前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的经典遗传学和表观遗传学主题范文,仅供参考,欢迎阅读并收藏。
关键词:表观遗传学 教学 研究生
中图分类号研究生教育是高等教育的重要组成部分,是培养高素质、高层次人才的重要手段。今天的社会对研究生的全面素质和创新能力提出更高的要求,而专业课教学是研究生教育的最基本部分,是提高研究生专业素质和创新能力的直接途径,因此,提高专业课教学水平对研究生的培养具有十分重要的意义[1]。随着生物技术和医学科学技术的迅速发展,知识更新速度加快,学科之间相互交叉、相互渗透,边缘学科和新兴学科不断涌现。表观遗传学是近几年来生命科学迅速发展的前沿学科之一,其理论与技术已经广泛渗透至生物学、基础医学、临床医学及预防医学的各个学科。表观遗传学是我们学院学术型硕士研究生专业课程和专业学位硕士研究生专业知识模块的主干课程。如何适应新形势下研究生培养的需要,笔者主要针对研究生表观遗传学教学谈一些自己的看法及建议。
1 教师业务素质的提高
生物医学模式的转变对教师的业务素质和能力提出了相应的更高要求。不仅要求教师有生命科学、基础医学和临床医学的专业知识,而且还要有生物医学理论方面的知识,同时要求教师的技术知识层次能跟上生物医学实验技术推广周期不断缩短的趋势。我们在研究生的表观遗传学教学中,随时进行文献调研,密切关注最新高水平期刊和学术会议的相关信息,不断补充传达的最新知识。引导学生关注当前研究活跃的肿瘤、衰老、心血管疾病、感染性疾病与表观遗传学的最新研究进展情况,着重介绍营养、环境、应激、细胞代谢在表观遗传变化中的重要作用机制。这些新知识非常受研究生的欢迎,引起他们浓厚的兴趣。通过这些新知识的学习,不仅开阔了研究生的学习视野,启发了他们的创新思维,同时使他们形成良好的文献调研和学术研讨的习惯,逐步形成和掌握正确的科研方法,为即将开展的课题研究工作奠定了坚实的基础。在教学过程中反过来能进一步促进教师知识结构的不断更新,达到教学相长的目的。
2 改革教学内容,形成完整的表观遗传学知识结构体系
与经典遗传学以研究基因序列决定生物学功能为核心相比,表观遗传学主要研究基于染色质事件对于这些“表观遗传密码”的建立和维持的机制,及其如何决定细胞的表型和个体的发育。在表观遗传学研究生课堂教学过程中必须具有一定的前瞻性,引导研究生关注表观遗传学学科的发展动态,密切注意学科的交叉和延伸,紧跟表观遗传学的发展方向和学科发展的突破点。课堂教学过程中把最主要的精力放在表观遗传学学科领域发展最活跃最富潜力的研究方向上,例如表观遗传机制在癌症等疾病中的作用机制,细胞代谢与表观遗传变化的关系等。表观遗传学是生命科学中一个普遍而又十分重要的新研究领域。它不仅对基因表达、调控、遗传有重要作用,而且在肿瘤、免疫、病毒感染复制等许多疾病的发生和防治中亦具有十分重要的意义。在教学过程中主要内容包括:表观遗传学概论,DNA甲基化,组蛋白修饰,染色质重塑,基因组印记,X染色体失活,siRNA与miRNA介导的调控,表观遗传学与疾病,表观遗传学与癌症,天然产物及中草药的发展对表观遗传学的展望,表观遗传学的治疗进展。上述内容形成完整的表观遗传学知识结构体系。在教学过程中,通过有选择地插入一些小型专题讲座及相关的研究历史背景资料的方式,介绍和强调学习和掌握表观遗传学的重要性,既活跃了课堂,又把课程从枯燥的理论讲解中解放出来,同时激发了研究生的学习积极性,拓宽相关的知识面[2]。同时在教学过程中注重前沿进展内容的加入,如代谢、营养、环境等影响因素与表观遗传学的相关进展。
3 改革教学方法,培养研究生的创新能力
本课程所授课的对象是已具备一定自学能力和学习主动性的研究生,最重要的是培养他们科学地发现并解决问题的能力、准确表达个人思想见解的能力以及科研创新能力。本课堂选课人数一般在十人左右,因此课堂教学的特点在于小班授课。由于是小班教学,增加了教学的灵活性和增强了师生之间互动的可能性,师生之间的交流与沟通增多。因此在教学过程中采用教师课堂授课、学生参与研讨、学生讲授等多种教学方式,强调讲授、研论、文献调研、学术讲座、论文报告、文献综述等多种方式并重的原则。在教学过程中,合理安排时间,让研究生充分参与到教学的研讨,结合自己的研究方向发表自己独特的见解,阐述自己的学术观点,这种教学方式为研究生迅速进入科研工作的角色奠定了坚实的基础,增强了研究生创新能力的培养。发挥现代多媒体技术在教学中的重要作用,电子课件与板书相结合,同时采用图片、视频播放、动画等多种方式的应用。倡导启发式教育,摒弃灌输式教学方法,讲授基本理论知识的同时注意结合科研最新进展情况拓宽学生知识面,加强学生创新能力的培养,使学生的理论基础和实践应用能力同步得到提高,取得了较好的教学效果。对由于受学时限制而不能在课堂上详细介绍的前沿内容可使用讨论法,安排学生课后自学,启发学生提出问题,通过课堂讨论得到解决。还可以在部分单元结束后,要求研究生根据自己的专业方向,结合查阅最新的文献资料,撰写小专题报告,组织交流讨论,以便巩固学生所学知识,并进一步拓宽知识面。研究生不同于本科生,他们有强烈的求知欲孥,有较高的学习热情,有较强的自学能力,所以在教学中倡导自学,组织讨论,是因材施教、培养研究生创新能力的好方法。
4 多种考核方式结合,检验教学效果。
在研究生的考核方面,不仅仅局限于对课内授课内容的掌握程度,还可以采用综述、专题小报告、PPT汇报、模拟课题设计等综合考核方式,注重知识的活学活用和创新意识的培养,这样才有利于研究生即打好广博、坚实的理论基础,又能其重组知识框架,只有这样,研究生的创新意识才能够得到增强。
研究生创新能力培养是受多因素复杂交错影响的,要提升研究生的创新能力,既要保证培养研究生的客观条件充足,又要发挥研究生的主观能动性。研究生教育只有适应知识经济时代的要求,才能不断培养出符合社会需要的高层次创新型人才。表观遗传学既是目前迅速发展的学科和热点领域,在生物医学各种学科存在着千丝万缕的联系。它也是我们学院研究生重要的专业基础课,对于培养研究生的创新意识,培养研究生发现问题、解决问题的能力具有重要的作用。只有在教学实践中不断地提高教师自身素质,调整教学内容,改进教学方法,才能达到预期目的。
参考文献
关键词 去甲基化药物 表观遗传学 血液系统肿瘤
中图分类号:R979.1; R733 文献标识码:A 文章编号:1006-1533(2014)11-0003-04
Application of demethylating agents in the treatment of hematologic malignancies
Zhao Min*, Wang Chun**
(Department of Hematology, Shanghai First People’s Hospital, Shanghai 200080, China)
ABSTRACT Epigenetic dysregulation is linked to the pathogenesis of a number of malignancies. The methylation of DNA plays an important role during the maliganant transformation of hematopoietic malignancies since it can inhibit the expression of tumor suppressor genes. Demethylating agents have been successfully used in the treatment of various hematopoietic malignant disease, especially in the treatment of myelodysplastic syndromes and acute myeloid leukemia. In this review, we discuss the clinical development of demethylating agents in hematology.
KEY WORDS demethylating agents; epigenetics; hematologic malignancies
近年来,去甲基化药物在血液系统肿瘤治疗中的作用越来越受到重视。与传统化疗药物相比,去甲基化药物的毒、副反应相对较轻,加之作用机制不同,治疗骨髓增生异常综合征(myelodysplastic syndromes, MDS)和急性髓细胞性白血病(acute myelocytic leukemia, AML)等的疗效更好。
1 去甲基化药物
去甲基化药物治疗的理论基础是表观遗传学。后者是指在基因的DNA序列没有发生改变的情况下,基因功能发生了可遗传的变化并最终导致了表型的不同。表观遗传学对由DNA决定遗传特征(由DNA到RNA、再到蛋白质进行表达)的“中心法则”作了补充,指出生物的遗传特性在不改变其基因序列的情况下也会发生变化,而这种变化在肿瘤的发病机制中已一再被检测到。现在认为,决定表观遗传学过程的主要因素包括DNA修饰、组蛋白修饰和非编码RNA调控。DNA甲基化是一种最为重要的表观遗传学修饰,在DNA甲基转移酶(DNA methyltransferase, DNMT)的催化下,胞嘧啶的第5位碳原子被甲基化,从而转变为5-甲基胞嘧啶。在哺乳动物基因组中,DNA甲基化的主要位点是CpG二核苷酸,它在基因组中呈不均匀分布。在某些区域,CpG序列的密度较平均密度高10 ~ 20倍、鸟嘌呤和胞嘧啶的总含量>50%、长度>200个碱基,这些区域被称为CpG岛。大约50%的人基因中含有CpG岛,常位于基因上游调控区的启动子区。启动子区的CpG岛通常处于非甲基化状态,基因能正常表达。当CpG岛发生甲基化时,会影响基因转录调控,使基因表达发生沉寂。而去甲基化药物能改变这一病理过程,进而达到治疗目的[1]。现有去甲基化药物主要为DNMT抑制剂,可分为核苷类和非核苷类2类,其中核苷类去甲基化药物中的阿扎胞苷和地西他滨是目前临床应用较广且以去甲基化为主要作用机制的药物。
2 在血液系统肿瘤治疗中的应用
2.1 治疗MDS
在MDS的治疗中,去甲基化药物的作用越来越受到重视。近年来多项研究证实,MDS的分子异常包括DNA甲基化等表观遗传学进程,如CpG岛的高甲基化和基因启动子区的甲基化即与MDS的严重性和患者的生存期相关,而使用去甲基化药物治疗虽不能治愈MDS,却可获高反应率。与需要且可接受造血干细胞移植术的年轻患者相比,去甲基化药物更适宜用于老年患者,这主要表现在血液学参数改善和生存时间延长上,因即使没有达到完全缓解的患者也同样能够获得这些益处[2]。地西他滨用于老年患者的安全性已得到多项临床试验的确认,而被认为无骨髓毒性的阿扎胞苷亦被证实对老年患者有很好的疗效和安全性,对需接受造血干细胞移植术的患者也一样。有人建议将地西他滨和阿扎胞苷用于“先期治疗”,但这种“桥接治疗”的必要性还待更多研究的证实[3]。在治疗MDS时,去甲基化药物的疗效多需在治疗2 ~ 4个疗程后才逐步显现,终止治疗后则会导致疾病复发[4-5]。即使不间断地接受去甲基化药物治疗,几乎所有的患者也仍难以避免疾病的耐药和复发,而一旦出现疾病耐药或复发就会大大缩短患者的生存期[6]。
目前,MDS患者可通过国际预后评分系统(International Prognostic Scoring System, IPSS)、国际预后评分系统修正版和世界卫生组织的预后评分系统进行分层,这对恰当地使用去甲基化药物具有实际指导意义。对IPSS评分为低危和中危-1的患者,减少的血细胞类型、促红细胞生成素浓度以及细胞遗传学、分子生物学异常如5q、DR-15等生物学特征是选择恰当的一线治疗药物的依据,去甲基化药物主要用于输血依赖的、经促红细胞生成素等药物一线治疗后复发或耐药患者的后续治疗。也有人提出应使用阿扎胞苷一线治疗主要表现为血小板减少和中性粒细胞减少的低危MDS患者。一些临床试验结果显示,地西他滨或阿扎胞苷治疗低危MDS患者的总反应率为30% ~ 60%。对IPSS评分为中危-2和高危的患者,去甲基化药物已用于一线治疗,可使患者获得较高的总反应率和较长的总生存期,且毒性明显较低。在临床试验中,地西他滨或阿扎胞苷单药治疗高危MDS患者的总反应率为40% ~ 55%。但异体造血干细胞移植仍是可治愈MDS的唯一选择[2,7]。目前尚不能完全预测去甲基化药物治疗的疗效。骨髓增生异常法语工作组建立了一套预测模型以预测去甲基化药物治疗的总反应率、反应持续时间和总生存期,同时提出先期使用低剂量阿糖胞苷、骨髓原始细胞占比>15%以及异常核型与反应率相关,复杂核型与反应持续时间相关,总生存期与体能状态等因素相关,并建立了积分系统[8]。也有报道称,骨髓纤维化的出现对去甲基化药物治疗不利[9]。
2.2 治疗AML
去甲基化药物现已在AML治疗中占有重要地位。AML患者广泛存在基因高甲基化现象,常见的甲基化基因有8种,约95%的AML患者至少有1种基因高度甲基化,75%至少有2种基因高度甲基化。这些数据提示去甲基化药物在AML治疗中的潜力,但其同样被认为无法治愈AML。目前,经典的蒽环类药物和阿糖胞苷联合诱导化疗方案仍是AML的首选诱导化疗方案,且造血干细胞移植术仍是AML的最主要治愈性治疗手段。但对一些难以接受常规诱导化疗方案和造血干细胞移植的患者如老年AML患者,去甲基化药物因相对较低的毒性和较好的疗效已经成为重要的治疗药物。地西他滨已获准治疗这类AML患者,常用治疗方案为20 mg/(m2・d)×5 d。临床试验证实,地西他滨治疗的反应率优于支持治疗和低剂量阿糖胞苷;也有临床试验显示,地西他滨治疗可获较之支持治疗更长的生存期。但与常规诱导化疗方案不同,去甲基化药物治疗AML往往需要进行多个疗程后才能达到完全缓解且此疗效无法持久维持[10]。近期国内报道,地西他滨联合阿柔比星、粒细胞集落刺激因子等治疗初治及难治/复发AML的疗效较好;也有地西他滨联合硼替佐米治疗的报道。尽管去甲基化药物已用于AML治疗,但其不能治愈疾病,对那些治疗有效患者的后续治疗选择也还处在摸索阶段。有关研究证实,某些分子学和细胞遗传学参数与患者对地西他滨治疗的反应有关。例如,有人发现,对地西他滨治疗有反应患者的DNMT miR-29b水平明显高于无反应患者[11]。一项回顾性分析显示,伴有5和7号染色体异常的患者对阿扎胞苷或地西他滨治疗的反应与对大剂量伊达比星和阿糖胞苷治疗相似,且患者的持续反应时间和中位生存期也更长。DNMT 3A基因突变为AML的独立的预后不良指标,不受患者的年龄、白细胞计数、染色体组型和其他遗传学参数的影响[12]。但利用细胞遗传学和分子生物学参数来预测患者对去甲基化药物治疗的反应尚处在探索阶段,现还只能通过患者的病程、肿瘤增殖程度和一些临床指标来作治疗前评估。
2.3 治疗慢性粒单核细胞性白血病(chronic myelo-monocytic leukemia, CMML)
造血干细胞移植术也是CMML的治愈性治疗手段。但由于年龄和并发症等原因,CMML患者往往只能接受低剂量化疗治疗,无法有效控制疾病进展。在CMML患者中发现存在细胞周期调节基因p15(INK4b)的异常甲基化以及降钙素基因和细胞信号转导抑制因子-1基因的甲基化,这给对CMML进行去甲基化治疗提供了一定的理论基础。一项对31例CMML患者进行的临床试验显示,以每6周为1个疗程、每疗程使用地西他滨15 mg/(m2・次)×3次/d×3 d治疗1 ~ 6个疗程,总反应率为26%(完全缓解率10%、部分缓解率16%),骨髓改善率为19%,疾病稳定率为32%,2年生存率为25%,所有患者的中位生存期为15个月[13]。与治疗MDS和AML相似,地西他滨在近年来进行的一些临床试验中也不再以大剂量使用。一项临床试验以每28 d为1个疗程、每疗程使用地西他滨20 mg/(m2・d)×5 d治疗CMML患者共3个疗程,结果发现总反应率为38.6%,2年总生存率为48%,中位无进展生存期为12个月,3/4级不良反应为血细胞减少、感染和乏力[14]。
2.4 治疗其他血液系统肿瘤
对慢性粒细胞性白血病、多发性骨髓瘤等亦有使用地西他滨等去甲基化药物治疗的研究报道,但疗效尚待进一步临床试验的证实。
3 结语
DNA甲基化异常被认为是血液系统肿瘤发生、发展的一个重要生物学机制,一些临床试验也已证实去甲基化药物治疗某些血液系统肿瘤的疗效确切,但仍需对如联合用药和最适治疗剂量等作进一步的研究,以期获得更好的治疗疗效。
参考文献
[1] Huang YW, Kuo CT, Stoner K, et al. An overview of epigenetics and chemoprevention [J]. FEBS Lett, 2011, 585(13): 2129-2136.
[2] Seymour JF, Fenaux P, Silverman LR, et al. Effects of azacitidine compared with conventional care regimens in elderly (≥75 years) patients with higher-risk myelodysplastic syndromes [J]. Crit Rev Oncol Hematol, 2010, 76(3): 218-227.
[3] Gerds AT, Gooley TA, Estey EH, et al. Pretransplantation therapy with azacitidine vs induction chemotherapy and posttransplantation outcome in patients with MDS [J]. Biol Blood Marrow Transplant, 2012, 18(8): 1211-1218.
[4] Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study [J]. Lancet Oncol, 2009, 10(3): 223-232.
[5] Kantarjian H, Issa JP, Rosenfeld CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study [J]. Cancer, 2006, 106(8): 1794-1803.
[6] Jabbour E, Garcia-Manero G, Batty N, et al. Outcome of patients with myelodysplastic syndrome after failure of decitabine therapy [J]. Cancer, 2010, 116(16): 3830-3834.
[7] Steensma DP, Baer MR, Slack JL, et al. Multicenter study of decitabine administered daily for 5 days every 4 weeks to adults with myelodysplastic syndromes: the alternative dosing for outpatient treatment (ADOPT) trial [J]. J Clin Oncol, 2009, 27(23): 3842-3848.
[8] Itzykson R, Thépot S, Quesnel B, et al. Prognostic factors for response and overall survival in 282 patients with higher-risk myelodysplastic syndromes treated with azacitidine [J]. Blood, 2011, 117(2): 403-411.
[9] Sanna A, Gozzini A, Donnini I, et al. Influence of mild bone marrow fibrosis on response of INT2/high risk MDS patients to azacitidine [abstract] [J]. Leuk Res, 2011, 35(Suppl 1): S126-S127.
[10] Lübbert M, Rüter BH, Claus R, et al. A multicenter phase II trial of decitabine as first-line treatment for older patients with acute myeloid leukemia judged unfit for induction chemotherapy [J]. Haematologica, 2012, 97(3): 393-401.
[11] Blum W, Garzon R, Klisovic RB, et al. Clinical response and miR-29b predictive signifcance in older patients treated with a 10-day schedule of decitabine [J]. Proc Natl Acad Sci USA, 2010, 107(16): 7473-7478.
[12] Ravandi F, Issa JP, Garcia-Manero G, et al. Superior outcome with hypomethylating therapy in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome and chromosome 5 and 7 abnormalities [J]. Cancer, 2009, 115(24): 5746-5751.
[13] Wijermans P, Lubbert M, Verhoef G, et al. An epigenetic approach to the treatment of advanced MDS: the experience with the DNA demethylating agent 5-aza-2-deoxycytidine (decitabine) in 177 patients [J]. Ann Hematol, 2005, 84( Suppl 1): 9-17.
[关键词] DNA甲基化;5'-Aza-CdR;HT-29;LoVo;Wif-1基因
[中图分类号] R735.3 [文献标识码] A [文章编号] 1673-7210(2014)08(b)-0016-06
Effect of 5-Aza-dC on mRNA expression, protein expression and methylation of Wif-1 gene status in HT-29 and LoVo Colorectal cancer
GE Chang XU Chunwei WANG Luping FANG Yuan ZHANG Yuping
Department of Pathology, the Military General Hospital of Beijing PLA, Beijing 100700, China
[Abstract] Objective To investigate the effects of 5-Aza-2-deoxycytidine (5-Aza-dC), a methylation inhibitor, on the mRNA expression, protein expression of Wif-1 gene in HT-29 and LoVo Colorectal cancer cell lines. Methods HT-29 and LoVo Colorectal cancer cell lines was treated with different dosages of 5-Aza-dC. Wif-1 gene DNA, mRNA and protein were determined by Methylight, SYBR Green PCR and Western blot respectively. HT-29 and LoVo Colorectal cancer cell lines were treated with different dosages of 5-Aza-dC (0.5, 1.0, 1.5 μmol/L). Wif-1 gene DNA, mRNA and protein were determined by Methylight, SYBR Green PCR and Western blot respectively. Results Methylight detection showed that the Wif-1 gene methylation had effectively been reverserd by 5-Aza-dC. Moreover, the expression levels of Wif-1 gene mRNA treated with 5-Aza-dC increased respectively in HT-29 Colorectal cell line[(1.000±0.000), (1.207±0.052), (1.790±0.033), (2.016±0.123)], and the expression levels of Wif-1 gene mRNA treated with 5-Aza-Dc increased respectively in LoVo Colorectal cell line [(1.000±0.000), (1.294±0.048), (1.893±0.061), (2.204±0.041)]. Western blot indicated that 5-Aza-dC could recover the Wif-1 protein expression respectively in HT-29 Colorectal cell line [(0.456±0.040), (0.511±0.025), (0.857±0.031), (0.934±0.047)], and the protein expression was (0.842±0.032), (0.844±0.044), (0.854±0.037), (0.856±0.034), respectively in LoVo Colorectal cell line. The Wif-1 gene mRNA effects within certain extent dose and time dependent with statistical significance in HT-29 Colorectal cancer line (F=144.823, P=0.000) and LoVo Colorectal cancer line (F=476.195, P=0.000), and the Wif-1 protein effects within certain extent dose and time dependent with statistical significance in HT-29 Colorectal cancer line (F=129.674, P=0.000), but without statistical significance in LoVo Colorectal cancer line (F=0.117, P=0.948). Conclusion The methylation of promoter region is a main cause for transcriptional inactivation of Wif-1 gene in HT-29 and LoVo Colorectal cancer cell lines. 5-Aza-dC may effectively reactivate the gene transcription through a demethylation role.
[Key words] DNA methylation; 5-Aza-dC; HT-29; LoVo; Wif-1 gene
结直肠癌(colorectal cancer,CRC)作为最常见恶性肿瘤之一,其发病率仅位于肺癌和前列腺癌(女性为乳腺癌)之后,居第3位,而每年CRC病死率约占全部恶性肿瘤死亡总人数的8%,在恶性肿瘤死因中居第4位[1]。CRC的发生与发展与癌基因和抑癌基因的缺失、扩增或突变有关。有些基因在染色质水平上发生表型遗传修饰改变也会导致表达下调。表型遗传修饰最多见的是CpG岛(CpG island)的甲基化改变。Wif-1基因(Wnt inhibitory factor-1)定位于人类染色体12q14.3上,由10个外显子组成,全长约200 kb。Wnt/β-catenin信号传导通路是调控细胞生长增殖的重要途径之一,其异常激活已发现与多种人类肿瘤密切相关[2]。Wif-1基因是这条通路的下游区基因也是这条通路的拮抗基因。Wif-1基因的高甲基化在多种肿瘤中都已证实是存在的,它作为一种肿瘤抑制基因(tumor suppressor gene,TSG),其启动子的高甲基化参与了肿瘤的发生发展。本实验通过研究5'-氮杂-2'-脱氧胞苷(5'-Aza-CdR)对HT-29和LoVo细胞株作用后Wif-1基因的DNA层面、mRNA层面和蛋白层面的改变,探讨肿瘤发生发展过程中Wif-1基因失活的甲基化机制及药物恢复Wif-1基因表达的可能性,以期寻找CRC的肿瘤标志物及新的治疗靶点。
1 材料与方法
1.1 材料
结直肠癌细胞株HT-29和LoVo(北京大学医学部107实验室);DNA提取试剂盒(德国QIAGEN公司);核酸蛋白质浓度测量仪B-500(上海创萌生物科技有限公司),DNA甲基化修饰试剂盒及甲基化阳性/阴性对照(美国ZYMO公司);qPCR反应试剂ROX(TaKaRa公司);Mix(上海辉睿生物科技有限公司);Mx3000P定量PCR扩增仪(美国Stratagene公司);引物由生工生物工程(上海)有限公司合成;5'-Aza-CdR(美国Sigma公司),以DMSO溶剂充分溶解后配制成0.1 μmol/L的母液,分装后-80℃保存;Wif-1和内参β-actin(美国Santa Cruz公司),Western blot相关试剂(北京索莱宝科技有限公司)。
1.2 细胞培养和干预
结直肠癌细胞株HT-29和LoVo置于10%胎牛血清和100 μ/mL青霉素、链霉素的RPMI1640的培养基中常规培养,胰酶消化传代。取贴壁生长良好的细胞以RPMI1640调整细胞密度至2×106/mL,接种于六孔培养板。干预的LoVo和HT-29细胞分别加入0.5、1.0、1.5 μmol/L 5'-Aza-CdR混合培养液,每24小时更换新鲜培养基,连续作用72 h;以HT-29和LoVo分别加入等量DMSO溶剂培养作为对照(0 μmol/L)。
1.3 Methylight方法
取对数生长期的HT-29和LoVo细胞株,胰酶消化后抽提DNA。抽提DNA按DNA提取试剂盒(德国QIAGEN公司)说明提取上述两种细胞不同浓度梯度的细胞DNA,用紫外分光光度仪(上海创萌生物科技有限公司)测DNA浓度,以DNA浓度在25 ng/μL为最低浓度,使用DNA修饰试剂盒进行亚硫酸氢盐修饰,按照试剂盒说明书操作,Wif-1基因甲基化引物和探针设计:Wif-1基因序列参照GenBank。甲基化引物和探针由Beacon Designer 7.9软件设计,其引物序列上游引物:5'-TAAACGGGAATAGTTTTGGTTGAGG-3';下游引物:5'- TACTACTCAAAACCTCCTCCTCGCTAC-3';探针:FAM 5'- CTCCTCGTACCGCACCTACGCAACCTA-3' BHQ1,内参β-actin基因甲基化按文献[3]设计,上游引物:5'-TGGTCATC CAGGTTTAGTAACT-3',下游引物:5'-AACCAATAAAC CTACTCCTCCCTTAA-3',探针:FAM 5'-ACCACCACCCAACACACAATAACAAACACA-3'BHQ1。PCR反应总体系为20 μL,2×Taq PCR Master Mix 10 μL;修饰后的DNA模板2 μL;上、下游引物各1 μL(10 pmol);探针FAM 0.4 μL(10 pmol);ROX 0.3 μL。反应条件:94℃预变性5 min;94℃ 30 s,52℃ 45 s,72℃ 45 s,共50个循环;72℃延伸5 min,4℃冷却5 min。经亚硫酸氢盐修饰的Human Methylated & Non-methylated DNA Set作为阳性、阴性对照,水为空白对照。
1.4 实时荧光定量PCR分析结直肠癌细胞株HT-29和LoVo中Wif-1基因mRNA的表达情况
取对数生长期的HT-29和LoVo细胞,胰酶消化后抽提细胞总RNA,逆转录合成cDNA,行实时荧光定量PCR。Wif-1引物由Primer Premier 5.0软件设计,上游引物:5'- GTTCCACGGACCTCACT-3',下游引物:5'-ATGTCGGAGTTCACCAGA-3';内参基因GAPDH上游引物:5'-GGCTGCTTTTAACTCTGG-3',下游引物:5'-GGAGGGATCTCGCTCC-3'。20 Μl PCR反应体系含10 μL SYBR Premix Ex TaqTM(2×)、上、下游引物(10 μmol/L)各1、0.3 μL ROX Reference Dye(50×)、4.0 μL DNA模板、3.7 μL dH2O。反应条件为95℃预变性5 min;95℃ 10 s,55℃ 40 s,72℃ 45 s,共40个循环;72℃延伸1 min,70℃延伸30 s,95℃延伸30 s。实验重复3次,取均值。扩增完毕后分析熔解曲线,采用2-ΔΔCt法分析Wif-1 mRNA表达。ΔΔCt=(Ct处理组目的基因-Ct处理组内参基因)-(Ct对照组目的基因-Ct对照组内参基因)。
1.5 Western blot分析结直肠癌细胞株HT-29和LoVo中Wif-1蛋白的表达情况
取对数生长期的HT-29和LoVo细胞,在上述两种细胞株各个浓度梯度的每管细胞中加入80 μL蛋白裂解和1 μL蛋白酶抑制剂PMSF液于冰上裂解30 min。15 000 r/min 37℃离心,10 min后取上清液提取总蛋白,BCA法蛋白定量。总蛋白100℃变性5 min后,配制浓度为12%的SDS-PAGE凝胶,进行蛋白质电泳,蛋白电泳分离后经电转移槽转移至PVDF膜。BSA室温封闭2 h后,PVDF膜置于1∶200稀释的Wif-1单克隆抗体稀释液中4℃冰箱内培养过夜,TBST洗膜3次,每次10 min,再置于1∶20 000稀释的HRP标记的山羊抗兔IgG稀释液中37℃培养2 h,TBST洗膜4次,每次10 min,然后加入ECL发光液显影,采集并分析处理图像。凝胶成像系统摄像并分析各条带吸光度值,以0.5 μmol/L 5'-Aza-CdR条带吸光度值(A)/β-actin条带吸光度值(A)为基准,设置为1。以目的基因条带吸光度值(A)/β-actin条带吸光度值(A)作为Wif-1蛋白的相对表达强度。实验重复3次,取其平均值。
1.6 MethyLight结果判断标准
同时扩增目的基因(Wif-1)和内参基因(β-actin),根据标准曲线得到两者的原始拷贝数,计算标准甲基化指数(the normalized index of methylation,NIM)。其定义为:NIM=[(Wif-1 sample/Wif-1 positive)/(β-actin sample/β-actin positive)]×100,其中Wif-1 sample指样本中甲基化Wif-1基因的拷贝数,Wif-1 positive指阳性对照中甲基化Wif-1基因的拷贝数,β-actin sample指样本中甲基化Wif-1基因的拷贝数,β-actin positve指阳性对照中甲基化Wif-1基因的拷贝数。NIM≥4为甲基化,NIM
1.7 统计学方法
采用统计软件SPSS 19.0对实验数据进行分析,计量资料数据以均数±标准差(x±s)表示,组间比较采用单因素方差分析(One-way ANOVA),行配对t检验,并设定P值为双侧分布,以P < 0.05为差异有统计学意义。
2 结果
2.1 结直肠癌细胞株HT-29和LoVo中Wif-1基因甲基化状况
将阳性对照按10的倍数稀释成1×100~1×10-6 7个浓度梯度制作标准曲线(其拷贝数为103~109/mL)。各浓度梯度反应均做复孔。MethyLight的线性范围为104~108拷贝/mL,R2为0.907。实时荧光定量PCR得出数据按MethyLight结果判断标准,在DMSO对照组、0.5、1.0、1.5 μmol/L 5'-Aza-CdR中HT-29和LoVo细胞株中Wif-1基因甲基化状态分别为甲基化、甲基化、未甲基化和未甲基化。见表1、图1。
表1 HT-29和LoVo细胞株中Wif-1基因甲基化状况
2.2 结直肠癌细胞株LoVo和HT-29中Wif-1基因mRNA表达状况
实时荧光定量PCR得出的数据检验扩增效率(E)通过公式E=2-1/斜率-1计算,Wif-1基因mRNA为0.945,GAPDH基因mRNA为0.977,两个基因的扩增效率相差
表2 HT-29和LoVo细胞株中Wif-1基因mRNA表达状况(x±s)
注:与DMSO对照组比较,*P < 0.05,**P < 0.01
2.3结直肠癌细胞株HT-29和LoVo中Wif-1蛋白表达状况
Western blot结果运用Image J软件进行条带图像分析,获得HT-29和LoVo细胞株各条带光密度值,并计算出两种细胞在各组中的平均光密度比值,进行半定量分析及统计学分析,并以各实验分组为横坐标,将测出相应的平均光密度比值为纵坐标,绘出柱状图后发现0.5、1.0、1.5 μmol/L 5'-Aza-CdR作用后,HT-29细胞株中Wif-1蛋白表达水平较DMSO对照组上调,并且有药物浓度依赖性(F=129.674,P=0.000),与DMSO对照组比较,1.0、1.5 μmol/L 5'-Aza-CdR组比较,差异均有统计学意义(t=45.825,P=0.000;t=9.584,P=0.011)。LoVo细胞株中Wif-1基因的蛋白表达水平较DMSO对照组略微上调,并且有药物浓度依赖性但差异无统计学意义(F=0.117,P=0.948),与DMSO对照组比较,0.5、1.0、1.5 μmol/L 5'-Aza-CdR组差异均有高度统计学意义(t = 19.414,P = 0.003;t = 30.468,P = 0.001;t = 102.233,P = 0.000)。见表3、图3。
表3 HT-29和LoVo细胞株中Wif-1蛋白表达状况(x±s)
注:与DMSO对照组比较,*P < 0.05,**P < 0.01
A:DMSO对照组,0.5、1.0、1.5 μmol/L 5'-Aza-CdR组中HT-29细胞株Wif-1蛋白Westernblot条带图;B:DMSO对照组,0.5、1.0、1.5 μmol/L 5'-Aza-CdR组中HT-29细胞株Wif-1蛋白柱状图;C:DMSO对照组,0.5、1.0、1.5 μmol/L 5'-Aza-CdR组中LoVo细胞株Wif-1蛋白Westernblot条带图;D:DMSO对照组,0.5、1.0、1.5 μmol/L 5'-Aza-CdR组中LoVo细胞株Wif-1蛋白柱状图
图3 各组HT-29细胞株及LoVo细胞株Wif-1蛋白表达
3讨论
CRC是最常见的消化道恶性肿瘤之一,每年全球新发病例达123万,病死率约为发病率的1/2。我国CRC发病率虽低于西方发达国家,但近20年来CRC的发病率仍在逐渐上升,同时,其发病年龄有增高趋势。近年研究表明CRC的发病是多因素、多阶段、多基因连续累积发生的过程,除遗传学改变外,表观遗传学改变亦参与CRC的发生、发展过程。表观遗传学是指不涉及DNA序列改变,但基因表达却发生可遗传的改变,DNA甲基化、组蛋白修饰、MicroRNA等是表观遗传学的主要形式。与肿瘤发生关系最密切的是DNA甲基化修饰异常,其中包括基因组去甲基化及部分区域高度甲基化两种形式。DNA甲基化可以导致癌相关基因沉默,病变迅速进展为癌。CRC有若干高度甲基化基因,若能认识CRC中基因异常DNA甲基化,将可能获得CRC诊断的肿瘤标志物及新的治疗靶点[5-7]。
经典Wnt/β-catenin信号通路发现迄今已数十年,作为一条高度保守的信号通路在动物胚胎的器官发育各个阶段均发挥异常重要的作用。Wif-1基因是Wnt/β-catenin信号传导通路的拮抗基因之一,属SFRP拮抗家族,在种族间高度保守,最早在人类视网膜中发现[8]。它主要通过捆绑Wnt信号蛋白,阻止其与Frizzled受体相互作用,从而抑制通路的异常激活。Nosho等[9]的研究发现,在早期CRC中伴有Wif-1表达的下调,可能通过引起经典Wnt/β-catenin信号通路的激活,导致通路下游靶基因的过度表达,伴随细胞过度的增殖和失控的分化从而引起肿瘤的发生。表观遗传学改变如基因5′端CpG岛甲基化是Wif-1基因失活的重要机制。已有一系列研究证实在各系统肿瘤中,启动子区甲基化可引起Wif-1基因失活[10-12]。在CRC中,Taniguchi等[13]和Lee等[14]的研究显示,Wif-1启动子区的甲基化率都很高,分别为82.0%和74%。齐健等[15]的研究结果与国外基本一致,Wif-1甲基化率为84.7%。Wif-1基因的启动子中存在T细胞相关因子(T cell factor,TCF)的反应元件[11],而TCF是目前已知的Wnt通路中重要的核内靶因子,Wnt信号活化可使β-catenin在胞浆内累积并进入核内识别淋巴结增强因子/T细胞相关因子(lymphoid enhancer factor/T cell factor,LEF/TCF)等转录因子,激活Wnt信号的靶基因,控制胚胎发育及细胞生长、分化及凋亡等。Kansara等[16]和Chung等[17]的研究结果显示,Wnt拮抗物的高甲基化可以增加β-catenin在细胞质中的积聚及经典Wnt/β-catenin信号通路的激活。
本实验研究中笔者采用去甲基化药物5'-Aza-CdR处理两个结直肠癌细胞株:MSS细胞株HT-29和MSI细胞株LoVo后通过实时荧光定量PCR检测,笔者发现DNA层面上DMSO对照组,0.5、1.0、1.5 μmol/L 5′-Aza-dCR中HT-29细胞株中Wif-1基因甲基化状态分别为甲基化、甲基化、未甲基化和未甲基化,LoVo细胞株中Wif-1基因甲基化状态都为未甲基化,说明去甲基化药物5′-Aza-CdR能够逆转Wif-1基因甲基化状态,同时在mRNA层面上笔者发现在0.5、1.0、1.5 μmol/L 5'-Aza-CdR作用后,HT-29细胞株中Wif-1基因的mRNA表达水平较DMSO对照组上调,并且有时间、药物浓度依赖性(F=144.823,P=0.000),与DMSO对照组比较,0.5、1.0、1.5 μmol/L 5'-Aza-CdR差异均有统计学意义(t=6.945,P=0.020;t=41.629,P=0.001;t=14.262,P=0.005);LoVo细胞株中Wif-1基因的mRNA表达水平较DMSO对照组上调,并且有时间、药物浓度依赖性(F=476.195,P=0.000),与DMSO对照组比较,0.5、1.0、1.5 μmol/L 5'-Aza-CdR差异均有高度统计学意义(t=10.656,P=0.009;t=25.486,P=0.002;t=51.323,P=0.000)。最后通过Western blot在蛋白层面上发现在0.5、1.0、1.5 μmol/L 5'-Aza-CdR作用后,HT-29细胞株中Wif-1蛋白表达水平较DMSO对照组上调,并且有时间、药物浓度依赖性(F=129.674,P=0.000),与DMSO对照组比较,1.0、1.5 μmol/L 5'-Aza-CdR组比较,差异均有统计学意义(t=45.825,P=0.000;t=9.584,P=0.011)。LoVo细胞株中Wif-1基因的蛋白表达水平较DMSO对照组略微上调,并且有药物浓度依赖性但差异无统计学意义(F=0.117,P=0.948),与DMSO对照组比较,0.5、1.0、1.5 μmol/L 5'-Aza-CdR组差异均有高度统计学意义(t=19.414,P=0.003;t=30.468,P=0.001;t=102.233,P=0.000)。
本实验研究显示甲基化酶抑制剂5′-aza-dC可通过启动子甲基化而失活的Wif-1基因的异常甲基化状态得到逆转,而使该抑癌基因恢复其转录活性,以使该基因在肿瘤的发生发展中发挥可能的抑制肿瘤的作用。肿瘤的发生发展涉及多种途径和多种基因的改变,其中表观遗传学的变化逐渐受到医学研究的重视。异常甲基化是表观遗传学研究的一个重要内容,往往是导致抑癌基因失活的主要原因。本研究希望能通过对异常甲基化的进一步研究,来寻求结直肠肿瘤诊断的新标志物和治疗的新靶点。
[参考文献]
[1] Siegel R,Ma J,Zou Z,et al. Cancer statistics [J]. CA Cancer J Clin,2014,64(1):9-29.
[2] Karim R,Tse G,Putti T,et al. The significance of the Wnt pathway in the pathology of human cancers [J]. Pathology,2004,36(2):120-128.
[3] Ogino S,Kawasaki T,Brahmandam M,et al. Precision and performance characteristics of bisulfite conversion and real-time PCR(MethyLight) for quantitative DNA methylation analysis [J]. J Mol Diagn,2006,8(2):209-217.
[4] Campbell DJ,Koch MA. Phenotypical and functional specialization of FOXP3+ regulatory T cells [J]. Nat Rev Immunol,2011,11(2):119-130.
[5] Snover DC. Update on the serrated pathway to colorectal carcinoma [J]. Hum Pathol, 2011,42(1):1-10.
[6] Dhir M,Yachida S,Van Neste L,et al. Sessile serrated adenomas and classical adenomas:an epigenetic perspective on premalignant neoplastic lesions of the gastrointestinal tract [J]. Int J Cancer,2011,129(8):1889-1898.
[7] Arber N,Shapira I,Ratan J,et al. Activation of c-K-ras mutations in human gastrointestinal tumors [J]. Gastroenterology,2000,118(6):1045-1050.
[8] Hsieh JC,Kodjabachian L,Rebbert ML,et al. A new secreted protein that binds to Wnt proteins and inhibits their activities [J]. Nature,1999,398(6726):431-436.
[9] Nosho K,Yamamoto H,Takahashi T,et al. Genetic and epigenetic profiling in early colorectal tumors and prediction of invasive potential in pT1 (early invasive) colorectal cancers [J]. Carcinogenesis,2007,28(6):1364-1370.
[10] Chan SL,Cui Y,van Hasselt A,et al. The tumor suppressor Wnt inhibitory factor 1 is frequently methylated in nasopharyngeal and esophageal carcinomas [J]. Lab Invest,2007,87(7):644-650.
[11] Mazieres J,He B,You L,et al. Wnt inhibitory factor-1 is silenced by promoter hypermethylation in human lung cancer [J]. Cancer Res,2004,64(14):4717-4720.
[12] Urakami S,Shiina H,Enokida H,et al. Epigenetic inactivation of Wnt inhibitory factor-1 plays an important role in bladder cancer through aberrant canonical Wnt/beta-catenin signaling pathway [J]. Clin Cancer Res,2006,12(2):383-391.
[13] Taniguchi H,Yamamoto H,Hirata T,et al. Frequent epigenetic inactivation of Wnt inhibitory factor-1 in human gastrointestinal cancers [J]. Oncogene,2005,24(53):7946-7952.
[14] Lee BB,Lee EJ,Jung EH,et al. Aberrant methylation of APC,MGMT,RASSF2A,and Wif-1 genes in plasma as a biomarker for early detection of colorectal cancer [J]. Clin Cancer Res,2009,15(19):6185-6191.
[15] 齐健,朱尤庆,罗峻,等.分泌型Wnt拮抗基因甲基化在结直肠肿瘤发生发展中的作用[J].中华医学杂志,2007, 87(28):1954-1957.
[16] Kansara M,Tsang M,Kodjabachian L,et al. Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice [J]. J Clin Invest,2009,119(4):837-851.
关键词:分子生物学;课程教学;改革研究;创新生物学人才
分子生物学的目标是在分子水平上阐明细胞活动的规律,从而揭示生命的本质[1]。虽然它在生物类专业课程体系中充当着重要角色,对生命科学的发展起着至关重要的作用,但是分子生物学的教学却因为课程内容多,学科交叉广,理解难度高,信息量大,知识更新快而使教学效果差强人意,集中表现为教师授课难和学生学习难。这种现状不但困扰着老师和同学,也与大学培养高素质创新型人才的目标不相适应。如何克服分子生物学课堂教学的“瓶颈”?本人在从事十多年的分子生物学教学过程中,努力研究和探索多种形式的教学改革,力求提升教学效果和教学质量。
一、教学内容的合理组织
分子生物学的教学除了选用好的教材,制定完善的教学大纲,如何组织教学内容是教学的一个非常重要环节[2]。教学内容呈现给学生的应该是完整、清晰的、有层次、条理的知识。我们在组织教学的过程中,首先从提高自身学科素养着手。“一本教材书,数种参考书”,除分子生物学国内、国外各类版本外,与分子生物学相互交叉和渗透的其他学科,如细胞生物学、生物化学、遗传学,我们也都进行了系统的学习和强化,不断夯实专业知识、拓展专业领域,基本构建了分子生物学完整的知识体系,具备了对教材处理的前提。既避免了教学中各学科的重复,也进一步凝练了知识。此外,我们还通过网络教学平台向全国优秀教师学习,在不断的探索中总结出了教学内容合理组织的一些思路。1.思维导学模式。在DNA复制教学环节,知识点多,并且较分散,很容易在教学中造成学习困难和知识混淆的现象,针对这章教学的特点,我们采用了思维导学模式,收到了非常好的教学效果。2.重点、难点解读。本科教学形式多样化,也更提倡学生的自主学习,但并不是淡化了教师的教学,反而对教师提出了更高的要求[3]。教师必须围绕每堂课的教学目的,合理组织和引导学生理解并掌握教学的重点和难点内容。比如在讲解染色体端粒末端修复机制中,教师首先要从教材的知识结构中梳理出重点。染色体端粒末端修复机制的知识点包括:(1)引物切除造成的遗传信息缺失;(2)端粒末端的特点;(3)体细胞和性细胞末端修复机制的不同;(4)DNA结构的变化;(5)端粒酶的修复机制。梳理知识点后,总结教学重点:一是引物切除后损伤修复在体细胞和性细胞中的不同;二是四链DNA结构;三是端粒酶的修复机制。其中端粒酶修复机制的讲授是学生学习的难点。难点集中在端粒酶的性质和修复发生的过程。经过对教学内容中重点和难点的准确把握和合理组织,教师才能在课堂教学中突出重点、突破难点,让学生的课堂学习无障碍。
二、教学方法和手段的改进
教学方法的推陈出新,是教学改革的重要内容[4]。为发挥学生作为教学主体的能动性,我们根据具体的教学内容设置了启发式、联想式、探究式等多种教学方法[5],让学生参与到教学过程中,不仅活跃了课堂气氛,而且在分享知识的同时,更注重教会学生灵活掌握学习的方法。
1.启发式教学。启发的目的在于举一反三,触类旁通。针对每一次的课堂教学,设计一些抛砖引玉的问题,供学生思考与讨论,这成为了分子生物学理论教学的重要组成部分。如进行到真核生物基因表达调控学习环节,提出甲基化修饰的生物学意义,这个问题覆盖范围广,涉及到了DNA复制的调节、蛋白质和DNA甲基化修饰对基因表达的调控,以及Epigenetic(表观遗传学)方面的知识。通过提出问题—讨论分析—不断启发—再讨论分析—归纳总结—解决问题这一系列的互动教学活动,充分调动了学生课堂学习的主动性和积极性,在不断的讨论分析中通过展示不同的思维、发表各自的观点,不但有利于促进学生在学习中发现问题、解决问题,而且有利于学生通过对基础知识的消化、理解来达到理论的升华、拓展[4]。
2.联想式教学。分子生物学是在生物化学、细胞生物学和遗传学的基础上发展而来[6],因此知识相互交叉、相互渗透。在授课的过程中,教师一方面要避免重复,一方面要通过联想知识点适时培养学生的发散性思维,提高学生对知识的迁移能力和整合能力。如在讲解化学修饰对基因的表达调控时,将细胞生物学中的信号转导有机结合,使学生了解基因表达调控对细胞信号转导的作用机制。
3.探究式教学。在分子生物学教学中,每一个理论知识的背后都是科学研究的重大突破。如确定遗传物质是DNA的两大经典实验,我们以探究的形式呈现教学内容,从实验设计,到结果显示,再经过讨论分析并得出结论,以课题研究的角度,研究人员的身份引导学生进入学习角色,将学科概念、理论产生的起因和过程展示给学生,启发学生努力探索,走近科学,让学生从中领悟知识形成的探究性和科学性,逐渐培养具有创新意识和能力的高素质研究型人才。4.多媒体多样化教学。分子生物学的教学内容具有微观性、复杂性、抽象性和动态性。传统的教学手段无法满足教学的需求,而多媒体技术则具有声像俱佳、动静皆宜的特点[7],是传统教学无法比拟的。多年来我们不断补充和完善教学手段,逐渐形成了独具特色的多媒体教学课件。多媒体图像处理清晰直观,文字表述简洁明了、主题突出。课件中的图像来源于国内外的网络数据平台。如讲述DNA半保留复制机理时[8],首先将DNA可能存在的几种复制方式用图像展现,并利用Meselson和Stahl设计的DNA复制同位素示踪实验和密度梯度离心实验来进行结果验证,引导学生明确掌握DNA半保留复制特点,并结合文字,通过图文并茂的多媒体课件,将教学内容中的背景知识、基本概念、基本理论,以及静态、抽象的微观知识清晰讲解。多媒体课件动静结合、声像互动。对于生命过程中动态的知识点,比如DNA的复制、RNA的转录、蛋白质的翻译过程,可以将这些复杂的生命过程利用多媒体手段做成动画并配以文字和声像,形象直观地展现给学生,既加深了学生对知识的理解,也提高了其学习效率。
三、知识领域的拓展
分子生物学的教学内容除包含基础理论知识外,还有大量理论应用的研究方法部分。我们在教学中不仅仅将知识局限在教材中,利用课堂教学不断引导学生去了解本学科相关领域内的研究热点、最新进展、发展趋势[8],以及生物技术在生产实践中的广泛应用。
1.专题讲座与专题讨论。专题讲座是教师根据教学内容,自己组织参考资料对教学内容的延伸与拓展。比如在讲授“SNP技术”时,先从遗传标记分析的发展着手,把一代、二代的标记分析做知识性的回顾,再将纳入教材的第三代标记分析“SNP”做详细的讲解,引导大家理解什么是单核苷酸多态性,核苷酸多态性研究的生物学意义以及在医学、农业、畜牧等多种领域的发展与应用。通过这种方式激发了学生的学习热情和求知欲,也使教师不断地进行知识的更新,及时了解本学科当前发展的趋势、研究的热点以及争论的问题。专题讨论则是以学生为主体,根据课程教学内容,组织学生就某一个专题自行查阅、组织文献资料,并在课堂上展开讨论[9]。比如在讲授基因重组的教学内容时,设计“转基因的利与弊”供学生讨论。引导学生思考基因工程药物和转基因动植物对社会产生的巨大影响,让知识离开课本走进生活,从而唤起学生学习的兴趣和探索未知领域的欲望。这不仅使学生更加深入、系统地理解所学知识,并且培养了学生灵活运用知识的能力[10]。
2.生物信息技术与数据库。生物信息技术已经发展成为分子生物学研究方法中不可分割的一部分,比如在“PCR技术”的专题讲座中,不仅要对实验目的、原理、操作以及应用进行讲解,还要特别对引物设计的生物信息技术进行补充,介绍学生对一些常规的生物信息技术软件Primer6.0、DNAman、Olig6.0、DNAS-tar、Cluster等有一个基本的认知度。在整个分子生物学的教学中,学生需要自行查阅和组织各种文献资料,因此,必须特别强调互联网资源运用的重要性。教师通过介绍中国知网、维普、清华同方、NCBI等几个常用资源库,使学生了解如何利用资源库进行查询,对互联网资源的熟练应用使学生的知识体系得以完善,学生通过自身的努力来提高信息收集和辨别的能力,培养了学生的自学能力。
四、教学改革中应该注意的问题
1.教师的专业修养与教学基本功。教师在教学中具有双重身份,既是一名导演,又是一名演员。作为导演,首先需要有最新的教学理念,整个教学过程中适时设问、适时讨论、适时启发。其次要有较强的课堂组织能力,根据学生的学习情况,把握课堂节奏,调动学生课堂学习激情,使教学有的放矢。否则会在教学中出现“启而不发”和论证条理不清的现象;作为演员,还要有良好的课程驾驭能力,通过教师扎实的专业知识、广泛的认知领域、全面的知识结构,呈现给学生的是一个丰盛的知识大餐,而不是一锅夹生饭。因此作为教师,必须从理论水平、科研水平、思维水平这3个方面提高教师自身的专业素质,此外,还要掌握适合自己的各项教学技能。
2.多媒体教学的合理应用。多媒体教学只是一种提高教学效果的辅助手段,是为教师的教学和学生的学习服务的,只有运用合理才可能达到好的效果。因此尽量避免在多媒体教学课件上出现过多的文字,否则多媒体成了教学活动中的主体,老师由照本宣科转变为扮演放映员和播音员的角色。学生的学习兴趣不高,教学效果也就适得其反。多媒体和传统教学只有合理地结合,取长补短,才能在课堂教学中体现出其真正的价值。总之,教学改革的目标是帮助学生建立学科知识体系,培养学生良好的科学素养,提升学生后继学习的能力。正如叶圣陶先生所说:“教师的教学,不在于给学生搬去可以致富的金子。而在于给学生点金的指头。”目前,我们关于分子生物学课堂教学改革还处于不断探索和实践阶段,除了需要不断地提高教师自身的学科修养和科研素质外,也以“夯实基础、拓展知识、增强能力、提高素质”[8]作为教学的目的和人才培养目标,努力在今后把教学工作开展得更加有生有色,为社会培养更多高素质创新型人才。
作者:武晓英 乔宏萍 张猛 吴丽华 郝雪峰 单位:太原师范学院
参考文献:
[1]朱玉贤,李毅,郑晓峰,等.现代分子生物学[M].第4版.北京:高等教育出版社,2012:1.
[2]戚晓利,张丽敏,薜春梅.分子生物学教学改革的探索[J].生物学杂志,2003,20(6):51-52.
[3]朱虹.《分子生物学》教学改革的实践与思考———启发式教学和论证型教学的综合运用[J].安徽农学通报,2010,16(1):190-192.
[4]许崇波.《基因工程》课程教学改革初探[J].大连大学学报,2005,26(6):41-43.
[5]文静,申玉华,赵冰.高等学校分子生物学教学改革初探[J].吉林农业,2013,305(8):92-93.
[6]王荣,刘勇,姜双林.高等师范院校分子生物学课程教学改革与实践[J].生物学杂志,2012,29(1):100-102.
[7]张金岭.浅谈多媒体教学[J].教育与职业,2009,(30):189-190.
[8]徐启江,李玉花.分子生物学教学改革与高素质人才培养[J].黑龙江高教研究,2007,158(6):159-161.
(一)领衔摸清中药资源“家底”
2011年11月,国家中医药管理局启动了第四次全国中药资源普查,这是自1983年第三次全国中药资源普查后,对国内各省现存中药资源进行的一次“大摸底”。黄璐琦被命任为第四次中药资源普查试点工作专家指导组组长。
时隔近30年,原有数据已不足以支撑产业发展的科学决策,与此同时,环境发生了巨大的变化,技术手段也有日新月异的突破。摸清国内中药资源基本现状,成为迫切而重要的任务。对于藏在深山里的中药,又能有哪些新的认识?在环境的巨变下,哪些品种已经面临濒危?这些都摆在中医药人的面前。
黄璐琦介绍,普查主要完成的工作有四项:一是要探明中药资源的种类和分布,及563个重点中药材品种的资源总量;二是进一步调查清楚中药资源相关知识,如民间对一些药材的特殊用法等;三要建设一批中药材种苗繁育基地。目前多种野生中药材濒危,解决资源稀缺问题,最终还得靠人工种植,通过普查遴选种植基地成为当务之急;四是建立动态监督机制,保障信息通畅。
作为专家组组长,黄璐琦除了在北京日常的繁杂工作,以及各地的学术会议、交流考察外,带领各地资源普查队员跋山涉水、翻山越岭,进行技术指导、监督检查,成了他近几年来工作的主旋律。几年间,细算下来,黄璐琦几乎一半的时间都在野外跟中药“面对面”地打交道。带领着各地普查队员,他走过了全国60余个的普查试点县。“这对于我来说是一段太珍贵的经历了!”他感叹道。哪种中药材是否道地、在何地分布、数量多少,他都了然于胸,谈起来如数家珍。
此次922个县级普查点遍布全国31个省、市、自治区,在野外工作的队员达到上万名。现在,中药资源普查工作发现2个新属25个新物种,汇总得到1.3万多种药用资源的种类和分布等信息,中药资源种类数已超过第三次全国中药资源普查。
黄璐琦发现,各地在中药材种植、采收,包括资源普查工作本身,都有自己的创造:又如,田地里收割过后的麦秆,在地表留下适当的高度,正好可以用做瓜蒌的“天然”棚架,只需在麦秆所在的田里播下种子,瓜蒌在生长过程藤蔓自然攀援到这些“棚架”上,既节约时间资源,又绿色环保。
野外普查的艰难,有时不仅体现在餐风露宿的辛苦上,更直观与危险的是面对生与死的考验。在野外工作的队员达到上万名,他们的安危冷暖,时时牵动着黄璐琦的心。2012年9月7日,他刚从云南昭通彝良普查点回京,彝良就发生5.7级地震。他第一时间给当地普查办公室打电话询问情况,得知只有办公房屋损坏,队员都已平安归队,方才松了一口气。“现在全国普查点分布图深深印在我的脑海中,哪里发生自然灾害我就首先想到队员生命会不会受到威胁,时刻绷紧一根弦,深感压力重大。”有一次,一路普查队的车在赶赴调研虫草途中掉下垂直高度达20米的山崖,一名队员肋骨折断,所幸头部没问题。“有一年,我带队分乘几辆车到湖南湘西保靖县普查。途径碗米水库时,路很窄车队小心前行,走着走着我突然发现紧跟的第二辆车不见了,赶快叫司机停车让大家下来沿途往回找,后来看到那辆车侧翻在路基上。车上四人都是参加过第三次普查上年纪的老师,有惊无险。如果车再前移或后错一米翻倒就会直接掉进水库,那么普查队员就会有生命危险。我当时站在路边跟普查队员说,第一,这是上天在告示我们,这项工作是要用生命来换的,我们要格外重视安全;第二,精诚所至,终成大事。”
(二)分子生药学创建的前前后后
1992年,黄璐琦成为北京医科大学一名博士研究生,师从著名生药学家楼之岑和著名药用植物学家诚静容。“两位导师在为学做人方面都对我产生过深刻的影响。曾担任中国药学会理事长的楼之岑院士,严谨治学的精神让我敬仰。一位师兄给当时国内最高水平的专业杂志投稿,编辑意见是文章水平很高,但篇幅长。师兄把稿子拿给楼之岑院士,先生提笔批注‘我们不能削足适履’,后面署名‘生药学教授楼之岑’,而后返给编辑部。最终,论文全文发表。先生的不凡气势和深厚功底略见一斑。”
读书期间,黄璐琦对栝楼属植物研究产生兴趣。栝楼属植物药用价值和经济价值都很高,如有抗癌作用的天花粉即来源于此属。为调查国内栝楼属的药用植物,他只身一人前往广东、广西、云南、贵州的深山老林实地考察,采集植物。他还广泛查阅英国、美国、澳大利亚、日本等国标本,最终整理出世界范围的栝楼属植物名录,并发现新种植物,使中国在这一领域的研究达到国际先进水平,解决了被世界葫芦科专家C. Jeffrey称之为“东亚地区葫芦科中最难处理的分类学难题”。黄璐琦也因此获得北京医科大学特等奖学金。
在进行栝楼属植物分类学研究时,黄璐琦发现有很多问题用传统技术和方法已经无法很好地解决,而分子水平的研究则很可能为这门古老学科带来新的生机。
1995年,年仅27岁的黄璐琦以《展望分子生物技术在生药学中的应用》为题将自己长期以来的思考发表在《中国中药杂志》上,文中首次提出了“分子生药学”的概念。这在当时沉闷许久的生药学研究中引起了强烈的反响。随后,一支充满活力的创新团队在他身边迅速形成。科学技术的发展和学科间的交叉融合是一股强大的力量,对于中药研究来说,借助于这股力量会给这门古老的学科带来前所未有的生气和活力。
以黄璐琦研究团队为核心,在很多中医药学者的积极参与和大力协作下,国内第一部从基因水平研究生药学的著作《分子生药学》得以问世,并标志着一门崭新的生药学分支学科――分子生药学在国内诞生。
从诞生的第一天起,分子生药学就受到中药学界的普遍关注,近年来更是捷报频传。2006年《分子生药学》第二版出版,2008年适合高等院校本科生使用的《分子生药学》教材出版。迄今,全国己有10多所高等院校开设该课程。2012年,这门新兴学科成为国家中医药管理局中药生药学重点学科,也是国家中医药管理局重点研究室和三级实验室所在的学科。转瞬之间,分子生药学于懵懂之际、晨光熹微之时发起,如今已亭亭如盖。
2006年,38岁的黄璐琦申请了国家973项目的课题“中药药性理论继承与创新研究”,而这一年是国家“973计划”(国家重点基础研究发展计划)首次设立中医药研究专项,黄璐琦抓住这一难得的机会,开始中药学的创新研究,并成为“973项目”年轻的首席科学家。
黄璐琦特别崇尚创新科研,在实践研究中,他赞成要敢于提出假说。他认为,如果假说能够经受住一种关键性的检验且能够符合一般科学理论,那么这种假说就会被接受。在道地药材的形成机理研究上,假说研究就得到了应用。以“973”项目为支撑,围绕道地药材形成的几个模式假说,利用研究室在道地药材分子生药学研究和道地药材生态学研究方面的优势,根据经典遗传学和表观遗传学的理论方法,运用生态学的原理,配合受控试验,研究环境、遗传因素及其交互作用影响药材道地性的特征及表现在功效、安全性和化学成分上的变化及其规律,最终揭示了道地药材的形成机理,在国内开创了道地药材形成的分子机理研究的先例。2003年,黄璐琦和他的团队还创办了“生药分子鉴定实验室”,并获得了国家中医药管理局三级实验室认证。2009年,他的研究室成为“国家中医药管理局道地药材生态遗传重点研究室”。在这些独具一格的科研平台上,创新理论和科研实践不再脱节。他们利用各种实验条件验证、完善各种科研设计,并大胆地使用这些成果去指导中药的生产实践。
黄璐琦引入分子生物学技术,建立起中药材鉴别新方法,其中高特异性聚合酶链式反应技术鉴别中药材乌梢蛇真伪的方法荣获中国专利优秀奖,被2010年版《中国药典》收载,这是分子鉴别方法首次收载于国家药典。他带领课题组发现了一条丹参酮合成的关键酶基因及二萜生物合成新途径,并在国际著名刊物PNAS、JACS等发表了系列高水平文章。
(三)医圣的粉丝曾经怀揣建筑梦
素有“书乡”、“茶乡”之称的江西婺源,是黄璐琦的出生地。黄璐琦的母亲金青是中医师、新安医学学派传承人,黄璐琦从小便跟随母亲出诊,并且帮助采集草药,耳濡目染地学了一些中医知识。
“经常有患者到我家来看病,不论什么时间段到我家,母亲都会马上放下手里的活儿、哪怕是饭碗,会专心问诊。如果赶上患者来看病,没来得及吃饭,母亲就会请他们跟我们一起吃。”黄璐琦回忆说。
可以说,黄璐琦是在母亲的诊所里长大的,儿时玩得最多的玩具就是诊室中的处方笺,偷吃最多的零食是药房里的酵母片和山楂丸。“不知现在酵母片是不是提纯了,不如印象中的好吃。”让黄璐琦记忆清晰的是,一次周边人家养的鸡闹疫情成群死掉后,他年幼好奇学着大人的样子撕下一张处方纸写下“鸡瘟药”几个字,开出自己人生中的第一张“处方”。“那时我真以为这就可以治病了。”黄璐琦至今提起这些童趣轶事,仍旧忍不住开怀大笑。
“我是家里的老小。父亲很严谨,骨头也很硬,当过10多年的地方计委主任,对当地的经济数据他都记得很准,每天坚持写工作笔记。”黄璐琦说,父亲曾希望自己学建筑,因为家里已有一个学医的姐姐。“父亲说,一个人一生能留下一个作品就足矣,而建筑是以立体的形式表现的作品。”
1985年高考,怀着一个建筑师的梦想,黄璐琦在高考志愿表上填写了同济大学建筑学专业。可是,命运偏偏跟他开了一个玩笑,他没有被这个专业录取,反而被调剂到江西中医学院中药专业。“这就是天意,上天安排的,我不后悔。建筑与医药,都是民生很大的一块,与老百姓都息息相关。”子承母业的黄璐琦,为此投身中医药领域。过去对母亲从事职业的骄傲自豪,逐渐变为了自己对所学专业的热爱。
本科毕业后,他考上全国中医药权威机构中国中医科学院,师从同仁堂的创始家族――乐家第十三世传人乐崇熙攻读硕士学位。“记得研究生复试时,乐崇熙先生耐心教我改正南方口音,区分‘您’和‘你’,还有用餐规矩、说话礼仪,这都使我颇为受益。”
“我29岁任中药研究所所长,31岁开始担任博导,因为年轻,所里推选我从第九届起加入全国青联,并且是中直机关青联常委,后来我又成为北京市青联副主席。于是,我和青联组织建立了深厚的感情,青联帮助、培养、支持了我,我也感受到这个大家庭的温暖,愿意尽力为大家服务。当年作为医药卫生组的委员,我曾给自己定了一个任务,利用经常搞野外普查有些经验的优势,联合同组的医药企业委员每年外出调研度假一次。”一段青联路,一生青年情。黄璐琦的实验室集结了近30位不同学科背景、不同学历、不同年龄段的成员,这种学术互补性极强的人员组合方式在中医药学界并不多见。“不少青年都是可造之材,就看将他们放在什么位置,发挥怎样作用。我的职责就是致力于发掘团队最大的潜力,搞好中医药科学研究,使个人有宽松的环境、坚定的理想、明确的方向。”
黄璐琦是国家杰出青年基金获得者,曾获中国工程院光华工程科技奖(青年奖)、全国优秀科技工作者、中国药学发展奖、中国青年五四奖章、中国青年科技奖、新世纪百千万人才工程国家级人选、中国中医药十大杰出青年、卫生部有突出贡献中青年专家、中央国家机关十大杰出青年、北京十大杰出青年等荣誉称号,多次获国家科学技术进步奖,享受“国务院政府特殊津贴”,并当选2014年中医药新闻人物。作为学科领军者,黄璐琦时刻关心着团队中青年的成长、成才、成功,特别重视培养和提升学生的人文情怀与文化素养。2015年,他当选为中国工程院院士最年轻的院士。
黄璐琦的爱好很多,体育运动最爱乒乓球,读书则比较杂,办公室那一面墙的书架上可以看到人物传记、时政读物、国学,乃至摄影类书籍,足见他生活的丰富多彩。
问及黄璐琦有偶像否,他笑言是医圣李时珍。这么多年来,黄璐琦一直对照李时珍的事迹践行着,在科研的路上知难而进,迎难而上。
[关键词] 组蛋白去乙酰化酶;抑制剂;肿瘤
[中图分类号] R977.3 [文献标识码] A [文章编号] 1674-4721(2015)06(a)-0015-07
Research progress of histone deacetylase inhibitors
GU Hua-wei LIU Yan SANG Jun-xia LIU Jing
Pharmacy of Department,the Fourth Affiliated Hospital of Henan University of Science and Technology;Tumor Hospital of Anyang City in Henan Province,Anyang 455000,China
[Abstract] Histone deacetylase(HDACs) is a kind of protease which plays an important role in the modification of chromosome and regulation of gene expression,and is closely associated with the occurrence and development of tumor.Histone deacetylase inhibitors(HDACIs) of great significance in the development of the antitumor drugs.The molecular structures of HDACs,HDACs with malignant tumor,the molecular structures of HDACIs,main design ideas of HDACIs,structure-activity relationship were reviewed in this article.
[Key words] Histone deacetylase;Inhibitors;Tumor
近年来,肿瘤已经成为威胁人类健康的一大杀手。2012年全球新增癌症病例达到1400多万例,预计在未来20年内,癌症死亡人数将从每年820万飙升至1300万[1]。2014年2月3日,世界卫生组织下属的国际癌症研究机构发表的《2014年世界癌症报告》显示,全球癌症死亡率正在以惊人的速度增加,平均每8个死亡病例中就有1例死于癌症。目前肿瘤治疗方法主要是手术治疗、化学疗法和放射治疗,花费高、治愈率低、副作用大,给患者造成了沉重的负担,如何解决这些问题成为科研以及医务工作者密切关注的问题。
随着表观遗传学、分子生物学等研究的深入,越来越多的证据表明,肿瘤的发生发展与基因水平的病变密不可分。组蛋白乙酰化酶(histone acetyltransferase,HATs)与组蛋白去乙酰化酶(histone deacetylase,HDACs)是调控基因转录与表达的两个主要酶家族。HATs将乙酰辅酶A的乙酰基转移到组蛋白氨基末端特定的赖氨酸残基上,降低组蛋白与DNA的结合,激活基因转录及表达;HDACs使组蛋白去乙酰化,增强组蛋白与DNA的结合,染色质致密卷曲,从而抑制基因的转录及表达。在肿瘤细胞中,HDACs过度表达,去乙酰化作用增强,抑制了特定基因的表达,与肿瘤的发生发展具有密切联系[2-3]。早在1990年就有科学研究[4-5]表明,组蛋白去乙酰化酶抑制剂(histone deacetylase inhibitors,HDACIs)有助于抑制肿瘤细胞的存活。本文就HDACs与肿瘤的关系及其现阶段已经上市、处于临床及临床前研究的抑制剂进行综述,以期为抗肿瘤药物的研发提供一些新思路。
1 HDACs的结构及其与肿瘤的关系
真核细胞中,染色质由DNA、组蛋白及其他蛋白组成。组蛋白构成的八聚体紧紧环绕在DNA周围,构成核小体,是染色质的基本组成单位。组蛋白的N-端氨基酸是可被修饰的活性位点,可以发生乙酰化、磷酸化、甲基化等作用,调控基因的表达。HDACs可能通过以下2种机制调控基因的表达:①HDACs使组蛋白去乙酰化,增强组蛋白与DNA结合,染色质致密卷曲,基因的转录受到抑制;②HDACs使一些非组蛋白在DNA附近集聚,与组蛋白N-端活性位点发生作用,影响转录过程[6-9]。
目前已知的人类HDACs存在18种亚型,根据结构和功能可以分为以下4类。Ⅰ类:HDAC1~3和8;Ⅱ类:HDAC4~7,9~10;Ⅲ类:SIRT1~7;Ⅳ类:HDAC11[10-11]。其中Ⅰ类、Ⅱ类和Ⅳ类HDACs为Zn2+依赖酶,Ⅲ类为NAD+依赖酶。Zn2+依赖的HDACs是研究的主要靶点,其仅有HDAC4、HDAC7和HDAC8获得了蛋白晶体结构(图1)。表观遗传学研究[12]表明,在众多的亚型中,HDAC1和HDAC2与肿瘤发生发展的关系最为密切。
图1 HDAC8的晶体结构及其与TSA结合(PDB ID:1T64)
组蛋白的乙酰化与去乙酰化分别受HATs和HDACs的调控,一旦平衡被打破,基因的转录过程将失调。病理情况下,HDACs过度表达,一些肿瘤抑制基因转录受到抑制,引起一系列疾病。例如,HDAC1在胃癌[13]和前列腺癌[14]中高表达,HDAC1和HDAC6在胸腺癌中高表达[15-16],HDAC2和HDAC3在结肠直肠癌中高表达[17-18]等。因此,HDACs是抗肿瘤药物研发中的一个重要靶点。
2 HDACIs的结构及其与肿瘤的关系
目前设计开发的HDACIs种类繁多,根据其化学结构可以分为4类:①异羟肟酸类;②苯酰胺类;③环肽类;④羧酸类。按照其结构特征又可分为3部分片段:①与Zn2+络合的异羟肟酸结构;②中间的脂肪链连接部分;③亲脂性的帽子结构,与受体口袋疏水性结合。临床实验及临床前研究表明,HDACIs对多种肿瘤细胞具有生长抑制的作用,影响肿瘤细胞分化及诱导肿瘤细胞凋亡,用于肿瘤的单一或联合治疗(表1)。
2.1 异羟肟酸类
2.1.1 处于临床实验研究的抑制剂 异羟肟酸类HDACIs是在二甲基亚砜(dimethyl sulfoxide,DMSO)的基础上研究开发的。Friend等[19]在复苏小鼠红白血病细胞时发现DMSO对传代细胞具有生长抑制作用,并且2/3的病变细胞有好转的现象。该现象引起了Marks等[20]的注意,拉开了异羟肟酸类HDACIs的研究序幕。研究表明,一些极性小分子胺类化合物同样对小鼠红白血病细胞具有生长抑制作用,但其抑制活性未能显著增高。两分子的胺类化合物拼接后得到二乙酰胺类化合物六亚甲基二乙酰胺(HMBA,13)(图2),并选择性的改变基因的表达,从而起到抑制肿瘤细胞生长的作用,对小鼠红白血病细胞的抑制IC50达到5 mmol/L,抑制活性得到显著提高。临床前研究表明,HMBA具有毒性低、良好的药动学性质等优点。HMBA曾进入二期临床实验,用于治疗骨髓异常综合征和急性髓细胞白血病[21],但由于其活性较低,剂量需求过大,在患者中耐受性差,且有血小板减少等副作用,研究被迫终止。
图2 部分异羟肟酸类HDACIs的结构及其活性
对HMBA进行进一步的结构修饰,采用羟肟酸片段取代酰胺片段,亲脂性的苯环取代一侧羟基,以期同时达到离子螯合和与疏水性口袋结合的作用,获得了一系列的HDACIs。Merk公司开发的化合物Vorinistat(SAHA,1)是该类化合物中理化性质及活性较好、毒性适中的化合物,于2006年被美国FDA批准上市,主要用于治疗CTCL。Belinostat(PXD-101,2)是TopoTarget公司开发的HDACIs,对HDACs的IC50为27 nmol/L,目前已经在美国批准上市,用于治疗外周T细胞淋巴瘤。Novartis公司研发的Panobinostat(LBH589,3)用于治疗恶性淋巴瘤,例如CTCL已经进入Ⅲ期临床实验。体内外实验表明,Italfarmaco公司开发的Givinostat(ITF2357,4)具有抗炎和细胞毒作用,一项用于治疗霍奇金淋巴瘤Ⅱ期临床实验表明,Givinostat具有抑制淋巴瘤的作用,并且呈现出了良好的安全性。Pharmacyclics公司开发的Abexinostat(PCI-24781,5)用于治疗B细胞淋巴瘤现在正处于Ⅱ期临床实验阶段[22]。Resminostat(4SC-201,6)是可以口服的HDACIs,用于治疗顽固性肿瘤处于Ⅰ期临床实验阶段[23]。Quisinostat(JNJ-26481585,7)作为广谱HDACIs,用于治疗骨髓瘤、白血病等的研究正在进行[24-25]。
2.1.2 处于临床前研究的抑制剂 Guan等[26]根据异羟肟酸类HDACIs的构效关系,设计一类取代1,3,4-噻二唑类的化合物,获得了化合物14(表2),其IC50为89 nmol/L,优于SAHA,但该化合物抑制细胞增殖能力却弱于SAHA。Guan等[27]继续对其结构改造,用取代的芳杂环代替苯环,得到化合物15~17(表2),其对HDACIs的抑制活性与抑制细胞增殖能力均高于SAHA,有继续开发的价值。Woo等[28]发现Trichostatin A(TSA,18)(图2)是一种天然异羟肟酸类HDACIs,对HDAC1的IC50为5 nmol/L。Yang等[29]通过改变连接部分的C链长度及帽子区域的结构类型,发现了化合物19(图2),对HDAC1的IC50为1.8 nmol/L,强于SAHA,体内外实验具有良好的结果。Yang等[30]合成了一系列噻吩并嘧啶类异羟肟酸HDACIs,其中化合物20对HDAC1和HDAC3的IC50分别为1.14 nmol/L和3.56 nmol/L(图2)。
表2 1,3,4-噻二唑异羟肟酸类HDACIs的结构及其活性
2.2 苯甲酰胺类
20世纪90年代,药物化学家发现经典的抗惊厥药地西林具有抑制细胞生长的作用,动物实验显示其对各种实体瘤具有一定的抑制活性。其乙酰化产物CI-994(21)(图3)的抗肿瘤活性与地西林相当,但是代谢稳定性更强。临床前研究表明,CI-994具有较好的抗肿瘤活性和较低的毒性[31-32]。目前,CI-994与吉西他滨联合治疗非小细胞肺癌已经完成了Ⅲ期临床实验。进一步结构修饰表明,CI-994的A环可被生物电子等排体,如芳香环或者芳杂环取代,但活性保持不变或增强;如脂肪链取代,活性降低。Hamblett等[33]用取代吡啶环代替A环合成得到了化合物22(表3),其对HDAC1的IC50为73 nmol/L。体内实验表明,化合物22具有良好的药动学和药效学性质,具有开发成药物的潜力。
CI-994(21)
图3 CI-994的结构
表3 苯甲酰胺HDACIs的结构及其抑制活性
1999年,Suzuki等[34]报道了一类新型的苯甲酰胺类衍生物,A环的4位是亚甲氨基而非氨基取代,得到了一个活性较好的先导化合物Entinostat(MS-275,8),对HDACIs的IC50达到了4.8 μmol/L。Syndax公司正在对其进行临床研究开发,用于治疗霍奇金淋巴瘤、肺癌、乳腺癌等疾病,研究正在处于Ⅱ期临床实验研究阶段,2013年9月FDA已经提议与Syndax公司联合对Entinostat进行Ⅲ期临床实验研究。Paquin等[35]用吡啶、嘧啶、三嗪等芳杂环对4位亚甲氨基进行结构修饰,得到了化合物23(表3),对HDAC1的IC50为70 nmol/L。Frechette等[36]开发出了化合物24(表3),对HDAC1的IC50为60 nmol/L。Zhou等[37]用嘧啶衍生物对4位亚甲氨基进行结构修饰,得到了化合物Mocetinostat(MGCD0103,9),现在正在进行Ⅰ、Ⅱ临床试验,主要用于治疗急性髓细胞性白血病、霍奇金淋巴瘤、滤泡性淋巴瘤。未保留4位亚甲氨基结构进行的一些结构修饰,如化合物25、26及27(表3),其IC50均在nmol/L级别。
Moradei等[38]用计算机辅助药物设计的方法,将MS-275分子与HDAC1的催化活性中心进行对接,发现B环NH2的对位方向有一个疏水性空腔,于是在MS-275的B环NH2的对位引入了噻吩基团得到化合物28(表3),活性提高了将近27倍,但是邻间位取代活性则下降。
2.3 环肽类
环肽类化合物是HDACIs中结构最复杂、最具成药潜力的一类化合物,对HDACs抑制活性较强,作用方式与异羟肟酸类HDACIs一致。其基本结构是疏水氨基酸构成的12元环,是亲脂性的帽子结构;非天然氨基酸的侧链构成了连接部分;与Zn2+结合区域是一些环氧酮类或者异羟肟酸片段。目前存在的环肽类HDACIs,根据结构组成可以分为含硫抑制剂、含L-Aoe的抑制剂及其他类抑制剂。
含硫的环肽类HDACIs多为前药,分子中的二硫键或硫酯键在体内降解生成硫醇,与HDACs活性位点的Zn2+螯合而发挥作用,例如Romidepsin(FK-228,10)、FR901375(29)、Largazole(30)(图4)。其中Romidepsin对HDAC1的IC50为0.2 nmol/L,已获得美国FDA批准上市,主治复发或顽固性CTCL及外周T-细胞淋巴瘤。Taori等[39]从海燕蓝藻中分离得到十六元环肽内酯类化合物Largazole(图4),其对HDACs的抑制活性在nmol/L级别。其乙酰化衍生物与Largazole具有同等程度的抑制活性。Ying等[40]和Nasveschuk等[41]均已经完成了Largazole的全部合成工作。
含有L-Aoe的环肽类HDACIs大都从具有抗寄生虫或抗增殖作用的天然产物中筛选获得,是HDACs的不可逆抑制剂,其功能基团为(2S)-2-氨基-9、10-环氧-8-氧代癸酸(L-Aoe),所以叫做L-Aoe类抑制剂,例如化合物31~37(表4)。
还有一些其他类型的环肽类HDACIs,也具有很好的开发价值。例如Apicidin(38)[42],对HDAC1和HDAC8的IC50分别为2 nmol/L和>1000 nmol/L,对包括胃癌、乳腺癌和子宫内膜癌在内的多种人类肿瘤细胞均有较好的抗增殖活性。
2.4 羧酸类
羧酸类的HDACIs对HDACs抑制活性较弱,为mmol/L级别,其与Zn2+结合区域是一个羧基集团。虽然表面识别区对HDACs抑制活性较为重要,但是目前研究开发的羧酸类HDACIs仍然是简单的烷基链。丁酸是结肠中的微生物代谢的副产物,mmol/L级别的丁酸选择地抑制肿瘤细胞生长的G1期,从而抑制肿瘤细胞增殖,并且不影响正常细胞结构和功能。羧酸类HDACIs作为抗肿瘤药物,其毒性较低,但首过效应强、半衰期短,所需剂量大。其抑制活性低,可能是由于其仅仅具有HDACs抑制活性,而促进细胞分化能力较低的缘故[43]。其常与其他药物联合使用,如丁酸钠和抗脂肪酸合成酶激动剂抗体联合用药,能起到协同诱导作用;苯基丁酸(39)(图5)和全反维甲酸(ATRA)联合用药治疗前髓细胞白血病[44]。因此,羧酸类化合物生物利用度低,多将羧基制成酯基,做成前药,吸收、代谢更好。
Phenylbutyric acid(39)
图5 苯基丁酸的结构
3 结语
HDACs是人体内一类重要的金属蛋白酶,其参与了细胞周期调控,在肿瘤的发生发展中起到了至关重要的作用。目前已经合成了结构丰富的HDACIs,SAHA、FK228及Belinostat已成功被FDA批准上市;Largazole、Panobinostat、Entinostat等许多化合物已经进入临床前或临床研究阶段。随着对肿瘤发生机制及HDACIs构效关系地深入研究,HDACIs的设计开发将对肿瘤的治疗产生重要意义。
[参考文献]
[1] Siegel R,Ma J,Zou Z,et al.Cancer statistics[J].CA Cancer J Clin,2014,64(1):9-29.
[2] Bernstein BE,Meissner A,Lander ES.The mammalian epi-genome[J].Cell,2007,128(4):669-681.
[3] Smith BC,Denu JM.Chemical mechanisms of histone lysine and arginine modifications[J].Biochim Biophys Acta,2009, 1789(1):45-57.
[4] Yoshida M,Kijima M,Akita M,et al.Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A[J].J Biol Chem,1990,265(28):17174-17179.
[5] Richon VM,Emiliani S,Verdin E,et al.A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases[J].Proc Natl Acad Sci USA,1998,95(6):3003-3007.
[6] Kouzarides T.Chromatin modifications and their function[J].Cell,2007,128(4):693-705.
[7] Roth SY,Denu JM,Allis CD.Histone acetyltransferases[J].Annu Rev Biochem,2001,70(1):81-120.
[8] Izzo A,Schneider R.Chatting histone modifications in mammals[J].Brief Funct Genomics,2010,9(5):429-443.
[9] Sanchez R,Zhou MM.The role of human bromodomains in chromatin biology and gene transcription[J].Curr Opin Drug Discov Devel,2009,12(5):659-665.
[10] Gregoretti IV,Lee YM,Goodson HV.Molecular evolution of the histone deacetylase family:functional implications of phylogenetic analysis[J].J Mol Biol,2004,338(1):17-31.
[11] de Ruijter AJ,van Gennip AH,Caron HN,et al.Histone deacetylases(HDACs):characterization of the classical HDAC family[J].Biochem J,2003,370(3):737-749.
[12] Haberland M,Johnson A,Mokalled MH,et al.Genetic dissection of histone deacetylase requirement in tumor cells[J].Proc Natl Acad Sci USA,2009,106(19):7751-7755.
[13] Choi JH,Kwon HJ,Yoon BI,et al.Expression profile of histone deacetylase 1 in gastric cancer tissues[J].Jpn J Cancer Res,2001,92(12):1300-1304.
[14] Halkidou K,Gaughan L,Cook S,et al.Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer[J].Prostate,2004,59(2):177-189.
[15] Zhang Z,Yamashita H,Toyama T,et al.Quantitation of HDAC1 mRNA expression in invasive carcinoma of the breast[J].Breast Cancer Res Treat,2005,94(1):11-16.
[16] Zhang Z,Yamashita H,Toyama T,et al.HDAC6 expression is correlated with better survival in breast cancer[J].Clin Cancer Res,2004,10(20):6962-6968.
[17] Zhu P,Martin E,Mengwasser J,et al.Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis[J].Cancer Cell,2004.5(5):455-463.
[18] Wilson AJ,Byun DS,Popova N,et al.Histone deacetylase 3(HDAC3) and other class Ⅰ HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer[J].J Biol Chem,2006,281(19):13548-13558.
[19] Friend C,Scher W,Holland JG,et al.Hemoglobin synthesis in murine virus-induced leukemic cells in vitro:stimulation of erythroid differentiation by dimethyl sulfoxide[J].Proc Natl Acad Sci USA,1971,68(2):378-382.
[20] Marks PA,Breslow R.Dimethyl sulfoxide to vorinostat:development of this histone deacetylase inhibitor as an anticancer drug[J].Nat Biotechnol,2007,25(1):84-90.
[21] Andreeff M,Stone R,Michaeli J,et al.Hexamethylene bisacetamide in myelodysplastic syndrome and acute myelogenous leukemia: a phase Ⅱ clinical trial with a differentiation-inducing agent[J].Blood,1992,80(10):2604-2609.
[22] Bhalla S,Balasubramanian S,David K,et al.PCI-24781 induces caspase and reactive oxygen species-dependent apoptosis through NF-kappaB mechanisms and is synergistic with bortezomib in lymphoma cells[J].Clin Cancer Res,2009,15(10):3354-3365.
[23] Brunetto AT,Ang JE,Lal R,et al.First-in-human,pharmacokinetic and pharmacodynamic phase Ⅰ study of Res-minostat,an oral histone deacetylase inhibitor,in patients with advanced solid tumors[J].Clin Cancer Res,2013,19(19):5494-5504.
[24] Stuhmer T,Arts J,Chatterjee M,et al.Preclinical anti-myeloma activity of the novel HDAC-inhibitor JNJ-26481585[J].Br J Haematol,2010,149(4):529-536.
[25] Tong WG,Wei Y,Stevenson W,et al.Preclinical antileukemia activity of JNJ-26481585,a potent second-generation histone deacetylase inhibitor[J].Leuk Res,2010,34(2):221-228.
[26] Guan P,Sun F,Hou X,et al.Design,synthesis and preliminary bioactivity studies of 1,3,4-thiadiazole hydroxamic acid derivatives as novel histone deacetylase inhibitors[J].Bioorg Med Chem,2012,20(12):3865-3872.
[27] Guan P,Wang L,Hou X,et al.Improved antiproliferative activity of 1,3,4-thiadiazole-containing histone deacetylase (HDAC)inhibitors by introduction of the heteroaromatic surface recognition motif[J].Bioorg Med Chem,2014,22(21):5766C5775.
[28] Woo SH,Frechette S,Abou Khalil E,et al.Structurally simple trichostatin A-like straight chain hydroxamates as potent histone deacetylase inhibitors[J].J Med Chem,2002,45(13):2877-2885.
[29] Yang F,Zhang T,Wu H,et al.Design and optimization of novel hydroxamate-based histone deacetylase inhibitors of Bis-substituted aromatic amides bearing potent activities against tumor growth and metastasis[J].J Med Chem,2014,57(22):9357-9369.
[30] Yang W,Li L,Ji X,et al.Design,synthesis and biological evaluation of 4-anilinothieno[2,3-d]pyrimidine-based hydroxamic acid derivatives as novel histone deacetylase inhibitors[J].Bioorg Med Chem,2014,22(21):6146-55.
[31] el-Beltagi HM,Martens AC,Lelieveld P,et al.Acetyldinaline:a new oral cytostatic drug with impressive differential activity against leukemic cells and normal stem cells-preclinical studies in a relevant rat model for human acute myelocytic leukemia[J].Cancer Res,1993,53(13):3008-3014.
[32] Seelig MH,Berger MR.Efficacy of dinaline and its methyl and acetyl derivatives against colorectal cancer in vivo and in vitro[J].Eur J Cancer,1996,32A(11):1968-1976.
[33] Hamblett CL,Methot JL,Mampreian DM,et al.The discovery of 6-amino nicotinamides as potent and selective histone deacetylase inhibitors[J].Bioorg Med Chem Lett,2007,17(19):5300-5309.
[34] Suzuki T,Ando T,Tsuchiya K,et al.Synthesis and histone deacetylase inhibitory activity of new benzamide derivatives[J].J Med Chem,1999,42(15): 3001-3003.
[35] Paquin I,Raeppel S,Leit S,et al.Design and synthesis of 4-[(s-triazin-2-ylamino)methyl]-N-(2-aminophenyl)-benzamides and their analogues as a novel class of histone deacetylase inhibitors[J].Bioorg Med Chem Lett,2008,18(3):1067-1071.
[36] Fréchette S,Leit S,Woo SH,et al.4-(Heteroarylamino-methyl)-N-(2-aminophenyl)-benzamides and their analogs as a novel class of histone deacetylase inhibitors[J].Bioorg Med Chem Lett,2008,18(4):1502-1506.
[37] Zhou N,Moradei O,Raeppel S,et al.Discovery of N-(2-aminophenyl)-4-[(4-pyridin-3-ylpyrimidin-2-ylamino) methyl]benzamide(MGCD0103),an orally active histone deacetylase inhibitor[J].J Med Chem,2008,51(14):4072-4075.
[38] Moradei OM,Mallais TC,Frechette S,et al.Novel amino-phenyl benzamide-type histone deacetylase inhibitors with enhanced potency and selectivity [J].J Med Chem,2007,50(23):5543-5546.
[39] Taori K,Paul VJ,Luesch H.Structure and activity of largazole,a potent antiproliferative agent from the Floridian marine cyanobacterium Symploca sp[J].J Am Chem Soc,2008,130(6):1806-1807.
[40] Ying Y,Taori K,Kim H,et al.Total synthesis and molecular target of largazole,a histone deacetylase inhibitor[J].J Am Chem Soc,2008,130(26):8455-8459.
[41] Nasveschuk CG,Ungermannova D,Liu X,et al.A concise total synthesis of largazole,solution structure,and some preliminary structure activity relationships[J].Org Lett,2008, 10(16):3595-3598.
[42] Ahn MY,Ahn SG,Yoon JH.Apicidin,a histone deaceylase inhibitor,induces both apoptosis and autophagy in human oral squamous carcinoma cells[J].Oral Oncol,2011,47(11):1032-1038.
[43] Chen JS,Faller DV,Spanjaard R A.Short-chain fatty acid inhibitors of histone deacetylases:promising anticancer therapeutics?[J].Curr Cancer Drug Targets,2003,3(3):219-236.