公务员期刊网 精选范文 狭义相对论的基本原理范文

狭义相对论的基本原理精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的狭义相对论的基本原理主题范文,仅供参考,欢迎阅读并收藏。

狭义相对论的基本原理

第1篇:狭义相对论的基本原理范文

一、理论物理学的重要方法

探索性的演绎法是理论物理学的重要方法。

在爱因斯坦看来,理论物理学的完整体系是由概念,被认为对这些概念是有效的基本原理(亦称基本假设、基本公设、基本定律等),以及用逻辑推理得到的结论这三者所构成的。因此,理论物理学家所运用的方法,就在于应用那些作为基础的基本原理,从而导出结论;于是,他的工作可分为两部分:他首先必须发现原理,然后从这些原理推导出结论。对于其中第二步工作,他在学生时代已得到很好的训练和准备。因此,如果在某一领域中或者某一组相互联系的现象中,他的第一个问题已经得到解决,他就一定能够成功。可是第一步工作,即建立一些可用来作为演绎的出发点的原理,却具有完全不同的性质。这里并没有可以学习的和可以系统地用来达到的的方法。科学家必须在庞杂的经验事实中间抓住某些可精密公式来表示的普遍特征,由此探求自然界的普遍原理。

爱因斯坦指出,一旦找到了作为逻辑推理前提的基本理,那么通过逻辑演绎,推理就一个接着一个地涌现出来它们往往显示出一些预料不到的关系,远远超出这些原理依据的实在的范围。但是,只要这些用来作为演绎出发点原理尚未得出,个别经验事实对理论家是毫无用处的。实际上,单靠一些从经验中抽象出来的孤立的普遍定律,他甚至么也做不出来。在他没有揭示出那些能作为演绎推理基础原理之前,他在经验研究的个别结果面前总是无能为力。

爱因斯坦把物理学理论分为两种不同的类型,其中之一是“原理理论”。建立这种理论使用的是分析方法,而不综合方法。形成它们的基础和出发点的元素,不是用假设造出来的,而是在经验中发现到的,它们是自然过程的普遍特征,即原理。这些原理给出了各个过程或者它们的理论表述所必须满足的数学形式的判据。热力学就是这样力图用分析的方法,从永动机不可能这一普遍经验得到的事实出发,推导出一些为各个事件都必须满足的必然条件。用探索的演绎法建立起来的相对论,就属于“原理理论”。但是物理学理论大多数是构造性的。它们企图从比较简单的式体系出发,并以此为材料,对比较复杂的现象构造出一幅图像。气体分子运动论就是这样力图把机械的、热的和扩散的过程都归结为分子运动——即用分子假设来构造这些过程。当我们说,我们已经成功地了解一群自然过程,我们的思想必然是指,概括这些过程的构造性的理论已经建立起来了。爱因斯坦认为,构造性理论的优点是完备,有适应性和明确,原理理论的优点则是逻辑上完整和基础巩固。

相对论就是爱因斯坦自觉地运用探索性演绎法的杰作。它不仅以其革命性的新观念和卓有成效的理论结果为人津津乐道,而且它所体现出的科学方法的新颖、精湛以及理论的逻辑结构的严谨,也令人叹为观止。爱因斯坦在创立狭义相对论(1905)时,他依据的仅仅是光行差现象和斐索实验这两个并不充分的实验材料,著名的二阶以太漂移实验即迈克耳孙-莫雷实验,对他并没有直接影响。他主要通过对16岁时想到的“追光”思想实验的沉思,对经典力学和经典电动力学基础的深入考察,发挥了思维的自由创造,提出了两个基本假设——相对性原理和光速不变原理(美国著名科学史家霍耳顿认为,在狭义相对论中,除了被提高为公设的两个基本原理外,爱因斯坦还作了另外四个假定:一是关于空间的各向同性和均匀性,另外三个是定义钟的同步的三个逻辑性质。霍耳顿的学生米勒后来指出,另外的四个假定也是两个基本原理的必然结果,他们不是独立的假设。然后,他以此为逻辑前提,接二连三地推导出了关于运动学和电动力学的结论,著名的质能关系式是他先前根本没有料想到的,这些结论大大超出了两个原理所依据的实在的范围。广义相对论(1915)的建立也是这样。作为广义相对论的两个基本原理,即广义相对性原理和等效原理,前者是爱因斯坦基于把相对性原理贯彻到底的信念(从惯性系推广到加速系)提出的,后者是依据厄缶实验(惯性质量等于引力质量)和升降机思想实验提出的。

在1905年,由于爱因斯坦采用了探索性的演绎法,从而使他能够高屋建瓴、势如破竹,一举砍断了哥尔提阿斯死结(哥尔提阿斯是古代夫利基阿国王,相传他曾把自己的车乘的辕与轭用绳结系住,死得无法解开,声言能解开此死结者,得以结治亚细亚。这个死结后来被亚历山大大帝用剑砍断),开拓了一个奇妙的新世界。那些恼人的以太漂移实验,那些使人迷惑不解的单极电机电动势的“位置”问题,在爱因斯坦的理论体系中已根本不成其为问题。但是,同时代的博大精深的科学大师,诸如洛伦兹、彭加勒,却热衷于同迈克耳孙-莫雷实验等以太漂移实验打交道,迷恋于做出种种构造性假设,建立他们的构造性理论——电子论和电子动力学。例如,洛伦兹1904年的著名论文尽管声称是以“基本假设”而不是以“特殊假设”为基础的论文,但事实上却包含有11个假设:假设有静止以太,假设静止电子是球形的,假设电子的电荷分布是均匀的,假设电子的全部质量都是电磁质量,假设运动电子收缩,假设电子之间的作用力与分子力相同等等。洛伦兹和彭加勒虽说走到了狭义相对论的大门口,但他们并没有打开这扇大门,其原因固然是多方面的。从方法论上讲,就在于他们运用的是传统的经验归纳法,而没有采用探索性的演绎法。在当时的科学发展的形势下,仅靠个别的经验事实进行归纳,是建立不起什么崭新的理论的。洛伦兹、彭加勒的电子论和电子动力学固然富丽堂皇,但毕竟只是经典物理学的最后的建筑物。它们虽然包罗万象,可是由于不适应科学发展的总趋势,最终还是被人们遗忘了,仅有历史的价值。

二、采用探索性的演绎法是科学发展的必然趋势

从文艺复兴到19世纪的经典科学,一般称为近代科学。在科学史上,这个漫长的时期主要是积累材料和归纳材料的时期。与这一科学发展状况相适应,产生了经典的科学哲学,它始于弗兰西斯•培根的归纳主义。培根认为,科学的发展是从个别上升到一般,从经验归纳出理论。他比喻说,只要及时采摘成熟的葡萄,科学的酒浆就会源源不断。到19世纪,整个科学一般说来还没有摆脱这种“原始”状态,因而经典科学哲学能够得以通过穆勒之手发展成为更完备的经验论形态,经验归纳法依然是正统的科学方法。

在物理学领域,这个时期的最大成就是牛顿力学和麦克斯韦的电动力学。牛顿力学虽则是超越了狭隘经验论的人类理智的伟大成就,但它又同人们的日常经验密切相关。力学中的许多概念都比较直观,可以直接在现实生活中找到某种原型。这种状况掩盖了基本概念和基本原理的思辨性质,甚至牛顿本人也深深陷入这一幻觉之中。他一再声称他“不作假设”,实际上却作了许多假设,他要求人们“必须把那些从各种现象中运用一般归纳法导出的命题看作是完全正确的”。19世纪的经典物理学也具有现象论和经验论的特征:它尽量使用那些接近经验的概念,因而在很大程度上必须放弃基础的统一性。热、电、光都用那些不同于力学量的各个状态的变数和物质常数来描述,至于要在它们的相互关系以及同时间的相互关系中去决定全部变数的任务,主要只能由经验来解决。麦克斯韦及其同代人,在这种表示方式中看到了物理学的终极目的,他们想像这个目的只能纯粹归纳地从经验得出,因为这样所使用的概念同经验比较接近。从认识论上看,穆勒和马赫大概就是根据这个理由来决定他们的立场的。总而言之,这个时期的科学家和科学哲学家大都以为,“理论应当用纯粹归纳法的方法来建立,而避免自由地创造性地创造概念;科学的状况愈原始,研究者要保留这种幻想就愈容易,因为他似乎是个经验论者。直至19世纪,许多人还相信牛顿的原则——“我不作假设'——应当是任何健全的自然科学的基础。”

但是,在某些个别的科学部门,已经悄悄地透进了新时代的曙光;尤其是非欧几何学,它仿佛故意向经验论示威一样,以毋庸置辩的方式显示了理性思维的强大威力和奇妙作用。彭加勒正是在《科学与假设》中通过对非欧几何学的深入研究以及对经典力学和经典物理学的慎密考察揭示出,科学的基本概念和原理不是经验的直接归纳,而只能以经验事实为指导,通过精神的自由活动(其产品即约定)来创造。通过研读彭加勒的科学哲学著作,尤其是通过创立狭义和广义相对论的科学实践,使爱因斯坦清楚地看到,人们可以在完全不同于牛顿的基础上,以更加令人满意和更加完备的方式,来考虑范围更广泛的经验事实。但是,完全撇开这种理论还是那种理论优越的问题不谈,基本原理的虚构特征却是完全明显的,因为我们能够指出两条根本不同的原理,而两者在很大程度上都同经验相符合。这—点同时又证明,要在逻辑上从经验推出力学的基本概念和基本假设的任何企图,都是要失败的。爱因斯坦还清楚地看到,相对论是说明理论科学在现展的基本特征的一个良好的例子。初始假设变得愈来愈抽象,离经验愈来愈远。另一方面,它更接近一切科学的伟大目标,即要从尽可能少的假设或者公理出发,通过逻辑的演绎,概括尽可能多的事实。同时,从公理引向经验事实或者可证实的结论的思路也就愈来愈长,愈来愈微妙。理论科学家在他探索理论时,就不得不愈来愈听从纯粹数学的、形式的考虑,因为实验家的物理经验不能把他提高到最抽象的领域中去。正是科学发展的这种理论化趋势,使爱因斯坦认识到:“科学一旦从它的原始阶段脱胎出来以后,仅仅靠着排列的过程已不能使理论获得进展。由经验材料作为引导。研究者宁愿提出一种思想体系,它——般地是在逻辑上从少数几个所谓公理的基本假定建立起来的。”他进而指出:“适用于科学幼年时代的以归纳为主的方法,正在让位给探索性的演绎法。”

三、爱因斯坦大胆运用探索性的演绎法的直接动因

只是在广义相对论建立之后,爱因斯坦才把探索性的演绎法作为一个方法论原则从理论上加以论述。可是,早在创立狭义相对论时,他就在研究中大胆运用这一科学方法了,并在思想上对它已有比较深刻的认识。促使爱因斯坦大胆运用探索性的演绎法的直接原因有两个:其一是赫兹、玻耳兹曼、彭加勒等人的思想影响,其二是当时的物理学现状使得他不能不那样做。

在联邦工业大学期间(1896~1900),爱因斯坦自学了赫兹、玻耳兹曼等科学大师们的著作。赫兹在他的名著《力学原理》(1894)中试图重构力学,为此他仅利用空间、时间和质量三个原始概念。赫兹的力学体系建立在通过科学家个人的“内在直觉规律”从经验引出的公理之上,它能够导出经验预言。赫兹认为“内在直觉规律”的功能像“康德意义上的先验判断”一样,并且声称他的力学重构是演绎系统,与牛顿的《原理》(全称《自然哲学的数学原理》)有许多相同的风格。在这个公理体系中,我们可以推演出与我们的观察记录相对照的可检验的结论,依据该结论与可观察的世界一致还是不一致,来决定这个体系是否正确。尽管爱因斯坦不赞同赫兹的隐质量概念和“把自然现象追溯到力学的主要定律”的长远目标,但是赫兹强调公理描述的威力却给他留下了深刻的印象。这种公理描述与其说在经验材料上预言理论结构,倒不如说在公理和直觉上预言理论结构。

爱因斯坦也自学了玻耳兹曼的《力学讲义》(1897)。在该书中,玻耳兹曼把力学作为物理学的核心,爱因斯坦当然不会同意这种看法的。但是,玻耳兹曼重构力学的方法的下述特点,一定会强烈地震撼爱因斯坦敏感的心弦:“恰恰是力学原理的不明晰性,在我看来不是同时以假设的智力图像为起点而得到的,而是从一开始就以与外部经验相联系的尝试而得到的。”玻耳兹曼的意思很清楚:力学原理的不明晰,在于经验归纳,而不在于智力图像。玻耳兹曼的“智力图像”概念比赫兹的“外部对象的图像或符号”更自由,爱因斯坦可能山此注意到,力学的发展已使原理凌驾于经验材料之上。

彭加勒在《科学与假设》(1902)中对约定主义的论述,对爱因斯坦的探索性的演绎法的形成必定大有裨益,爱因斯坦在“奥林比亚科学院”时期(1902~1904)曾和他的同伴索洛文、哈比希特一起研读过这本脍炙人口的畅销名著。彭加勒通过对数理科学的基础进行了敏锐的、批判性的审查和分析后得出:几何学的公理既非先验综合判断,亦非经验事实,它们原来都是约定。物理学尽管比较直接地以经验为基础,但它的一些基本原理也具有几何学公理那样的约定特征。例如惯性原理,它不是先验地支配我们的真理,否则希腊学者早就知道它了,它也不是经验的事实,因为人们从来也不能用不受外力的物体做实验,因而无法用实验证实或否证它。经过最终分析,它们化归为约定或隐蔽的定义。因此,彭加勒得出结论说:在数学及其相关的学科中,“可以看出自由约定的特征”;他进而指出:“约定是我们的精神的自由活动的产品”,“我们在所有可能的约定中进行选择时,要受实验事实的引导;但它仍是自由的,只是为了避免一切矛盾起见,才有所限制。”

彭加勒在考察了物理学的理论后认为,物理学有两类陈述——原理和定律。定律是实验的概括,它们相对于孤立的系统而言可以近似地被证实,原理是约定而成的公设,它们是十分普遍的、严格真实的,超越了实验所及的范围。彭加勒还阐述了约定主义的方法论意义。他说,当一个定律被认为由实验充分证实时,我们可以采取两种态度。我们可以把这个定律提交讨论,于是,它依然要受到持续不断的修正,毋庸置疑,这将仅仅以证明它是近似的而终结。或者,我们也可以通过选择这样一个约定使命题为真,从而把定律提升为原理。在彭加勒看来,经典力学和经典物理学的六大基本原理(迈尔原理即能量守恒原理、卡诺原理即能量退降原理、牛顿原理即作用与反作用原理、相对性原理、拉瓦锡原理即质量守恒原理、最小作用原理)就是这样形成的。

彭加勒提出约定主义并不是无缘无故的。在近代科学发展的早期,弗兰西斯•培根提出了经验归纳的新方法,这种方法对促进近代科学的发展起了巨大的作用,但后来却助长了狭隘经验事义的盛行。到19世纪,以惠威尔、穆勒为代表的“全归纳派”和以孔德、斯宾塞为代表的实证主义广为流行,把经验和归纳视为唯一可能的认识方法。到19世纪末,第二代的实证主义的代表人物马赫更是扬言要把一切“形而上学的东西”从科学中“排除掉”。另一方面,康德不满意经验论的归纳主义的阶梯,他把梯子颠倒过来,不是从经验上升到理论,而是以先天的“感性直观的纯形式”(时间和空间)和先天的“知性的纯粹概念或纯粹范畴(因果关系、必然性、可能性等十二个范畴)去组织后天经验,以构成绝对可靠的“先验综合知识”。彭加勒看到,无论是经验论还是先验论,都不能圆满地说明科学理论体系的特征。为了强调在从事实过渡到原理时,科学家应充分有发挥能动性的自由,他于是提出了约定主义。约定主义既要求摆脱狭隘的经验论,又要求摆脱经验论,它顺应了科学发展的潮流,反映了当时科学界自由创造、大胆假设的要求,在科学和哲学上都有其积极意义。

《科学与假设》一书对爱因斯坦的印象极深,他和同伴们花了好几个星期紧张地读完了它。爱因斯坦坦率地承认彭加勒对他的直接影响。他赞同“敏锐的深刻的思想家”彭加勒的约定主义观点,认为概念和公理是思维的自由创造,是理智的自由发明。他这样说过:“一切概念,甚至那些最接近经验韵概念,从逻辑观点看来,都是一些自由选择的约定。

一开始,爱因斯坦也对洛伦兹的电子论(是1895年的论文,而不是1904年的电子论的最终形式)发生过兴趣,这是一种构造性的理论。可是不久,他从普朗克的量子论中看到,辐射具有一种分子结构。这是同麦克斯韦理论相矛盾的,而且麦克斯韦理论也不能导致出正确的辐射压涨落。爱因斯坦在“自述”中谈到了他当时的转变:“早在1900年以后不久,即在普朗克的首创性工作以后不久,这类思考已使我清楚地看到:不论是力学还是热力学(除非在极限情况下)都不能要求严格有效。渐渐地我对那种根据已知事实用构造性的努力去发现真实定律的可能性感到绝望了。我努力得愈久,就愈加绝望,也就愈加确信,只有发现一个普遍的形式原理,才能使我们得到可靠的结果。”从此时起,爱因斯坦就断然决定用探索性的演绎法来解决问题。

四、爱因斯坦的探索性的演绎法的特色

作为科学推理的演绎法,可以说是源远流长了。早在古希腊时代,著名的哲学家、形式逻辑的创始人亚里士多德就提出了归纳和演绎这两种逻辑方法,并认为演绎推理的价值高于归纳推理。而古希腊名声最大的数学家欧几里得,在《几何原本》中把几何学系统化了,这部流传千古的名著就是逻辑演绎法的典范。牛顿在建立他的力学理论体系时虽然运用了归纳法,但其集大成著作《原理》的叙述方法却采用的是演绎法。爱因斯坦的探索性的演绎法绝不是这种古老的演绎法的简单照搬。他根据自己的科学研究实践,顺应当时理论科学发展的潮流,对演绎法作了重大发展,赋予了新的内容。也许是为了强调他的演绎法与传统的演绎法的不同,他在“演绎法”前面加上了限制性的定语——“探索性的”,这个定语也恰当地表明了他的演绎法的主要特征。与传统的演绎法相比,爱因斯坦的探索性的演绎法是颇有特色的。这主要表现在以下三个方面。

第一,明确地阐述了科学理论体系的结构,恰当地指明了思维同经验的联系问题,充分肯定了约定在建造理论体系时的重要作用。爱因斯坦把科学理论体系分为两大部分,其一是作为理论的基础的基本概念和基本原理,其二是由此推导出的具体结论。在爱因斯坦看来,那些不能在逻辑上进一步简化的基本概念和基本假设,是理论体系的根本部分,是整个理论体系的公理基础或逻辑前提。它们实际上“都是一些自由选择的约定”;它们“不能从经验中抽取出米,而必须自由地发明出来”。谈到思维同经验的联系问题时,爱因斯坦说:直接经验ε是已知的,A是假设或公理,由它们可以通过逻辑道路推导出各个个别的结论S;S然后可以同ε联系起来(用实验验明)。从心理状态方面来说,A是以ε为基础的。但是在A和ε之间不存在任何必然的逻辑联系,而只有通过非逻辑的方法——“思维的自由创造”(或约定)——才能找到理论体系的基础A。爱因斯坦明确指出:“物理学构成一种处在不断进化过程中的思想的逻辑体系。它的基础可以说是不能用归纳法从经验中提取出来的。而只能靠自由发明来得到。这种体系的根据(真理内容)在于导出的命题可由感觉经验来证实,而感觉经验对这基础的关系,只能直觉地去领悟。进化是循着不断增加逻辑基础简单性的方向前进的。为了要进一步接近这个目标,我们必须听从这样的事实:逻辑基础愈来愈远离经验事实,而且我们从根本基础通向那些同感觉经验相联系的导出命题的思想路线,也不断地变得愈来愈艰难、愈来愈漫长了。”

第二,大胆地提出了“概念是思维的自由创造”、“范畴是自由的约定”的命题,详细地阐述了从感觉经验到基本概念和基本原理的非逻辑途径。爱因斯坦指出,象马赫和奥斯特瓦尔德这样的具有勇敢精神和敏锐本能的学者,也因为哲学上的偏见而妨碍他们对事实做出正确的解释(指他们反对原子论)。这种偏见——至今还没有灭绝——就在于相信毋须自由的构造概念,事实本身能够而且应该为我们提供科学知识。这种误解之所以可能,是因为人们不容易认识到,经过验证和长期使用而显得似乎同经验材料直接相联系的那些概念,其实都是自由选择出来的。爱因斯坦认为,物理学家的最高使命就是要得到那些普遍的基本定律,由此世界体系就能用单纯的演绎法建立起来。要通向这些定律,并没有逻辑的道路,只有通过那种以对经验的共鸣的理解为依据的直觉,才能得到这些定律。”

为了从经验材料中得到基本原理。除了通过“以对经验的共鸣的理解为依据的直觉”外,爱因斯坦还指出可以通过“假设”、“猜测”、“大胆思辨”、“创造性的想像”、“灵感”、“幻想”、“思维的自由创造”、“理智的自由发明”、“自由选择的约定”等等。不管方法如何变化,它们都有—个共同点,即基本概念和基本原理只能通过非逻辑的途径自由创造出来。这样一来,基本概念和基本原理对于感觉经验而言在逻辑上是独立的。爱因斯坦认为二者的关系并不像肉汤同肉的关系,而倒有点像衣帽间牌子上的号码同大衣的关系。也正由于如此,从感觉经验得到基本概念和原理就是一项十分艰巨的工作,这也是探索性的演绎法的关键一步。因此,爱因斯坦要求人们“对于承担这种劳动的理论家,不应当吹毛求疵地说他是‘异想天开';相反,应当允许他有权去自由发挥他的幻想,因为除此以外就没有别的道路可以达到目的。他的幻想并不是无聊的白日做梦,而是为求得逻辑上最简单的可能性及其结论的探索。”

关于爱因斯坦所说的“概念是思维的自由创造”和“范畴是自由的约定”,其中的“自由”并非任意之谓,即不是随心所欲的杜撰.爱因斯坦认为,基本概念和基本原理的选择自由是一种特殊的自由。它完全不同作家写小说时的自由,它倒多少有点像一个人在猜一个设计得很巧妙的字谜时的那种自由。他固然可以猜想以无论什么字作为谜底,但是只有一个字才真正完全解决了这个字谜。显然,爱因斯坦所谓的“自由”,主要是指建立基本概念和基本原理时思维方式的自由、它们的表达方式的自由以及概括程度高低的自由,—般说来,它们包含的客观实在的内容则不能是任意的。这就是作为反映客观实在的人类理智结晶的科学之客观性和主观性的统一。诚如爱因斯坦所说:“科学作为一种现存的和完成的东西,是人们所知道的最客观的,同人无关的东西。但是,科学作为一种尚在制定中的东西,作为一种被迫求的目的,却同人类其他一切事业一样,是主观的,受心理状态制约的。”

第三,明确地把“内在的完备”作为评判理论体系的合法性和正确性的标准之一。在爱因斯坦看来,探索性的演绎法就是在实验事实的引导下,通过思维的自由创造,发明出公理基础,然后以此为出发点,通过逻辑演绎导出各个具体结论,从而构成完整的理论体系。但是,评判这个理论体系的合法性和正确性的标准是什么呢?爱因斯坦晚年在“自述”中对这个问题作了纲领性的回答。他认为,第一个标准是“外部的证实”,也就是说,理论不应当同经验事实相矛盾。这个要求初看起来似乎十分明显,但应用起来却非常伤脑筋。因为人们常常,甚至总是可以用人为的补充假设来使理论同事实相适应,从而坚持一种普遍的理论基础。但是,无论如何,这种观点所涉及的是用现成的经验事实采证实理论基础。这个标准是众所周知的,也是经常运用的。有趣的是爱因斯坦提出的第二个标准——“内在的完备”。它涉及的不是理论同观察材料的关系问题,而是关于理论本身的前提,关于人们可以简单地、但比较含糊地称之为前提(基本概念和基本原理)的“自然性”或者“逻辑简单性”。也就是说,这些不能在逻辑上进一步简化的元素要尽可能简单,并且在数目上尽可能少,同时不至于放弃对任何经验内容的适当表示。这个观点从来都在选择和评价各种理论时起着重大的作用,但是确切地把它表达出来却有很大困难。这里的问题不单是一种列举逻辑上独立的前提问题(如果这种列举是毫不含糊地可能的话),而是一种在不可通约的质之间作相互权衡的问题。其次,在几种基础同样“简单”的理论中,那种对理论体系的可能性质限制最严格的理论(即含有最确定论点的理论)被认为是比较优越的。理论的“内在的完备”还表现在:从逻辑的观点来看,如果一种理论并不是从那些等价的和以类似方式构造起来的理论中任意选出的,那么我们就给予这种理论以较高的评价。

爱因斯坦看到了“内在的完备”这一标准不容忽视、不可替代的特殊作用。他指出,当基本概念和基本原理距离直接可观察的东西愈来愈远,以致用事实来验证理论的含义就变得愈来愈困难和更费时日的时候,“内在的完备”标准对于理论的选择和评价就一定会起更大的作用。他还指出,只要数学上暂时还存在着难以克服的困难,而不能确立这个理论的经验内涵:逻辑的简单性就是衡量这个理论的价值的唯一准则,即使是一个当然还不充分的准则。爱因斯坦的“内在完备”标准在某种程度上是不可言传的,但是它在像爱因斯坦这样的具有“以对经验的共鸣的理解为依据的直觉”的人的手中,却能够有效地加以运用,而且预言家们在判断理论的内在完备时,它们之间的意见往往是一致的。

第2篇:狭义相对论的基本原理范文

一、理论物理学的重要方法

探索性的演绎法是理论物理学的重要方法。在爱因斯坦看来,理论物理学的完整体系是由概念,被认为对这些概念是有效的基本原理(亦称基本假设、基本公设、基本定律等),以及用逻辑推理得到的结论这三者所构成的。因此,理论物理学家所运用的方法,就在于应用那些作为基础的基本原理,从而导出结论;于是,他的工作可分为两部分:他首先必须发现原理,然后从这些原理推导出结论。对于其中第二步工作,他在学生时代已得到很好的训练和准备。因此,如果在某一领域中或者某一组相互联系的现象中,他的第一个问题已经得到解决,他就一定能够成功。可是第一步工作,即建立一些可用来作为演绎的出发点的原理,却具有完全不同的性质。这里并没有可以学习的和可以系统地用来达到的的方法。科学家必须在庞杂的经验事实中间抓住某些可精密公式来表示的普遍特征,由此探求自然界的普遍原理。

爱因斯坦指出,一旦找到了作为逻辑推理前提的基本理,那么通过逻辑演绎,推理就一个接着一个地涌现出来它们往往显示出一些预料不到的关系,远远超出这些原理依据的实在的范围。但是,只要这些用来作为演绎出发点原理尚未得出,个别经验事实对理论家是毫无用处的。实际上,单靠一些从经验中抽象出来的孤立的普遍定律,他甚至么也做不出来。在他没有揭示出那些能作为演绎推理基础原理之前,他在经验研究的个别结果面前总是无能为力。

爱因斯坦把物理学理论分为两种不同的类型,其中之一是“原理理论”。建立这种理论使用的是分析方法,而不综合方法。形成它们的基础和出发点的元素,不是用假设造出来的,而是在经验中发现到的,它们是自然过程的普遍特征,即原理。这些原理给出了各个过程或者它们的理论表述所必须满足的数学形式的判据。热力学就是这样力图用分析的方法,从永动机不可能这一普遍经验得到的事实出发,推导出一些为各个事件都必须满足的必然条件。用探索的演绎法建立起来的相对论,就属于“原理理论”。但是物理学理论大多数是构造性的。它们企图从比较简单的式体系出发,并以此为材料,对比较复杂的现象构造出一幅图像。气体分子运动论就是这样力图把机械的、热的和扩散的过程都归结为分子运动——即用分子假设来构造这些过程。当我们说,我们已经成功地了解一群自然过程,我们的思想必然是指,概括这些过程的构造性的理论已经建立起来了。爱因斯坦认为,构造性理论的优点是完备,有适应性和明确,原理理论的优点则是逻辑上完整和基础巩固。([1],pp.109~110)

相对论就是爱因斯坦自觉地运用探索性演绎法的杰作。它不仅以其革命性的新观念和卓有成效的理论结果为人津津乐道,而且它所体现出的科学方法的新颖、精湛以及理论的逻辑结构的严谨,也令人叹为观止。爱因斯坦在创立狭义相对论(1905)时,他依据的仅仅是光行差现象和斐索实验这两个并不充分的实验材料,著名的二阶以太漂移实验即迈克耳孙-莫雷实验,对他并没有直接影响。他主要通过对16岁时想到的“追光”思想实验的沉思,对经典力学和经典电动力学基础的深入考察,发挥了思维的自由创造,提出了两个基本假设——相对性原理和光速不变原理(美国著名科学史家霍耳顿认为,在狭义相对论中,除了被提高为公设的两个基本原理外,爱因斯坦还作了另外四个假定:一是关于空间的各向同性和均匀性,另外三个是定义钟的同步的三个逻辑性质。霍耳顿的学生米勒后来指出,另外的四个假定也是两个基本原理的必然结果,他们不是独立的假设。 参见文献[3],p.196)。然后,他以此为逻辑前提,接二连三地推导出了关于运动学和电动力学的结论,著名的质能关系式是他先前根本没有料想到的,这些结论大大超出了两个原理所依据的实在的范围。广义相对论(1915)的建立也是这样。作为广义相对论的两个基本原理,即广义相对性原理和等效原理,前者是爱因斯坦基于把相对性原理贯彻到底的信念(从惯性系推广到加速系)提出的,后者是依据厄缶实验(惯性质量等于引力质量)和升降机思想实验提出的。

在1905年,由于爱因斯坦采用了探索性的演绎法,从而使他能够高屋建瓴、势如破竹,一举砍断了哥尔提阿斯死结(哥尔提阿斯是古代夫利基阿国王,相传他曾把自己的车乘的辕与轭用绳结系住,死得无法解开,声言能解开此死结者,得以结治亚细亚。这个死结后来被亚历山大大帝用剑砍断),开拓了一个奇妙的新世界。那些恼人的以太漂移实验,那些使人迷惑不解的单极电机电动势的“位置”问题,在爱因斯坦的理论体系中已根本不成其为问题。但是,同时代的博大精深的科学大师,诸如洛伦兹、彭加勒,却热衷于同迈克耳孙-莫雷实验等以太漂移实验打交道,迷恋于做出种种构造性假设,建立他们的构造性理论——电子论和电子动力学。例如,洛伦兹1904年的著名论文尽管声称是以“基本假设”而不是以“特殊假设”为基础的论文,但事实上却包含有11个假设:假设有静止以太,假设静止电子是球形的,假设电子的电荷分布是均匀的,假设电子的全部质量都是电磁质量,假设运动电子收缩,假设电子之间的作用力与分子力相同等等。洛伦兹和彭加勒虽说走到了狭义相对论的大门口,但他们并没有打开这扇大门,其原因固然是多方面的。从方法论上讲,就在于他们运用的是传统的经验归纳法,而没有采用探索性的演绎法。在当时的科学发展的形势下,仅靠个别的经验事实进行归纳,是建立不起什么崭新的理论的。洛伦兹、彭加勒的电子论和电子动力学固然富丽堂皇,但毕竟只是经典物理学的最后的建筑物。它们虽然包罗万象,可是由于不适应科学发展的总趋势,最终还是被人们遗忘了,仅有历史的价值。

二、采用探索性的演绎法是科学发展的必然趋势

从文艺复兴到19世纪的经典科学,一般称为近代科学。在科学史上,这个漫长的时期主要是积累材料和归纳材料的时期。与这一科学发展状况相适应,产生了经典的科学哲学,它始于弗兰西斯培根的归纳主义。培根认为,科学的发展是从个别上升到一般,从经验归纳出理论。他比喻说,只要及时采摘成熟的葡萄,科学的酒浆就会源源不断。到19世纪,整个科学一般说来还没有摆脱这种“原始”状态,因而经典科学哲学能够得以通过穆勒之手发展成为更完备的经验论形态,经验归纳法依然是正统的科学方法。

在物理学领域,这个时期的最大成就是牛顿力学和麦克斯韦的电动力学。牛顿力学虽则是超越了狭隘经验论的人类理智的伟大成就,但它又同人们的日常经验密切相关。力学中的许多概念都比较直观,可以直接在现实生活中找到某种原型。这种状况掩盖了基本概念和基本原理的思辨性质,甚至牛顿本人也深深陷入这一幻觉之中。他一再声称他“不作假设”,实际上却作了许多假设,他要求人们“必须把那些从各种现象中运用一般归纳法导出的命题看作是完全正确的” 。19世纪的经典物理学也具有现象论和经验论的特征:它尽量使用那些接近经验的概念,因而在很大程度上必须放弃基础的统一性。热、电、光都用那些不同于力学量的各个状态的变数和物质常数来描述,至于要在它们的相互关系以及同时间的相互关系中去决定全部变数的任务,主要只能由经验来解决。麦克斯韦及其同代人,在这种表示方式中看到了物理学的终极目的,他们想像这个目的只能纯粹归纳地从经验得出,因为这样所使用的概念同经验比较接近。从认识论上看,穆勒和马赫大概就是根据这个理由来决定他们的立场的。总而言之,这个时期的科学家和科学哲学家大都以为,“理论应当用纯粹归纳法的方法来建立,而避免自由地创造性地创造概念;科学的状况愈原始,研究者要保留这种幻想就愈容易,因为他似乎是个经验论者。直至19世纪,许多人还相信牛顿的原则——“我不作假设'——应当是任何健全的自然科学的基础。”([1],p.309)

但是,在某些个别的科学部门,已经悄悄地透进了新时代的曙光;尤其是非欧几何学,它仿佛故意向经验论示威一样,以毋庸置辩的方式显示了理性思维的强大威力和奇妙作用。彭加勒正是在《科学与假设》中通过对非欧几何学的深入研究以及对经典力学和经典物理学的慎密考察揭示出,科学的基本概念和原理不是经验的直接归纳,而只能以经验事实为指导,通过精神的自由活动(其产品即约定)来创造。通过研读彭加勒的科学哲学著作,尤其是通过创立狭义和广义相对论的科学实践,使爱因斯坦清楚地看到,人们可以在完全不同于牛顿的基础上,以更加令人满意和更加完备的方式,来考虑范围更广泛的经验事实。但是,完全撇开这种理论还是那种理论优越的问题不谈,基本原理的虚构特征却是完全明显的,因为我们能够指出两条根本不同的原理,而两者在很大程度上都同经验相符合。这—点同时又证明,要在逻辑上从经验推出力学的基本概念和基本假设的任何企图,都是要失败的。爱因斯坦还清楚地看到,相对论是说明理论科学在现展的基本特征的一个良好的例子。初始假设变得愈来愈抽象,离经验愈来愈远。另一方面,它更接近一切科学的伟大目标,即要从尽可能少的假设或者公理出发,通过逻辑的演绎,概括尽可能多的事实。同时,从公理引向经验事实或者可证实的结论的思路也就愈来愈长,愈来愈微妙。理论科学家在他探索理论时,就不得不愈来愈听从纯粹数学的、形式的考虑,因为实验家的物理经验不能把他提高到最抽象的领域中去。正是科学发展的这种理论化趋势,使爱因斯坦认识到:“科学一旦从它的原始阶段脱胎出来以后,仅仅靠着排列的过程已不能使理论获得进展。由经验材料作为引导。研究者宁愿提出一种思想体系,它——般地是在逻辑上从少数几个所谓公理的基本假定建立起来的。”([1],p.115),他进而指出:“适用于科学幼年时代的以归纳为主的方法,正在让位给探索性的演绎法。”([1],p. 262)

三、爱因斯坦大胆运用探索性的演绎法的直接动因

只是在广义相对论建立之后,爱因斯坦才把探索性的演绎法作为一个方法论原则从理论上加以论述。可是,早在创立狭义相对论时,他就在研究中大胆运用这一科学方法了,并在思想上对它已有比较深刻的认识。促使爱因斯坦大胆运用探索性的演绎法的直接原因有两个:其一是赫兹、玻耳兹曼、彭加勒等人的思想影响,其二是当时的物理学现状使得他不能不那样做。

在联邦工业大学期间(1896~1900),爱因斯坦自学了赫兹、玻耳兹曼等科学大师们的著作。赫兹在他的名著《力学原理》(1894)中试图重构力学,为此他仅利用空间、时间和质量三个原始概念。赫兹的力学体系建立在通过科学家个人的“内在直觉规律”从经验引出的公理之上,它能够导出经验预言。赫兹认为“内在直觉规律”的功能像“康德意义上的先验判断”一样,并且声称他的力学重构是演绎系统,与牛顿的《原理》(全称《自然哲学的数学原理》)有许多相同的风格。在这个公理体系中,我们可以推演出与我们的观察记录相对照的可检验的结论,依据该结论与可观察的世界一致还是不一致,来决定这个体系是否正确。尽管爱因斯坦不赞同赫兹的隐质量概念和“把自然现象追溯到力学的主要定律”的长远目标,但是赫兹强调公理描述的威力却给他留下了深刻的印象。这种公理描述与其说在经验材料上预言理论结构,倒不如说在公理和直觉上预言理论结构。

爱因斯坦也自学了玻耳兹曼的《力学讲义》(1897)。在该书中,玻耳兹曼把力学作为物理学的核心,爱因斯坦当然不会同意这种看法的。但是,玻耳兹曼重构力学的方法的下述特点,一定会强烈地震撼爱因斯坦敏感的心弦:“恰恰是力学原理的不明晰性,在我看来不是同时以假设的智力图像为起点而得到的,而是从一开始就以与外部经验相联系的尝试而得到的。”([2],p.127)玻耳兹曼的意思很清楚:力学原理的不明晰,在于经验归纳,而不在于智力图像。玻耳兹曼的“智力图像”概念比赫兹的“外部对象的图像或符号”更自由,爱因斯坦可能山此注意到,力学的发展已使原理凌驾于经验材料之上。

彭加勒在《科学与假设》(1902)中对约定主义的论述,对爱因斯坦的探索性的演绎法的形成必定大有裨益,爱因斯坦在“奥林比亚科学院”时期(1902~1904)曾和他的同伴索洛文、哈比希特一起研读过这本脍炙人口的畅销名著。彭加勒通过对数理科学的基础进行了敏锐的、批判性的审查和分析后得出:几何学的公理既非先验综合判断,亦非经验事实,它们原来都是约定。物理学尽管比较直接地以经验为基础,但它的一些基本原理也具有几何学公理那样的约定特征。例如惯性原理,它不是先验地支配我们的真理,否则希腊学者早就知道它了,它也不是经验的事实,因为人们从来也不能用不受外力的物体做实验,因而无法用实验证实或否证它。经过最终分析,它们化归为约定或隐蔽的定义。因此,彭加勒得出结论说:在数学及其相关的学科中,“可以看出自由约定的特征”;他进而指出:“约定是我们的精神的自由活动的产品”,“我们在所有可能的约定中进行选择时,要受实验事实的引导;但它仍是自由的,只是为了避免一切矛盾起见,才有所限制。”

彭加勒在考察了物理学的理论后认为,物理学有两类陈述——原理和定律。定律是实验的概括,它们相对于孤立的系统而言可以近似地被证实,原理是约定而成的公设,它们是十分普遍的、严格真实的,超越了实验所及的范围。彭加勒还阐述了约定主义的方法论意义。他说,当一个定律被认为由实验充分证实时,我们可以采取两种态度。我们可以把这个定律提交讨论,于是,它依然要受到持续不断的修正,毋庸置疑,这将仅仅以证明它是近似的而终结。或者,我们也可以通过选择这样一个约定使命题为真,从而把定律提升为原理。在彭加勒看来,经典力学和经典物理学的六大基本原理(迈尔原理即能量守恒原理、卡诺原理即能量退降原理、牛顿原理即作用与反作用原理、相对性原理、拉瓦锡原理即质量守恒原理、最小作用原理)就是这样形成的。

彭加勒提出约定主义并不是无缘无故的。在近代科学发展的早期,弗兰西斯培根提出了经验归纳的新方法,这种方法对促进近代科学的发展起了巨大的作用,但后来却助长了狭隘经验事义的盛行。到19世纪,以惠威尔、穆勒为代表的“全归纳派”和以孔德、斯宾塞为代表的实证主义广为流行,把经验和归纳视为唯一可能的认识方法。到19世纪末,第二代的实证主义的代表人物马赫更是扬言要把一切“形而上学的东西”从科学中“排除掉”。另一方面,康德不满意经验论的归纳主义的阶梯,他把梯子颠倒过来,不是从经验上升到理论,而是以先天的“感性直观的纯形式”(时间和空间)和先天的“知性的纯粹概念或纯粹范畴(因果关系、必然性、可能性等十二个范畴)去组织后天经验,以构成绝对可靠的“先验综合知识”。彭加勒看到,无论是经验论还是先验论,都不能圆满地说明科学理论体系的特征。为了强调在从事实过渡到原理时,科学家应充分有发挥能动性的自由,他于是提出了约定主义。约定主义既要求摆脱狭隘的经验论,又要求摆脱经验论,它顺应了科学发展的潮流,反映了当时科学界自由创造、大胆假设的要求,在科学和哲学上都有其积极意义。

《科学与假设》一书对爱因斯坦的印象极深,他和同伴们花了好几个星期紧张地读完了它。爱因斯坦坦率地承认彭加勒对他的直接影响。他赞同“敏锐的深刻的思想家”彭加勒的约定主义观点,认为概念和公理是思维的自由创造,是理智的自由发明。他这样说过:“一切概念,甚至那些最接近经验韵概念,从逻辑观点看来,……都是一些自由选择的约定,……([1],p.6)

一开始,爱因斯坦也对洛伦兹的电子论(是1895年的论文,而不是1904年的电子论的最终形式)发生过兴趣,这是一种构造性的理论。可是不久,他从普朗克的量子论中看到,辐射具有一种分子结构。这是同麦克斯韦理论相矛盾的,而且麦克斯韦理论也不能导致出正确的辐射压涨落。爱因斯坦在“自述”中谈到了他当时的转变:“早在1900年以后不久,即在普朗克的首创性工作以后不久,这类思考已使我清楚地看到:不论是力学还是热力学(除非在极限情况下)都不能要求严格有效。渐渐地我对那种根据已知事实用构造性的努力去发现真实定律的可能性感到绝望了。我努力得愈久,就愈加绝望,也就愈加确信,只有发现一个普遍的形式原理,才能使我们得到可靠的结果。”([1],p.23)从此时起,爱因斯坦就断然决定用探索性的演绎法来解决问题。

四、爱因斯坦的探索性的演绎法的特色

作为科学推理的演绎法,可以说是源远流长了。早在古希腊时代,著名的哲学家、形式逻辑的创始人亚里士多德就提出了归纳和演绎这两种逻辑方法,并认为演绎推理的价值高于归纳推理。而古希腊名声最大的数学家欧几里得,在《几何原本》中把几何学系统化了,这部流传千古的名著就是逻辑演绎法的典范。牛顿在建立他的力学理论体系时虽然运用了归纳法,但其集大成著作《原理》的叙述方法却采用的是演绎法。爱因斯坦的探索性的演绎法绝不是这种古老的演绎法的简单照搬。他根据自己的科学研究实践,顺应当时理论科学发展的潮流,对演绎法作了重大发展,赋予了新的内容。也许是为了强调他的演绎法与传统的演绎法的不同,他在“演绎法”前面加上了限制性的定语——“探索性的”,这个定语也恰当地表明了他的演绎法的主要特征。与传统的演绎法相比,爱因斯坦的探索性的演绎法是颇有特色的。这主要表现在以下三个方面。

第一,明确地阐述了科学理论体系的结构,恰当地指明了思维同经验的联系问题,充分肯定了约定在建造理论体系时的重要作用。爱因斯坦把科学理论体系分为两大部分,其一是作为理论的基础的基本概念和基本原理,其二是由此推导出的具体结论。在爱因斯坦看来,那些不能在逻辑上进一步简化的基本概念和基本假设,是理论体系的根本部分,是整个理论体系的公理基础或逻辑前提。它们实际上“都是一些自由选择的约定”;它们“不能从经验中抽取出米,而必须自由地发明出来”([1],pp.6,315)。谈到思维同经验的联系问题时,爱因斯坦说:直接经验ε是已知的,A是假设或公理,由它们可以通过逻辑道路推导出各个个别的结论S;S然后可以同ε联系起来(用实验验明)。从心理状态方面来说,A是以ε为基础的。但是在A和ε之间不存在任何必然的逻辑联系,而只有通过非逻辑的方法——“思维的自由创造”(或约定)——才能找到理论体系的基础A。爱因斯坦明确指出:“物理学构成一种处在不断进化过程中的思想的逻辑体系。它的基础可以说是不能用归纳法从经验中提取出来的。而只能靠自由发明来得到。这种体系的根据(真理内容)在于导出的命题可由感觉经验来证实,而感觉经验对这基础的关系,只能直觉地去领悟。进化是循着不断增加逻辑基础简单性的方向前进的。为了要进一步接近这个目标,我们必须听从这样的事实:逻辑基础愈来愈远离经验事实,而且我们从根本基础通向那些同感觉经验相联系的导出命题的思想路线,也不断地变得愈来愈艰难、愈来愈漫长了。”([1],p.372)

第二,大胆地提出了“概念是思维的自由创造”、“范畴是自由的约定” ([1],pp.407,471)的命题,详细地阐述了从感觉经验到基本概念和基本原理的非逻辑途径。爱因斯坦指出,象马赫和奥斯特瓦尔德这样的具有勇敢精神和敏锐本能的学者,也因为哲学上的偏见而妨碍他们对事实做出正确的解释(指他们反对原子论)。这种偏见——至今还没有灭绝——就在于相信毋须自由的构造概念,事实本身能够而且应该为我们提供科学知识。这种误解之所以可能,是因为人们不容易认识到,经过验证和长期使用而显得似乎同经验材料直接相联系的那些概念,其实都是自由选择出来的。爱因斯坦认为,物理学家的最高使命就是要得到那些普遍的基本定律,由此世界体系就能用单纯的演绎法建立起来。要通向这些定律,并没有逻辑的道路,只有通过那种以对经验的共鸣的理解为依据的直觉,才能得到这些定律。”([1],p,102)

为了从经验材料中得到基本原理。除了通过“以对经验的共鸣的理解为依据的直觉”外,爱因斯坦还指出可以通过“假设”、“猜测”、“大胆思辨”、“创造性的想像”、“灵感”、“幻想”、 “思维的自由创造”、“理智的自由发明”、“自由选择的约定”等等。不管方法如何变化,它们都有—个共同点,即基本概念和基本原理只能通过非逻辑的途径自由创造出来。这样一来,基本概念和基本原理对于感觉经验而言在逻辑上是独立的。爱因斯坦认为二者的关系并不像肉汤同肉的关系,而倒有点像衣帽间牌子上的号码同大衣的关系。也正由于如此,从感觉经验得到基本概念和原理就是一项十分艰巨的工作,这也是探索性的演绎法的关键一步。因此,爱因斯坦要求人们“对于承担这种劳动的理论家,不应当吹毛求疵地说他是‘异想天开';相反,应当允许他有权去自由发挥他的幻想,因为除此以外就没有别的道路可以达到目的。他的幻想并不是无聊的白日做梦,而是为求得逻辑上最简单的可能性及其结论的探索。”([1],pp. 262~263)

关于爱因斯坦所说的“概念是思维的自由创造”和“范畴是自由的约定”,其中的“自由”并非任意之谓,即不是随心所欲的杜撰.爱因斯坦认为,基本概念和基本原理的选择自由是一种特殊的自由。它完全不同作家写小说时的自由,它倒多少有点像一个人在猜一个设计得很巧妙的字谜时的那种自由。他固然可以猜想以无论什么字作为谜底,但是只有一个字才真正完全解决了这个字谜。显然,爱因斯坦所谓的“自由”,主要是指建立基本概念和基本原理时思维方式的自由、它们的表达方式的自由以及概括程度高低的自由,—般说来,它们包含的客观实在的内容则不能是任意的。这就是作为反映客观实在的人类理智结晶的科学之客观性和主观性的统一。诚如爱因斯坦所说:“科学作为一种现存的和完成的东西,是人们所知道的最客观的,同人无关的东西。但是,科学作为一种尚在制定中的东西,作为一种被迫求的目的,却同人类其他一切事业一样,是主观的,受心理状态制约的。”([1],p.298)

第三,明确地把“内在的完备”作为评判理论体系的合法性和正确性的标准之一。在爱因斯坦看来,探索性的演绎法就是在实验事实的引导下,通过思维的自由创造,发明出公理基础,然后以此为出发点,通过逻辑演绎导出各个具体结论,从而构成完整的理论体系。但是,评判这个理论体系的合法性和正确性的标准是什么呢?爱因斯坦晚年在“自述”中对这个问题作了纲领性的回答([1],pp.10~11)。他认为,第一个标准是“外部的证实”,也就是说,理论不应当同经验事实相矛盾。这个要求初看起来似乎十分明显,但应用起来却非常伤脑筋。因为人们常常,甚至总是可以用人为的补充假设来使理论同事实相适应,从而坚持一种普遍的理论基础。但是,无论如何,这种观点所涉及的是用现成的经验事实采证实理论基础。这个标准是众所周知的,也是经常运用的。有趣的是爱因斯坦提出的第二个标准——“内在的完备”。它涉及的不是理论同观察材料的关系问题,而是关于理论本身的前提,关于人们可以简单地、但比较含糊地称之为前提(基本概念和基本原理)的“自然性”或者“逻辑简单性”。也就是说,这些不能在逻辑上进一步简化的元素要尽可能简单,并且在数目上尽可能少,同时不至于放弃对任何经验内容的适当表示。这个观点从来都在选择和评价各种理论时起着重大的作用,但是确切地把它表达出来却有很大困难。这里的问题不单是一种列举逻辑上独立的前提问题(如果这种列举是毫不含糊地可能的话),而是一种在不可通约的质之间作相互权衡的问题。其次,在几种基础同样“简单”的理论中,那种对理论体系的可能性质限制最严格的理论(即含有最确定论点的理论)被认为是比较优越的。理论的“内在的完备”还表现在:从逻辑的观点来看,如果一种理论并不是从那些等价的和以类似方式构造起来的理论中任意选出的,那么我们就给予这种理论以较高的评价。

爱因斯坦看到了“内在的完备”这一标准不容忽视、不可替代的特殊作用。他指出,当基本概念和基本原理距离直接可观察的东西愈来愈远,以致用事实来验证理论的含义就变得愈来愈困难和更费时日的时候,“内在的完备”标准对于理论的选择和评价就一定会起更大的作用。他还指出,只要数学上暂时还存在着难以克服的困难,而不能确立这个理论的经验内涵:逻辑的简单性就是衡量这个理论的价值的唯一准则,即使是一个当然还不充分的准则([1],pp.12、501)。爱因斯坦的“内在完备”标准在某种程度上是不可言传的,但是它在像爱因斯坦这样的具有“以对经验的共鸣的理解为依据的直觉”的人的手中,却能够有效地加以运用,而且预言家们在判断理论的内在完备时,它们之间的意见往往是一致的。

在爱因斯坦创立狭义相对论和广义相对论的过程中,充分地体现了探索性的演绎法的这三个特色。前面我们已简单地涉及到这一点,这里我们只谈谈爱因斯坦从“内在的完备”这一标准的角度是如何对自己理论进行评价的。1906年,当德国实验物理学家宣称,他在1905年完成的关于高速电子(β射线)质量和速度关系的数据支持亚伯拉罕和布赫尔的“刚性球”电子论,而同洛伦兹-爱因斯坦的理论(电子在运动方向的直径会随速度的增加而收缩)不相容,彭加勒立即发生了动摇,认为相对性原理不再具有我们先前赋予它的那种重要的价值。洛伦兹表现得更是十分悲观,他在1906年3月8日致彭加勒的信中说:“不幸的是,我的电子扁缩假设同考夫曼的新结果发生了矛盾,因此我必须放弃它,我已到了山穷水尽的地步。在我看来,似乎不可能建立起一种要求平移对电学和光学现象完全不产生影响的理论。” ([2],p.334)爱因斯坦的态度则截然相反,他对自己的理论的“内在的完备”抱有信心。他在1907年发表的长篇论文中指出:考大曼的实验结果同狭义相对论的“这种系统的偏离,究竟是由于没有考虑到的误差,还是由于相对论的基础不符合事实,这个问题只有在有了多方面的观测资料以后,才能足够可靠地解决。”他认为“刚性球”电子论在“颇大程度上是由于偶然碰巧与实验结果相符,因为它们关于运动电子质量的基本假设不是从总结了大量现象的理论体系得出来的。” 正由于狭义相对论的理论前提的简单性大,它涉及的事物的种类多,它的应用范围广,它给人的印象深,所以爱因斯坦才对自己的理论坚信不疑,要知道当时还没有确凿的实验事实证实这种具有思辨性的理论。谈到广义相对论的“内在的完备”,爱因斯坦说:“这理论主要吸引人的地方在于逻辑上的完整性。从它推出的许多结论中,只要有一个被证明是错误的,它就必须被抛弃,要对它进行修改而不摧毁其整个结构,那似乎是不可能的。”([1],p.113)他甚至说过这样的话:当1919年的日蚀观测证明了他关于光线弯曲的推论时,他一点也不惊奇。要是这件事没有发生,他倒会是非常惊讶的。

探索性的演绎法是爱因斯坦的主导哲学思想——唯物论的唯理论——的一个重要组成部分。可贵的是,爱因斯坦在这里并没有排斥或漠视经验归纳法在科学中的地位。一方面,他认为纯粹思维可以把握实在;另一方面,又认为从来也没有一种理论是靠纯粹思辨发现的,他对构造性的理论也给予了较高的评价。爱因斯坦敢于正视矛盾的两极,在唯理论和经验论之间保持了一种微妙的、恰如其分的平衡,这正是他的高明之处。他提出的探索性的演绎法,只是强调“要大胆思辨,不要经验堆积”罢了,这是理论科学在20世纪发展的必然趋势,爱因斯坦则是率先表达了这一时代要求。

参考文献

《爱因斯坦文集》第一卷,许良英等编译,商务印书馆,1978年第1版,第75~76页。

Arthur I.Miller,Albert Einstein's Specisl Theory of Relativity:Emergence(1905) and Early Interpretation, (1905~1911),Adison-Wesley Pubiishing Company,Inc., 1981, p.196.

H.S.塞耶编:《牛顿自然哲学著作选》,上海人民出版社,1971年第1版,第6页。

H.Poincaré,The Foundations of Science, Translation by G.B.Halsted,The Science, York and Garrison,N.Y. 1913, pp. 28, 65.

第3篇:狭义相对论的基本原理范文

关键词:创新;科学猜测;思维方法

中图分类号:G427 文献标识码:A 文章编号:1992-7711(2012)20-066-1

猜测就是猜想和推测。具体说来,猜测是对研究的对象或问题作出符合一定的经验与事实的推测性想像的思维方法。它几乎完全不符合逻辑思维,更多地具有直觉思维的迅捷性、直接性、本能意识等特征。

布鲁纳曾指出:“在自然科学和普遍生活中,我们常常被迫根据不完全的知识去行动,我们不得不去猜想”。从这个意义上说,猜测是新思想的“火花”、“闪光点”,是某种新的科学理论的“萌芽”和“前奏曲”,直觉的猜测并不总是可靠的,仅凭猜测远不能构建出神圣科学的殿堂。

一、产生科学猜测的思维方法

1.数学方法。

物理学的研究从伽利略开始,逐步地从定性描述向定量研究推进,后来牛顿在对物理问题进行定量分析和计算的过程中发明了微积分,更促使了物理学沿着精密、定量的方向迅速发展。物理学上不少重大的科学猜测,都是有关的理论跟数学方法结合才作出的。例如,洛伦兹的坐标变换公式客观上有助于狭义相对论的建立;爱因斯坦在狭义相对论中用数学方法获得的质能方程预示了巨大原子能的释放的可能性;广义相对论猜测了谱线红移,光线弯曲;狄拉克从描述自由电子的运动方程中求得了正、负两种能量解,预言了正电子的存在。狄拉克说:“理论物理学家把对数学美的要求,看成是一种信仰。比如,相对论之所以能够得到普遍的承认,就是因为它具有数学的美。”

2.科学推理。

人们根据万有引力定律普适于所有行星的运动的理论,而天王星是一颗行星,于是便认为天王星的运动应遵守万有引力定律。可是通过观察,发现它的轨道总与根据万有引力定律计算的结果不符。于是英国学者亚当斯和法国学者勒威耶各自根据经典力学进行演绎推理,并经过艰辛的计算,预示了天王星外有一颗行星影响着它的运动。后来德国天文台终于在1846年发现了这颗行星——海王星。物理理论可以猜测物理系统各个层次的运动、变化和发展将要出现的物理现象和过程,也可以猜测人类尚未认识的新物理现象和过程。

3.物理假说。

恩格斯在《自然辩证法》中明确指出:“只要自然科学在思维着,它的发展形式就是假说。”麦克斯韦提出了“位移电流”的假说,建立了电磁场方程,预言了电磁波的存在,并计算出了电磁波在真空中的传播速度,并由此可推导出电磁波在两介质交界面上折射和反射的规律等。在麦克斯韦方程中,电和磁具有对称性,而自然界中已知的带电粒子都是单极性的,即只能携带两种相反电荷中的一种。1931年,英国物理学家狄拉克由此类推而预言,自然界中也有“磁单极”的存在,并根据这一点推导出磁荷以倍数出现的必然性。

4.审美预构。

科学家在科学资料、实验设备缺乏的情况下,受到相关领域中事物的美学特性的启发,以美引真,提出科学理论。真的科学理论必然是美的。科学现象表面杂乱无章,可现象的相互联系和相互作用中必具有和谐性和秩序性,必具有简单、对称等美学特性。

二、如何提高学生猜测的能力

1.通过类比和联想有效地引导学生猜测。

在物理学发展过程中,类比和联想对猜测明显地起着启示、探索、开路和创新的作用,许多新概念、新规律、新理论的创建借助于类比和联想。如类比水波、声波来研究光波;卢瑟福将原子结构与太阳系模型类比提出原子的核式结构模型;德布罗意将实物粒子与光类比,提出实物粒子具有波粒二象性的假说等等,所以说,在物理教学中,教师可以通过类比和联想有效地引导学生猜测。

2.通过介绍物理学家的思维方法让学生感受猜测。

科学上不少重要规律的发现既包含了前辈科学家的无限艰辛,更闪耀着科学家们非凡巧妙的思维方法,如在讲授电磁感应定律时,教师介绍法拉第是由于偶然发现电流表指针偏转,从而猜测这个过程可能是个暂态过程,在演示单缝衍射实验时,逐渐减小单缝宽度,当缝宽减小到出现明显衍射现象之前,暂停实验,而由学生预测可能出现的图像,再通过实验验证。此类问题往往给学生大脑以强烈刺激,也更能引起学生的求知欲望。

3.为发展学生的猜测能力提供丰富的感性材料。

注意引导学生掌握好物理学科的基本知识结构,学懂弄通基本概念、基本原理、基本方法以及它们之间的逻辑联系和理论框架,鼓励学生在课外广泛地涉猎相关学科的知识,并进行各种有益的旨在增进学生动脑、动手能力的课外活动,重视理论联系实际,加强现代科学技术和近代物理学知识的渗透,将科技最新思想和科技发展动态引入教学之中,这样丰富的知识和表象储备,为发展学生的猜测能力,提供丰富的感性材料,从而激发学生进行猜测的兴趣。

4.在习题教学中训练学生的猜测能力。

通过物理习题的求解和分析训练学生的猜测能力,如在解决暂态过程的问题时不要急于对学生容易遗漏的过程进行全面的分析,而是给学生充分猜测的时间;在分析非单调变化的物理量时,引导学生首先进行猜测性的判断;在具有多解的习题中给学生以充分思考的时间,让学生大胆地进行猜测,最后再进行适当的讨论。

第4篇:狭义相对论的基本原理范文

【关键词】康德哲学/非欧几何/狭义相对论/批判精神

【正文】

20世纪早期可谓科学史上罕有的黄金时代。其间,现代物理学的两大支柱——相对论和量子力学相继创立,由此不仅为物理学提供了新的范式,而且为人类的整个自然观带来了重大变革。赞叹之余,我们更应细察这些科学思想的源流,从而发现通向未来的重要启迪。这就必然把我们带到19世纪后半叶这一令德国人为之骄傲的时代,尤其是在被誉为“德国科学的帝国首相”的亥姆霍兹身上,我们将会发现导向20世纪物理学革命的一系列重要思想。

一 追踪“先天”空间形式的世俗血统

在人类文明史上,数学因其在我们的整个知识体系中的特殊地位而与哲学有着非同寻常的关系。对数学基本问题的思考不仅是推动数学发展的重要动力,而且也使数学的内容不断深化和发展。从柏拉图到康德的哲学唯理论流派就把数学当作自己重要的理论基石,欧氏几何学曾被康德看作是存在先天综合判断的根本依据之一。“经验论哲学家们则反对这一论证,结果都失败了;唯理论者有数学家站在他的一边,要反对他的逻辑,似乎是没有希望的。非欧几何发现之后,情况为之逆转。”[1]经验主义思潮随开始盛行。对于认识论的这次重大革命,亥姆霍兹功不可没。

从其科学生涯的早期,亥姆霍兹就致力于对数学、物理学基本概念的哲学分析和批判考察。在他看来,自然科学与逻辑学在思维方式上是根本不同的。因为在作为“哲学的一部分的逻辑学中,关于大前提及小前提的起源问题一般是没有说明的,……传统逻辑把自己限于那种方式、方法,由这种方式、方法你就能从已知的和给定的命题推出新命题,即一个人如何从三段论中推出命题。它并没有给出我们如何达到最初命题的大前提和小前提的任何信息。一般说来,这正是由一位未知的权威所给的命题。”[2]而自然科学的程序则恰恰相反,它的目的在于获得先前未知的知识,这些知识是不能由任何权威给出的。正是那些先前不知道的命题,形成了自然科学的主要部分及最重要的部分。按照这种精神,对于一个理论来说,亥姆霍兹最为关注的必然是对其前提及基本原理的批判性审查,并进而揭示出它们的“世俗血统”,这正是他科学与哲学研究的突出特色,也是一切富有创造性的杰出科学家及哲学家所共有的优秀品格。因此,从其对生理光学的研究到对一般空间知觉的起源和本性的沉思,再到对几何学及算术公理之基础的批判性考察就成了亥姆霍兹科学与哲学探索的必然发展趋势。

早在1857年给其父亲的信中,亥姆霍兹就明确谈到:“我正感到某些问题急需特别处理的必要性。就我所知,还没有任何一位现代哲学家着手处理这些问题,它们全部属于康德所探讨的先验概念的范围。例如几何学原理和力学原理的起源问题,以及我们必须逻辑地把实在归诸于物质和力这两个抽象概念的理由。其次是来自类比的无意识推理的规律,由此规律我们才从感觉进到知觉。我清楚地认识到这些只有通过哲学探讨才能被解决,也才是可能解决的,以致我感到对更深奥的哲学知识的迫切需要。”[3]但另一方面,他也深知解决这些重大问题决不能像前人那样单靠纯思辨的方法,否则就会重蹈覆辙。随之,亥姆霍兹对感官生理学、特别是生理光学及知觉的起源与本性进行了长期的深入研究,直到1866年才真正转向几何学公理及算术公理之基础的研究。

在亥姆霍兹看来,像几何学这样的科学可以存在,而且按它的方式被建构起来这一事实,已经必然地引起每个对认识论问题感兴趣的人的关注。我们的知识中没有别的学科像几何学那样似乎是现成地出现的。在这方面,它完全避开了其它的自然科学学科必须做的那种收集经验材料的繁琐任务,以致它的程序的形式是唯一地演绎的,结论来自结论,并且谁都不最终地怀疑这些几何定理对现实世界的有效性,从而使得几何学总是被当作令人叹服的例子去证明,不必借助经验我们也能获得关于实在内容的命题的知识,特别是被康德当成了存在先天综合判断的根据,这是不符合批判精神的。亥姆霍兹要进一步对这些所谓的“自明公理”进行批判考察,其目标在于“给出有关几何公理,它们与经验的关系以及用其他公理代替原有公理的逻辑可能性的最新研究成果的一种解释。”[4]

那么,欧氏几何所隐含的基本事实是什么呢?亥姆霍兹的分析表明,欧氏几何的所有证明的基础都在于确立相关的线、角、平面图形及立体图形的叠合。只有当两个图形完全重合时,它们才是相等的。对之作进一步的分析将会发现,为了使两个图形相等,必须把一个图形移向另一个图形。但是如何移动呢?答案无疑是要保证移动过程中图形保持不变,这相当于移动一个不变的刚体。显然,这里隐含的公设是不变刚体的存在,而这个概念是来自对自然物体所显现的物理的或化学的特性的抽象。如果刚体或质点系统不能形状不变地相互移动,如果几何图形的叠合不是一个独立于一切运动的事实,我们就不能谈论全等,也不会有空间测量的可能性。因而,对欧氏几何来说,首要的是全等概念,而不是两点间的最短线,这就是亥姆霍兹基于事实的分析而非解析的准则所得到的一个重要结论。正如他在谈到这一点时所说:“我的出发点是一切最初的空间测量都是基于对全等的观察。显然,光作为直线的性质是一个物理事实,它受到其它领域的特定实验的支持,对于可以获得对几何公理的精确性充分确信的盲人来说,光的这一特性是绝对不重要的。”[5]因为盲人不借助光的直线性也能理解欧氏几何学,但盲人并非通过触觉没有领悟全等。

亥姆霍兹认为,Riemann的解析方法的不足之处在于它没有反映出我们的空间概念所必须的经验部分。而他自己的目标则在于以确立重合为起点,去假定空间测量的可能性并进而探求多维空间的一般解析表达式,这就意味着经验地得到了几何公理。在谈到与Riemann的研究思路的重大区别时,亥姆霍兹指出:“我自己达到同样的考虑部分地来自对于颜色的空间描述的研究,部分地通过对以视野中的测量为目的的视觉估计之起源的研究。Riemann从描述空间中无限接近的两点间距离的一般解析表达式开始,由此导出了关于不变的空间结构的自由运动定理,而我则从观察事实出发,这一事实即不变的空间构形在我们空间中运动的自由性是可能的,并且我由这一事实导出了较Riemann当作公理的解析表达式的必然性。以下就是我的计算所基于的假定:(a)关于空间的连续性和维数;(b)可动刚体的存在,它是通过叠合而进行空间测量的比较时所必需的;(c)这种刚体的可自由运动特性,由(b)(c)两点可保证两个空间图形的叠合与其所在的空间位置无关;(d)刚体的旋转不变性。”[6]亥姆霍兹认为,这四个假定都是普通几何所具有的,“尽管以上假定没有关于直线和平面的存在的公理及平行线公理,它也是完备的和自足的,并且从理论上看,它具有完备性和易于检验的优点。”[7]

从以上四个假设出发,亥姆霍兹达到了Riemann的研究起点,即N维空间中扩展了的毕达哥拉斯定理。如令维数为三,并假定空间是无限扩展的,就只有欧氏空间是可能的。也就是说,欧氏空间只是满足叠合条件的不同类型的空间中的一种。这些空间包括球面空间和伪球面空间,它们也是可设想的无矛盾的几何学。

那么,为什么我们接受了欧氏几何,而没有接受其它可能形式的非欧几何呢?为此,亥姆霍兹认为必须首先研究可想象的和可知觉的东西之间的关系,并进一步从中发现新的准则,以便用于有关几何学的特殊考虑,从而区别出空间知觉中的先天因素和后天因素。他先后研究了假想的二维生物在平面、球面及椭球面上所产生的几何学。从而得出结论:欧氏几何学之所以是我们周围实在世界的几何学,这没有什么可奇怪的,因为我们的视觉观念已经变得与这一环境相适应,因而也服从欧氏几何定律。如果生活在另一种几何结构不同的环境中,我们就会与新的环境相适应,学会看非欧几里德式的三角形,会觉得三角形的内角和不等于180度是正常的,我们也将学会用被那个世界的刚体所定义的一致性来测量距离。也就是说,欧氏几何的优先权是古老习惯的产物,它的基础在于我们的物质环境的欧几里德特性,我们由之认识几何关系的物理实体——刚体和光线在结构上是与欧氏几何定律相一致的,这种经验事实正是这类习惯的源泉。因而,康德意义上的终极范畴是不存在的,它所被赋予的确定性和固有的必然性也是虚幻的。由此,空间直观的“世俗血统”显然无疑其基础受到了根本性的动摇。一场新的认识论革命即将到来,它的目标正是对那些被赋予先天性的基本概念进行彻底地批判和清洗。马赫及赫兹的力学批判正是这一革命的重要组成部分,相对论的创立则是这一认识论革命的重大成果。在爱因斯坦看来,如果没有亥姆霍兹的非欧几何思想,就不可能通向相对论。

二 爱因斯坦:“时间是可疑的”

众所周知,爱因斯坦是完成人类时空观根本变革的伟大哲人——科学家。他的青年时期正值追寻科学原理之基础的英雄时代,而善于从思想起源对基本概念进行批判性考察恰是爱因斯坦成功的关键,这与亥姆霍兹不无重大关系。

正如爱因斯坦多次谈到的那样:还在苏黎世联邦工业大学学习时,他就利用课余时间认真研读了亥姆霍兹、玻耳兹曼、赫兹等人的论著,特别是亥姆霍兹的五卷本《理论物理学讲义》使他受益匪浅。其中的第一卷有一半讲的都是哲学和认识论,具体实验却很少提及,甚至连那个在他的赞同下首次完成的迈克尔逊实验都未提及。正是这套讲义加强了爱因斯坦的批判意识及研究认识论的自觉性。当谈及这段经历时,爱因斯坦不无感慨地说:“在那里我有几位卓越的老师(比如胡尔维兹(A.Hurwitz)、明可夫斯基(H.Minkowski)),所以照理说,我应在数学方面得到深造。可是我大部分时间却是在物理实验室里工作,迷恋于同经验直接接触。其余时间,则主要用于在家里阅读基尔霍夫(G.R.Kirchhoff)、亥姆霍兹(H.L.F.von Helmholtz)、赫兹(H.R.Hertz)等人的著作。”[8]大学毕业后,在伯尔尼专利局做试用检验员的爱因斯坦与C·哈比希特、M·索洛文三人组成了奥林比亚科学院,其中研读和讨论包括亥姆霍兹在内的大师们的著作是科学院的主要活动之一。因而,亥姆霍兹对于几何学、数学及力学基本概念的批判对爱因斯坦的认识论及其对康德哲学的看法有着直接影响。

转贴于 在爱因斯坦看来,康德哲学中最重要的东西是他所说的构成科学的先验概念,而承认先验综合判断的存在则是他设下的圈套。[9]事实上,康德在那些作为任何思维的必要前提的基本概念与来自经验的概念间所作的根本性区分是不正确的,其原因在于康德只强调了那些基本概念的有效性而忘记了它们的世俗来源,从而它们就会被看作是一成不变的既定的东西,并打上“思维的必然性”、“先验地给予”等等烙印。康德正是这样去看欧氏几何的。正如爱因斯坦在“物理学与实在”一文中所指出的那样:“欧几里德几何的纯逻辑的(公理学的)表示,固然有较大的简单性和明确性这个优点,可是它为此所付出的代价是放弃概念构造同感觉经验之间的联系,而几何学对于物理学的意义仅仅是建筑在这种联系之上的。致命的错误在于:认为先于一切经验的逻辑必然性是欧几里德几何的基础,而空间概念是从属于它的。这个致命错误是由这样的事实所引起的:欧几里德几何的公理构造所依据的经验基础已被遗忘了。”[10]既然“先天”空间形式已不可能,“先天的”时间形式还成立吗?这便是相对论的诞生必须突破的一道难关。在放弃了许多无效的尝试之后,爱因斯坦终于醒悟到:“时间是可疑的。”谈到这一点时,爱因斯坦特别强调了休谟和马赫的影响,在他看来:“只要时间的绝对性或同时性的绝对性这条公理不知不觉地留在潜意识里。那么任何想令人满意地澄清这个悖论的尝试,都是注定要失败的。清楚地认识这条公理以及它的任意性,实际上就意味着问题的解决。对于发现这个中心点所需要的思想,就我的情况来说,特别是由于阅读了戴维·休谟和恩斯特·马赫的哲学著作而得到决定性的进展。”[11]这里并未提到亥姆霍兹的作用。的确,亥姆霍兹由于认识到“时间”观念的复杂性而更关注于空间观念的批判性考察。但这种批判对相对论的创立同样有着至关重要的作用。其影响并不亚于马赫那“坚不可摧的怀疑论”。[12]在谈到非欧几何与物理学时爱因斯坦也指出:“物理世界的几何究竟是怎样的?它究竟是欧几里德式的还是任何别种的?许多人都争论过这个问题有没有意义。为了说明这种争论,必须在下面两种观点中彻底坚持一种。第一种观点,同意几何‘体’实际上体现着物理固体,当然,这只要固体遵守那些关于温度、机械应力等等已知的规定就行了。这是从事实际工作的实验物理学家的观点。如果几何的‘截段’,同自然界的一定客体相对应,那么几何的一切命题也都具有说明现实物体的性质。这种观点亥姆霍兹说得最明白,可以补充一句:要是没有这种观点,实际上就不可能通向相对论”。[13]对此应怎样理解呢?如果我们深入考察亥姆霍兹的非欧几何思想,我们将发现,其中不仅仅有对先天空间形式的批判,而且包含着关于“空间”相等的一种操作定义,从而为建立新的时空观指明了方向。

在有关空间知觉的早期研究中,亥姆霍兹就指出,我们对各种空间形状、距离及空间关系的知识的获得都是通过我们的身体或简单仪器的操作及实验而达到的。他关于非欧几何的探讨是通过空间中刚体的运动而进行的,而其中的相等关系正是由刚体向它的比较对象发生的真实运动来作出操作定义的。关于空间间隔的测量,必须首先对作为测量标准的刚体的某些特性给出明确规定,此后测量的意义就由这个作为标准的刚体的重复操作而确定。也就是说,康德意义上的那种绝对普遍而必然的几何学并不存在,只有与关于等同性的操作定义相关的几何学。按着这一观点,爱因斯坦在长时间的沉思之后,对时间概念提出了类似思考:同时性也没有任何绝对意义,它只能在一个确定的操作定义之上讨论,即同时性的爱因斯坦定义。

在“论动体的电动力学”这一划时代论文中,爱因斯坦基于对电动力学所导致的不对称现象的深刻分析和长达十年之久的追光悖论的沉思,首先提出了相对性原理和光速不变原理这两个公设。在随后的运动学部分,爱因斯坦首先给出了同时性的操作定义,从而使得“同时性”概念不仅摆脱先验色彩和直觉性,而且使它与经验建立了密不可分的联系,其结论是同时性的相对性。这个突破之后,先前的极大困难就迎刃而解了,时间的相对性和空间的相对性以及新的时空变换都不过是同时性的相对性的必然结果。这便是该文的运动学部分所提供的狭义相对论的完整的基本原理。

三 从亥姆霍兹到爱因斯坦:富有批判精神的优良传统

科学哲学家赖欣巴哈在谈到相对论的哲学意义时曾指出:“我们把几何学问题的哲学说明归功于亥姆霍兹。他看出物理几何依赖于刚体全等的定义,并因此推得,物理几何本质的清楚说明在逻辑上比几十年之后发展起来的彭加勒的约定论更优越。又是亥姆霍兹,借助于形象化是有关固体和光线的经验结果这一发现,澄清了非欧几何的直观说明。……亥姆霍兹不能成功地劝服他的同代人脱离康德的时空先验论并不是他的错误。只有很少的专家知道他的哲学观点。当由于爱因斯坦的理论使公众的兴趣转向这些问题时,哲学家便开始让步并脱离了康德的先验论”。[14]我们认为,其中的“哲学说明”是指亥姆霍兹的思维和方法在本质上是哲学的,即对基本概念和理论前提进行彻底的批判考察,这正是康德哲学所富有的批判精神。正如海涅谈到康德的《纯粹理性批判》在德国引起的哲学热潮时所说:“康德引起这次巨大的精神运动,与其说是通过他的著作的内容,倒不如说是通过在他著作中的那种批判精神,那种现在已经渗入于一切科学之中的批判精神。所有学科都受到了它的侵袭。……德国被康德引入了哲学的道路,因此哲学变成了一件民族的事业。一群出色的大思想家突然出现在德国的国土上,就像用魔法呼唤出来的一样。”[15]的确,在康德之后,出现了费希特、谢林和黑格尔,他们沿着唯心主义道路进一步发展了康德哲学。与之不同的是,稍后的一大批德国杰出的科学家走的是另外一条以实证科学去解释和发展康德哲学的道路,其结果是康德哲学的许多结论得到了改造,但就其精神本质而论,则是对康德哲学的精神——批判精神的真正继承与发扬,这也正是德国科学的优秀传统的突出特点。这后一条道路的开拓者正是亥姆霍兹,他也因而被看作新康德主义的领导者和科学哲学的先驱者。赫兹、普朗克、爱因斯坦则是他的直接传人。他们的思维在本质上是哲学的思维,他们既是科学家,也是哲学家。在此,富有批判精神的文化传统发挥着重要的助长剂和催化剂的作用。爱因斯坦对此深有感触,他认为:“使青年人发展批判的独立思考,对于有价值的教育也是生命攸关的。”[16]

以上探讨不免使我们联想到中国教育的现状。我们的课堂、教材灌入给青少年的都是无血无肉的死的东西,知识技能化的倾向愈演愈烈,科学精神、科学思想丧失殆尽。由此,怎么能培育出世界级的科学大师呢?这或许可算作我们从本文得到的一个重要启示吧!

【参考文献】

[1]赖欣巴哈.科学哲学的兴起[M].北京:商务印书馆,1983.112.

[2]Helmholtz: Vorlesungen uber Theorerische Phydsik, Bd.I, Leipzig,1897.S.5-6.

[3]L.Koenigsberger:Hermann von Helmholtz, Oxford,1906.P.160.

[4][5]Helmholtz: Epistemological Writings,Boston,1997,P.2;P.39.

[6][7]Helmholtz: Wissenschaftliche Abhandlungen,Leigzig,1868,S.621.S.616.

[8][9][10][11][13]爱因斯坦文集(第一卷)[M].北京:商务印书馆,1983.7、104、349、24、207.

[12]A·I·米勒.科学思维中的意象[M].武汉:湖北教育出版社,1991.104.

[14]Albert Einstein: Philosopher--Scientist,Edited by P. A. Schilpp, New York,1949,P.304.

第5篇:狭义相对论的基本原理范文

[摘要]以学生为主体的角度出发,根据问卷调查结果和多年教学经验提出了基础光学课程改革的几点见解,第一、基础光学教学内容改革的必要性及具体措施,第二、注重教学步骤的完整性,第三、注重教学方法的改革。

引 言

光学是高等院校物理专业必修的一门专业基础课,是物理学中最古老的一门学科之一,同时也是一门年轻的学科,具有强大的生命力和不可估量的发展前途。光学对原子物理学的学习有极其重要的作用,而且光学是近代物理的生长点,量子论、狭义相对论都起源于光学。所以,学好光学无疑对相关课程的学习起着十分积极的作用。近年来有关光学课程的教学改革呼声日益高涨,人们分别从不同的角度对光学的教学改革进行着积极而有益的探索[1-6]。本文借助于罗洋城对北师大和韶关学院学生的问卷调查[6],结合自己多年的教学经验和他人的先进成果,广泛征集学生见解,对光学课程的改革进行积极了的探索,提出了基础光学课程教学改革的几点见解,供大家鉴借和分享。

教学内容的选取

现流行的光学教材,对几何光学和波动光学的基本理论的讲解是详细的,完善的,但也存在不少问题,主要表现在:第一,几何光学的内容占的篇幅过大,以华东师大姚启钧编的《光学教程》为例[7],仅几何光学的基本原理这一章,公式大大小小就有45个,有些问题中学已经讲过,没有必要重复讲授。适当精简几何光学内容,使内容在满足系统化、条理化的基础上做出合理的取舍。第二,光的量子性部分的历史,如“紫外灾难”和“两朵乌云”等故事完全可以放到物理学史中去讲授。第三,现代光学部分涉及面较广,学科的内容非常丰富,学科体系十分庞大,而光学课程的学时有限,所以现代光学部分则应该单独罗列出去,建议在大三再开设现代光学基础,满足学生的求知欲和飞速发展的光学科技。基础光学部分在讲授时应该适当融入前沿科技内容,避免单纯概念的枯燥,使教学别具一格,既深化了概念,同时将光学基本原理与其在科技前沿中的应用结合起来,大大深化了基本原理教学,开阔了视野,充分调动了学生的积极性,激发求知欲和探索物理奥妙的精神,同时也增加了课程的魅力。但是,在讲授前沿科技与古老光学原理的结合时一定要注意突出光学基本原理的描述,达到用科技前沿实例讲授并深化课程基本概念和基本原理的教学目的。同时,基础光学部分在讲授时还要注重课程内容的条理化,虽然波动光学和几何光学看似联系不十分紧密,但是至始至终都离不开两个概念就是光程和相位差,所以在整个基础光学部分的教学中要始终贯穿这两个基本概念使教学内容浑然一体。

注重教学步骤的完整性

注重教学步骤的完整性有力的保证了教学质量。课堂教学是学生获得知识的重要途径,由于教学体制特点,很多学生依赖于课堂,所以确保课堂教学效果是教学中的非常重要的一个环节。除了借助于现代化教学手段提高教学效果外,从内容的选取和语言描述上需下足功夫,充分地把教师的个人魅力展现出来,并且把这种魅力融入到教学中,以提高课堂教学效率。作业批改是课堂教学的延伸,它是发现问题,解决问题的重要途径,通过对作业细致批改几乎可以了解每一个学生的学习状况和学习状态。课后答疑是课堂教学的重要辅助形式,也是教学过程中的有机组成部分。此外,光学和其它物理学学科一样是一门以观察和实验为基础的学科,许多物理知识都是通过观察实验,经过认真的思索总结出来的。实验教学不仅仅是学生动手的过程,更是动脑思维的过程。注重实验教学能更好地激发学生的学习兴趣,并且能培养学生严肃、认真、端正的实验态度,获得一些感性认识,经过进一步引导使感性认识上升为理性认识,为光学课程的学习起到积极的作用。值得一提的是验证性实验所占比重过大[8],大学阶段的实验教学应该不只是“验证”,通过增加一些设计性实验以激发学生的创新能力。

注重教学方法的现代化

现代教学技术手段的发展和应用提高了单位学时的信息量,多媒体技术中实例分析和动画演示激发了学生的学习兴趣。然而我们在运用现代技术手段教学过程中,还是遇到了许多新问题,如过多依赖于ppt教学,以至于学生感觉象放电影一样,条理性、逻辑性和系统性体现不到位。所以,我们还要不断探索新的教学方法和技巧,从而使现代化教学内容和教学手段得以更充分地发挥作用。此外,加强与国内兄弟院校的了解和交流,使我们能够开阔眼界,增加知识,有效提高我们的教学质量。最好能够让教师走出去,同时也能把相关教学经验丰富的人事请进来,借鉴和学习兄弟院校光学教学改革和发展的成功经验。总之,在科学技术飞速发展的今天,大学阶段的学习是很多人接受系统学习的最后一站,基础光学课程的学习对今后的学习起着非常重要的作用。所以在教学中要从教学内容、教学步骤、教学方法等方面完善教学过程,强化基础教育,紧跟现代科技发展步伐,积极大胆地尝试现代科技教学手段,探索新的教学方法,使学生的学习由被动转为主动,为今后的学习奠定基础。

参考文献

[1]高艳霞.面向21世纪光学课程改革的探索[J].中山大学学报论丛,2001,21(1):112-115.

[2]冯学斌,刘兴波.光学投影媒体教学体系及内容和方法改革[J].山东师范大学学报(自然科学版),2005,20(4):102-103.

[3]王形华等.高师院校光学教材内容改革的几点设想[J].中国西部科技,2006,10:67-68.

[4]李玉红.“光学”课程教学改革实践与成果[J].高等理科教育,2006,2:97-99.

[5]于国萍,游璞.改革光学教材适应社会需要[J].光电子技术与信息,2005,18(2):101-102.

[6]罗洋城.光学学习困难的调查与分析[J].韶关学院学报(自然科学版),2002,23(6):30-36.

第6篇:狭义相对论的基本原理范文

【摘 要】物理学是一门在学生们看来比较枯燥的学科,教师难教、学生难学。但物理学习又有一定规律可循,也有一定学习方法可以借鉴。笔者根据几年高中物理教学经验,总结出了一套学好物理的方法,在文中予以详述。

【关键词】高中物理;学习;方法;技巧

高中物理怎样学?这是高中学生经常提出的问题,也是高中物理老师经常遇到的问题。同学们常常想找到一种巧妙的学习方法使自己轻而易举或稍加努力就能掌握好应学的知识。其实,学习任何一门知识都有一定的技巧和方法,但对不同的人又不能采用完全统一的方法,这也就是所谓的“学无定法”。

任何一个学科都有其内在规律,按照其规律及特点去学习、去探讨,这就是基本的思想方法。关于物理学科的学习方法,笔者就此谈谈个人的一些看法。

1. 物理学科是研究什么的,它在社会发展、人类进步和生产生活中具有什么样的作用 物理学是自然科学中的一部分,是一门研究物质、能量和它们相互作用的学科,它既包含了对物质世界普遍而基本的规律的探索,又对其他自然科学以及科学技术社会生产力的发展具有强大的推动作用。物理学是一门基础学科与其他自然科学有密切的联系,如天文学、地理学、生物学、化学等。我们学习物理不仅仅是为了认识客观世界,更重要是利用物理知识改造世界,为祖国的社会主义现代化建设服务,为人类文明做出贡献。科学技术的每一次重大突破都跟物理学分不开,如果不是在19世纪中期发现了电磁感应现象,并建立起相应的电磁理论,就不会有发电机、电动机,现在电气化生产就不可能实现,也就不可能有我们现在的网校,如果没有对气体性质的研究和热学理论的建立,那么应用机、汽车、轮船、拖拉机、机车、坦克等的内燃机也就不会存在。如果至今没有人类出行的交通工具,我们就真正处在封闭状态中,探亲访友,出门旅游,将成为空想。没有万有引力定律的科学规律,人造卫星、宇宙飞船、人类登月更不可能变为现实。进入20世纪物理学更广泛应用于工农业生产和科学技术的各个领域,成为科学技术的基础。征得中科院部分专家学者的意见,新华社评出的20世纪对世界产生深远影响的十件大事中有两件是与物理学有关的。首件事就是物理学革命,1905年爱因斯坦提出的狭义相对论基本原理和1916年提出的广义相对论基础与普朗克提出的量子论一起改变了人们对时间、空间、物质和运动的概念。20世纪大多数物质文明都是从相对论和量子论这两个物理基础学科衍生和发展起来的。

另一件是第一台电子计算机的诞生与因特网的应用,从目前看计算机技术发展日新月异,应用越来越广泛,改变了人类的生活和工作方式,促进生产力发展,人类开始迈向信息社会。

基于以上看法,同学们就会明确物理学研究内容,为什么要学习物理学的问题也就解决了。大家兴趣盎然,摩拳擦掌,准备在物理学的知识海洋中傲游。

2. 积极主动参与课堂演示实验和学生实验,可以帮助学习者加深对物理过程的认识和对物理概念、物理规律的理解,是学好物理课的重要手段之一 实验是物理学的基础,实验过程隐含了丰富的科学思想和科学方法,既包括了操作技能和处理实际问题的本领,又包括思辩性的猜想和假设,逻辑的思考和论证,准确的测量和数据分析,严密的推理和清晰的表述。在科学思想的指导下,用科学方法学习物理自然会有较高的收益。

另外,要自己动手做实验,要做参于者而不当旁观者,做实验所用到仪器性能、使用方法与物理知识有关,而实验原理往往就是所学的规律。还有就是在日常生活中多用心观察各种物理现象。

3. 学习物理不是简单的套用公式,进行数字推导,重要的是要掌握扎实的基础知识 要对基本物理概念、物理规律清楚弄清本质,明白相关概念和规律之间的联系,明白物理公式定理、定律在什么条件下应用而不能简单地以做习题,题海战术来代替,对基本概念和基本规律的学习和理解,如果概念不清做题不仅费时间费精力,而且遇到的矛盾或困惑就越多,久而久之产生畏难情绪,做习题的目的是为了巩固基本知识,从而达到灵活运用。不少同学总是觉得自己对概念已懂了,就是不会用,一遇到物理题就不知从何下手。这是不少同学常有的困惑。应该怎么办呢?首先应对概念反复比较,找出与相近的概念和规律的区别。另外要根据题目所给的条件,搞清物理过程、物理情景建立物理模型。然后找出每个物理过程遵守什么样的规律,各物理过程之间有什么联系。根据所学知识列出相应方程。做物理题的过程重要的是分析思考,分析思考的辅导手段是画图。图就是一种很好的物理模型,这样变抽象为具体,变虚幻为真实,解起题来就容易多了。

第7篇:狭义相对论的基本原理范文

二十世纪即将结,二十一世纪即将来临,二十世纪是光辉灿烂的一个世纪,是个类社会发展最迅速的一个世纪,是科学技术发展最迅速的一个世纪,也是物理学发展最迅速的一个世纪。在这一百年中发生了物理学革命,建立了相对信纸和量子力学,完成了从经典物理学到现代物理学的转变。在二十世纪二、三十年代以后,现代物理学在深度和广度上有了进一步的蓬勃发展,产生了一系列的新学科的交叉学科、边缘学科,人类对物质世界的规律有了更深刻的认识,物理学理论达到了一个新高度,现代物理学达到了成熟的阶段。

在此世纪之交的时候,人们自然想展望一下二十一世纪物理学的发展前景,探索今后物理学发展的方向。我想谈一谈我对这个问题的一些看法和观点。首先,我们来回顾一下上一个世纪之交物理学发展的情况,把当前的情况与一百年前的情况作比较对于探索二十一世纪物理学发展的方向是很有帮助的。

一、历史的回顾

十九世纪末二十世纪初,经典物物学的各个分支学科均发展到了完善、成熟的阶段,随着热力学和统计力学的建立以及麦克斯韦电磁场理论的建立,经典物理学达到了它的顶峰,当时人们以系统的形式描绘出一幅物理世界的清晰、完整的图画,几乎能完美地解释所有已经观察到的物理现象。由于经典物理学的巨大成就,当时不少物理学家产生了这样一种思想:认为物理学的大厦已经建成,物理学的发展基本上已经完成,人们对物理世界的解释已经达到了终点。物理学的一些基本的、原则的问题都已经解决,剩下来的只是进一步精确化的问题,即在一些细节上作一些补充和修正,使已知公式中的各个常数测得更精确一些。

然而,在十九世纪末二十世纪初,正当物理学家在庆贺物理学大厦落成之际,科学实验却发现了许多经典物理学无法解释的事实。首先是世纪之交物理学的三大发现:电子、X射线和放射性现象的发现。其次是经典物理学的万里晴空中出现了两朵“乌云”:“以太漂移”的“零结果”和黑体辐射的“紫外灾难”。[1]这些实验结果与经典物理学的基本概念及基本理论有尖锐的矛盾,经典物理学的传统观念受到巨大的冲击,经典物理发生了“严重的危机”。由此引起了物理学的一场伟大的革命。爱因斯坦创立了相对论;海林堡、薛定谔等一群科学家创立了量子力学。现代物理学诞生了!

把物理学发展的现状与上一个世纪之交的情况作比较,可以看到两者之间有相似之外,也有不同之处。

在相对论和量子力学建立起来以后,现代物理学经过七十多年的发展,已经达到了成熟的阶段。人类对物质世界规律的认识达到了空前的高度,用现有的理论几乎能够很好地解释现在已知的一切物理现象。可以说,现代物理学的大厦已经建成。在这一点上,目前有情况与上一个世纪之交的情况很相似。因此,有少数物理学家认为今后物理学不会有革命性的进展了,物理学的根本性的问题、原则问题都已经解决了,今后能做到的只是在现有理论的基础上在深度和广度两方面发展现代物理学,对现有的理论作一些补充和修正。然而,由于有了一百年前的历史经验,多数物理学家并不赞成这种观点,他们相信物理学迟早会有突破性的发展。另一方面,虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。

虽然在微观世界和宇宙学领域中有一些物理现象是现代物理学的理论不能很好地解释的,但是这些矛盾并不是严重到了非要彻底改造现有理认纱可的程度。在这方面,目前的情况与上一个世纪之交的情况不同。在上一个世纪之交,经典物理学发生了“严重的危机”;而在本世纪之交,现代物理学并无“危机”。因此,我认为目前发生现代物理学革命的条件似乎尚不成熟。客观物质世界是分层次的。一般说来,每个层次中的体系都由大量的小体系(属于下一个层次)构成。从一定意义上说,宏观与微观是相对的,宏观体系由大量的微观系统构成。物质世界从微观到宏观分成很多层次。物理学研究的目的包括:探索各层次的运动规律和探索各层次间的联系。

回顾二十世纪物理学的发展,是在三个方向上前进的。在二十一世纪,物理学也将在这三个方向上继续向前发展。

1)在微观方向上深入下去。在这个方向上,我们已经了解了原子核的结构,发现了大量的基本粒子及其运规律,建立了核物理学和粒子物理学,认识到强子是由夸克构成的。今后可能会有新的进展。但如果要探索更深层次的现象,必须有更强大得多的加速器,而这是非常艰巨的任务,所以我认为近期内在这个方向上难以有突破性的进展。

2)在宏观方向上拓展开去。1948年美国的伽莫夫提出“大爆炸”理论,当时并未引起重视。1965年美国的彭齐亚斯和威尔逊观测到宇宙背景辐射,再加上其他的观测结果,为“大爆炸”理论提供了有力的证据,从此“大爆炸”理论得到广泛的支持,1981年日本的佐藤胜彦和美国的古斯同时提出暴胀理论。八十年代以后,英国的霍金[2,3]等人开始论述宇宙的创生,认为宇宙从“无”诞生,今后在这个方向上将会继续有所发展。从根本上来说,现代宇宙学的继续发展有赖于向广漠的宇宙更遥远处观测的新结果,这需要人类制造出比哈勃望远镜性能更优越得多的、各个波段的太空天文望远镜,这是很艰巨的任务。

我个人对于近年来提出的宇宙创生学说是不太信的,并且认为“大爆炸”理论只是对宇宙的一个近似的描述。因为现在的宇宙学研究的只是我们能观测到的范围以内的“宇宙”,而我相信宇宙是无限的,在我们这个“宇宙”以外还有无数个“宇宙”,这些宇宙不是互不相干、各自孤立的,而是互相有影响、有作用的。现代宇宙学只研究我们这个“宇宙”,当然只能得到近似的结果,把他们的延伸到“宇宙”创生了初及遥远的未来,则失误更大。

3)深入探索各层次间的联系。

这正是统计物理学研究的主要内容。二十世纪在这方面取得了巨大的成就,先是非平衡态统计物理学有了得大的发展,然后建立了“耗散结构”理论、协同论和突变论,接着混沌论和分形论相继发展起来了。近年来把这些分支学科都纳入非线性科学的范畴。相信在二十一世纪非线性科学的发展有广阔的前景。

上述的物理学的发展依然现代物理学现有的基本理论的框架内。在下个世纪,物理学的基本理论应该怎样发展呢?有一些物理学家在追求“超统一理论”。在这方面,起初是爱因斯坦、海森堡等天才科学家努力探索“统一场论”;直到1967、1968年,美国的温伯格和巴基斯坦的萨拉姆提出统一电磁力和弱力的“电弱理论”;目前有一些物理学家正在探索加上强力的“大统一理论”以及再加上引力把四种力都统一起来的“超统一理论”,他们的探索能否成功尚未定论。

爱因斯坦当初探索“统一场论”是基于他的“物理世界统一性”的思想[4],但是他努力探索了三十年,最终没有成功。我对此有不同的观点,根据辩证唯物主义的基本原理,我认为“物质世界是既统一,又多样化的”。且莫论追求“超统一理论”能否成功,即便此理论完成了,它也不是物理学发展的终点。因为“在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识只具有相对的真理性。无数相对的真理之总和,就是绝对的真理。”“人们在实践中对于真理的认识也就永远没有完结。”[5]

现代物理学的革命将怎样发生呢?我认为可能有两个方面值得考试:

1)客观世界可能不是只有四种力。第五、第六……种力究竟何在呢?现在我们不知道。我的直觉是:将来最早发现的第五种力可能存在于生命现象中。物质构成了生命体之后,其运动和变化实在太奥妙了,我们没有认识的问题实在太多了,我们今天对于生命科学的认识犹如亚里斯多德时代的人们对于物理学的认识,因此在这方面取得突破性的进展是很可能的。我认为,物理学业与生命科学的交叉点是二十一世纪物理学发展的方向之一,与此有关的最关于复杂性研究的非线性科学的发展。

2)现代物理学理论也只是相对真理,而不是绝对真理。应该通过审思现代物理学理论基础的不完善性来探寻现代物理学革命的突破口,在下一节中将介绍我的观点。

三、现代物理学的理论基础是完美的吗?

相对论和量子力学是现代物理学的两大支柱,这两大支柱的理论基础是否十全十美的

呢?我们来审思一下这个问题。

1)对相对论的审思

当年爱因斯坦就是从关于光速和关于时间要领的思考开始,创立了狭义相对论[1]。我们今天探寻现代物理学革命的突破口,也应该从重新审思时空的概念入手。爱因劳动保护坦创立狭义相对论是从讲座惯性系中不同地点的两个“事件”的同时性开始的[4],他规定用光信号校正不同地点的两个时钟来定义“同时”,这样就很自然地导出了洛仑兹变换,进一步导致一个四维时空(x,y,z,ict)(c是光速)。为什么爱因劳动保护担提出用光信号来校正时钟,而不用别的信号呢?在他的论文中没有说明这个问题,其实这是有深刻含意的。

时间、空间是物质运动的表现形式,不能脱离物理质运动谈论时间、空间,在定义时空时应该说明是关于什么运动的时空。现代物理学认为超距作用是不存在的,A处发生的“事件”影响B处的“事件”必须通过一定的场传递过去,传递需要一定的时间,时间、空间的定义与这个传递速度是密切相关的。如果这种场是电磁场,则电磁相互作用传递的速度就是光速。因此,爱因斯坦定义的时空实际上是关于由电磁相互作用引起的物质运动的时空,适用于描述这种运动。

爱因斯坦把他定义的时间应用于所有的物质运动,实际上就暗含了这样的假设:引力相互作用的传递速度也是光速c.但是引力相互作用是否也是以光速传递的呢?令引力相互作用的传递速度为c'。至今为止,并无实验事实证明c'等于c。爱因斯坦因他的“物质世界统一性”的世界观而在实际上假定了c=c'。我持有“物质世界既统一,又多样化的”以观点,再加之电磁力和引力的强度在数量级上相差太多,因此我相相信c'可能不等于c。工样,关于由电磁力引起的物质运动的四维时空(x,y,z,ict)和关于由引力引起的运动的时空(x',y',z',ic't')是不同的。如果研究的问题只涉及一种相互作用,则按照现在的理论建立起来的运动方程的形式不变。例如,爱因斯坦引力场方程的形式不变,只需把常数c改为c'。如果研究的问题涉及两种相互作用,则需要建立新的理论。不过,首要的事情是由实验事实来判断c'和c是否相等;如果不相等,需要导出c'的数值。

我在二十多年前开始形成上述观点,当时测量引力波是众所瞩目的一个热点,我曾对那些实验寄予厚望,希望能从实验结果推算出c'是否等于c。令人遗憾的是,经过长斯的努力引引力波实验没有获得肯定的结果,随后这项工作冷下去了。根据爱国斯坦理论预言的引力波是微弱的,如果在现代实验技术能够达到的测量灵敏度和准确度之下,这样弱的引力波应该能够探测到的话,长期的实验得不到肯定的结果似乎暗示了害因斯坦理论的缺点。应该从c'可能不等于c这个角度来考虑问题,如果c'和c有较大的差异,则可能导出引力波的强度比根据爱因劳动保护坦理论预言的强度弱得多的结果。

弱力、强力与引力、电磁力有本质的不同,前两者是短程力,后两者是长程力。不同的相互作用是通过传递不同的媒介粒子而实现的。引力相互作用的传递者是引力子;电磁相互作用的传递者是光子;弱相互作用的传递者是规范粒子(光子除外);强相互作用的传递者是介子。引力子和光子的静质量为零,按照爱因斯坦的理论,引力相互作用和电磁相互作用的传递速度都是光速。并且与传递粒子的静质量和能量有关,因而其传递速度是多种多样的。

在研究由弱或强相互作用引起的物质运动时,定义惯性系中不同的地点的两个“事件”的“同时”,是否应该用弱力或强力信号取代光信号呢?我对核物理学和粒子物理学是外行,不想贸然回答这个问题。如果应该用弱力或强力信号取代光信号,那么关于由弱力或强力引起的物质运动的时空和关于由电磁力引起的运动的时空(x,y,z,ict)及关于由引力引起的运动的时空(x',y',z',ic't')

有很大的不同。设弱或强相互作用的传递速度为c'',c''不是常数,而是可变的,则关于由弱或强力引起的运动的时空为(x'',y'',z'',Ic''t''),时间t''和空间(x'',y'',z'')将是c'的函数。然而,很可能应该这样来考虑问题:关于由弱力引起的运动的时空,在定义中应该以规范粒子的静质量取作零时的速度c1取代光速c。由于“电弱理论”把弱力和电磁力统一起来了,因此有可能c1=c,则关于由弱力引起的运动的时空和关于由电磁力引起的运动的时空是相同的,同为(x,y,z,ict)。关于由强力引起的运动的时空,在定义中应该以介子的静质量取作零(在理论上取作零,在实际上没有静质量为零的介子)时的速度c''取代光速c,c''可能不等于c。则关于由强力引起的运动的时空(x'',y'',z'',Ic''t'')不同于(x,y,z,ict)或(x',y',z',ic't')。无论上述两种考虑中哪一种是对的,整个物质世界的时空将是高于四维的多维时空。对于由短程力(或只是强力)引起的物质运动,如果时空有了新的一义,就需要建立新的理论,也就是说需要建立新的量子场论、新的核物理学和新的粒子物理学等。如果研究的问题既清及长程力,又涉及短程力(尤其是强力),则更需要建立新的理论。

1)对量子力学的审思

从量子力学发展到量子场论的时候,遇到了“发散困难”[6]。1946——1949年间,日本的朝永振一郎、美国的费曼和施温格提出“重整化”方法,克服了“发散困难”。但是“重整化”理论仍然存在着逻辑上的缺陷,并没有彻底克服这一困难。“发散困难”的一个基本原因是粒子的“固有”能量(静止能量)与运动能量、相互作用能量合在一起计算[6],这与德布罗意波在υ=0时的异性。

现在我陷入一个两难的处境:如果采用传统的德布罗意关系,就只得接受不合理的德布罗意波奇异性;如果采纳修正的德布罗意关系,就必须面对使新的理论满足相对论协变性的难题。是否有解决问题的其他途径呢?我认为这个问题或许还与时间、空间的定义有关。现在的量子力学理论中时宽人的定义实质上依然是决定论的定义,而不确定原理是微观世界的一条基本规律,所以时间、空间都不是严格确定的,决定论的时空要领不再适用。在时间或空间的间隔非常小的时候,描写事情顺序的“前”、“后”概念将失去意义。此外,在重新定义时空时还应考虑相关的物质运动的类别。模糊数学已经发展得相当成熟了,把这个数学工具用到微观世界时空的定义中去可能是很值得一试的。

1)在二十一世纪物理学将在三个方向上继续向前发展(1)在微观方向上深入下去;(2)在宏观方向上拓展开去;(3)深入探索各层次间的联系,进一步发展非线性科学。

2)可能应该从两方面去控寻现代物理学革命的突破口。(1)发现客观世界中已知的四种力以外的其他力;(2)通过审思相对论和量子力学的理论基础,重新定义时间、空间,建立新的理论

第8篇:狭义相对论的基本原理范文

关键词大学物理 分层教学 开放思维 创新思维

中图分类号:G420文献标识码:A

大学物理课程是理工科多数专业开设的一门必修基础课,现代人才的内涵和培养模式对这门基础课程的改革提出了更高更新的要求。为了顺应时代的发展,必须对大学物理课程的教学内容和教学方法等进行改革,这方面的研究与探讨已成为一个重要课题,目前大学物理的教育及改革却存在着许多矛盾,笔者根据自己和项目组成员的多年教学经验在以下方面做了改革。

1 注重理论教学与实验教学相结合

大学物理学的教学包括理论教学和实验教学。理论教学和实验教学各有特点,它们的有效配合是提高学生素质的最佳途径。由于实验室资源有限,就容易出现理论内容滞后或远远超前于实验的情况,那么在实验课有限的时间内,学生就不容易理解实验原理,实验过程也很被动,甚至实验完成后仍然浑然不清,达不到实验的目的。但若教师讲授原理花费的时间较多,学生动手完成实验的时间就会相对减少,这样就会影响学生实验技能的提高,削弱实验的效果。鉴于此,我们对大学物理学进行了理论课与实验课相互配合整体优化的教学改革:理论课涉及到的实验在理论讲述中就较详细地讲解其实验原理,并且讲授了理论知识后及时开设与之相对应的物理实验。这样,一方面通过实验的定量验证,可以加深学生对物理原理的理解,另一方面,在实验教学中就可以让学生利用更多的时间进行操作,分析问题,提出问题,解决问题,以提高他们的实验技能和创新能力。比如,理论课上学生学习了霍尔效应原理,实验上利用霍尔效应测磁场。教师只需讲述实验中产生的附加效应及消除方法和实验仪器的使用方法,学生就可以开始实验。实验完成后,学生对实验结果进行分析、探究,比如霍尔元件有什么功能、它有什么特性、在生活中有哪些应用等等,学生可以通过思考和查阅资料得出结论,并撰写论文。大学物理理论课与实验课相互配合整体优化是提高物理学教学效果的一条很好的途径,经过实践,深受学生的欢迎, 收到了良好的效果。

2 教学中要尤其注重分层教学

“分层教学”是指针对学生知识、能力结构和学习需求的不同类型而分群体选择不同的教学目标和内容,实施不同的教学方式,从而让不同层次的学生都得到充分发展的一种教学模式。本校目前有二十多个专业开设了大学物理课程(大学物理1和2),针对不同的专业需求制定不同的教学计划,这就要求我们教师必须提前作好充分的调查研究工作,对不同的专业需要必须要有足够的了解,再针对不同的专业制定相应的教学计划,多方核实。考虑到专业比较多,涉及面也比较广,对于类似的专业需要可以制定大体相同的教学计划。确实可行之后再找几个专业进行相应的试点。试点成功之后才能在全校范围内推广。虽然比起统一的教学计划来讲要复杂、要麻烦,但这样可以很大限度地调动学生学学物理这门基础课程的积极性,权衡利弊,从长远来讲,还是很有意义的。当然,这也对我们教师的业务水平提出了更高的要求。只有教师业务水平提高了,掌握的新东西多了,对当今科技发展了解得多了,才可以使课堂教学生动化,富有趣味性,启发式教学才会运用自如。这样就会逐步引导学生去自觉地学习物理学,培养学生对物理学的兴趣,进而达到提高教学质量的目的。

3 注重物理学中的逻辑思维,开放思维和创新思维

科学史的众多重要事例都指出,当科学研究发生重大变革(如广义相对论的诞生)从一个能区进入一个新的能区时,物理出现突变,我们思维上也必须出现突变。这是简单的逻辑推理所不能完成的,而要求思维方式从逻辑思维变到创新思维。在教学中尤其要注意介绍物理概念、思想以及各个分支领域之间的内在联系和理论中的问题。比如最简单的牛顿定律,就有很多本质问题,而这些方面不仅在中学而且在大学教学中往往被有意识地略去了,似乎这种做法可以避免让学生陷入思维混乱和概念模糊,但从长远来看,由于不能启发学生向更深层次去思考,对已有理论进行质疑,对他们将来从更深层次思考问题会产生阻碍。我们教与学的目的在于创新,培养创新的人才。我们教学的方式和手段一定要根据培养创新思维的目标来进行思考。我们要鼓励学生开放和创新式的思维,但也要求他们学会逻辑思维,不能偏废。

4 注重物理学思想和方法,强调物理图像

对学生而言,学会科学的思维和方法比获取物理学知识本身更为重要。积极寻找和发掘那些对学生的科学思维和方法有启迪的典型内容,尽可能地把物理学方法论中所涉及到的一些基本原理介绍给学生。例如,伽利略对科学的贡献;发现万有引力定律的思想过程;爱因斯坦在建立了狭义相对论以后为什么又提出广义相对论,他是如何考虑问题的?等等。大学物理学作为一门非物理专业的公共基础课程,物理图像比起严密的数学推导更重要,凡是能够用物理图像说清楚的就尽量不用较复杂的数学推证。

5 注重物理学知识与实际应用相结合

教学中要注重物理学知识与科学技术相结合,与生活实际相结合,与自然现象相结合。例如,用力学中的角动量守恒知识来解释体育运动或舞蹈中的人体旋转问题;把光的多普勒效应与雷达测速应用联系起来;把反射光的偏振知识与生活实际中的偏振太阳镜的应用联系起来;把光的双缝或多缝干涉与电磁波天线阵列定向辐射电磁波的应用联系起来等等。目的是要让学生在学完物理学后产生一种自信和满足,对自己周围的一切有新的认识,对许多生活中或是自然界的现象可以说出其所以然,对许多高新技术不会感到惊讶,恍然洞悉其核心原理是那么简单而基本,从而使学生感到学学物理对自己是有益的。

在实践过程中,大学物理的教学改革必然还会遇到许多问题和困难, 但是我们相信,只要思路正确, 措施得当, 在实践中不断地总结经验教训,就一定能够使大学物理课程教学改革得到不断的深入和完善。

[基金项目] 2006年中南林业科技大学教学研究项目(编号15)

参考文献

[1] 张淳民.大学物理课程体系教学内容、教学方法改革的时间探索[J].大学物理,2000(3):43~47.

第9篇:狭义相对论的基本原理范文

一、近代物理教学方法的改革

1.在近代物理教学中引入物理学史,培养学生创新能力

教学的基本任务除了向学生传授近代物理基本知识外,更重要的是培养学生的科学素质和创新能力。但是在一般的近代物理教材中,物理大师当初做出的重大发现的历史过程,即他们探索的过程,独特的思路,认识的飞跃和十分有效的方法,往往被过滤掉。这种状况对学生全面发展是十分不利的。因此,在近代物理教学中,讲述一些物理学发现的历史案例是克服这一缺陷的有效手段。在教学中把着眼点放在物理学中的推理、发现以及概念形成的认识过程上,生动的描绘科学家探索物理世界奥秘的艰辛历程,以其中的历程和哲理去感染学生,激发他们学习近代物理的兴趣,提高他们学习的积极性。并使学生受到科学研究方法的熏陶,获得比从单纯的知识灌输中得不到的才能。——培养学生科学探索精神。学生学习近代物理,光记住一些物理概念、数据、定律和公式是远远不够的,这并不表示真正理解了近代物理。因为科学的主体并不是它所获得知识的多少与深度,更重要的在于“探索”。因此,在教学中引入物理学史能使学生从近代物理知识的更替演变中认识它的条件性,局限性,认识科学理论的相对真理性。使学生知道物理学永远是一个充满生机活力的学科,它永远不会老化和僵死,永远不会终止探索步伐。——培养学生创新能力和科学方法。在教学中,不但是为传授知识,更重要的是对学生进行科学方法和创新能力的培养。要使学生懂得:不囿于传统理论和观念,不迷信权威和书本,是科学创新的思想前提。在科学本身的矛盾已经显现出来时,谁能首先同束缚科学发展的传统观念决裂,勇于提出新思想,新见解,谁就可能抢占到科学发展的前沿阵地,做出突破性的发现。爱因斯坦不拘泥于一切传统的观念,他以彻底创新精神革新了旧有的观念,建立了狭义相对论的时空观,成为现代物理学的杰出代表。杨振宁和李政道敏锐地审察了从未被人怀疑过的宇称守恒定律的适用范围,大胆提出了弱相互作用中宇称不守恒的假说,从而导致了物理学理论的一个突破性的进展。在近代物理发展过程中,人们广泛采用了多种科学研究方法,如实验方法、模型方法、分析和综合方法、类比方法、科学假设方法等。如德布罗意在光具有波粒二象性的启发下,将物质粒子与光作了类比,提出了物质粒子和光一样具有波粒二象性的假设。后来被实验证实。1974年,丁肇中和里希特在实验中独立地发现了新的粒子。1963年,盖尔曼等人提出了强子由夸克组成的模型,几乎同时我国物理学家也提出类似的层子模型。在教学过程中利用这些生动事例,来培养学生创新能力和科学方法,对他们将来在科技工作中大有益处。

2.大力采用渗透式教学方法

我国传统的教学方法大都采用“全盘授予”“注入式”和“按部就班”的教学方式,一贯强调学生循序渐进式学习知识,其优点是能比较牢固系统地掌握基本知识,但也造成我们讲授新知识时,态度过于谨慎,不敢大胆涉及新的领域,知识面较窄。著名物理学家杨振宁说:渗透性学习法,就是在学习的时候,学生对学习的内容还不太清楚,但就在不太清楚的过程中,已经一点一滴地学到了很多重要的东西。同时杨先生认为,中美双方教育传统的长短是互补的,若能将两者和谐地统一起来,在教育上将是一个有意义的突破。为了培养创新人才,我们应该努力去突破。我认为:对于基本概念,基本规律,定理及基础理论,这些内容包括基本的物理实验,物理图像,物理思想和物理模型,用传统的教学方法进行讲解。而一些新发展的理论,现代科技应用等内容时,就采用渗透式教学方法。比如,目前正在研究,还在争论的中微子有没有质量?质子会不会衰变?我们的宇宙是封闭的还是开放的?广义相对论、穆斯堡尔效应、核反应堆、超流与超导、玻色—爱因斯坦凝聚、基本相互作用等。在科技应用方面,如电子显微镜、扫描隧道显微镜、激光分离同位素技术、激光技术、X光电子谱、核磁共振技术、放射性同位素技术、穆斯堡尔谱技术、核电技术、热核聚变技术、加速器等。对于这些内容是为了使学生扩大视野和提高视角。只要求学生知道和了解,不必也不可能要求学生深入理解和一定要掌握。

二、人才培养中的教学手段改革

学生对物理概念的认识,要依靠对物理现象的感知。但传统的近代物理教学手段只能把物理现象和物理过程靠教师用粉笔在黑板上静态地给学生勾画和讲解,学生难以获得动态和直观的感性认识以及清晰的物理图像。这是学生感到近代物理难学的一个重要的原因,而利用把图、文、声、像高度集中成于一身的多媒体课件不仅能再现或模拟各种物理实验和现象,对于一些内容比较抽象,理论难以理解景象不易描述,实验条件不足以再现的情况,则可借助多媒体技术。这既能增加教学内容的表现力,调动学生运用多种感官参与教学活动,活跃课堂气氛,吸引学生的注意力,更好地激发学生的学习兴趣。同时又有助于教师讲清物理思想,物理过程和物理方法。例如,原子核式结构模型这一节,通过粒子散射实验讲述了原子核式结构模型的建立。用静态和动态图像结合,显示粒子散射实验装置、实验原理、模拟实验过程、结果及结论。同时附有汤姆孙、卢瑟福在实验的工作照片及生平简介。因此,采用多媒体教学手段一方面可以解决近代物理内容多课时减少的矛盾,大大地减少教师的板书和绘图的时间,从而可以把更多的时间用于讲课,增加了课堂传递的信息量,可以比用传统的教学手段讲授更多高质量的教学内容。另一方面,调动了学生学习近代物理的积极性,提高了教学质量。利用先进的网络手段,把教学计划,教学大纲,作业,复习提纲,考试要求等内容放在学校网页上,学生在上课之前就能够非常清楚地知道这个学期的学习任务。教师与学生,学生与学生之间可以在网上讨论疑难问题。