯,在电转染仪中进行转染,将转染后的细胞放入37℃,5%CO2培养箱中继续培养。脂质体常规转染采用Lipofetmiane 2000试剂盒,具体操作按说明书进行。
1.2.4 RT-PCR 分别收集转染后48h、72h和96h的细胞,trziol一步法分别提取细胞总RNA,用逆转录试剂盒将其逆转为cDNA后,PCR检测各组细胞肝素酶基因表达情况。HPA基因上游引物:ATGTGGAGGAGAAGTTACGG,下游引物:TGAGTTGGACAGATTTGGAA;PCR条件为94℃/ 3min; 94℃ /30s;55℃/ 30s;72℃ /45s,共32个循环,最后72℃ 延伸10min。
图1 HPA基因启动子siRNA设计示意图
1.2.5 实时半定量RT-PCR HPA基因上游引物:GTGGTGATGAGGCAAGTATTC,下游引物:GTGGTGATGAGGCAAGTATTC。采用EverGreen I PCR试剂盒(Biotech)进行实时荧光半定量PCR反应,操作按说明进行,一管中不加模板用作阴性对照。反应液混匀后,置于SLAN荧光定量PCR仪中。设立程序:95℃ /5min预变性后,94℃/30s, 60℃退火45s,72℃延伸45s, 循环40次,最后72℃充分延伸10min。PCR反应结束后从55℃到95℃按每级0.5℃递增作出溶解曲线,分析每个PCR反应的溶解曲线以确保PCR扩增产物的特异性。每个反应重复3次。内参β-actin作一相对标准曲线,根据内参和目的基因的Ct值计算该基因相对表达量。
1.2.6 Western blot检测 将转染后48h,72h和96h的细胞裂解,收集蛋白质,Bradford法测定含量。蛋白变性后每孔上样70μg,经10%SDS一聚丙烯酰胺凝胶分离蛋白后转移至PVDF膜上,用含5%脱脂牛奶封闭1h。用5%脱脂牛奶稀释一抗(β-actin以1:2000稀释,兔抗肝素酶抗体以1:500比例稀释)4℃摇床孵育过夜,PBST洗膜3×10 min,加入相应的二抗(PBST1:1000稀释)室温温育1 h,PBST洗膜3×10 min,化学发光试剂检测蛋白质印迹,X线暗室曝光成像。
2 结果
2.1 实时半定量RT-PCR定量检测核转染仪和脂质体转染技术对基因沉默效果
定量检测结果示:在转染48h后,2种方法对HPA基因mRNA表达几乎达到100%的抑制;72h后,脂质体转染组HPA基因表达有所恢复,而核转染组仍保持100%的抑制;在转染96h后,2组HPA基因均恢复表达,表达相对量接近对照组的一半。(图2)
2.2 Western杂交检测核转染组和脂质体转染组对HPA基因沉默效果
western 杂交结果显示,转染后48h,2组干扰细胞的HPA基因蛋白表达完全沉默;72h后,脂质体组HPA基因蛋白再次表达,而核转染组HPA仍保持沉默;96h后,2组细胞的HPA蛋白恢复表达(图3)。
图2 实时定量RT-PCR检测核转染组和脂质体转染组转染48h、72h、96h后HPA表达情况
图3 western blot 检测核转染组和脂质体转染组分别在转染后48h、72h、96h后,HPA表达情况
3 讨论
恶性肿瘤细胞的浸润、转移一直是肿瘤临床治疗关键和难点,而肝素酶基因被证明在肿瘤的侵润转移中起着重要作用[12]。随着肿瘤发展分子机制阐明,肿瘤的基因治疗成为目前研究重点之一;近年用RNAi技术在多种不同肿瘤细胞中成功干扰多种靶基因表达,抑制肿瘤细胞生长,已成为目前肿瘤治疗研究热点[1]。这些基因除肿瘤基因,还包括抗凋亡分子、端粒酶、生长因子受体、某些信号分子等基因。应用RNAi 技术,还可探索各种基因功能及相互作用,为筛选新的药物靶基因提供便利。已有实验证明,通过RNAi沉默肝素酶基因,可以阻止部分肿瘤的侵袭和转移[16]。
传统的靶向肿瘤基因RNAi治疗是建立在转录后水平上,其缺点是:基因的启动子活跃,靶基因能被持续转录,要想使基因长期沉默,需要不间断地给予siRNA。而目前由于用于人类肿瘤基因治疗载体存在许多问题,建立长期稳定的特异性在瘤细胞内表达的治疗基因载体并用于临床治疗尚不成熟。用于临床上实验性治疗药物多为体外合成并经化学修饰的寡核苷酸,不仅价格昂贵,半衰期短,且有一定细胞毒性;要使靶基因沉默,需长期给药,不仅疗效受到影响,毒性很大,也不经济。而转录水平的RNAi不仅诱导基因调控序列同源靶序列被降解,还可以诱导异染色质形成,DNA甲基化,组蛋白修饰等表观遗传学改变,使基因不能转录;理论上讲,一次给予针对5’端启动子的siRNA就可使该基因永久沉默,因此对于转录水平的RNA干扰,有着更广泛地应用前景[9]。要实现TGS, 必须要将siRNA有效转入细胞核内,本项研究是通过核转染仪将设计在肝素酶5’端的siRNA转入肝癌细胞,以证实转录水平干扰的优越性。
研究首先针对细胞核内的启动子区,设计siRNA靶点,同时对胞浆内的mRNA区设计相应siRNA靶点,通过PCR初步检测发现,2组细胞在干扰发生48h后,基因同时都被沉默;72h时,脂质体转染组细胞基因沉默效果明显下降,而核转染组细胞基因沉默效果仍然很明显,96h时,2组细胞的肝素酶基因再次同时表达出来,RT-PCR证实这个结果。从Western blot实验也进一步证明,核转染技术的转录水平沉默肝素酶基因比脂质体的转录水平沉默肝素酶基因细胞,肝素酶的沉默时间维持更长些;但是96h的时候,2组肝素酶蛋白又再次表达。相对于脂质体的转录后基因沉默,核转染转录水平的基因沉默维持时间相对更持久,但并未达到先前预期的基因永久沉默目的。
尽管本次实验从基因水平和蛋白水平都无法证实,TGS对基因有着永久沉默作用;但是相比于PTGS,TGS对基因沉默维持时间显然有所延长。上述结果与理论上转录水平干扰能持久沉默基因的推测仍然有较大差距,其原因可能有:(1)细胞核转染的效率;电转染只有一少部分siRNA被转染进核中,多数siRNA还是留在胞浆内被降解,可能会造成实验结果不理想。在实验中,用普通的脂质体转染HPA调控区siRNA,TGS几乎无任何基因沉默作用,而转染编码区siRNA, PTGS却有明显基因沉默效应(结果未公布),说明TGS必须用有效的核转染技术。(2)不同细胞或基因对TGS的效果不同。可能不同细胞或基因表达调控受多种机制影响,表观遗传学因素只是其中一种。(3)表观遗传学控制基因的表达是可逆的。
虽然如此,本实验为TGS在肿瘤基因治疗中的研究提供实验基础,至于TGS的作用机制,以及是否针对CpG岛或转录因子结合位点的RNAi更有效,一次RNAi导致的表遗传学改变能维持多长时间(细胞能传多少代),是否含有CpG岛的基因更适合针对启动子的RNAi等等,则需要更多实验加以论证。
参考文献
[1] Davidson BL, McCray PB Jr. Current prospects for RNA interference-based thereapies. Nat Rev Genet 2011,12(5):329-340.
[2] Verdel A, Vavasseur A, Le Gorrec M, et al. Common themes in siRNA-mediated epigenetic silencing pathway. Int J Dev Biol 2009,53(2-3):245-257.
[3] MOrris KV, et al. Small interfering RNA-induced transcriptional gene silencing in human cells. Science 2004,305(5688):1289-1292.
[4] Kurth HM, Mochizuki K. Non-coding RNA: a bridge between small RNA and DNA. RNA Biol 2009,6(2):138-140.
[5] Kawasaki H, et al. Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature; 2004,431(7005):211-217.
[6] Weinberg MS, et al. The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. RNA 2006,12(2):256-262.
[7] Swanten C, et al. RNA interference, DNA methylation, and gene silencing: a bright future for cancer therapy? Lancet Oncology 2004,5:653-654.
[8] Castanotto D, et al. Short RNA-directed cytosine (CpG) methylation of RASSF1A gene promoter in HeLa cell. Mol Ther 2005,12(1):179-183.
[9] Morris KV. RNA-mediated transcriptional gene silencing in human cells. Curr TOP Microbiol Immunol 2008,320:211-224.
[10] Jiang P, et al. Cloning and characterization of the humanheparanase-1(HPR1) gene promoter. J Biological Chemistry 2002,277(11):8989-8998.
[11] Zcharia E , Metzgers , Chajek- shaul T , et al . Molecular properties and involvement of heparanase in cancer progression and mammary gland morphogenesis. J . Mammary Gland Biol Neoplasia , 2001,6 (3) :311-322.
[12] Friedmann Y, Vlodavsky I , Aingorn H , et al . Expression of heparanase in normal , dysplastic and neoplastic human colon mucosa and stroma. Evidence for its role in colonic tumorigenesis. J . Am J pathol , 2000,157(4) :1167-1175.
[13] El2Assal ON , Yamanoi A , Ono T , et al . The clinicpathological significance of heparanase and expressions in heptatocellulor carcinoma J . Clincancer Res , 2001 ,7 (5) :1299-1305.
[14] Doherty JE, Huye LE, Yusa K, et al. Hyperactive piggyBac Gene Transfer in Human Cells and In Vivo. Hum Gene Ther 2012,23(3):311-320.