公务员期刊网 精选范文 半导体及集成电路范文

半导体及集成电路精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的半导体及集成电路主题范文,仅供参考,欢迎阅读并收藏。

第1篇:半导体及集成电路范文

艾科半导体的主要业务是集成电路测试服务及射频测试设备的研发、生产及销售业务。以2015年9月30日为评估基准日,艾科半导体100%股权评估值为10.80亿元,增值率为181.16%。大港股份表示,本次交易完成后,上市公司将迅速切入集成电路测试服务领域,该业务将成为上市公司主要的营业收入和利润来源之一。

不过,《证券市场周刊》记者发现,有两家公司不仅是艾科半导体的前五大客户,还多次出现在其前五大供应商名单中。而且,双方彼此披露的采销数据竟有数百万元出入,艾科半导体销售数据的真实性存疑。

2015年,A股同类上市公司业绩多数出现不同程度下滑,艾科半导体业绩承诺能否兑现有待时间检验。

一饰多角 采销数据“掐架”

根据草案,2013年、2014年、2015年1-9月,艾科半导体分别向上海行森电子科技有限公司(下称“行森电子”)采购商品1691万元、1569万元、928万元,占比分别为26.21%、7.28%、7.67%;另外,2013年行森电子还为艾科半导体贡献销售收入1085万元,占比为15.37%。

对此,艾科半导体解释称:2013年,艾科半导体向行森电子销售一批贸易类测试设备,当时艾科半导体希望竞标无锡实训基地的设备采购订单,但因不具备政府招投标的资质,因此与行森电子合作,由行森电子作为主体去投标,艾科半导体负责设备的采购;行森电子主要从事测试设备业务,是国际知名测试设备制造商泰瑞达和致茂在中国内地的商,具备参与政府采购招投标资质,为艾科半导体长期合作的设备供应商。

行森电子在工商信息系统中披露了2013年、2014年年报:2013年行森电子资产总额为2300万元,所有者权益合计为96万元,营业收入、净利润均为零;2014年资产总额为556万元,所有者权益合计为94万元,营业收入、净利润分别为30万元、-6万元。

由此可见,2013年、2014年行森电子披露的收入与艾科半导体对其的采购数据存在上千万元的差异。

无独有偶,北京信诺达泰斯特科技有限公司(下称“信诺达”)及其控股子公司也分别出现在艾科半导体的前五大客户、供应商名单中,但艾科半导体在草案中对两者关系只字未提。此外,即便考虑增值税因素,两者公布的采销数据也有数百万元出入。

收购草案显示,2013年艾科半导体向信诺达采购了1400万元商品。Wind数据显示,信达诺与艾科半导体业务相近,主要从事集成电路测试系统的研发设备研发、生产与销售,为新三板挂牌公司。信诺达2013年年报显示,2013年信诺达向艾科半导体销售收入仅为838万元,较艾科半导体披露的“1400万元”少562万元。

另外,2015年1-9月,艾科半导体第二大客户杭州芯测科技有限公司(下称“杭州芯测”)为信诺达持股95%的控股子公司。2015年1-9月,艾科半导体向杭州芯测的销售(产品)金额为2376万元,占比为15.07%。

业绩承诺能否完成有待考证

不到三个月的时间,大港股份的业绩发生骤变。

大港股份在1月15日2015年度业绩预告修正公告,预计2015年“归属于上市公司股东的净利润”将亏损1500万元-2000万元;而其在2015年10月28日披露的三季报中曾预计“2015年度归属于上市公司股东的净利润变动区间为1926万元-3082万元,较上年同期下降20%-50%”。

而此次交易对手方王刚、艾柯赛尔承诺,艾科半导体2015-2017年实现的经审计扣非后净利润分别为6500万元、8450万元和10450万元。按此承若,此次重组一旦完成,大港股份将轻松扭亏为盈。

大港股份表示,根据对国内集成电路行业市场发展的预测,在收购艾科半导体后,公司拟将集成电路测试业务作为主导产业进一步加大投资。因此,公司将使用6.9亿元本次募集的配套资金投资于艾科半导体的测试产能扩充项目。

据了解,艾科半导体“测试产能扩充项目”包括“镇江市集成电路产业园建设项目”和“上海集成电路测试研发中心项目”,艾科半导体预计“镇江市集成电路产业园建设项目”建成以后第二年将新增销售收入10754万元,实现净利润4605万元;“上海集成电路测试研发中心项目”建成后预计1年达产,正式建成以后第二年的集成电路测试相关业务将会新增12945万元销售收入,净利润将达到5543万元。

倘若按照艾科半导体的业绩承诺计算增长率,2015-2017年,艾科半导体扣非后净利润将分别同比增长43.81%、30%、23.67%。艾科半导体表示,集成电路行业预计还将继续保持持续增长的态势,其测试服务厂商也将面临良好的发展机遇,市场前景广阔。

事实果真如此吗?

《证券市场周刊》记者发现,晶方科技(603005.SH)、通富微电(002156.SZ)等同类上市公司2015年业绩却出现不同程度的大幅下滑。

其中,晶方科技主营业务为集成电路的封装测试业务,是中国内地首家、全球第二大能为影像传感芯片提供晶圆级芯片尺寸封装(WLCSP)量产服务的专业封测服务商。晶方科技在1月15日的2015年度业绩预减公告称,经公司财务部门初步测算,预计2015年度实现归属于上市公司股东的净利润为10700万-11700万元,与上年同期(法定披露数据)相比减少约40%-45%。晶方科技解释盈利预减的原因有:一是2015年全球PC、智能手机等市场增速放缓,行业整体需求疲软,去库存压力较大,行业竞争日趋激烈,导致公司的利润规模随之下降;二是随着公司新产品、新技术的投入,公司资产规模不断扩大,机器设备陆续转固,使得折旧等运营费用增加等等。

通富微电也是专业从事集成电路的封装和测试,拥有年封装15亿块集成电路、测试6亿块集成电路的生产能力,是中国国内目前规模最大、产品品种最多的集成电路封装测试企业之一;主要客户为世界半导体知名企业,摩托罗拉、西门子、东芝等世界排名前二十位的半导体企业有一半以上是公司客户。此外,公司是中国电子信息百强企业,中国十大集成电路封装测试企业,中国进出口额最大企业500强。

Wind数据显示,通富微电营业收入增速已经连续六个季度环比下滑,营业收入增速已经由2014年第一季度的21.47%降至2015年第三季度的3.02%。尤其是,2015年前三季度通富微电营业利润、归属于母公司股东的净利润(扣非后)分别同比下降了68.94%、63.50%。

在“经营风险”中,艾科半导体也提到,随着近年来集成电路行业的快速发展,国内集成电路的设计商、制造商纷纷扩产,集成电路测试需求也不断扩大,吸引了更多新的集成电路测试商进入该行业,市场竞争日趋激烈。

艾科半导体还表示,公司主要业务是向集成电路设计与制造企业提供测试服务,属于集成电路测试企业,位于集成电路生产与应用的中间环节,与集成电路生产及应用环节紧密相连……如果集成电路应用行业或集成电路设计与制造行业的发展出现较大波动,将对集成电路测试行业带来重大影响。因此,艾科半导体所处行业受半导体行业的景气状况影响较大。

中芯国际(0981.HK)是集成电路制造企业,是世界领先的集成电路晶圆代工企业之一,也是中国内地规模最大、技术最先进的集成电路晶圆代工企业。2012-2014年,中芯国际的营业收入分别为17.08亿元、20.73亿元、19.70亿元,分别同比增长了28.10%、21.39%、

-4.95%。

第2篇:半导体及集成电路范文

关键词 半导体器件 半导体物理 教学思考

中图分类号:G642 文献标识码:A 文章编号:1002-7661(2017)02-0058-02

随着半导体技术的发展,微电子技术已渗透到渗透到国民经济的各个领域。《半导体器件物理》是微电子技术的理论基础,是理解半导体器件内部工作原理的课程,是分析器件物理结构、材料参数与器件电学性质之间的联系,其提供了半导体物理与电子电路设计间的物理逻辑与数学联系,是基于CMOS工艺设计集成电路的必备知识。因而,在教学过程中,如何将物理图像、数学模型与电子电路设计间的关系讲解清楚,让学生从物理和集成电路设计的角度深层次理解半导体器件成为授课关键。

一、教学内容与预期

《半导体器件物理》是微电子科学与工程专业的重要专业基础课程,是在半导体物理课程基础上继续开展器件物理的分析、建模和应用,具有物理理论抽象、概念细节多、半导体物理与电路等学科知识相交叉等特点,学生学习较为困难。基于此,本课程授课以施敏先生著的《半导体器件物理》为主要教材,依据教学大纲和学生未来的工作实践,对《半导体器件物理》课程教学内容进行了调整、充实和删减。具体来说《半导体器件物理》教学内容可分为以下几部分:1)介绍半导体材料、PN结、半导体表面的特性等,2)讲解双极型、MOS型晶体管的结构和工作原理,3)分析几种有重要应用的半导体器件,如功率MOSFET、IGBT和光电器件等。[1,2]期望学生接受教学后的预期能力:1)能够深入理解半导体器件关键物理概念和能带理论;2)能够将半导体物理与半导体PN结的行为结合起来理解分析;3)能够以半导体PN结为基础理解几种不同的半导体器件;4)能够理解和提出新型半导体器件设计中的关键物理和电学问题。

二、教学方法及学生能力目标

本课程以课堂授课为主,同时引入小组和班级讨论、课后建模实践等互动教学方法,培养学生构建器件物理图像、建模和与电子电路设计综合联系的能力,独立发现、分析、解决器件问题的能力。同时基于《半导体器件物理》课程的特点,在教学手段上采用板书公式推导与多媒体器件模型演示为主,网络教学资源为辅,同时邀请集成电路产业半导体器件资深专家讲座等形式,提高学生掌握知识和设计实践的能力,提高教学质量。让学生渐进达到如下能力:(1)知道基本概念,(2)从理论上理解和解释,(3)能够根据器件理论做出计算、模拟和实际的器件应用,(4)对器件进行综合、设计、分析;(5)对器件能够从物理和电学的角度做出专业评价。

三、学生学习效果评价方式

为了客观评价每个学生的实际学习效果和激励学习兴趣,改革评价方式是十分必要的。在期末闭卷考试基础上,对成绩评价方式作如下新探索:增加平时成绩比例,每个月进行一次小测试,针对几个集成电路广泛应用的建模理论和半导体器件,要求学生从半导体物理的角度作出独立的分析报告,可以在课后查阅文献资料,并在后续课堂上进行交流讨论,增强学生独立思考与实践动手能力,培养学生深度器件分析能力。

课堂教学改革需要教师不断思考、总结与创新,即要传授知识,又要与学生互动反馈,让学生更深刻迅速的理解专业知识,并能灵活的实践运用。

参考文献:

[1]施敏等,耿莉等译.半导体器件物理[M].西安:西安交通大学出版社,2008.

[2]Donald Neamen著.赵毅强等译.半导体物理与器件[M].北京:电子工业出版社,2013.

[3]杨虹等.面向21世纪的微电子技术人才培养-微电子技术专业本科生教学计划的制订[J],重庆邮电大学学报,2004.

第3篇:半导体及集成电路范文

论文关键词:集成电路,特点,问题,趋势,建议

引言

集成电路是工业化国家的重要基础工业之一,是当代信息技术产业的核心部件,它是工业现代化装备水平和航空航天技术的重要制约因素,由于它的价格高低直接影响了电子工业产成品的价格,是电子工业是否具有竞争力关键因素之一。高端核心器件是国家安全和科学研究水平的基础,日美欧等国均把集成电路业定义为战略产业。据台湾的“科学委员会”称未来十年是芯片技术发展的关键时期。韩国政府也表示拟投资600亿韩元于2015年时打造韩国的集成电路产业。

集成电路主要应用在计算机、通信、汽车电子、消费电子等与国民日常消费相关领域因此集成电路与全球GDP增长联系紧密,全球集成电路消费在2009年受金融危机的影响下跌9%的情况下2010由于经济形势乐观后根据半导体行业协会预计今年集成电路销售额将同比增长33%。

一、我国集成电路业发展情况和特点

有数据统计2009年中国集成电路市场规模为5676亿元占全球市场44%,集成电路消费除2008、2009年受金融危机影响外逐年递增,中国已成为世界上第一大集成电路消费国,但国内集成电路产量仅1040亿元,绝大部分为产业链低端的消费类芯片,技术落后发达国家2到3代左右,大量高端芯片和技术被美日韩以及欧洲国家垄断。

我国集成电路产业占GDP的比例逐年加大从2004年的0.59%到2008年的0.74%.年均增长远远超过国际上任何一个其他国家,是全球集成电路业的推动者,属于一个快速发展的行业。从2000年到2007年我国集成电路产业销售收入年均增长超过18%毕业论文提纲,增长率随着经济形势有波动,由于金融危机的影响2008年同比2007年下降了0.4%,2009年又同比下降11%,其中集成电路设计业增速放缓实现销售收入269.92亿元同比上升14.8%,由于受金融危机影响,芯片制造业实现销售收入341.05亿元同比下降13.2%、封装测试业实现销售收入498.16亿元同比下降19.5%。我国集成电路总体上企业总体规模小,有人统计过,所有设计企业总产值不如美国高通公司的1/2、所有待工企业产值不如台积电、所有封测企业产值不如日月光。

在芯片设计方面,我国主流芯片设计采用130nm和180nm技术,65nm技术在我国逐渐开展起来,虽然国际上一些厂商已经开始应用40nm技术设计产品了,但由于65nm技术成熟,优良率高,将是未来几年赢利的主流技术.设计公司数量不断增长但规模都较小,属于初始发展时期。芯片制造方面,2010国外许多厂商开始制造32nm的CPU但大规模采用的是65nm技术,而中国国产芯片中的龙芯还在采用130nm技术,中芯国际的65nm技术才开始量产,国产的自主知识产权还没达到250技术。在封装测试技术方面,这是我国集成电路企业的主要业务,也是我国的主要出口品,有数据显示我国集成电路产业的50%以上的产值都由封装产业创造,随着技术的成熟,部分高端技术在国内逐步开始开展,但有已经开始下降的趋势杂志网。在电子信息材料业方面,下一代晶圆标准是450mm,有资料显示将于2012年试制,现在国际主流晶圆尺寸是300mm,而我国正在由200mm到300mm过渡。在GaAs单晶、InP单晶、光电子材料、磁性材料,压电晶体材料、电子陶瓷材料等领域无论是在研发还是在生产均较大落后于国外,总体来说我国新型元件材料基本靠进口。在半导体设备制造业方面毕业论文提纲,有数据统计我国95%的设备是外国设备,而且二手设备占较大比例,重要的半导体设备几乎都是国外设备,从全球范围来讲美日一直垄断其生产和研发,台湾最近也有有了较大发展,而我国半导体设备制造业发展较为缓慢。

我国规划和建成了7个集成电路产业基地,产业集聚效应初步显现出来,其中长江三角洲、京津的上海、杭州、无锡和北京等地区,是我国集成电路的主要积聚地,这些地区集中了我国近半数的集成电路企业和销售额,其次是中南地区约占整个产业企业数和销售额的三分之一,其中深圳基地的IC设计业居全国首位,制造企业也在近一部壮大,由于劳动力价格相对廉价,我国集成电路产业正向成都、西安的产业带转移。

二、我国集成电路业发展存在的问题剖析

首先,我国集成电路产业链还很薄弱,科研与生产还没有很好的结合起来,应用十分有限,虽然新闻上时常宣传中科院以及大专院校有一些成果,但尚未经过市场的运作和考验。另外集成电路产品的缺乏应用途径这就使得研究成果的产业化难以推广和积累成长。

其次,我国集成电路产业尚处于幼年期,企业规模小,集中度低,资金缺乏,人才缺乏,市场占有率低,不能实现规模经济效应,相比国外同类企业在各项资源的占有上差距较大。由于集成电路行业的风险大,换代快,这就造成了企业的融资困难,使得我国企业发展缓慢,有数据显示我国集成电路产业有80%的投资都来自海外毕业论文提纲,企业的主要负责人大都是从台湾引进的。

再次,我国集成电路产业相关配套工业落后,产业基础薄弱。集成电路产业的上游集成电路设备制造的高端设备只有美日等几家公司有能力制造,这就大大制约了我国集成电路工艺的发展速度,使我国的发展受制于人。

还有,我国集成电路产成品处于产品价值链的中、低端,难以提出自己的标准和架构,研发能力不足,缺少核心技术,处于低附加值、廉价产品的向国外技术模仿学习阶段。有数据显示我国集成电路使用中有80%都是从国外进口或设计的,国产20%仅为一些低端芯片,而由于产品相对廉价这当中的百分之七八十又用于出口。

三、我国集成电路发展趋势

有数据显示PC机市场是我国集成电路应用最大的市场,汽车电子、通信类设备、网络多媒体终端将是我国集成电路未来增长最快应用领域. Memory、CPU、ASIC和计算机外围器件将是最主要的几大产品。国际集成电路产业的发展逐步走向成熟阶段,集成电路制造正在向我国大规模转移,造成我国集成电路产量上升,如Intel在2004年和2005年在成都投资4.5亿元后,2007年又投资25亿美元在大连投资建厂预计2010年投产。

另外我国代工产业增速逐渐放缓,增速从当初的20%降低到现在的6%-8%,低附加值产业逐渐减小。集成电路设计业占集成点设计业的比重不断加大,2008、2009两年在受到金融危机的影响下在其他专业大幅下降的情况下任然保持一个较高的增长率,而且最近几年集成电路设计业都是增长最快的领域,说明我国的集成电路产业链日趋完善和合理,设计、制造、封装测试三行业开始向“3:4:4”的国际通行比例不断靠近。从发达国家的经验来看都是以集成电路设计公司比重不断加大,制造公司向不发达地区转移作为集成电路产业走向成熟的标志。

我国集成电路产业逐渐向优势企业集中,产业链不断联合重组,集中资源和扩大规模,增强竞争优势和抗风险能力,主要核心企业销售额所占全行业比重从2004年得32%到2008年的49%,体现我国集成电路企业不断向优势企业集中,行业越来越成熟,从美国集成电路厂商来看当行业走向成熟时只有较大的核心企业和专注某一领域的企业能最后存活下来。

我国集成电路进口量增速逐年下降从2004年的52.6%下降为2008年的1.2%,出口量增速下降幅度小于进口量增速。预计2010年以后我国集成电路进口增速将小于出口增速,我国正在由集成电路消费大国向制造大国迈进。

四、关于我国集成电路发展的几点建议

第一、不断探索和完善有利于集成电路业发展的产业模式和运作机制。中国高校和中科院研究所中有相对宽松的环境使得其适合酝酿研发毕业论文提纲,但中国的高端集成电路研究还局限在高校和中科院的实验室里,没有一个循序渐进的产业运作和可持续发展机制,这就使得国产高端芯片在社会上认可度很低,得不到应用和升级。在产业化成果推广的解决方面。可以借鉴美国的国家采购计划,以政府出资在武器和航空航天领域进行国家采购以保证研发产品的产业化应用得以实现杂志网。只有依靠公共研发机构的环境、人才和技术优势结合企业的市场运作优势,走基于公共研发机构的产业化道路才是问题的正确路径。

第二、集成电路的研发是个高投入高风险的行业是技术和资本密集型产业,有数据显示集成电路研发费用要占销售额的15%,固定资产投资占销售额的20%,销售额如果达不到100亿美元将无力承担新一代产品的研发,在这种情况下由于民族集成电路产业在资金上积累有限,几乎没有抗风险能力,技术上缺乏积累,经不起和国际集成电路巨头的竞争,再加上我国是一个劳动力密集型产业国,根据国际贸易规律,资本密集型的研发产业倾向于向发达国家集中,要想是我国在未来的高技术的集成电路研发有一席之地只有国家给予一定的积极的产业政策,使其形成规模经济的优势地位,才能使集成电路业进入良性发展的轨道.对整个产业链,特别是产业链的低端更要予以一定的政策支持。由政府出资风险投资,通过风险投资公司作为企业与政府的隔离,在成功投资后政府收回投资回报退出公司经营,不失为一种良策。资料显示美国半导体业融资的主要渠道就是靠风险基金。台湾地区之所以成为全球第四大半导体基地台就与其6年建设计划对集成电路产业的重点扶植有密切关系,最近湾当局的“科学委员会”就在最近提出了拟扶植集成电路产业使其达到世界第二的目标。

第三、产业的发展可以走先官办和引进外资再民营化道路,在产业初期由于资金技术壁垒大人才也较为匮乏民营资本难于介入,这样只有利用政府力量和外资力量,但到一定时期后只有民营资本的介入才能使集成电路产业走向良性化发展的轨道。技术竞争有利于技术的创新和发展,集成电路业的技术快速更新的性质使得民营企业的竞争性的优势得以体现,集成电路每个子领域技术的专用化特别高分工特别细,每个子领域有相当的技术难度,不适合求小而且全的模式。集成电路产业各个子模块经营将朝着分散化毕业论文提纲,专业化的方向发展,每个企业专注于各自领域,在以形成的设计、封装、测试、新材料、设备制、造自动化平台设计、IP设计等几大领域内分化出有各自擅长的专业领域深入发展并相互补充,这正好适应民营经济的经营使其能更加专注,以有限的资本规模经营能力能够达到自主研发高投入,适应市场高度分工的要求,所以民间资本的投入会使市场更加有效率。

第四、技术引进吸收再创新将是我国集成电路技术创新发展的可以采用的重要方式。美国国家工程院院士马佐平曾今说过:中国半导体产业有着良好的基础,如果要赶超世界先进水平,必须要找准方向、加强合作。只有站在别人的基础上,吸取国外研发的经验教训,并充分合作才是我国集成电路业发展快速发展有限途径,我国资金有限,技术底子薄,要想快速发展只有借鉴别人的技术在此基础上朝正确方向发展,而不是从头再来另立门户。国际集成电路产业链分工与国家集成电路工业发展阶段有很大关系,随着产业的不断成熟和不断向我国转移使得我国可以走先生产,在有一定的技术和资金积累后再研发的途径。技术引进再创新的一条有效路径就是吸引海外人才到我国集成电路企业,美国等发达国家的经济不景气正好加速了人才向我国企业的流动,对我国是十分有利的。

【参考文献】

[1]卢锐,黄海燕,王军伟.基于技术学习的台湾地区产业链升级[J].河海大学学报(哲学社会科学版),2009,(12):57-60,95.

[2]莫大康.新形势下的世界半导体业及中国半导体业的前景(上)[J].电子产品世界,2008,(5):24,26,32.

[3]莫大康.新形势下的世界半导体业及中国半导体业的前景(下)[J].电子产品世界,2008,(6):32-33,36.

[4]叶甜春.中国集成电路装备制造业自主创新战略[J].中国集成电路,2006,(9):17-19.

[5]杨道虹.发达国家和地区集成电路产业技术创新模式及其启示[J].电子工业专用设备,2008,(8):53-56.

[6]李珂.2008年中国集成电路产业发展回顾与展望[J].电子工业专用设备,2009,(3):6-10.

[7]庞辉,裴砜.我国集成电路产业发展中存在的问题及对策[J].沈阳大学学报,2009,(8): 9-12.

[8]翁寿松.中国半导体产业面临的挑战[J].电子工业专用设备,2009,(10):13-15,45.

[9]尹小平崔岩.日美半导体产业竞争中的国家干预——以战略性贸易政策为视角的分析[J].现代日本经济,2010,(1):8-12.

第4篇:半导体及集成电路范文

一、何谓芯片?

要了解芯片,首先要明白“集成电路”和“半导体”两个概念。1958年9月12日,在美国德州仪器公司担任工程师的“杰克·基尔比”发明了集成电路的理论模型。1959年,曾师从晶体管发明人之一肖克莱率先创造了掩模版曝光刻蚀方法,发明了今天的集成电路技术。而半导体是一种导电性能介于导体和绝缘体之间的材料,常见的有硅、锗、砷化镓等,用于制造芯片。

我们所说的集成电路指的是采用特定的制造工艺,把一个电路中所需的晶体管、电阻、电容和电感等元件及元件间的连线,集成制作在一小块硅基半导体晶片上并封装在一个腔壳内,成为具有所需功能的微型器件

芯片是指内含集成电路的半导体基片(最常用的是硅片),是集成电路的物理载体。

二、中国芯片发展现状

目前中国芯片发展现状可用四个词概括:发展很快,落后两代,技术受限,产品低端。

中国芯片制造工艺落后国际同行两代。中国目前只能量产28纳米级芯片,而国外可完成7纳米级产品制造;产能严重不足,50%的芯片依赖进口;同时中国的产能和需求之间结构失配,实际能够生产的产品,与市场需求不匹配;长期的代工模式导致设计能力和制造能力失配、核心技术缺失;投资混乱、研发投入和人才不足等问题,导致中国集成电路产业目前总体还处于“核心技术受制于人、产品处于中低端”的状态,并且在很长的一段时间内无法根本改变。

为什么中国制造不出高端芯片?先要了解芯片制造过程。芯片制造主要分为三大环节:晶圆加工制造、芯片前期加工、芯片后期封装。其中技术难度最大最核心的是芯片前期加工这个环节,分为上百道制程,每道制程都有相应的装备。在这些装备里面,技术难度最大的就是光刻技术。中国半导体技术主要是在第一和第三环节。第二个环节中的技术装备大部分处于空白,所以高端的整个芯片都需要进口。

光刻机精度,芯片制造的卡脖子环节

制约集成电路技术发展的有四大要素:功耗、工艺、成本和设计复杂度,其中光刻机就是一个重中之重,核心技术中的核心。

一些装备由于其巨大的制造难度被冠以“工业皇冠上的明珠”的称号,最主流的说法是两大装备:航空发动机和光刻机,最先进的航空发动机目前的报价在千万美元量级,但是最先进的光刻机目前的报价已经过亿美金。

第5篇:半导体及集成电路范文

关键词 应用型人才 集成电路工艺基础 实验教学

中图分类号:G424 文献标识码:A DOI:10.16400/ki.kjdkz.2016.01.047

The Research of Experimental Teaching on "Integrated Circuit

Process Foundation" in Independent College

WEN Yi, HU Yunfeng

(University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan, Guangdong 528402)

Abstract Combining electronic science and technology applied talents training model in independence colleges, the experimental teaching was discussed on the "integrated circuit process foundation" course. The course was composed of simulation multimedia teaching system, basic semiconductor planar process experiment, process simulation software and school-enterprise cooperation. With the author's teaching practice, the enthusiasm of students was trying to effectively mobilized, and the development of students' learning ability and practical ability to train qualified electronic information applied talents was promoted.

Key words applied talents; integrated circuit process foundation; experimental teaching

0 引言

微电子技术和产业在国民经济中具有举足轻重的地位。高校的电子科学与技术专业以培养微电子学领域的高层次工程技术人才为目标,学生毕业后能从事电子器件、集成电路和集成系统的设计和制造,以及相关的新技术、新产品、新工艺的研制与开发等方面工作。

“集成电路工艺基础”是电子科学与技术专业的一门核心课程,讲授半导体器件和集成电路制造的单项工艺基本原理和整体工艺流程。本课程是电子科学与技术专业课程体系中的重要环节,也是学生知识结构的必要组成部分。通过本课程的学习,学生应该具备一定工艺分析、设计以及解决工艺问题的能力。

集成电路工艺实验作为“集成电路工艺基础”课程的课内实验,是电子科学与技术专业的专业课教学的重要组成部分,具有实践性很强、实践和理论结合紧密的特点。加强工艺实验教学对于培养高质量的集成电路专业人才十分必要。但是集成电路的制造设备价格昂贵,环境条件要求苛刻,限制了工艺实验教学在高校的开展。国内仅少数重点大学能够承受巨大的运营费用,拥有简化的集成电路工艺线或工艺试验线供科研、教学使用。而大多数学校只能依靠到研究所或Foundry厂进行参观式的实习来解决工艺实验问题,这对于学生实践能力的培养是远远不够的。

我院电子科学与技术专业成立于2003年,现每届招收本科生约120人,多年内为珠三角地区培养了大量专业人才。随着集成电路技术日新月异的发展,对从业人员的要求也不断升级,所以工艺实验教学也必须与时俱进。作为独立学院,如何结合自身实际地进行工艺实验室建设、采用多种方法手段开展工艺实验的教学,提高集成电路工艺课程的教学质量,是我们所面临的紧迫问题。本文以“集成电路工艺基础”实验教学实践为研究对象,针对独立学院学生理论基础较为薄弱,动手热情比较高的特点,就该课程教学内容和教学方式进行了探讨。

1 “集成电路工艺基础”的实验教学

“集成电路工艺基础”具有涉及知识面广,教学内容信息量大,综合性强,理论与实践结合紧密的特点,课程教学难度相对较大。同时独立学院相应配套的实验教学设备较为缺乏。为了提高学生对该课程的兴趣,取得更好的实验教学效果,让学生能将理论应用于实践,具有较强的集成电路生产实践和设计开发能力,笔者从如下几方面对实验教学进行了尝试。

1.1 工艺模拟多媒体教学系统

运用传统的教学方法,很难让学生理解抽象的器件结构和工艺流程并产生兴趣。我院购置了清华大学微电子所的集成电路工艺多媒体教学系统,帮助学生对集成电路工艺流程有一个全面生动的认识。该系统提供扩散、氧化和离子注入三项工艺设备的操作模拟,充分利用多媒体技术,将声光电等多种素材进行合理的处理,做到图文声像并茂,力争使抽象的知识形象化,获得直观、丰富、生动的教学效果。该系统涉及大量的集成电路制造实际场景与特殊细节,能较全面地展示Foundry厂的集成电路生产环境和工艺流程。内容丰富、身临其境的工艺模拟能大大提高学生的学习兴趣,帮助学生理解理论知识。

此外,在工艺课程的课堂教学过程中,尝试利用学生自学讨论作为辅助的形式。针对某些章节,老师课前提出问题,安排学生分组准备,自习上网收集最新的与集成电路工艺实验相关的资料,整理中、英文文献,制作内容生动的PPT在课堂上演示并展开讨论,最后归纳总结。这样既培养了学生利用网络进行自学和小组合作作学习的习惯,提高网上查找、整理资料的能力,也为老师的多媒体课件制作提供了素材,丰富了老师的教学内容。

1.2 基础的半导体平面工艺实验

学院一直非常重视电子科学与技术专业的建设问题,在实验室配置方面的资金投入力度比较大。在学院领导的大力支持下,近年来实验室购置了一批集成电路工艺实验设备和仪器,如光刻机、涂胶机、氧化反应室、磁控溅射设备、半导体特性测试系统和扫描电子显微镜等,为集成电路工艺实验教学的开展打下了良好的物质基础 。

在集成电路专业教学中,工艺实验是非常重要的环节;让学生进行实际操作,对于培养应用型人才也是非常必要的。通过调研考察兄弟院校的工艺实验开展情况,结合我院的实际情况和条件,确定了我院电子科学与技术专业的基础半导体平面工艺实验项目,如氧化(硅片热氧化实验)、扩散(硅片掺杂实验)、光刻(硅片上选择刻蚀窗口的实验)、淀积(PVD、CVD薄膜制备的实验)等。

这些设备和仪器,除了用于工艺课程实验教学外,平时还开放给本科生毕业设计、学生创新项目及研究生科研等。通过实际动手操作,使学生能将所学理论知识运用到实际中,既培养了学生的实际操作能力,又引导学生在实践中掌握分析问题、解决问题的科学方法,加深了对集成电路工艺技术和原理的理解。

1.3 工艺仿真软件

现代集成电路的发展离不开计算机技术的支持,所以要重视计算机仿真在课程中的作用。TCAD(Technology Computer Aided Design)产品是研究、设计与开发半导体器件和工艺所必需的先进工具。它可以准确地模拟研究所和Foundry厂里的集成电路工艺流程,对由该工艺流程制作出的半导体器件的性能进行仿真,也能设计与仿真太阳能电池、纳米器件等新型器件。

利用美国SILVACO公司的TCAD产品,笔者为工艺课程开设了课内仿真实验,实验项目包括薄膜电阻、二极管、NMOS等基本器件的设计和工艺流程仿真。通过ATHENA和ATLAS软件教学,指导学生仿真设计基本的半导体器件,模拟工艺流程,从而巩固所学理论知识,使学生将工艺和以前学过的半导体器件的内容融合起来。学生在计算机上通过软件进行仿真实验,既可以深入研究仿真的工艺流程细节,又可以弥补由于设备条件的制约带来的某些实验项目暂时无法开出的不足。

1.4 校企合作

培养应用型人才还必须结合校企合作。珠三角地区是微电子产业的聚集地,企业众多,行业发展前景好。加强校企联系,可以做到合作共赢,共同发展。通过组织学生到半导体生产测试企业参观实习,如深圳方正微电子、珠海南科、中山木林森LED等,让学生亲身体验半导体企业的生产过程,感受集成电路工厂的生产环境,了解本行业国内外发展的概况,从而弥补课堂教学的不足,激发学生学习热情,引导学生毕业后从事相关工作。目前,学院与这些半导体生产测试企业建立了良好的合作关系,每届毕业生都有进入上述企业工作的。他们在工作岗位上表现良好,获得用人单位的好评,既为企业输送了合格人才,也为往后学生的职业规划树立了榜样,拓展了学生的就业渠道。

2 结束语

经过笔者几年来的实践,在“集成电路工艺基础”课程的实验教学中,对教学内容和教学方式进行了改进,形式多样,互为补充,内容全面、新颖,注重学生实践技能的培养,对提高学生整体素质起到了积极作用,实现了教学质量的提高。当然,“集成电路工艺基础”课程的实验教学还有很大的改进空间,我们还需要在实践中不断地改革与探索,将其逐步趋于完善,使其在培养独立学院应用型人才的过程中发挥巨大的作用。

参考文献

[1] 王红航,张华斌,罗仁泽.“微电子工艺基础”教学的应用能力培养[J].电气电子教学学报,2009.31(2).

[2] 王蔚,田丽,付强.微电子工艺课/实验/生产实习的整合研究[J].中国现代教育装备,2012.23.

[3] 梁齐,杨明武,刘声雷.微电子工艺实验教学模式探索[J].实验室科学,2008.1.

第6篇:半导体及集成电路范文

关键词:半导体可靠性设计

Abstract: the reliability of the semiconductor integrated circuit design is in the whole process of product development, prevention, strengthen the system of management thoughts as the instruction, from line design, layout design, process design, package structure design, evaluation test design, material selection, software design, and adopts various effective measures, and strive to eliminate or control semiconductor integrated circuit under specified conditions and within the time required, all kinds of possible failure mode, thus in the performance, cost, time (research, production cycle) factors on the basis of comprehensive balance, and realize the semiconductor integrated circuit products the reliability indexes provisions.

Keywords: semiconductor design reliability

中图分类号: O471 文献标识码:A文章编号:

1. 可靠性设计应遵循的基本原则

(1)必须将产品的可靠性要求转化成明确的、定量化的可靠性指标。

(2)必须将可靠性设计贯穿于产品设计的各个方面和全过程。

(3)从国情出发尽可能地采用当今国内外成熟的新技术、新结构、新工艺。

(4)设计所选用的线路、版图、封装结构,应在满足预定可靠性指标的情况下尽量简化,避免复杂结构带来的可靠性问题。

(5)可靠性设计实施过程必须与可靠性管理紧密结合。

2. 可靠性设计的基本依据

(1)合同书、研制任务书或技术协议书。

(2)产品考核所遵从的技术标准。

(3)产品在全寿命周期内将遇到的应力条件(环境应力和工作应力)。

(4)产品的失效模式分布,其中主要的和关键的失效模式及其机理分析。

(5)定量化的可靠性设计指标。

(6)生产(研制)线的生产条件、工艺能力、质量保证能力。

3. 设计前的准备工作

(1)将用户对产品的可靠性要求,在综合平衡可靠性、性能、费用和研制(生产)周期等因素的基础上,转化为明确的、定量化的可靠性设计指标。

(2)对国内外相似的产品进行调研,了解其生产研制水平、可靠性水平(包括产品的主要失效模式、失效机理、已采取的技术措施、已达到的质量等级和失效率等)以及该产品的技术发展方向。

(3) 对现有生产(研制)线的生产水平、工艺能力、质量保证能力进行调研,可通过通用和特定的评价电路,所遵从的认证标准或统计工艺控制(SPC)技术,获得在线的定量化数据。

4. 可靠性设计程序

(1)分析、确定可靠性设计指标,并对该指标的必要性和科学性等进行论证。

(2)制定可靠性设计方案。设计方案应包括对国内外同类产品(相似产品)的可靠性分析、可靠性目标与要求、基础材料选择、关键部件与关键技术分析、应控制的主要失效模式以及应采取的可靠性设计措施、可靠性设计结果的预计和可靠性评价试验设计等。

(3)可靠性设计方案论证(可与产品总体方案论证同时进行)。

(4)设计方案的实施与评估,主要包括线路、版图、工艺、封装结构、评价电路等的可靠性设计以及对设计结果的评估。

(5)样品试制及可靠性评价试验。

(6)样品制造阶段的可靠性设计评审。

(7)通过试验与失效分析来改进设计,并进行“设计-试验-分析-改进”循环,实现产品的可靠性增长,直到达到预期的可靠性指标。

(8)最终可靠性设计评审。

(9)设计定型。设计定型时,不仅产品性能应满足合同要求,可靠性指标是否满足合同要求也应作为设计定型的必要条件。

5. 集成电路可靠性设计的基本内容

(1)线路可靠性设计。

线路可靠性设计是在完成功能设计的同时,着重考虑所设计的集成电路对环境的适应性和功能的稳定性。半导体集成电路的线路可靠性设计是根据电路可能存在的主要失效模式,尽可能在线路设计阶段对原功能设计的集成电路网络进行修改、补充、完善,以提高其可靠性。如半导体芯片本身对温度有一定的敏感性,而晶体管在线路达到不同位置所受的应力也各不相同,对应力的敏感程度也有所不同。因此,在进行可靠性设计时,必须对线路中的元器件进行应力强度分析和灵敏度分析(一般可通过SPICE和有关模拟软件来完成),有针对性地调整其中心值,并对其性能参数值的容差范围进行优化设计,以保证在规定的工作环境条件下,半导体集成电路整体的输出功能参数稳定在规定的数值范围,处于正常的工作状态。

线路可靠性设计的一般原则是:1)线路设计应在满足性能要求的前提下尽量简化;2)尽量运用标准元器件,选用元器件的种类尽可能减少,使用的元器件应留有一定的余量,避免满负荷工作;3)在同样的参数指标下,尽量降低电流密度和功耗,减少电热效应的影响;4)对于可能出现的瞬态过电应力,应采取必要的保护措施。如在有关端口采用箝位二极管进行瞬态电压保护,采用串联限流电阻限制瞬态脉冲过电流值。

(2)版图可靠性设计。

版图可靠性设计是按照设计好的版图结构由平面图转化成全部芯片工艺完成后的三维图像,根据工艺流程按照不同结构的晶体管(双极型或MOS型等)可能出现的主要失效模式来审查版图结构的合理性。如电迁移失效与各部位的电流密度有关,一般规定有极限值,应根据版图考察金属连线的总长度,要经过多少爬坡,预计工艺的误差范围,计算出金属涂层最薄位置的电流密度值以及出现电迁移的概率。此外,根据工作频率在超高频情况下平行线之间的影响以及对性能参数的保证程度,考虑有无出现纵向或横向寄生晶体管构成潜在通路的可能性。对于功率集成电路中发热量较大的晶体管和单元,应尽量分散安排,并尽可能远离对温度敏感的电路单元。

(3)工艺可靠性设计。

为了使版图能准确无误地转移到半导体芯片上并实现其规定的功能,工艺设计非常关键。一般可通过工艺模拟软件(如SUPREM等)来预测出工艺流程完成后实现功能的情况,在工艺生产过程中的可靠性设计主要应考虑:1)原工艺设计对工艺误差、工艺控制能力是否给予足够的考虑(裕度设计),有无监测、监控措施(利用PCM测试图形);2)各类原材料纯度的保证程度;3)工艺环境洁净度的保证程度;4)特定的保证工艺,如钝化工艺、钝化层的保证,从材料、工艺到介质层质量(结构致密度、表面介面性质、与衬底的介面应力等)的保证。

(4)封装结构可靠性设计。

封装质量直接影响到半导体集成电路的可靠性。封装结构可靠性设计应着重考虑:1)键合的可靠性,包括键合连接线、键合焊点的牢固程度,特别是经过高温老化后性能变脆对键合拉力的影响;2)芯片在管壳底座上的粘合强度,特别是工作温度升高后,对芯片的剪切力有无影响。3)管壳密封后气密性的保证;4)封装气体质量与管壳内水汽含量,有无有害气体存在腔内;5)功率半导体集成电路管壳的散热情况;6)管壳外管脚的锈蚀及易焊性问题。

(5)可靠性评价电路设计。

为了验证可靠性设计的效果或能尽快提取对工艺生产线、工艺能力有效的工艺参数,必须通过相应的微电子测试结构和测试技术来采集。所以,评价电路的设计也应是半导体集成电路可靠性设计的主要内容。一般有以下三种评价电路:1) 工艺评价用电路设计。主要针对工艺过程中误差范围的测定,一般采用方块电阻、接触电阻构成的微电子测试结构来测试线宽、膜厚、工艺误差等。2) 可靠性参数提取用评估电路设计。针对双极性和CMOS电路的主要失效模式与机理,借助一些单管、电阻、电容,尽可能全面地研究出一些能评价其主要失效机理的评估电路。3) 宏单元评估电路设计。针对双极型和CMOS型电路主要失效模式与机理的特点,设计一些能代表复杂电路中基本宏单元和关键单元电路的微电子测试结构,以便通过工艺流程研究其失效的规律性。

6. 可靠性设计技术

可靠性设计技术分类方法很多,这里以半导体集成电路所受应力不同造成的失效模式与机理为线索来分类,将半导体集成电路可靠性设计技术分为:1)耐电应力设计技术:包括抗电迁移设计、抗闩锁效应设计、防静电放电设计和防热载流子效应设计;2).耐环境应力设计技术:包括耐热应力、耐机械应力、耐化学应力和生物应力、耐辐射应力设计;3)稳定性设计技术:包括线路、版图和工艺方面的稳定性设计。

第7篇:半导体及集成电路范文

【关键词】标准CMOS;工艺;肖特基二极管;集成;设计;实现

随着射频无线通信事业的发展和移动通讯技术的进步,射频微波器件的性能与速度成为人们关注的重点,市场对其的需求也日益增多。目前,CMOS工艺是数字集成电路设计的主要工艺选择,对于模拟与射频集成电路来说,选择的途径有多种,例如Si双极工艺、GaAs工艺、CMOS工艺等,在设计中,性能、价格是主要的参考依据。除此以外,工艺的成熟度及集成度也是重要的考虑范畴。

1.概述

对于射频集成电路而言,产品的设计周期与上市时间的缩短都是依赖仿真精确预测电路性能的设计环境的功能。为了使设计环境体现出高效率,精确的器件模型与互联模型是必须要具备的,在设计工具中非常重要,对于射频与模拟技术,器件模型决定了仿真的精度。采用CMOS工艺,在射频集成电路上的应用时间还补偿,也使得在一些模型方面还不完善。对于射频CMOS集成电路而言,对其影响最大的是寄生参数,在低频环境下,由于对这些寄生参数的忽视,往往使电路的高频性能受到影响。肖特基二极管具有自身独特的优势,例如快速开关速度和低正向压降。由于这些优异的高频性能,他们有被广泛应用在开机检测离子和微波网络电路中。肖特基二极管通常制作的款式包括n型或p型半导体金属材料,如砷GaAs和SiC。正向偏置的肖特基二极管的性能是由多数载流子器件,少数载流子主要是确定这些p型或n型二极管的属性。为了改善高频性能和集成电路的电源电压减小到现代集成电路,集成的肖特基二极管是很重要的。但可以用于集成肖特基二极管的过程常常是没有现成的,不能和CMOS电路单片集成。以往根据其设计,在标准CMOS工艺基础上制造出肖特基二极管。在本文中,主要针对集成肖特基二极管的设计及实现进行描述,并且基于成本考虑,该标准CMOS工艺基础上肖特基二极管生产工艺不需要任何修改。所测量的结果也符合要求,在SPICE仿真模型中得到验证。

2.CMOS工艺技术

近几十年,因为CMOS技术的发展,也使得在制造射频集成电路时,采用CMOS技术得以实现。但是,因为CMOS制造工艺通常是以数字电路作为导向。面向数字电路设计的CMOS首先由芯片代工厂研发出来,注重功率耗散与时速。在数字CMOS工艺快速发展成熟以后,在其基础上,通过修改制程与添加掩膜层实现信号的混合及模拟射频CMOS工艺。传统CMOS工艺包含BJTs、MOSFETs以及各种电阻,如扩散电阻、多晶硅电阻及N阱电阻。但是,对于CMOS工艺而言,还应该涵盖各种高频无源器件,例如变容二极管、MIM电容、高Q值电杆及变压器等。同样,作为肖特基二极管来说,也是CMOS工艺技术的重要环节。例如,需要额外高能离子注入形成深注入N阱降低程度耦合与噪声系数。需要注意的是,尽管射频CMOS工艺是基于数字CMOS工艺而来,但其不仅仅是添加几层掩膜来实现高频无源器件,对于器件的性能而言,射频工艺与数字工艺的优化目标是不同的,在进行改进的时候,也有可能与传统的CMOS工艺发生冲突。

3.肖特基二极管的工作原理

之所以金属半导体能够形成对垒,主要原因是由于不同的功函数引起的。将金属的功函数定义为技术费米能级与真空能级间的能量差,表示一个起始能量与费米能级相等的电子由金属内部移向真空中所需要的最小能量。该能量需要克服金属晶格与被拉电子与其它电子间的作用,还有一个作用是用来克服金属表面存在的偶极矩。因此,功函数的大小在一定程度上可以表述电子在金属中被束缚的强度。和金属类似,半导体的功函数也被定义为费米能级与真空能级间的能量差,因为半导体的费米能级通常处于禁带中,禁带中一般没有电子,因此该功函数的定义就可以看做是将电子带导带或者价带移向真空能级需要的平均能量。对于半导体来说,还有一个很重要的参数,就是电子亲和能,表示板代替导带底的电子向外逸出所需要的最小能量。

对于肖特基势垒的形成而言,假设现有一块n型半导体和一块金属,两者具有相同的真空电子能级,假设半导体的功函数比金属的功函数小,同时,假设半导体表面无表面态,那么其能带到表面都是平直的。此时,两者就形成一个统一的电子系统,因为金属的费米能级比半导体的费米能级低,因此半导体中的电子就会流向金属,这样金属表面就会带负点,半导体带正电。所带电荷在数值上是等同的,因此对于整个系统来说,还是保持电中性,从而提高了半导体的电势,降低了金属的电势。如果电势发生变化,所有的电子能级及表面电子能级都会随之变化,使之趋于平衡状态,半导体和金属的费米能级在同一水平上时,电子的净流动不会出现。原来的费米能级的差异被二者之间的电势差进行补偿,半导体的费米能级下降。

4.肖特基二极管的设计和布局

这种设计是基于标准CMOS工艺下,通过MPW在0.35μm工艺中得到实现的。当金属层直接沉积到低掺杂n型或p型半导体区域,形成一个肖特基二极管。当这两种材料彼此接触,由于电势差的存在就会产生一个势垒高度,电子必须克服的电流才能流入。低掺杂的半导体上的金属的阳极和半导体动脉插管,通过欧姆接触在阴极上。在我们的设计中只使用n型肖特基二极管。跨节的Al-Si肖特基二极管如图1所示。

在该设计中,没有出现P+有源区在n阱接触下接触材料是铝面积(等于到dxd)。因此,金属层将直接连接到低掺杂n阱区。其结果是形成了的Al-Si的肖特基二极管接触。对于铸造工艺中需要确定的参数,例如密度、功函数等,只能通过对该区域的肖特基二极管进行控制得以实现,进行二极管的I-V曲线或者其它参数的修改。

根据标准CMOS工艺基础上的肖特基二极管的布局及设计。首先,为了降低肖特基二极管的串联电阻,肖特基和欧姆接触电极之间的距离按照设计规则被设置为最小允许的距离。其次,采用肖特基二极管布局的方法。交织式的布局为每一个串联电阻提供了并联连接的途径,这是肖特基接触的优势所在。

5.所制作的二极管的测定结果

根据MPW,对肖特基二极管的不同部位通过三种交织方法进行标准CMOS工艺下的0.35μm制造,并对测得的结果进行了讨论。

5.1 I-V的功能

基于对串联电阻的考虑,肖特基二极管的IV功能可表示为:

通过拟合公式(3)和所测得的结果,我们可以得到实现SBD的方法,如表1的参数所示。

从表1中可以观察到,随着相互交织的树木的增多,串联电阻的阻值明显的降低。

为实现SBD的测量,势垒高度B的测量的统计结果如图3所示。在所测的90个样本中,SBD1、SBD2、SBD3各30个样本,从而求得实现SBD的势垒高度为0.44eV左右。

击穿电压是4.5V左右,在今后的工作中,在正常的SBD设计与生产中,击穿电压可以延长一些方法的使用,例如在自对准保护环境与SBD的制造过程中,

5.2 C-V的功能

其中,Nd为掺杂浓度的n-阱,Φn是费米能级之间的电位差和导带边缘相等于(EC-Ef)/q。

图4显示了测得的反向偏压为SBD的C-V曲线。

5.3 S参数测量和SBD高频建模

为了测量高频率的S参数设计的设备,每个SBD被放置了有三个探头焊盘。中间信号垫的大小是85μm×85μm和顶部/底部的的地面尺寸是85μm×135μm的。使用GSG探头和网络分析仪,我们可以得到S参数设计的SBD。但是,S参数的直接测量结果包括垫片、金属线和覆盖的寄生电容。对于设计的设备而言,尽管寄生参数是非常小的,但这些寄生参数是绝对不能被忽视的,在计算的时候应该将GSG探头直接测量的S参数减去。在本文所研究的设计中,我们制作两个虚拟的GSG信号垫作为测试装置,假如两个信号垫一个是伪GSG信号垫,一个是SBD信号垫,且两个信号垫同等大小。除此以外的虚拟信号垫都是开放的,这也就是我们所说的开放式信号垫。S参数由哑垫进行测量。接着就可以得到信号垫和金属线的寄生电阻和电容。将这些寄生参数减去,就能够得到S参数的无寄生电阻和电容。将这种方法称之为去嵌入技术。

使用测得的S参数可以抽象为高频模拟SPICE模型。图5显示SBD仿真离子模型的实现。L1和L2显示出的输入和输出串联电感。Ci和Co表示阳极输入输出电容和阴极节点。C1具有相互交织的肖特基二极管的两个端口之间的寄生电容。R1和R2为连接S参数下NWLL到地面下电阻的n-阱的模型。pn二极管反映的寄生虫n阱p-次二极管。在我们的设计中,可以用得到的pn二极管的参数通过标准CMOS工艺0.35μm的SPICE模型。

如图6所示,为S参数SBD1测量和模拟。表2给出了仿真离子模型的参数,频率SBD1从50MHz到40GHz,该模型可以匹配到30GHz的测量结果。

6.结束语

随着无线通讯具有的灵活性和高机动性的特点,其应用越来越广泛,也顺应了市场的需求。由于CMOS工艺在诸多的工艺中最为成熟、成本最低,却功耗最小,因此得到广泛的应用,随着技术的不断成熟,CMOS工艺基础上的肖特基二极管设计及实现也成为现实。也是未来射频集成电路发展的必然趋势。通过MPW在标准CMOS工艺制造的肖特基势垒二极管中的设计应用,可知铝硅接触的势垒高度约0.44eV。通过I-V,C-V和S参数测量可以实现SBD。通过本文所示,SBD设计的优势较为明显,最为显著的是设计成本较低,能够被广泛的应用与商业标准的CMOS工艺中。在以后的工作中,更多的重点将集中在标准CMOS工艺设计的SBD的反向击穿电压和频率范围扩展。

参考文献

[1]张兴杰,张世林,韩磊,郭维廉,侯贺刚,毛陆虹,谢生.标准CMOS工艺新型多晶硅PIN-LED的设计与实现[J].光电子.激光,2013(15).

[2]孙旭光,张春,李永明,王志华,陈弘毅.超高频无源RFID标签的一些关键电路的设计[J].中国集成电路,2007(5).

[3]陈鹏飞,陈许建,喻祖华,戴葵,邹雪城.基于标准CMOS工艺的UHF无源通讯电源电路设计与实现[J].固体电子学研究与进展,2012(25).

[4]孙旭光,张春,李永明,王志华,陈弘毅.超高频无源RFID标签的一些关键电路的设计[J].中国集成电路,2007.

[5]邹勉.安森美半导体集成肖特基二极管的30V MOS-FET问世[J].半导体信息,2010(15).

[6]姜兰举.肖特基二极管原理及应用[J].电子报,2008(6).

[7]朱伟钢,张德忠,付红兵.一维轴向有机无机异质结肖特基二极管的制备及性能研究[J].化学学报,2012(28).

[8]陈刚,陈雪兰,柏松,李哲洋,韩平.4H-SiC外延中的缺陷及其对肖特基二极管的影响[J].半导体技术,2008(31).

[9]肖新东,张世林,毛陆虹,谢生,陈燕.标准CMOS工艺下单片集成MSM光电探测器的2Gb/s光接收机[J].科学通报,2011(15).

第8篇:半导体及集成电路范文

为满足集成电路方面教学和科研的需要,同济大学电子科学与技术系以985三期实验室建设、教育部修购计划两项经费所购置的设备为主体,充分整合利用本系目前已有的设备,完成了一个覆盖完整的集成电路设计平台的构建。依托同济大学第8期实验教改项目的支持,电子科学与技术系在平台的应用方面进行了有益的探索:针对本科生实验教学完成了集成电路设计系列实验课程开设;在集成电路相关科研项目中进行了实际应用,为科研工作提供了良好的支撑。

【关键词】

集成电路;设计平台;实验教学;科研

进入21世纪之后,集成电路在我国相关产业及教育领域的重要性日益凸显。2000年6月,国务院了纲领性文件《鼓励软件产业和集成电路产业发展的若干政策》(国发2000〔18号〕)[1],明确了集成电路作为国家战略性新兴产业的地位。在其后的国家中长期科技发展规划等文件中,均将集成电路列为重要的发展方向,自此我国集成电路产业进入了蓬勃发展的时期。产业的快速发展必然需要科技和教育的配合。基于此原因,国务院科教领导小组批准实施国家科技重大专项—集成电路与软件重大专项,其后教育部、科技部决定在国内有相对优势的高等院校建立国家集成电路人才培养基地,分别于2003年、2004年及2009年分3批批准和支持20所高校进行人才培养基地的建设工作。笔者所在的同济大学为第2批建设的6所高校之一。

同济大学电子科学与技术系成立于2002年,历史较短,在集成电路方面的基础较为薄弱。但自成立之初便将集成电路设计列为最重要的教学与科研方向之一,参考国际知名高校以及国内兄弟院校的先进经验[2-4],在课程设置等人才培养环节进行了积极的探索[5]。但是,集成电路设计强调工程设计实践,如果缺乏相应的设计平台,仅以理论知识为主,会导致培养出的学生与产业需求契合度不高。这也是诸多高校在集成电路设计的实验设置及实践环节进行教学改革和积极探索的原因[6-7]。我系也意识到亟须加强实践环节的相关建设。基于以上原因,我们充分利用985三期实验室建设、教育部修购计划两项经费的支持,在集成电路设计平台的构建方面进行了积极的尝试。

1建设方案与建设过程

1.1平台建设的基础依托985二期实验室建设、教育部修购计划两项经费为我系的教学改革提供了非常有力的支持,根据各个学科方向的统筹规划,分配约150万元用于集成电路及与系统设计相关的设备购置。购置的设备见表1、表2。除以上两部分设备之外,本系已经部分购置了与集成电路设计相关的设备,如Dell服务器、SUN工作站、各类测试与信号发生设备等。因此,我系已经初步具备了建设一个覆盖半导体器件制备与分析、集成电路设计与测试、系统级设计验证完整流程的专业实验与设计平台的基础条件。

1.2总体构想与平台规划基于上述基础硬件设备,我系在有限的场地资源中安排了专门的场地作为半导体器件与集成电路设计专业实验室,以支持集成电路设计平台的建设。将拟建设的半导体与集成电路设计专业实验室划分为4个功能区:服务器与中央控制区、集成电路设计区、集成电路分析与测试区、系统级设计与验证区。总体的规划如图1所示,功能与设备支撑概述如下。(1)服务器与中央控制区。主要空间用于放置3个机柜、承载两个机架式服务器(HP、Dell)、存储阵列(SAS15000RPM接口、初始配置7.2TB)、一个卧式服务器(超微)以及UPS电源、万兆交换机等供电和网络配件。需注意该部分噪声较大,故应与实验室其他功能区隔离。提供VPN、远程配置以及各类必要的服务,配置完整的EDA工具系统,覆盖集成电路设计全流程。(2)集成电路设计区。20个左右的工位,主要为HP工作站。具备两类工作方式:作为终端登录服务器系统使用;在服务器系统不能提供支持时独立使用。除工作站之外,配备2~3个文件柜、工具柜。(3)集成电路分析与测试区。主要功能为集成电路(晶圆、裸片、封装后芯片)的分析、测试。分析与测试系统以两套手动探针测试台(包括基座、卡盘、ADV显微镜)、超长焦金相显微镜(超长工作距离,2000倍放大)、4套微米级精确位移系统(包括探针、针臂、针座、线缆与接口)为主,并配备2台台式计算机以及信号发生器、稳压电源、逻辑分析仪1台、示波器1台,用作信号发生与记录、信号与图像采集功能。配备两个实验工具柜。(4)系统级设计与验证区。6个工位,配备2~3台计算机。考虑到面积有限,而该区功能较多,以多功能复用的方式设置工位的功能。该区的功能包括:①板级电路设计与测试。主要支撑设备为必要的计算机系统(软、硬件)。多台逻辑分析仪、示波器、信号发生器、万用表、稳压电源、必要的电子元器件及焊接设备等。②基于FPGA的系统设计。主要支撑设备为计算机系统(软、硬件)、4套Virtex-5FPGA系统。③嵌入式系统设计。主要支撑设备为计算机系统、3套VeriSOC-ARM9开发平台、多套PSoC开发套件、多套ARM开发套件、微控制器开发套件等。④集成电路系统级验证。与板级电路与测试共用各类设备。

1.3软硬件系统与设计流程构建基于新购买的存储阵列(NetApp)、服务器(DL380G7)、交换机(CISCO),并整合本系统原有的两台服务器(一台Dell机架式、一台超微立式),构成一个EDA开发服务系统。系统构建方面,我们进行了基于传统的EDA开发环境架构,以及基于虚拟化系统进行构建的两种尝试。存储结构上基于存储阵列,提供足够安全的冗余备份与保护。系统具备负载均衡功能。最终构建的系统可直接支持同一实验室内20台以上HP工作站的同时接入,并提供远程登录支持;以及通过同济大学校园网,提供外网的VPN接入支持。在硬件系统的基础上,我们安装配置了完善的EDA工具链,以提供覆盖全流程的集成电路设计支持。

2教学与科研应用

前述所构建的集成电路设计平台仅是基础的软硬件系统,如果要在实际的教学和科研工作中进行使用,尚需进行相关的课程大纲规划、实验方案设计以及实际的芯片设计检验。通过同济大学第8期实验教学改革项目的支持,我们在这些方面开展了一定的工作,主要包括以下两个方面。

2.1教学应用完成了实验方案内容建设,构建形成了一套覆盖集成电路设计全流程的实验方案,并兼顾半导体器件、集成电路测试;设计的系列实验应用于新开设的“集成电路设计实验”课程中,以丰富和扩展该门课程的实验内容,提高学生的学习积极性。该课程每周4学时,已经完成2013、2014两个学年的实验教学工作。具体的实验内容包括反相器实验(电路原理图输入、电路仿真、版图设计、版图设计规则检查及一致性检查、后仿真)、一位全加器系列试验、基本模拟电路单元设计实验、综合定制设计实验、硬件描述语言设计与验证实验(选做)、自动综合与布局布线设计实验(选做)。构建的软硬件平台,除用于集成电路设计实验课之外,亦用于电子系“半导体器件物理”“半导体工艺原理”等多门课程的实验环节,以及本科生毕业设计中。与现有的本科生各类创新活动相结合,为该类活动的人员选拔与培养、培训起到了一定的辅助作用。

2.2科研应用集成电路设计平台除用于相关的实验教学任务之外,亦可为相关的科研工作提供良好的支撑。在该平台所定义的开发环境及设计流程上,我们完成了两款65纳米工艺超大规模集成电路芯片的设计工作,其中一款已经返回,并进行了较为完整的测试,功能及性能均符合预期,芯片如图2、图3所示。这些设计很好地确证了该平台的完整性和可靠性。

【参考文献】

[1]国务院.国务院关于印发鼓励软件产业和集成电路产业发展若干政策的通知[EB/OL].2006-6.

[2]叶红.美国高校电子工程类专业本科培养方案浅析[J].高等理科教育,2007(6):64-67.

[3]于歆杰,王树民,陆文娟.麻省理工学院教育教学考察报告(二)—培养方案与课程设置篇[J].电气电子教学学报.2004(5):1-5.

[4]Bulletinforundergraduateeducation[EB/OL].

[5]罗胜钦,王遵彤,万国春,等.电子科学与技术专业培养方案初探[J].电气电子教学学报.2009(31):89-91.

[6]张立军,羊箭锋,孙燃.CMOS集成电路设计教学及实验改革[J].电气电子教学学报.2012,34(1):105-107.

第9篇:半导体及集成电路范文

【关键词】集成电路 理论教学 改革探索

【基金项目】湖南省自然科学基金项目(14JJ6040);湖南工程学院博士启动基金。

【中图分类号】G642.3 【文献标识码】A 【文章编号】2095-3089(2015)08-0255-01

随着科学技术的不断进步,电子产品向着智能化、小型化和低功耗发展。集成电路技术的不断进步,推动着计算机等电子产品的不断更新换代,同时也推动着整个信息产业的发展[1]。因此,对集成电路相关人才的需求也日益增加。目前国内不仅仅985、211等重点院校开设了集成电路相关课程,一些普通本科院校也开设了相关课程。课程的教学内容由单纯的器件物理转变为包含模拟集成电路、数字集成电路、集成电路工艺、集成电路封装与测试等[2]。随着本科毕业生就业压力的不断增加,培养应用型、创新型以及可发展型的本科人才显得日益重要。然而,从目前我国各普通院校对集成电路的课程设置来看,存在着重传统轻前沿、不因校施教、不因材施教等问题,进而导致学生对集成电路敬而远之,退避三舍,学习积极性不高,继而导致学生的可发展性不好,不能适应企业的要求。

本文结合湖南工程学院电气信息学院电子科学与技术专业的实际,详细阐述了本校当前“集成电路原理与应用”课程理论教学中存在的问题,介绍了该课程的教学改革措施,旨在提高本校及各兄弟院校电子科学与技术专业学生的专业兴趣,培养学生的创新意识。

1.“集成电路原理与应用”课程理论教学存在的主要问题

1.1理论性强,课时较少

对于集成电路来说,在讲解之前,学生应该已经学习了以下课程,如:“固体物理”、“半导体物理”、“晶体管原理”等。但是,由于这些课程的理论性较强,公式较多,要求学生的数学功底要好。这对于数学不是很好的学生来说,就直接导致了其学习兴趣降低。由于目前嵌入式就业前景比较好,在我们学校,电子科学与技术专业的学生更喜欢嵌入式方面的相关课程。而集成电路相关企业更喜欢研究生或者实验条件更好的985、211高校的毕业生,使得我校集成电路方向的本科毕业生找到相关的较好工作比较困难。因此,目前我校电子科学与技术专业的发展方向定位为嵌入式,这就导致一些跟集成电路相关的课程,如“微电子工艺”、“晶体管原理”、“半导体物理”等课程都取消掉了,而仅仅保留了“模拟电子技术”和“数字电子技术”这两门基础课程。这对于集成电路课程的讲授更增加了难度。“集成电路原理与应用”课程只有56课时,理论课46课时,实验课10课时。只讲授教材上的内容,没有基础知识的积累,就像空中架房,没有根基。在教材的基础上额外再讲授基础知识的话,课时又远远不够。这就导致老师讲不透,学生听不懂,效果很不好。

1.2重传统知识,轻科技前沿

利用经典案例来进行课程教学是夯实集成电路基础的有效手段。但是对于集成电路来说,由于其更新换代的速度非常快,故在进行教学时,除了采用经典案例来夯实基础外,还需紧扣产业的发展前沿。只有这样才能保证人才培养不过时,学校培养的学生与社会需求不脱节。但目前在授课内容上还只是注重传统知识的讲授,对于集成电路的发展动态和科技前沿则很少涉及。

1.3不因校施教,因材施教

教材作为教师教和学生学的主要凭借,是教师搞好教书育人的具体依据,是学生获得知识的重要工具。然而,我校目前“集成电路原理与应用”课程采用的教材还没有选定。如:2012年采用叶以正、来逢昌编写,清华大学出版社出版的《集成电路设计》;2013年采用毕查德・拉扎维编写,西安交通大学出版社出版的《模拟CMOS集成电路设计》;2014年采用余宁梅、杨媛、潘银松编著,科学出版社出版的《半导体集成电路》。教材一直不固定的原因是还没有找到适合我校电子科学与技术专业学生实际情况的教材,这就导致教师不能因校施教、因材施教。

2.“集成电路原理与应用”课程理论教学改革

2.1选优选新课程内容,夯实基础

由于我校电子科学与技术专业的学生,没有开设“半导体物理”、“晶体管原理”、“微电子工艺”等相关基础课程,因此理想的、适用于我校学生实际的教材应该包括半导体器件原理、模拟集成电路设计、双极型数字集成电路设计、CMOS数字集成电路设计、集成电路的设计方法、集成电路的制作工艺、集成电路的版图设计等内容,如表1所示。因此,在教学实践中,本着“基础、够用”的原则,采取选优选新的思路,尽量选择适合我校专业实际的教材。目前,使用笔者编写的适合于我校学生实际的理论教学讲义,理顺了理论教学,实现了因校施教,因材施教。

表1 “集成电路原理与应用”课程教学内容

2.2提取科技前沿作为教学内容,激发专业兴趣

为了提高学生的专业兴趣,让他们了解“集成电路原理与应用”课程的价值所在,在授课的过程中穿插介绍集成电路设计的前沿动态。如:从IEEE国际固体电路会议的论文集中提取模块、电路、仿真、工艺等最新的内容,并将这些内容按照门类进行分类和总结,穿插至传统的理论知识讲授中,让学生及时了解当前集成电路设计的核心问题。这样不但可以激发学生的好奇心和学习兴趣,还可以提高学生的创新能力。

2.3开展双语教学互动,提高综合能力

目前,我国的集成电路产业相对于国外来说,还存在着相当的差距。要开展双语教学的原因有三:一是集成电路课程的一些基本专业术语都是由英文翻译过来的;二是集成电路的研究前沿都是以英文发表在期刊上的;三是世界上主流的EDA软件供应商都集中在欧美国家,软件的操作语言与使用说明书都是英文的。因此,集成电路课程对学生的英语能力要求很高,在课堂上适当开展双语教学互动,无论是对于学生继续深造,还是就业都是非常必要的。

3.结语

集成电路自二十世纪五十年代被提出以来,经历了小规模、中规模、大规模、超大规模、甚大规模,目前已经进入到了片上系统阶段。虽然集成电路的发展日新月异,但目前集成电路相关人才的学校培养与社会需求存在很大的差距。因此,对集成电路相关课程的教学改革刻不容缓。基于此,本文从“集成电路原理与应用”课程理论教学出发,详细阐述了“集成电路原理与应用”课程教学所存在的主要问题,并有针对性的提出了该课程教学内容和教学方法的改革措施,这对培养应用型、创新型的集成电路相关专业的本科毕业生具有积极的指导意义。

参考文献: