公务员期刊网 精选范文 能源与动力工程的认识范文

能源与动力工程的认识精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的能源与动力工程的认识主题范文,仅供参考,欢迎阅读并收藏。

能源与动力工程的认识

第1篇:能源与动力工程的认识范文

[关键词]热能与动力工程 锅炉 应用问题

中图分类号:TK227 文献标识码:A 文章编号:1009-914X(2015)15-0386-01

引言

随着当下我国能源问题的日益加剧,经济的持续发展了也受到一定的影响,这就要求了我们在能源不充足的条件下,大力提高能源的利用率。锅炉在我国的工业生产中使用很广泛,也是我们主要研究的对象,研究在锅炉中进行的能量转换。由于某些企业贪图私利,对资源无节制的开发,政府管理不力等造成能源大量浪费。我们知道,煤炭完全或不完全燃烧会产生二氧化碳、一氧化碳、二氧化硫等有毒的气体(二氧化碳无毒),对动植物和环境都有较坏的影响。因此,我们的主要任务是,在将煤炭资源较为高效的转化和利用的同时,尽量减少有害气体的产生。

一、热能与动力工程简介

“热能与动力工程”是多门科学技术的综合,其中包括现代能源科学技术,信息科学技术和管理技术等,主要涉及热能动力设备及系统的设计、运行、自动控制、信息处理、计算机应用、环境保护、制冷空调、能源高效清洁利用和新能源开发等工作。我们顾名思义,也能了解热能与动力工程专业是研究热能和动力之间的相互转化,具体了包括热力发动机、热能工程、流体机械及流体工程、热能工程与动力机械、制冷与低温技术、能源工程、工程热物理、水利电动力工程和冷冻冷藏工程等九个方面。热能动力工程的研究层面横跨多种科学领域,并且,具有多方面的发展方向。热能与动力工程是现代动力工程的基础,其主要解决的问题是能源方面的,并且是可以用来解决热能源问题的有效工具,应该起到一定的缓解资源压力、保护环境的作用,我们应该给予热能与动力工程专业以高度的重视。

二、热能动力工程的发展前景

我国的动能与动力工程专业设置的比较早,近些年来,在实践中又经过不断地创新和发展,动能与动力工程专业的技术也渐趋成熟,主要发展趋势如下:

一方面,控制工程方面会有发展,并且前景较广,为了在该方面获取较大的发展,需要我国的相关人员了解并熟悉控制工程方面的各种知识等,并且对实际进行大胆的创新,将热能与动力工程与控制工程领域更完全的融合。

另一方面,在热力发动机及汽车工程方向有一定的发展前景,这就需要相关人员了解并掌握“内燃机”的原理、设计结构、并对内燃机进行一系列的数据测试,内燃机所用燃料以及燃烧产物,汽车工程概论、环境工程以及能源工程概论,内燃机电子控制、热力发动机排放与环境工程以及制冷低温工程和流体机械方向等各方面的知识概念。在丰富的知识积累中,工作人员会对目前汽车工程中存在的热力发电机问题做出改善,大大提高能源利用效率。

三、锅炉的结构组成

热能与动力工程锅炉的两个重要组成部分包括一个金属壳和烧气锅炉电器的操纵部分。锅炉的外壳包括底壳和面壳。锅炉的底壳的作用是使锅炉固定,以免发生未知的意外。同时,在其底壳上还放置着通过底壳连接着的其他的一些零件,能够使功能发挥的更加完善。锅炉的外壳作用与底壳不同,它主要是在锅炉正常工作时,它能够起到防风防尘的作用。笔者认为锅炉最重要的还是燃气锅炉电器控制部分,它起着至关重要的作用。其主要是通过对燃料的充分燃烧使锅炉能正常工作。之后,随着计算机不断走进我们的生活,它的精确度和科学性也受到了许多企业的青睐,因此,许多企业都会采用计算机来控制燃料的燃烧。

四、热能动力工程中锅炉的发展及存在的问题

锅炉在世界上出现的历史很悠久,锅炉的创造和使用对人类文明的进步和发展有着很大的作用。锅炉是由锅和炉组成的,上面的盛水部件为锅,下面的加热部分为炉,锅和炉的一体化设计称为锅炉。锅炉是一种能量转换设备,向锅炉输入的能量有燃料中的化学能、电能、高温烟气的热能等形式,经过锅炉转换成蒸汽能。在一般工厂的工业生产过程中,使用的是工业炉来进行燃料的燃烧和能量的转换。根据文献材料可知,最早的工业炉出现在我国的商代时期,它的主要作用是提炼熔铸青铜器,并且,我国在春秋时期就能够铸造铁器,这个进步说明了我国控制工业炉的工艺有了很大的进步。在当代,工业炉更是有着广泛的应用和较大的发展。

工业炉在工业生产中仍然存在着较大的问题,主要包含四个,一是污染物排放量大、面广。二是单体容量小,平均容量在8吨/小时左右,10吨/小时以下燃煤小锅炉的数量为42万台,占总数的2/3.三是排放贴近地面,对环境质量影响很大。四是锅炉技术、主辅机不匹配,运行状况差。此外,大多数小锅炉缺乏除尘、脱硫和脱硝装置,导致现在锅炉的二氧化硫和粉尘排放普遍不达标。煤粉燃烧是先进的燃煤技术,具有燃烧速度快、燃尽率高、烟气热损失低等优点,实践证明,煤粉燃尽率达98%以上,锅炉运行热效率达88%以上,与传统燃煤锅炉相比,可节能35%。同时,我国还有几个比较综合型的大问题,工业锅炉技术基础工作比较薄弱,管理水平、工艺水平落后,制造厂家多且生产能力低,难以形成规模化生产等,所以,我国如果想解决工业炉的问题,还需要进行多方面的整治。

结束语

总而言之,热能动力工程一定要根据实际出发。在锅炉方面的掌握,我们一定要提高它的燃烧效率,降低它的能源损耗率。掌握了锅炉的基本组成,从而促进对能源损耗的掌握。要熟练掌握热能动力技术,才能使燃料在锅炉的使用上,提高燃料利用率。要深刻意识到能源损耗与经济发展息息相关。面对锅炉的能源损耗问题上,我们要直面面对,努力学习相关的理论知识,掌握热能动力工程技术,成为这方面的人才,降低能源的损耗。

参考文献

[1] 林日亿,黄善波.热能与动力工程专业认识实习的探索与实践[J].内蒙古石油化工,2007,07:35-37.

[2] 崔海亭,王振辉,郭彦书.热能与动力工程专业建设探索与实践[J].河北科技大学学报(社会科学版),2006,02:98-100.

[3] 马士峰.浅谈热能与动力工程发展方向[J].科技与企业,2014,02:131.

[4] 吴江,郑莆燕,任建兴,何平.关于热能与动力工程专业卓越工程师培养的探索与实践[J].中国电力教育,2011,24:3-4.

第2篇:能源与动力工程的认识范文

【关键词】热能动力;能源利用;特点;节能减排

一、热能动力装置

随着工业化程度的提高,热能动力工程无论是在人们的生产还是生活当中,都发挥着极其重要的作用,对于人类的发展,有着积极的意义,所以,深入地对其相关设备装置进行研究,对设备的工艺技术以及操作的具体流程进行探析,对于此项技术的建设是非常有必要的。其工作的原理,首先,将其工程所需的燃料,放置在相应的设备当中进行燃烧,进而产生热能,然后在相关的热能动力装置之中,通过技术手段,将其热能转化成有效的机械能。燃烧的相关装置以及相应的热能动力机,再加上辅助的设备,此套整体称之为热能动力装置。主要的来讲,热能动力装置分为两大基本类型:(1)主要是以燃烧之中产生的燃气进入到发动机之中,进而进行相关能量的转换,并且加以循环利用,比如内燃机等装置,是此种类型的典型代表;(2)首先将燃料燃烧过程之中所产生的热能,通过技术手段,传递至相关液体之中,并且使液体汽化,进而气化之后产生的蒸汽导入到发动机当中,从而进行热能的传递以及转换,蒸汽机是其典型的代表。

二.热能的特点以及利用

1、热能的特点。现阶段当中,人类所使用的热能,主要是通过一次能源的转换而得来的,所以,分析热能的特点,需要从以下三个方面来入手进行:(1)太阳能及其能量的转换。太阳能,通过对植物的照射,进而使植物的内部存有的叶绿素,发生一系列的能源转换以及光合作用,进而将太阳能转换成为生物的质能,而太阳能的光,则是经过热量的转换以及点的转换,进而成为我们所使用的能源物质;(2)燃料化学能及其转换过程。燃料化学能的转换,主要是通过燃烧的方式,将存在于其中的化学能,转换成为热能,进而再通过相关的技术手段,将其转换成为人类生活和生产所需要的机械能,例如常见的汽轮机等,其工作的方式,就是首先将化学能源,转换成为蒸汽的热能,进而再通过相关的设备以及技术,将汽轮机之内的热能转换成为机械发动所需的机械能;(3)热能的转换,其中主要包括两种能量的形式,即电能以及机械能,电能包括热电发电机,而机械能,则主要有汽轮机以及内燃机。

2、热能的利用。热能在我国许多行业当中都有着广泛的运用,并且,在国民经济当中,也占据了核心的地位。总的来讲,热能的相关利用,在以下几个行业当中最为广泛:电力工业,热能动力工程在其中有着非常重要的应用,在核发电、火力发电等装置设备的使用之中,热能动力工程及相关的技术,是其工作的基础;钢铁工业,尤其在高炉炼铁、炼钢以及轧钢等工艺当中,应用极为广泛;相关的有色金属工业,其中包括有铝、铜等有色金属,其冶炼,均使用的是热能;化学工业,在化学工业的相关应用之中,合成氮、酸碱等的相关生产工艺程序,主要使用到的是热能动力工程之中的技术手段,以其基本的原理来作为理论依据;石油工业,其中包括石油的采集、冶炼、运输等等多个环节,都运用到了热能动力工程当中的相关技术理论;机械工业以及相关的建筑工业,包括材料的生产、材料的制造、相关工艺锻造、焊接技术以及铸造等,都有热能的利用;交通运输领域当中,包括汽车、轮船、飞机等的使用;农业生产以及水产养殖等方面,也有着广泛的运用,包括蔬菜的温室培养、鱼池的加温加热、电力方面的农业灌溉等方面,均有着广泛的使用。同时,在人们的日常生活之中,热能也有着广泛的使用,例如冬天之时的供暖设备等。根据上述的分析,可以看出,热能及其相关的动力工程,在人们的生活以及生产当中,发挥着非常重要的作用,是一项极为重要的能源,下文将针对热能的特点,进行深入细致的探究,帮助在日常的使用过程当中,发挥出更大的效应。

三、热能动力工程对于环境的影响

热能动力工程对于环境的影响,主要存在于四个方面,即热污染、空气污染、噪音污染以及放射性的危害等,在热污染当中,带来的主要危害是温室效应,其主要是河水发电站等,在很大程度上会影响水源当中生物的生存以及空气质量的变化,空气污染,则主要是发电厂、工业设备企业以及暖气、汽车尾气的排放,同样会造成温室效应,所以,针对以上几点问题,需要在相关的工作当中予以改进,更好地为环境的可持续性发展做出积极的贡献。

四、节能减排工作重点

通过上述分析可以对热能动力工程的技术要点、实际的应用以及对于环境的影响等多个方面,有着清晰的了解和认识,接下来,将着重地针对热能动力工程当中的节能减排工作,进行研究和分析,力求更加高效率地使用能源,并且减少对于环境的污染以及能源的损耗等。针对热能动力工程的实际特点和具体的应用,相关工作的重点,应该从以下几个方面来入手进行:(1)加快相关产业结构的调整。(2)强化技术创新。建设好相关的能源高效循环利用模式,积极地开展相关的减量技术、替代技术、再利用技术以及资源化技术,全面地将热能动力工程当中生产效率较为低下的方面进行改进,力求减少排放、减少对于环境的污染,同时提升能源的利用效率。

五、结束语

本文重点地分析了相关热能动力工程设备装置的使用、工艺流程,并且针对热能的特点、利用以及对于环境的污染、节能减排工作的重点等进行了分析,力求更加全面地掌握热能动力工程的实际状况,更好地加以运用,逐步地提升生产的质量和效率,为相关的节能减排工作做出突出的贡献。

参考文献:

第3篇:能源与动力工程的认识范文

一、能源动力工程领域的高等工程教育

能源动力工程专业是伴随着近现代工业革命发生、发展、加速过程成长起来的传统专业,在新的能源形势和建立工业强国的需求下承担着崭新而重大的培养责任。我国目前设有能源动力大类专业的学校有130余所。经过几十年的努力,我国能源动力的工程教育有了长足的进步,但总体来看,整个工程教育体系没有发生本质的变化,还不能很好满足现代工业对工程技术人才的需求。[3]能源动力领域的高等工程教育主要存在四个方面的不足。

1.缺乏明确的工程教育定位

很多研究型大学的目标是培养科学家,而不是工程师。而工程教育和科学教育是两种不同的教育。科学家从事研究发现,工程师进行创造发明。培养工程师和培养科学家需要两种不同的教育体系。作为一个典型的工程学科,能源动力专业的培养目标应该是以培养工程师为主。在现实需求下,就是培养既有创新能力又能解决实际工程问题,同时具备国际竞争力的高级人才。

2.工程教育体系陈旧

在课程设置上,能源动力专业的课程改革基本上是在原有课程体系下的完善,没有从根本上打破原有的课程体系。随着新知识的不断出现,由于缺乏课程间的整合机制,课程有增无减,使学生不得不面对越来越多的课程。在教学模式上,通常是以教师为中心的讲授式教学,而不是以学生为中心的启发式教学。学生的分析、想象、创造能力的培养受到限制。在教学内容上,工程教育基础课程太偏理论,教学中缺乏实际应用的环节。不少专业课程跟不上科技发展的节奏,内容几十年不变,总体上比较陈旧。教学实验以验证性为主,测试手段比较落后,设备比较陈旧。

3.缺乏与企业的互动

作为一个实践性很强的学科,不了解工程界的需求而一味纸上谈兵不仅不能培养出合格的现代工程师,而且对于学科发展也是极其不利的。工程界对工程教育的教学内容和实践水平有严格要求,但不少工科教师缺乏必要的工业经验和工程背景,学生也缺乏必要的实训机会和体验。4.缺乏工程教育的国际化随着世界经济全球化进程的加速,能源动力领域需要更多的按照国际标准培养的工程人才。在工程教育体系中,需要更多地接纳来自不同国家的学生,在教学和科研中注入更多的国际化内容,与国外大学加强校际交流与合作,培养具备专业知识和能力的国际化现代工程师。总之,长期以来,能源动力工程领域习惯于从系统性和科学性出发组织工程教育体系,较少以学生和工程界需求出发进行考虑,无法真正适应社会的变化和现代大工程教育观念。

二、能源动力工程领域的高等工程教育探索及实践

针对能源动力领域的工程教育问题,近年来上海交通大学机械与动力工程学院对能源动力专业的本科工程教育体系进行了积极探索和实践,主要归纳为三个方面。

1.明确培养主体

首先明确了能源动力专业的培养目标就是培养合格的现代工程师。培养的主体就是学生。从华沙世界工程教育会议和美国“2020工程师”计划[4]对新一代工程师的要求来看,现代工程师首先要对工程或技术有热情,因此在充分考虑学生需求和实际办学条件的基础上,选拔对成为未来工程师有强烈意愿的学生进入教育部的“卓越工程师教育培养计划”特色班,希望能培养出未来企业界的领军人物。这样,学生在培养过程中可以保持较高的热情,有利于教学和实践工作的开展。

2.制订“工程教育特色”培养计划

新的培养方案中的课程设置主要分为四个部分,如图1所示。第一部分通识教育课程主要由人文、社科、经济管理、外语、体育等课程组成。第二部分专业教育课程包括了能源动力领域必备的数学、物理、化学、电子电工、材料、设计制造、热学、流体力学等最基本的知识(必修)和各个研究方向(包括热能工程、车用发动机、叶轮机械、制冷与低温工程)的专业课程(选修)。第三部分专业实践课程涵盖了各类实习、实验和毕业设计。第四部分个性化教育课程由学生根据需要自主选择。相比原来的非工程教育课程体系,新的课程设置有下面几个很大的变化:

(1)淡化了各研究方向的具体差异,强调通用基础知识的学习。目前国际上普遍认为应该注重“基础知识”,而“专业知识”可以在工作以后继续增加积累,甚至终身都要不断地学习。在“基础知识”中,国际上的观点更强调的是“通用基础”。

(2)对课程进行有效整合。原先的课程多而杂,在教学内容上出现重叠,加上许多课程学分少,学生为了凑学分需要同时学习多门课程,所以学习负担很重,不少学生都有“考完即忘”的经历,没有达到要求的教学效果。在新的课程体系中,考虑上述问题,对课程进行大范围整合:取消小学分课程(学分),设置高学分课程(学分),除个别课程外,多数课程都在3个学分以上。另外,突出了工程实践类课程和基本理论课,减少了拓展理论课的数量。以专业教育课程为例,可以看出新旧课程设置的差别,见表1。由表可见,专业基础课的必修总学分提高11分,但门数减少2门;专业方向课选修的总学分减少7分,可选的课程也减少了三分之二。

(3)强调工程意识和实践能力的培养。由于我国的基础教育是按科学教育的体系构建的,所以工科学生进大学后难以马上适应工程教育,使教学效果打了折扣。在新的课程体系中,特别设置了“工程学导论”必修课程,向学生介绍工程问题及其解决方案的基础知识,同时培养学生提出工程问题、通过团队合作研究并设计解决方案的能力以及交流、写作的基本能力。该课程要求学生在一年级学完,希望能够弥合高中教育和大学工科教育之间的鸿沟。另外,在热工核心基础课程如传热学、工程热力学和流体力学等中增加课程设计和团组大作业,课题取自生活和企业,在解决实际问题过程中增强学生对知识的实际应用能力。

(4)增设企业课程模块。为使学生尽早地接触企业,了解企业需求和产品设计规范标准,在新的培养计划中增加了企业课程模块,包括“企业项目管理”、“质量管理及控制”、“精益六西格玛管理”等课程供学生选修。授课老师都是来自优质企业的具有丰富工程经验的工程师,可以提供大量新鲜而实用的案例,提高学生的学习兴趣,加速学生适应工程实践的进程。

(5)采用合适的优秀工程教材。现代工程技术的发展给能源动力类专业课程的教学提供了极其丰富的素材,如纳米微米的应用、燃料电池、新能源开发、污染物减排等。优秀的教材能够及时恰当地反映工程技术的这些新变化,并以学生容易接受的形式表达出来。在这一点上,国外有些教材做得更出色。能源动力类各专业课程精心挑选了取材丰富、构思新颖、内容先进的教材,而且要求使用中文教材的课程必须提供优秀的英文参考书。例如,工程热力学课程就选用了中文教材《工程热力学》(沈维道、童钧耕编著)和美国的Moran、Shapiro编著的英文教材《FundamentalsofEngineeringThermodynamics》,不仅有益于知识的互补,而且能开拓视野、活跃思维、引导学生去感受理论与实践的重要性。

3.增强实践教学和工程实训环节

实践是实现工程教育的必要环节。在新的培养计划中,特别注重了实践教学环节的设计和规划。整个实践体系分成四部分:理论课实验及课程设计、工程设计类、各类实习及各级工程实验/实践活动。如表2所示。

(1)理论课实验及课程设计。这类实践主要包括涉及课程知识的原理性验证实验和基本设计等,与工程实践内容相差较大,但却是夯实理论知识基础有效的手段,不可缺少。在新的课程教学大纲中,除了保留传统教学实验和设计外,还增设了综合性和实践性较强的训练项目,如在传热学、工程热力学和流体力学等核心基础课程中增加课程设计或团组大作业,题目具有一定的启发性和现实性,希望能够增强学生的综合运用能力和驾驭理论实践相互转化的能力。

(2)工程设计类。工程设计系列课程的主要目标是贴近工程实际,搭起学校学习与工程实践的桥梁。包括:“工程学导论”,通过课程学习将一年级学生引进门,建立对工程的认识和兴趣,如前所述;“工程设计1”,进行符合二年级所学内容的具有一定难度的项目设计;“工程设计2”,进行符合三年级所学内容的有较大难度并和专业相关的项目设计,如结合数理化、热机电等基础知识,设计电子元件冷却系统、余热回收利用系统等;“毕业设计”。在四年级,结合企业实际项目,以产品为对象,实现较大的工程项目的综合训练。毕业设计可与生产实习衔接,共同在企业完成,给予毕业设计充分的时间和质量保障。工程设计类课程以项目为导向,强调设计的实用性、经济性与开放性,同时强调团队合作、沟通与领导能力的培养。项目有的来自上海通用、宝钢、航天八院、商飞、泰科等优质企业,有的是与海外大学合作联合承接海外公司的项目,进行海外实习,开拓了学生的国际视野,培养了其全球工作的能力。

(3)各类实习。这类实践包括了传统的金工实习、认识实习和生产实习。其中认识实习和生产实习都在企业完成,生产实习又和毕业设计紧密相关,这样使实习目的更加具体,不仅促进了企业和学生的相互了解,更保证了双方合作的积极性。

(4)各级工程实验/实践活动。除了培养计划中的各类实践内容外,学有余力的学生还可以参加国家级、省部级、校级的工程实践活动,如全国大学生节能减排科技竞赛、国家大学生创新性实验计划、上海大学生创新活动计划、上海交通大学大学生创新实践计划、上海交通大学特色实验项目等。通过竞赛或设计,学生对专业的兴趣得到了培养和强化,实践能力和创新意识也获得了不同程度的提高。

第4篇:能源与动力工程的认识范文

关键词:风力发电;太阳能发电;人才需求;风能与动力工程;新能源科学与工程

作者简介:陈建林(1975-),男,湖南浏阳人,长沙理工大学能源与动力工程学院,副教授;陈荐(1967-),男,湖南衡阳人,长沙理工大学能源与动力工程学院,教授。(湖南 长沙 410114)

基金项目:本文系长沙理工大学教研教改项目(项目编号:JG1236)的研究成果。

中图分类号:G642 文献标识码:A 文章编号:1007-0079(2013)22-0020-03

风电和太阳能发电是我国战略性新兴产业之一,发展风能与太阳能也是我国实现传统化石能源为主过渡为可再生能源和清洁能源为主的必然之举。近年来,我国风电与太阳能发电迅猛发展,对新能源产业人才提出迫切需求。自2006年以来,我国相继有华北电力大学、河海大学、长沙理工大学等多所高等院校开办“风能与动力工程”本科专业;按照2010年《教育部办公厅关于战略性新兴产业相关专业申报和审批工作的通知》,自2011年开始,我国部分高等院校又设置“新能源科学与工程”、“新能源材料与器件”等新能源产业相关的本科专业;2013年,根据教育部要求,“风能与动力工程”专业将统一更名为“新能源科学与工程”专业。面对新能源产业发展需求和我国新能源产业人才培养现状,本文对“风能与动力工程”专业过渡为“新能源科学与工程”专业的人才培养模式进行探索与实践。

一、我国风电产业发展现状

1.总体装机情况

自2007年,我国风电装机容量呈高速增长趋势。如表1所示为2001~2012年我国新增及累计风电装机容量(数据来源:CWEA)。2010年,我国(不包括台湾地区)新增风电装机1893万千瓦,累计风电装机容量4473万千瓦,超过美国跃居世界第一位。至2012年底,全国新增安装风电机组7872台,装机容量1296万千瓦;累计安装风电机组53764台,装机容量达到7532万千瓦;风电并网总量达到6083万千瓦,发电量达到1004亿千瓦时,风电已超过核电成为继煤电和水电之后的第三大主力电源。

图1 2001~2012年中国新增及累计风电装机容量

至2012年上半年,我国规划建设的百万千瓦级、千万千瓦级风电基地包括甘肃酒泉基地(首期380万千瓦)、蒙东基地通辽开鲁基地(150万千瓦)、蒙西达茂巴音基地(160万千瓦)、河北承德基地(100万千瓦)、新疆哈密基地(1080万千瓦)的建设项目已部分或全部完成。此外,全国还有6个百万千瓦级风电基地正在组织开展建设前期工作,分别为宁夏贺兰山基地(450万k千瓦)、甘肃武威民勤红沙岗基地(100万千瓦)、吉林四平大黑山基地(170万千瓦)、锡林郭勒基地(300万千瓦)、兴安盟桃合木基地(200万千瓦)、呼伦贝尔基地(250万千瓦)等。

至2012年底,全国累计核准风电项目1651个,累计核准容量9040万千瓦(含国家核准计划外项目517万千瓦),其中累计核准容量2084万千瓦,居全国之首。2012年上半年全国风电累计吊装容量6190万千瓦,累计并网容量5572千瓦,在建容量3468万千瓦,并网容量占核准容量的62%。其中内蒙古风电并网容量突破1500千瓦,领跑全国,河北、甘肃、山东、黑龙江、江苏、新疆、山西、广东、福建等省区并网容量也均超过100万千瓦。

2.风力发电投资企业情况

2012年上半年,国电集团新增并网容量190万千瓦,累计并网容量1172万千瓦,继续保持全国风电并网容量首位;华能集团新增并网容量100万千瓦,累计并网容量759万千瓦,居第二;大唐集团新增并网容量101万千瓦,累计并网容量675万千瓦,居第三。五大发电集团累计并网容量3170万千瓦,约占全国并网容量的57%。2012年上半年全国投资企业基本保持稳定发展状态,同比2011年上半年并网容量降低了约16%。表1所示为2012年上半年主要投资企业并网容量统计情况。

3.风电机组制造商情况

大规模风电基地建设,为我国风电机组制造商开拓了广阔的市场。2012 年中国风电新增装机容量排名前二十的企业几乎占据了国内98%的市场份额,其中金风新增风电装机容量最多,达到2521.5兆瓦,占据19.5%的市场份额。2012 年,我国风电新增装机容量排名前三的企业分别为金风、联合动力和华锐。2012年中国风电新增与累计装机排名前二十的机组制造商分别如表2与表3所示。

另外,我国海上风电也取得较大进展。截至2012年底,中国已建成的海上风电项目共计389.6兆瓦,是除英国、丹麦以外海上风电装机最多的国家。我国海上风电开发提供风电机组的制造商中,华锐、金风、Siemens 所占份额较大,机型主要以2MW以上的风电机组为主。

二、我国风电人才需求及培养现状

风电产业的高速增长也带来了风电人才的短缺。我国的风电人才需求主要为三个方向:一是风电开发企业,如国电、华能、大唐、国华、华电、中电投、中广核、华润等下属的风电场,主要从事风电场运行与维护方面的工作;二是风电机组制造商,如华锐风电、金风、广东明阳、国电联合动力、湘电风能、Vestas、上海电气、东汽、Gamesa、GE等,这类企业一般需要高端的风电研发人才;三是风电规划设计或建设单位,主要从事风电场的规划、设计和施工等方面的工作。

目前,我国风电人才培养大体上形成了三个层次的格局:第一梯队是博士、硕士研究生培养,主要由国内各高校及研究机构借助风电领域的课题研究培养和造就一批具有较高学术水平、创新能力的风电领域高层次人才。第二梯队是本科生培养。据统计,自华北电力大学2006年创办我国第一个风能与动力工程本专业以来,包括长沙理工大学、河北工业大学、内蒙古工业大学等,全国已开设风能与动力工程本科专业学校有16所(2013年起,“风能与动力工程”专业更名为“新能源科学与工程”专业)。第三梯队是高职生。高职院校主要培养从事风电机组制造、风电场运行与维护的一线技能型人才。

从长沙理工大学(以下简称“我校”)首届风能与动力工程专业毕业生就业考研与出国情况来看,毕业生出现不同层次的走向。截至2013年3月20日,风能与动力工程专业2009级毕业生63人,已签约49人,就业走向主要为中国大唐集团、国电集团、华能集团、电力投资集团、华润集团等发电企业的下属新能源公司,少部分为风电机组制造商和电力建设单位;读研7人,分别被华北电力大学、中南大学、湖南大学等大学预录取;出国深造2人,分别为丹麦科技大学和德国汉诺威大学预录取。从目前人才需求角度来看,由于近几年风电项目的迅速扩张,风电行业对风电场运行与维护的技能型人才有较旺盛的需求。

在风电大规模发展的同时,近几年我国太阳能发电也迅速扩张。截至2012年底我国累计光伏装机容量达到7.5GWp,预计2013年将新增光伏装机容量为10GWp,计划2015年新增光伏装机容量为40~50GWp,2020年新增80~100GWp。风电和太阳能发电作为新能源中两支主力军,出现并驾齐驱的局面,产业发展必然对专业人才提出迫切需求。2013年,教育部统一将“风能与动力工程”专业更名为“新能源科学与工程”专业。本专业也将面向更宽广意义的新能源产业需求,对专业培养方案进行调整。

三、新能源科学与工程专业人才培养模式的探索与实践

本科教育既是培养工程技术人才的中坚力量,又承担着为行业高端人才培养打基础的重要任务。本科生的优势在于理论基础、思维方法和发展潜力,但缺乏的是技术细节方面的训练。因此应始终以培养学生“基础理论扎实、工程实践能力与创新能力强为目标。从新能源产业自身发展角度来说,需要一批具有宽广知识体系、能够引领新能源技术发展的高水平创新型复合人才出现。新能源科学与工程本科教育应该既注重专业的基础性,又要注重工程实践性。为此,我校能源科学与工程专业人才培养模式在以下几方面进行了探索与实践。

1.以“厚基础、宽口径、强能力、高素质”为原则确立人才培养目标

2009年首届招生以来,本专业依托本校能源电力优势学科,立足新能源国家战略性新兴产业,面向风电产业人才需求,确定了“培养德、智、体、美等全面发展,基础扎实,知识面宽,有较高的综合素质、工程实践能力和创新能力强,具备较强的计算机应用能力和较高外语水平,系统掌握风能与动力工程专业基础理论和基本知识,能胜任风电场的规划、设计、施工、运行与维护,风力发电机组设计与制造,风能资源测量与评估,风力发电项目开发等风能与动力工程专业的技术与管理工作,并能从事其他相关领域的专门技术工作应用型高级工程技术人才”的人才培养目标。2011年,本专业被确定为湖南省省级特色专业。2013年,根据教育部对本科专业整理工作的统一部署,将“风能与动力工程”专业将更名为“新能源科学与工程”专业。本着“厚基础、宽口径、强能力、高素质”的原则,对专业培养方案做了相应的调整,但仍然保留“风能与动力工程”专业的特色,以风力发电为重点,涵盖太阳能光伏/光热发电等新能源知识体系,培养具有宽厚理论基础和创新精神、实践能力强的应用型高级工程技术人才。

2.注重基础性和实践性相结合设置课程模块与培养环节

根据学校的特色和优势,编制风能与动力工程人才培养计划,共开设必修课35门,开设选修课23门,现已开出课程门数为58门,学生需选修33学分选修课程,选修课在总学分中的占比为19.6%。设置了理论力学、材料力学、风力机空气动力学、机械设计基础、电机学、电路理论、自动控制原理、风力发电原理、光伏发电原理与应用、太阳能热利用原理与应用等主要理论课程和计算机辅助设计、电工电子技术、微机原理与接口技术、风资源测量与评估、风电机组设计与制造、风电机组控制与优化运行、风电场电气工程、海上风力发电等技术类课程;以金工实习、电子工艺实习、机械设计课程设计、风电场电气工程课程设计、风电机组设计与制造课程设计、风电场认识实习、检修拆装实习、仿真实习、运行(毕业)实习、毕业设计(论文)等作为主要实践教学环节。风能与动力工程专业在教学环节的设置上实践教学贯穿全程。共4次集中实习,课程模块与培养环节关系如图2所示。

图2 风能与动力工程专业课程模块与培养环节关系

3.在工程实践中培养创新意识和创新能力

创新型人才是支撑和推动新能源产业发展的主要动力。创新源于实践,在工程实践中培养创新意识和创新能力。长沙理工大学经过多年的探索与实践,构建了培养“具有创新精神的应用型人才”的学生能力结构体系、能力培养的实施方案、实践教学体系以及管理模式,提出了“工程基础训练+工程创新训练+大工程意识训练”的工程教育模式。基于工程教育理念,形成了“三层次、四模块、三结合”的实践教学体系,即实验、实习、设计等主要实践教学环节按基础训练、提高训练、综合训练三个层次进行系统设计;将实践教学内容分为实验、实习、设计、课外实践四个模块;采用课内外、校内外、第一课堂与第二课堂三结合的方式组织实践教学。

新能源科学与工程专业是一个实践性很强的专业,在办学过程中十分重视实践教学,并建立了稳定的校内校外实习实训基地,通过加强实践教学培养学生的创新意识和动手能力。

(1)校内实习基地。建立校内“风电机组运行特性分析实验室”、“风力机变桨控制实验室”、“风力机偏航控制实验室”、“风力机组检修拆装实验室”、“大型风电场运行仿真实验室”、“风力机叶片振动特性实验室”、“风力机设备腐蚀与磨损实验室”、“光伏发电实验室”等专业教学实验室,为专业实验课、认识实习、拆装实习、仿真实习提供良好的条件。

(2)校外实习基地。根据本专业人才培养目标和要求,制定与社会发展需要相适应的人才培养方案,与大唐华银城步南山风电场、华电郴州仰天湖风电场、中电投九江长岭风电场、大唐漳浦六鳌近海风电场、湘电集团有限公司、湖南兴业太阳能有限公司、北京木联能软件技术有限公司等省内外相关企业共建“风能与动力工程”专业,形成学校与企业产、学、研全面合作的长效机制。风电专业骨干教师共18人次先后到内蒙古华电新能源辉腾锡勒风电场、福建大唐漳浦六鳌近海风力发电场、河南南阳方城风电场、新疆电力设计院、大唐甘肃酒泉风电场等风力发电企业进行技术交流和科技服务。风电专业学生在华电郴州仰天湖风电场、宁夏贺兰山风电场与太阳山光伏电站等基地开展了丰富的暑期实践活动。依托专业实验室,学生开展了大量科技创新实践活动,专业教师指导学生开展了国家级(共4项)、校级(4项)“大学生研究性学习与创新性实验项目”的研究工作;参加全国大学生节能减排社会实践与科技竞赛、“挑战杯”湖南省大学生课外学术科技作品竞赛等各类科技性竞赛活动,获得较佳的成绩。

4.转变技术类或实践类课程的学习过程

本科教育的缺失是职业技能或技术细节方面的训练。理论知识宽广但实践动手能力差是目前本科教育存在的较普遍现象。本科毕业生感觉学了很多东西,又感觉什么也没有学到,学到的都是一些理论或概论性的东西。相反,高职院校的职业技能针对性很强,注重实际动手操作能力的培养,而弱化理论知识体系的教育,相比于本科生,高职生在职业技术方面更容易上手。但如果本科生像高职生那样培养,势必过于狭隘,也违背了大学本科教育的初衷。本科生的优势就在于理论基础、思维方法和发展潜力。因此,本科生的理论基础课程的学习可以沿用传统的书本教学为主,培养思维方法;技术类或实践类课程学习则应放弃那种“先书本,再实践”或“只有书本,没有实践”的教学方式,而应遵循“在实践中学习”的原则。针对不同的专业特点有选择性地开设或加强职业技能型的课程。对于本专业来说,则应加强计算机绘图、电气与控制、模拟仿真、机械设计与制造等模块的技能培养。如此,本科生则不但具有宽广的理论基础,而且具有较强的职业适应能力。

四、结论

风电与太阳能发电作为我国战略性新兴产业,呈现蓬勃生机的发展局面。新能源产业发展为新能源科学与工程专业毕业生提供了广阔的就业空间,同时本专业人才也必将成为推动新能源产业发展的动力。本专业应以“工程实践能力”为核心,夯实理论基础,强化实践能力和创新意识的培养,支撑新能源产业的发展。

参考文献:

[1]中国可再生能源学会风能专业委员会.2012年中国风电装机容量统计[J].风能,2013,(3).

[2]李俊峰,蔡丰波,唐文倩,等.中国风电发展报告2011[M].北京:中国环境科学出版社,2011.

[3]袁剑波,郑健龙.工程实践能力:培养应用型人才的关键[J].高等工程教育研究,2002,(3).

[4]李录平,张拥华.基于工程意识和能力培养的理工院校实践教学改革与探索[J].黑龙江教育,2010,(4).

[5]李录平,张拥华,周键,等.高等学校实践教育多维度理念探析[J].中国大学教育,2011,(11).

[6]何建军,陈荐.风电人才需求与人才培养模式的研究[J].中国电力教育,2010,(31).

[7]姜玉立,何伟军.我国风电人才培养现状、问题及对策[J].中国电力教育,2012,(24).

第5篇:能源与动力工程的认识范文

【关键词】能源动力;人才培养;改革

能源是国民经济的命脉,是国家可持续发展的重要物质基础和根本保证。能源与动力工程类专业正是致力于培养能从事能源开发与利用的技术与管理人才。目前,全国有200余所高校开设了能动相关本科专业,其中大部分已经建设较为成熟,部分985和211高校的能动专业在国内已具备一定的影响力且具备鲜明特色[1]。而三峡大学的能动专业于2011年才开始立项建设,并同年开始招生。作为地方高校新开设的能动专业,在人才培养方面必须适应社会和行业需求,符合我校 “高素质、强能力、应用型”的人才培养的目标,因而,在专业建设伊始,就不能完全照搬其他高校能动专业人才培养模式,需要结合实际情况,大胆改革和创新,才能在国内同类专业中快速占领一席之地,并以高起点快速稳健发展。

1 国内外研究现状

欧洲和美国的大学将能动类专业设置在机械工程系中,且不以专业来单列,而只是机械类的一个方向,称为热流科学(Thermal and Fluid Science)或能量系统(Energy system),而核工程与核技术则一般单独设立,或者设在化工系中,例如美国麻省理工学院、佛罗里达大学等,机械工程的教学与研究范围覆盖了目前国内本科生专业目录中的机械类、能源动力类的范围,这样就大大扩展了能动专业的学科基础和专业领域,以此来适应“应用型”人才培养的需求,使学生获得坚实的专业理论和宽广的专业知识。

我国能源动力类专业形成于20世纪50年代[2],当时在苏联教育体制的影响下的分为10个三级专业,经1993、1998、2012年三次修订最终合并为1个专业:能源与动力工程,使得专业覆盖面被大幅度拓展,要求本专业学生主要学习动力工程及工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术,受到现代动力工程师的基本训练;具有进行动力机械与热工设备设计、运行、实验研究的基本能力。要实现以上人才培养目标,关键在于如何紧跟行业需求并结合高校自身情况,制定科学的人才培养方案并认真执行。然而,经前期大量调研结果表明,目前国内高校尤其是地方院校在能动专业人才培养上存在以下特点或不足:

(1)专业划分过细,口径太窄。大部分高校在能动专业中设置了多个专业方向,如水力发电、火力发电、清洁燃烧、供暖、制冷等,并将专业课分方向模块进行教学,这极大地限制了学生的选择空间,不利于学生专业知识拓展,使学生在择业时被固定在某个方向上,缺乏竞争力。

(2)人才定位不尽合理。经前期广泛调研发现,随着我国现阶段加快能源建设的力度,国内目前需要更多的是能源动力行业运行、维护与管理方面的技术人才[3],对于高端人才如设计研究类人才虽然稀缺,但由于能动专业实践性强的特性,一般难以由高校直接培养此类人才,即高端技术人才亦需要从工程实践中磨砺而出。所以作为地方院校,尤其新开设能动专业的地方高校,不能一味照搬985、211高校以及部分经过几十年专业建设已经具备自己鲜明特色和专业实力的高校的人才培养模式,必须紧跟行业需求,以培养应用型人才为主线,并充分利用和发挥高校自身的特色和优势。

2 三峡大学能动专业人才培养模式改革

三峡大学的能动专业于2010年底才开始立项建设,并于当年从我校2010级机械设计制造及其自动化专业中分流出53位学生按照能源与动力专业人才进行培养,2011年开始以能源与动力工程专业独立招生,故截至目前实际上已有一届学生毕业(2010级),且2015年度即将毕业的学生目前绝大部分已经签订了就业协议。近五年来,学校在专业本专业建设过程中积极探索,对兄弟高校及能动相关的企事业单位进行了广泛调研,并紧密结合我校能动专业“新开设、新起点”的现实情况,培养和提炼自己的专业特色,并对本专业的人才定位和培养进行了以下改革:

(1)在人才培养与定位方面,以培养“高素质、强能力、应用型”人才为指导,制定了专业人才培养方案,着重提炼专业所覆盖知识体系的共性,拓宽专业口径、增厚专业基础、突出方向共性、弱化专业方向、提升就业能力,扩大就业口径。具体为:1)以流体机械动力学为基础,设置适用于水力发电、热力发电、风力发电中能量转换动力装备的动力学相关系列必修基础课程,突出水力发电专业课,并辅以风力发电等专业课程;2)以热-力转换原理为基础,设置适用于火力发电、生物质能发电、核电等热动力学、热交换、热传输相关的系列必修基础课程,专业课设置方面突出火电、核电,辅以生物质能相关课程。即将动力工程专业分为流体机械和热力机械两个方向,但在培养过程中,大大拓宽了专业基础必修课的范围,增加学生后续就业时行业选择的范围。

(2)在实验/时间教学方面,以厚基础、宽口径、应用型人才培养为指导,建设和整合实验、实践教学条件。取消零散的课程实验/实践,开设系列综合实验/实践课程,使实验/实践教学具有层次性、连贯性、交叉性、系统性和良好的可操作性。避免以课程为单位开设实验时的连续性差、重复度高、综合性不强、效果差的缺点,同时在一定程度上降低建设成本。此外,学校还积极开发校外实践基地,挖掘学校所在地区及周边区域广泛的能源动力行业/企业资源,作为本专业有效的实践基地。

(3)以校外实践基地建设为抓手,开发专业初期就业资源。任何一个高校新专业就业时其情况都或多或少存在不确定性,其原因主要在于社会和行业对于特定高校新专业的认识度不高。因而打开就业工作局面难度大,故无论从短期还是长远来看,都需要充分利用所建立的校外实践基地作为就业渠道,使基地发挥更大作用,这需要在基地建设过程中同时做好基地管理制度建设,以协议的形式为本新专业向基地输送人才提供保证。

3 改革效果

近五年来,学校在建设能动专业过程中不断探索,最终形成以上建设意见和改革措施,并取得了显著成效:

(1)制定了科学合理的能动专业人才培养方案,确定以掌握能源转换装备运行及转换机理为基础,在传统的专业基础课程中,将《流体机械原理》、《水轮机及调节器》、《汽轮机》等增设为专业公共基础课,在专业拓展模块课程中按水电、热电、流体机械、新能源发电等设置小学分模块供学生选修,但不限制选择模块数量。目前学生就业反馈情况表明,在弱化专业方向、增厚专业基础课程后,学生在择业过程中即使不在个人专业方向上就业,只要未跨出能动行业,就能很快适应新领域的工作。

(2)整合实验/实践教学计划和条件。如将以往随理论课程开设的《流体机械原理》、《流体力学》、《液压传动与控制》、《泵站工程》、《水轮机及调节器》等的课程实验进行专门设计,整合成32学时的《流体综合实验》课程;将《热力学》、《传热学》、《汽轮机》、《热电厂动力工程》、《锅炉原理》等课程的实验内容整合成32学时的《热工综合实验》;将《测试技术》、《控制工程》、《电厂自动化》等课程实验整合成16学时的《测控综合实验》等,并根据相关理论课开设时间将综合实验课内容分为两个学期开设。这样学生能够得到更为系统的、连贯的实践训练,相比随理论课程开设的零散实验,综合实验教学效果更好随

(3)目前已在学校所在地区及周边能动企业建立本专业的实践/实习基地,且已经有效运行,如安能(宜昌)热电(生物质能发电)、长江电力(葛洲坝)、安能(襄阳)火电、三峡电厂、清江的隔河岩电站、高坝洲电站、向家坝电站、黄龙滩(十堰)电站、湖北宜化集团、宜昌安琪酵母、黑旋风工程机械等20多家能源企业和流体机械设计制造企业,可完全满足学生毕业实习、生产实习及其他培训的接待需求,极大地缓解了专业实践条件建设需要大投入的困难。

(4)专业就业情况良好,第一届毕业生(2010级,共53人)就业率达100%,其中除4人继续攻读硕士研究生外,15人进入水力发电厂,17人进入火电、生物质能电厂,6人进入电力部门事业单位,11人进入与流体机械及能源装备设计、制造相关企业。其中17人(32.1%)在本专业校外实践基地相关企业就职。截止2015年3月中旬,第二届毕业生(2011级,共81人)已签就业协议的达72人,已确定攻读硕士研究生5人。学校以专业调研、毕业生就业企业回访等多种形式,进一步拓宽和加深了与行业内相关企事业单位的联系,并就用人单位对我校毕业生在生产实践过程中的综合素质和表现进行跟踪回访,结果表明学生的综合能力水平总体较高。

4 结语

能源动力类专业是实践性、技术性很强的专业,且专业覆盖的技术领域非常广泛,针对具体的应用领域其技术专业性又较强,而高校在该专业人才培养的过程中一方面不可能面面俱到,设置过多的专业方向,另一方面又不能过于集中,而使得学生的专业知识领域过窄,导致就业方向没有选择余地。因而,在人才培养过程中要更多地考虑专业领域的共性,增厚专业基础,拓宽专业口径,使学生获得尽量宽广的专业综合知识,才能具备一定的竞争力,以适应现代能源动力领域对专业人才的需求。

【参考文献】

[1]徐翔,余万,陈从平,方子帆,李响,赵美云.三峡大学“能源与动力工程”专业培养方案的制订与完善[J].科教文汇:上旬刊,2014(6):60-61.

第6篇:能源与动力工程的认识范文

关键词:可再生能源;专业基础课;提高教学质量

作者简介:徐谦(1981-),男,江苏苏州人,江苏大学能源与动力工程学院,讲师;张红(1979-),女,江苏沭阳人,江苏大学能源与动力工程学院,讲师。(江苏 镇江 212013)

基金项目:本文系江苏省高等教育教学改革研究重中之重课题(课题编号:2011JSJG006)、江苏大学教学改革项目(项目编号:JGZD2009025)的研究成果。

中图分类号:G647 文献标识码:A 文章编号:1007-0079(2013)35-0097-02

一、开设“可再生能源概论”课程的背景

能源短缺与环境污染是21世纪人类面临的两大基本问题。自工业革命以来的大规模化石能源资源消耗和生态环境恶化,导致人类社会的可持续发展受到严重的威胁。对于中国这样以煤为主要能源的国家,随着经济社会的不断发展和对能源需求的不断增长,这些问题显得尤为突出。发展可再生能源是解决这些问题的主要途径之一。可再生能源如太阳能、风能、地热能、生物质能等,具有清洁、低碳、可持续利用等优势,正越来越受到重视。在国家层面上,我国在相关政策中都增加了可再生能源的元素,可再生能源产业的发展也受到国家的高度关注。但是,和发达国家相比我国的可再生能源产业起步较晚,总体发展程度不高。在我国可再生能源产业发展过程中的一大限制因素是缺少成熟先进的可再生能源技术。我国主要的可再生能源设备完全依赖于进口,可再生能源领域的科技创新能力明显不足。培养可再生能源相关内容的专业型和复合型人才是一个关键的突破口。为此,江苏大学从2006年起为热能与动力工程专业的本科生开设了“可再生能源概论”课程并收到了良好的效果。学生在开阔视野、了解基础知识的同时也提升了深入学习的兴趣。为了进一步顺应时展和社会需求,2010年7月经教育部批准,浙江大学、西安交通大学、华北电力大学、江苏大学等11所高校首次设立了新能源科学与工程专业。在该专业的本科生培养方案中,“可再生能源概论”是一门重要的专业基础课。

二、“可再生能源概论”课程的特点

“可再生能源概论”是新能源专业的专业基础课,也是热能与动力工程专业(自2012年起教育部调整为能源与动力工程专业)的专业选修课。目前已有多本相关的书籍可作为教材备选。[1-4]该课程具有以下特点:

1.内容多,学时少

可再生能源覆盖面较大,课程内容包括太阳能、风能、地热能、海洋能、生物质能、氢能以及新能源与可持续发展。而作为一门先导课,它主要起着引人入门的作用,所以教学时间通常只有32学时。[5]如何在较少的学时内把大量的内容涉及到、连接好,对教学质量有着很大的影响。

2.课程内容发展更新快

可再生能源研究是目前最迫切也是最热门的研究领域,大量的研究成果被国内外的学术期刊广泛而持续地报道出来。这一点反映到课程内容上,几年前还称之为“待解决的问题”到现在可能已经有很好的解决方案。在每次确定课程内容时,需要紧跟学科的发展把这些新的内容包括进去。

3.与后续课程衔接紧密

“可再生能源概论”是一门专业基础课,负责把学生引进本学科的大门。到了专业课学习阶段,学生还要深入地学习“生物质能源转化原理”、“太阳能光伏技术”、“风力发电原理与控制”等课程。本课程与后续课程衔接紧密,在学习本课程时树立起学生的学习兴趣和良好的学习方法对学好后续课程具有重大的影响。

三、提高教学质量的措施

1.精心组织教学内容

在32学时的教学时间内不可能对所有的可再生能源进行全面深入的介绍。笔者结合自身的科研方向,重点对太阳能、燃料电池(其中有与生物质能关联的“直接醇类燃料电池”和与氢能关联的“质子交换膜氢氧燃料电池”)相关内容进行介绍。除了讲述教材上的知识,还加入了目前存在的问题以及最新的科研成果。例如在讲到直接高浓度醇类燃料电池时,笔者就加入自己近两年的科研成果,讲述流场和膜电极结构优化对电池性能的影响。学生反响热烈,对此部分知识的理解得以加深。其余的可再生能源类别则讲述其基本原理,以便与后续的专业课程衔接。

除了上述理论知识之外,在教学过程中加入实验教学也是一个提升质量的有效途径。结合江苏大学能源与动力工程学院自身的特点和实验条件,在教学过程中尝试为学生增加了包括太阳能房和地源热泵等实验内容。以太阳能房为例,作为一种节能减排建筑,左然教授在2005年建立的30m2的太阳能平房具有冬暖夏凉(不依赖于空调或加热器)的特性。覆盖于屋顶的太阳能集热板能调节安放角度与暴露面积,连接到屋内的管道末端装有风机调节气流速度。联系传热学和本课程中关于太阳能知识的介绍,学生可自己动手调节相关参数获得直接的感性认识,结合课后的理性思考,可进一步加深对太阳能利用的掌握。

通过相关实验的演示、观摩和操作,使学生对发展可再生能源和采取节能减排措施所达到的效果有了更直观深入的认识,并对教学内容中所涉及的一些相关内容也有了更深入的理解。

2.教会学生学习的方法

可再生能源领域的发展日新月异,学生不必要也不可能在课上学到所有的知识点。为此,笔者尝试采用了设疑、研讨、引导式的教学方式。一是通过课堂提问让学生参与针对设疑问题解决思路的研讨,扩展学生解决问题的思路,培养学生的创新思维;二是对解决设疑问题的正确思路和有新意的想法给予肯定,对学生的努力当众予以表扬,引导学生利用所学知识积极探索解决问题的新思路,逐步形成并确立独立思考、获取、研究和创造知识信息的习惯;三是充分利用每堂课的最后5分钟,除了总结本次课程的主要内容之外,还给学生设置一些疑问来引导学生预习下一次课的主要内容。

3.增强课堂互动

除了课堂提问之外,笔者还借鉴研究生研讨课的形式与学生形成大量的互动。上课时,学生可随时打断老师的授课就正在讲解的内容进行发问或点评。学生之间也可相互点评。讲到某一处,若有学生对此处内容了解较多,老师就把讲台让出坐在台下,由该生在台上进行讲解。经过数次尝试,学生逐渐适应并喜欢上这种无拘无束的互动,学习的兴趣得到激发,对教学内容也会自发地去找资料扩充及深化。必须要指出的是,笔者的教学班级人数少于50人,这种互动是良性的、可控的;若是授课班级人数过多,则不适用这种互动形式。

4.优化考核方式

考核环节作为教学过程的有机组成部分,对教学质量有重要影响。长期的实践证明,此环节能有效地促进学生复习和巩固所学内容,检查学生对所学知识、方法和技能的理解、掌握及运用情况,既是评定学生学习成绩的有效手段,也是检验教学效果、取得反馈信息、改进和提高教学质量、推进教学改革的主要途径。[6]传统的主要课程考核方式——考试,虽然有其合理性,但是实际上束缚了学生的发散思维,忽视了对学生学习能力和创新能力的考查。对于“可再生能源概论”这样的专业基础课,有必要根据不同的教学内容采用灵活多样的考核方法。笔者采取了平时成绩与期末成绩相结合的方式:平时成绩占总成绩的40%,主要包括平时的考勤、回答教师提问的质量和课上讨论发言的质量;期末考试占60%,避免繁琐的运算与对零碎知识点的机械式记忆,试题以开放的论述题为主,不设标准答案。学生根据对问题的认识和理解进行解答,解答过程中学生可以针对当今能源领域的一些重要或敏感问题提出有参考价值的意见与思考,可充分发挥自身的创新意识。通过这样的考核方式,学生不仅掌握了可再生能源方面的基础知识,而且提高了分析问题、整合资源、文字表达和解决问题的能力。这样的考核方式得到了几届学生的普遍认可。同时,通过这种考核方式,笔者了解到不同学生的不同兴趣所在,从而为第八学期的毕业设计题目设定提供了一定的依据,为教学的连续性和提高毕业设计的质量提供帮助。

四、结语

笔者通过课堂教学的不断摸索,针对“可再生能源概论”课程的特点和“90后”大学生的特性,在提高教学质量方面进行了改革尝试。通过激发学生自学潜力,培养学生的学习兴趣,引导学生养成了独立思考、获取、研究和创造知识信息的习惯,提高了“可再生能源概论”的教学质量和教学效果。然而,“可再生能源概论”的课程教学是一门系统工程,从教学内容的选取到教学主题的把握,从教案的准备到课堂设计,从作业的选取到考核形式的改革,各个环节都会影响教学质量和教学效果,在这些方面,尚有许多值得研究和探讨的空间。另外,本课程与后续专业课程的衔接也是一个值得研究的课题。

参考文献:

[1]左然,施明恒,王希麟.可再生能源概论[M].北京:机械工业出版社,2007.

[2]索伦森.可再生能源的转换、传输与存储[M].北京:机械工业出版社,2011.

[3]S.Singer.Sustainable Energy Sources,Uses and Technologies[M].New York:Webster's Publisher,2011.

[4]保罗·克留格尔.可再生能源开发技术[M].北京:科学出版社,2007.

第7篇:能源与动力工程的认识范文

关键词:CFD教学;本科教学;教学改革

中图分类号:G642 文献标志码:A 文章编号:1674-9324(2013)38-0037-02

一、开展CFD教学的必要性

CFD技术,是解决工程中复杂流动和传热问题的一种有效手段,同时也是一门新型的独立学科。它以经典理论和数值计算为基础,通过计算机的数值计算和图像显示,从空间和时间上定量描述各种场变量,从而达到对流动和传热问题进行研究的目的。CFD技术集中应用了20世纪直至本世纪科学技术方面的最新成就,并具有理论性和实践性的双重特点。CFD技术不仅可以作为研究工具,而且还可以作为设计工具广泛应用于能源动力工程、机械工程、材料工程、交通工程、建筑工程、环境工程、化学工程等领域。另外,CFD与CAD、CAE联合,还可以进行各种结构优化设计。CFD教学主要程针对高年级本科生开展,强调学生的应用能力和学术能力的培养,教学的宗旨是让学生在了解数值计算基本概念和原理的基础上,通过对一些经典商用CFD软件使用和掌握,增强学生分析和解决问题的能力。在国内,目前在能源动力类本科生中开展CFD教学的学校有近20所,大部分为重点本科院校,除我校外,还有如西安交大、清华大学、上海交大等高校。但随着CFD技术在工业界的进一步推广应用,个人电脑的性价比提升,可以预计未来5年,将会有更多的工科院校为能源动力类本科生开展CFD教学。在国外,早在上世纪80年代,就已有针对能源动力类本科生开展的CFD教学,比如英国的帝国理工学院,美国的加州理工学院,日本的九州大学等。尤其以美国的加州理工学院做得最为突出,它非常重视学生的实践与创新。由于国外学生人数比国内少,实验设施完备,CFD技术课程被安排在实验教学中心进行,学生在进行CFD技术学习应用的同时,还可以采用实验方法对CFD的结果进行验证,非常有利于培养学生的主动实践与创新能力。实际上,开展CFD教学还有利于拓宽实验教学内容。由于CFD技术具有成本低、速度快、可视化等特点,因此在能源动力类专业的实验教学中,可以利用CFD技术加强设计性实验和探索性实验的构建,将以往学生的被动性实验转变为学生为主教师为辅的一种主动性实验,有利于培养学生的独立思考和解决问题的能力。由此可见,开展CFD教学符合能源动力类的专业发展和人才需求,有利于激发学生的学习兴趣,同时还有利于拓宽实验教学内容,培养学生的实践与创新能力。

二、开展CFD教学的可行性

对于在能源动力类本科生中开展CFD教学的可行性,下面将从三个方面来进行分析。

1.教学内容的选择。对于能源动力类的大四本科生,CFD教学的重点将放在CFD技术的基本理论和软件应用上。具体内容包括:控制方程的离散化方法,流场的求解计算方法,湍流模型,以及商用CFD软件的基本用法。同时,授课内容中还将包含复杂流动模型以及数值模拟的最新研究进展等,以便开拓学生的视野,激发学生的学习兴趣。由于课时有限,在商用CFD软件基本用法的讲授中,将选择能源动力领域常见案例的CFD过程,比如建模、划分网格、设置边界条件、设置求解器参数、后处理等内容,进行有针对性地讲解和实践,以获得举一反三的效果。

2.基本理念的贯彻。在开展CFD教学中,需要贯彻正确的CFD技术理念。虽然目前商用CFD软件快速普及,似乎许多问题都可以通过CFD技术来解决。但必须强调,CFD技术不是万能的,在很多方面还有局限性。试验研究、理论分析和CFD技术的有机结合,才是解决实际问题的有效手段。另外,对模拟计算结果的准确性的认识和判断,也需要一个正确的理念。数值模拟计算结果的准确性首先取决于数学模型是否正确,如果数学模型不正确,即使数值计算方法先进,仍然不能保证数值解的准确性。其次,模拟计算过程中流动介质物性参数是否正确,也是影响模拟计算结果准确性的一个重要因素。最后,教学过程中还要注意培养学生的工程意识,在讲授CFD实际应用时要引导学生把握工程问题的整体观念,增强学生的工程意识,培养学生基本理论与工程实践相结合的能力。

3.经典软件的应用。从我校能源动力本科专业现有的课程设置来看,大四本科生已经具备流体力学、传热学、数值分析方法等方面的基础知识,对于CFD技术中所涉及的方程离散,网格划分、流场求解等方面知识的理解不会有太大难度,而且目前商用CFD软件智能化程度较高,基本使用方法和技巧易于掌握。因此,选用经典CFD软件开展教学,在老师的指导下完全可以使学生在短时间内初步掌握CFD软件的使用方法。在此基础上,随着学生知识面以及工程实践经验和CFD软件使用技巧的增加,对CFD技术的理解会进一步加深。另外,目前计算机硬件水平迅猛发展,学生拥有个人电脑的比例逐年增加。从我们能源与动力工程学院学生工作组统计的数据来看,目前学生拥有个人电脑的比例已达80%以上,学生可以在自己的电脑上方便地进行CFD软件的学习和实践,这为开展CFD教学提供了良好的条件。

从2007年开始,华中科技大学能源与动力工程学院就已经在本科生中开展了CFD教学。课程的名称为CFD技术,以选修课的形式开设,学院每年都有近300名学生选修这门课程,这门课程实际上已经成为一门受众面极广的公共选修课程。由此可见,在能源动力本科生中开展CFD教学具有较好的必要性和可行性,值得深入推广应用。

参考文献:

[1]张师帅,郭照立,彭玉成,张晓青,明廷臻.构建CFD技术平台培养能源动力类本科生的实践与创新能力[J].教育教学论坛,2012,(12):64-65.

[2]王永生,屈波,刘拓,等.构建本科生科研训练与创新实践的长效机制[J].中国高等教育,2010,(6):21-25.

[3]张师帅.计算流体动力学及其应用[M].武汉:华中科技大学出版社,2011.

[4]潘云霞.培养大学生创新精神与实践能力的几点思考[J].中国科教创新导刊,2009,(11):17-18.

[5]李俊梅,李炎锋,樊洪明,孙育英.CFD模拟课程在建环专业本科生中的教学实践[J].高等建筑教育,2012,(3):101-103.

[6]夏玉颜,王责成.高校工科专业人才创新素质现状调查与思考[J].高校教育管理,2010,(2):79-83.

第8篇:能源与动力工程的认识范文

关键词:电厂锅炉;发电厂;热能动力工程;燃烧效率;燃烧控制技术 文献标识码:A

中图分类号:TK229 文章编号:1009-2374(2015)13-0052-02 DOI:10.13535/ki.11-4406/n.2015.13.027

热能动力工程包含众多专业,这些专业所涵盖的内容也很广泛,几乎所有的专业都需要依赖和运用热能动力工程学的知识。拿火电发电厂来说,发电厂中的汽轮机和电厂锅炉都是热能动力工程所探究的领域,另外由于掌握先前热动能的相关知识,所以我国火力发电厂的前景才一片良好。随着经济的发展,为了适应社会变化,我们只有进一步提高电厂锅炉的燃烧效率才能符合市场要求,因此我们要积极运用热能动力技术来推动电厂锅炉的进步,提高整体经济效益。

1 电厂锅炉的构成要素

发电厂的运作离不开电厂锅炉的应用和支持,电厂锅炉作为发电厂的支柱设备,在发电厂中发挥着重要的作用。电厂锅炉主要由两个方面组成:一方面是外壳部分,另一方面则是燃气锅炉控制部分。从外壳来说,外壳是由底壳和面壳组成的,底壳的作用就是加强稳固燃烧器,另外,底壳的膨胀水箱等部分要件都是由底壳连接在一起的,通过底壳的作用从而固定在墙体上。从面壳来说,面壳的主要作用是防止风尘的污染,从而保护各个重要部件。燃气锅炉控制部分是电厂锅炉最重要的构成要素,是整个锅炉构造中的核心部分,它主要控制燃料的燃烧。传统的控制方式以人力为主,不能很好地控制温度,使其数值失真,而现在控制系统大部分都是由电子控制,这样能够保证操作准确,达到控制效果,实现控制目标,符合控制要求。

2 电厂锅炉在热能动力工程中的应用

社会生产和人们生活都需要电力的支持,社会和经济的发展也都离不开电。另外,我国主要是依靠火力发电来满足我们用电需求。随着人类的进步和社会的进展,人们对电力的使用需求也在不断增大,我们不仅要提供充足的电量,并且还要保证电力质量。因此,为了适应社会变革,火力发电厂只有改进生产技术,提高工作效率,不断完善电厂锅炉的运作系统和整体构造,从而提高锅炉性能和燃烧效率。我们在改进的同时,要明确电厂锅炉是由众多部分组成的,每一部分都要引起重视,提高各个部分的性能,从而促进整体发展。

基于以上研究,热能动力工程的应用研究便成为首要关注问题。电厂锅炉在应用中主要是实现热能和机械能的转换,而根据热能动力工程学的研究对象原理来看,电厂锅炉便是我们将要研究的对象,因此热能动力工程学具有极强的综合性和实践性。我们需要运用热能动力学知识来探究电厂锅炉的构造技术和工作流程。众所周知,随着经济的发展,我们可以使用的资源越来越少,地球上的资源受到了前所未有的挑战,面对当前形势,我们只有节能减排,重视电厂锅炉的应用技术才能实现社会的良性运转。

3 热能动力在电厂锅炉发展中的应用需要

热能动力和电厂锅炉本身就具有紧密的联系,如果把热能动力工程专业原理和电厂锅炉生产系统结合起来,那么对未来电厂锅炉的发展无疑具有极大的推动作用。以风机为例,风机在电厂锅炉中发挥极大的作用,随着时代的发展,当代风机一般都是至关重要的流体运行设备,其运作方式主要是通过叶轮的旋转来得到风能,并在此基础上,把机械能转化成气体压力,投放到电厂锅炉中使用,一旦气体扩散,便能够保证燃料的燃烧率,这足以可见风机的重要性。但是,就我国目前来看,很多锅炉的问题便出在风机方面,风机运作强度大,工作量多,再加上运行环境的不良状态,所以风机容易发生损坏。因此,如何提高电厂锅炉风机工作水平和工作性能已经成为当前研究的重中之重。我们只有通过利用热能动力工程技术来不断增强风机的耐用性能,提高风机的承载力,解决当前风机使用过程中的疑难

问题。

4 热能动力工程炉内燃烧控制技术的运用

燃气锅炉控制部分是电厂锅炉最重要的组成部分,锅炉的燃烧控制技术决定着锅炉的发展前景,是能量转化幅度的关键技术。传统的锅炉主要是依靠人力去投放燃料,随着科技的进步和普及,现代锅炉大多以自动化技术为主,先进的自动控制取代人力控制。锅炉燃烧控制技术主要分为下面两大类:一类是空燃比里连续控制系统;另一类是双交叉先付控制系统。这两种控制系统都有各自的特点,通过合理运用控制系统,将够达到生产目标。

4.1 空燃比里连续控制系统

空燃比里连续控制系统主要是由燃嘴燃烧控制器、电动蝶阀、热电偶比例阀、流量计气体分析装置和PLC等其他部分构成的,热电偶主要负责相关数据的处理和传递;PLC主要用于数据的比较,在此基础上,利用微积分等计算方法来设置信号。此外,我们还要抓好比例阀门和电动蝶阀的开放幅度,这样一切控制好之后,才能更好地调节温度。但是这种控制系统对温度的控制并不是很好,很多情况下并不是十分精准,因此需要我们认真确定相关数据。

4.2 双交叉先付控制系统

双交叉先付控制系统主要是由烧嘴、燃烧控制器、流量阀、流量计热电偶构成的。在这个控制系统中,电信号的生成是通过热电偶实现的,热电偶把温度转化成电信号,把电信号标记为测量点的实际温度。需要明确的是,这个测量点的温度期望给定值是自动给定的,是通过工艺曲线来获得的,毋庸置疑,这两者可能会产生一定的偏差。当PLC对阀门的开合程度进行调节的时候,其调节的范围幅度主要是依据这个偏差来衡量的。除此之外,该控制系统具有专门化的特点,燃料的控制测量是由一个专门的质量控制装置来负责的,采用这种控制系统能够节省其他部件的使用,降低损耗,另外还可以保障温度数值的精确性。我们要重视热能动力工程的燃烧控制技术,分清空燃比里连续控制系统和双交叉先付控制系统的优缺点,根据适当的情况选取合理的控制系统,从而提高电厂的经济效益。

5 结语

新形势下电厂锅炉的应用离不开热能动力工程的支持,运用热能动力技术来提高电厂锅炉的燃烧效率从而来改变整体经济效益已经成为当前发展的必然势头。因此,我们首先要认识电厂锅炉的组成部件,另外还要明确电厂锅炉构造和热能动力工程之间的联系,认识到电厂锅炉和热能动力互相影响、互相补给、互为所需。同时,我们还要不断优化热能动力技术,完善电厂锅炉构造过程,尤其是风机的使用和改善,解决当前风机应用中的不利因素,提高锅炉各部分的工作效率。最后,我们要发挥燃气锅炉控制部分的作用,采取空燃比里连续控制系统和双交叉先付控制系统来实现对温度的调节和

控制。

参考文献

[1] 李国平,胡鸣.变频技术在锅炉风机上的应用[J].应用能源技术,2007,(4).

[2] 张燕连.脉冲燃烧控制技术的应用实践[J].现代冶金,2009,(3).

第9篇:能源与动力工程的认识范文

关键词:新能源;工程机械;新能源与工程机械

随着我国环境形势的不断严峻,新能源工程机械的研究被我国政府所重视,并且在政策和技术上我国政府也给予新能源工程机械的相关支持。另外,从实际应用的角度来说,工程机械本身在工程作业过程中会产生较大的污染,且对能源消耗力度较高,对环境工程危害较大,新能源工程机械本身比传统燃料工程机械要更为环保,因而开发新能源工程机械是工程机械可持续发展的必然方向之一。

一、新能源工程机械的发展现状与特点

当前,我国对于新能源工程机械的研究所涉及的程度并不深,在工程机械制造与设计方面的成果还不是很多,但研究方向主要选择为清洁无污染的能源开发为主,比如目前在我国多数城市所普及的电气混合动力公共汽车,国外一些工程机械厂家所推出的纯电动工程机械等等,下面本文将对当前果奶外对于新能源工程机械的研究形式,进一步分析新能源工程机械的发展现状与特点。

(一)纯天然气工程机械的发展现状及特点。

目前,以天然气作为新能源燃料的工程机械的发展比较迅速,纯天然气工程机械的发展类型主要分为两种:压缩天然气和液化天然气,在实际应用中,我们可以发现,液化天然气的续航能力更高。以天然气作为主要动力源的工程机械的结构特点为其内部拥有一部燃气发动机,并拥有一组或者单个液化天然气储气瓶,接入相应的汽化装置以及管路;液化天然气在作为发动机动力时,为提高其燃烧力度,需先把液化天然气变成液态,然后由管路传输到燃气发动机内,在发动机装置中进一步调整,调整后在发动机内燃烧,对外输出的转速、功率、扭矩等传递到耗功装置,实现动力输出。经过测试,能源消耗费用节省30%~40%。目前,国内知名的工程机械厂家已经推出了相应的天然气机械产品。

(二)动力电池工程机械的发展现状及特点。

从本质上来说,动力电池工程机械的动力源为电池,即为纯电动工程机械,纯电动过程机械在我国早有研究,但研究方向更多的是趋向于小汽车,由于电池技术以及其他因素的限制,目前我国对于动力电池工程机械的研究也比较初步。当然,国外一些品牌推出的纯电动工程机械较多,比如日本日立品牌所推出纯电动挖掘机。电动工程机械消耗的电能较大,因而大多数电动工程机械工作过程中需要接入380V电网以保障其能发挥出强劲的性能。一般来说,纯电动工程机械的智能化程度以及自动化程度较高,其控制器与变频器进行数据通信,根据负载变化对电机进行变频调速,并控制电磁比例阀,对斜盘变量泵的吸收功率进行调整,实现最优功率的匹配;回转时,直接应用回转电机,通过控制器与回转电机变频器进行数据通信,对回转电机进行变频调速。纯电动工程机械在工作过程中具有噪音低,环境污染低的特点。

(三)混合动力工程机械的发展现状及特点。

混合动力技术在工程机械中也得到了一定的应用,目前在工程机械中所采用的混合动力的方式主要集中为:油电混合、油液混合、油电液混合等三种方式。目前,混合动力方案普遍采用的是油电混合的解决方案,借助蓄电池、超级电容等储能元件,实现柴油机输出功率和扭矩的均衡控制,达到用功率较小的柴油机来驱动大吨位挖掘机的目的。比如山河智能开发的 SWE230S 油电混合动力液压挖掘机在典型的定点挖掘并回转 90°装车的工况中,回转制动回收的能量高达回转所需 40%;整机节能效果在 20% 以上,并可有效的提高工作效率。另外,油液动力混合的方式在工程机械中也得到了一定的应用,比如工程机械知名品牌――――卡特彼勒推出的 336EH 油液混合动力挖掘机,其在营业过程中比标准机型降低了25%的能耗,但在性能、动力以及生产成本方面与标准机型并没有差异。

二、新能源工程机械的研发趋势分析

(一)注重解决新能源工程机械的动力性能。

目前大多数新能源工程机械所面临的制约因素主要包括持续作业时间短,动力性能不够强劲,相对于燃料能源工程机械来说,新能源工程机械在动力性能方面,仍然存在一定的差距,这与工程机械内部结构的设计与优化具有一定的P系,以天然气为动力的工程机械为例,由于燃气发动机的燃烧动力输出上可能要略逊于燃油发动机,因而动力性能较弱,因而一般以天然气为动力的工程机械并不能适用于大功率作业现场。也正是因为新能源机械在应用过程中,没有传统然后工程机械的适应性更强,所以也就导致一些新能源汽车在普及与推广过程中受到了一定的制约。由此可见,解决新能源工程机械的动力性能问题,应该成为未来工程机械研究的重点。

(二)重点解决新能源工程机械相关的配套基础。

新能源工程机械难以得到较快发展的另一制约因素在于新能源工程机械的发展时间比较短,其配套供能设施严重不足,导致其并不能得到广泛的推广与应用。能源补给站相对较少每个新能源的推行都是一个漫长的过程。新能源工程机械在使用过程中因加气或供电等能源补给困难而影响其正常运行使用。因此,针对于目前新能源工程机械的发展来说,所需要重点解决的还是新能源供应方面的问题,如果确保新能源工程机械在实际应用时能够得到稳定的能源供应是解决新能源工程机械推广的重点内容。

三、总结

总的来说,新能源工程机械的发展空间比较大,在本文的分析中,我们也不难看出,目前针对于新能源工程机械的研究,国内外已经获得了不同的研究成果。虽然,当前所推出的新能源工程机械类型在实际应用时也达到了相应的节能减排的效果,但是,目前新能源工程机械在发展过程中仍然存在很多的制约因素需要解决。由此可见,新能源工程机械的发展之路还很漫长。本文重点研究了当前国内外新能源工程机械的发展现状及特点,并简要阐述了未来工程机械发展过程中所需要解决的技术问题以及发展问题,通过对新能源工程机械的认识分析奠定了我国新能源技术的施工基础,对新能源建设有着重大的作用。

参考文献:

[1]张艺莎,王普琰.混合动力工程机械关键技术探讨[J].工程机械文摘,2011,04.

[2]董宁宁,殷晨波,张子立,朱斌. 混合动力工程机械与氢动力发动机的研究进展[J]. 机电工程,2011,11.