前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的生物燃料产业分析主题范文,仅供参考,欢迎阅读并收藏。
关键词:生物质;生物质能;产业;沼气;生物质发电;生物质燃料;能源作物
1 概 述
近年来,在能源危机、保护环境和可持续发展的呼声中,可再生的清洁能源以及能源的多元化倍受关注,生物质能成为其中的一个新亮点。
为了促进可再生能源的开发利用,增加能源供应,改善能源结构,保障能源安全,保护环境,实现经济社会的可持续发展,中国已经制定并实施了《可再生能源法》。可再生能源是清洁能源,是指在自然界中可以不断再生、永续利用、取之不尽、用之不竭的资源,它对环境无害或危害极小,而且资源分布广泛,适宜就地开发利用。根据《可再生能源法》的定义,目前主要包括太阳能、风能、水能、生物质能、地热能和海洋能等非化石能源[1]。中国可再生能源资源非常丰富,开发利用的潜力很大,其中生物质能的开发潜力更大。
生物质能一直是人类赖以生存的重要能源,它目前是仅次于煤炭、石油和天然气而居于世界能源消费总量第四位的能源,在整个能源系统中占有重要地位[2]。据有关专家估计,生物质能极有可能成为未来可持续能源系统的重要组成部分,到下世纪中叶,采用新技术生产的各种生物质替代燃料将占全球总能耗的40%以上。
生物质能是蕴藏在生物质中的能量,是绿色植物通过叶绿素将太阳能转化为化学能而贮存在生物质内部的能量。煤、石油和天然气等化石能源也是由生物质能转变而来的。生物质能是可再生能源,通常包括以下几个方面:一是木材及森林工业废弃物;二是农业废弃物;三是水生植物;四是油料植物;五是城市和工业有机废弃物;六是动物粪便。在世界能耗中,生物质能约占14%,在不发达地区占60%以上。全世界约25亿人的生活能源的90%以上是生物质能,直接燃烧生物质的热效率仅为10%~30%[3]。生物质能的优点是燃烧容易,污染少,灰分较低;缺点是热值及热效率低,体积大而不易运输。
目前世界各国正逐步采用如下方法利用生物质能:1)热化学转换法,获得木炭、焦油和可燃气体等高品位的能源产品,该方法又按其热加工的工艺不同,分为高温干馏、热解、生物质液化等方法;2)生物化学转换法,主要指生物质在微生物的发酵作用下,生成沼气、酒精等能源产品;3)利用油料植物所产生的生物油;4)把生物质压制成成型状燃料(如块型、棒型燃料),以便集中利用和提高热效率。
“为了缓解中国能源短缺问题,保证能源安全,治理有机废弃污染物,保护生态环境,建议国家应大力开发生物质能,实施能源农业的重大工程。”中国作物学会理事长路明研究员在接受记者采访时说[4],“生物能源开发工程应主要包括:沼气计划、酒精计划、秸秆能源利用计划和能源作物培育计划等。”
在2006年8月召开的全国生物质能源开发利用工作会议上,国家发展与改革委员会副主任陈德铭提出,今后15年,中国在生物质能源方面将重点发展农林生物质发电、生物液体燃料、沼气及沼气发电、生物固体成型燃料技术四大领域,开拓农村发展新型产业,为农村提供高效清洁的生活燃料,并为替代石油开辟新的渠道。
综上所述,目前,中国生物质能源的产业化利用途径主要包括以下方面:沼气利用工程、农林生物质发电、生物固体成型燃料、生物质液体燃料、能源作物培育利用等。
2 中国生物质能产业发展目标
中国农村生物质能是一座待开发的宝藏。根据《可再生能源中长期发展规划》确定的主要发展目标,到2010年,生物质发电达到550万千瓦(5.5GW),生物液体燃料达到200万吨,沼气年利用量达到190亿立方米,生物固体成型燃料达到100万吨,生物质能源年利用量占到一次能源消费量的1%;到2020年,生物质发电装机达到3000万千瓦,生物液体燃料达到1000万吨,沼气年利用量达到400亿立方米,生物固体成型燃料达到5000万吨,生物质年利用量占到一次能源消费量的4%[5]。
开发利用生物质能是当前国内外广泛关注的重大课题,既涉及农业和农村经济发展,又关系到国家的能源安全。今后5~10年,中国农村生物质能发展的重点是沼气、固体成型燃料和能源作物。《农业生物质能产业发展规划》确定的主要发展目标是[6,7]:到2010年,全国农村户用沼气总数达到4000万户,新建大中型养殖场沼气工程4000处,生物质能固体成型燃料年利用量达到
100万吨,能源作物的种植面积达到2400万亩左右。
据统计,全世界每年通过光合作用生成的生物质能约50亿吨,相当于世界主要燃料消耗的10倍,而作为能源的利用量还不到其总量的1%,中国的利用量更是远远低于世界平均水平[8]。2005年,中国可再生能源开发利用总量约1.5亿吨标准煤(tce),为当年全国一次能源消费总量的7%(其中非水电可再生能源利用占1%),根据政府的规划目标,到2010和2020年可再生能源利用总量将达到2.7亿tce和5亿tce,分别占届时能源消费总量的11%和16%(其中非水电可再生能源利用占2%和5%)[9]。因此,中国生物质能的发展利用空间很大。
3 中国生物质能产业化的发展前景
3.1沼气利用工程的发展空间
沼气的利用主要包括沼气燃气和沼气发电。目前,中国农村生物质能开发利用已经进入了加快发展的重要时期。统计显示,截至2005年底,中国农村中使用沼气的农户达到1807万多户,建成养殖场沼气工程3556处,产沼气约70亿立方米,折合524万吨标准煤,5000多万能源短缺的农村居民通过使用了清洁的气体燃料,生活条件得到根本改善[5]。中国已经建成大中型沼气池3万多个,总容积超过137万立方米,年产沼气5500万立方米,仅100立方米以上规模的沼气工程就达到630多处[10]。距离2010年预定目标的发展空间还很大。
中国经过二十多年的研发应用,在全国兴建了大中型沼气工程和户用农村沼气池的数量已位居世界第一。不论是厌氧消化工艺技术,还是建造、运行管理等都积累了丰富的实践经验,整体技术水平已进入国际先进行列。
沼气发电发展前景广阔,但目前还存在一些障碍,如技术障碍、市场障碍、政策障碍等,通过制定发展规划、加强技术保障体系建设、引入竞争机制,创新投资体系,研究制定促进沼气发展利用的国家级配套政策,等等。当技术、市场、政策等壁垒被克服后,沼气发展前景广阔,产业空间巨大。
3.2生物质能发电的发展前景
目前,生物质发电主要包括沼气发电、生物质直燃发电、生物质混燃发电、农林秸秆生物质气化发电、生物质炭化发电、林木生物质发电等。
生物质能源转化为电能,正面临着前所未有的发展良机:一方面,石油、煤炭等不可再生的化石能源价格飞涨;另一方面,各地政府顶着“节能降耗20%”的军令状,对落实和扶持生物质能源发电有了相当大的默契和热情。国家电网公司担任大股东的国能生物质发电公司目前已有19个秸秆发电项目得到了主管部门批准,大唐、华电、国电、中电等集团也纷纷加入,河北、山东、江苏、安徽、河南、黑龙江等省的100多个县、市开始投建或是签订秸秆发电项目[8]。
煤炭作为一次性能源,用一吨少一吨。而中国小麦、玉米、棉花等农作物种植面积很大,产量很高,而且农作物是可再生资源,相对于现在电厂频频“断煤”、不堪煤价攀升的尴尬局面,推广秸秆发电具有取之不尽的资源优势和低廉的成本优势。
生物质直接燃烧发电(简称生物质发电)是目前世界上仅次于风力发电的可再生能源发电技术。据初步估算,在中国,仅农作物秸秆技术可开发量就有6亿吨,其中除部分用于农村炊事取暖等生活用能、满足养殖业、秸秆还田和造纸需要之外,中国每年废弃的农作物秸秆约有1亿吨,折合标准煤5000万吨。照此计算,预计到2020年,全国每年秸秆废弃量将达2亿吨以上,折合标准煤1亿吨,相当于煤炭大省河南一年的产煤量。
为保障生物质发电原料供应,在强化传统农业生产的基础上,应大力开发森林、草地、山地、丘陵、荒地和沙漠等国土资源,充分挖掘生态系统的生物质生产潜力。重点加强高效光合转化作物、速生林木与特种能源植物的培育推广,大幅度扩大生物质资源的生产规模,逐步建立多样化的生物质资源生产基地。
大力发展生物质发电正当其时。中国“十一五”规划要求:建设资源节约型、环境友好型社会,大力发展可再生能源,加快开发生物质能源,支持发展秸秆发电,建设一批秸秆和林木质电站,生物质发电装机达550万千瓦。中国可再生能源发电价格实行政府定价和政府指导价两种形式。其中生物质发电项目上网电价实行政府定价,电价标准由各省(自治区、直辖市)2005年脱硫燃煤机组标杆上网电价加每千瓦时0.25元补贴电价组成[11]。 作为《中华人民共和国可再生能源法》配套法规之一的《可再生能源发电价格和费用分摊管理试行办法》规定,生物质发电项目补贴电价,在项目运行满15年后取消。自2010年起,每年新批准和核准建设的发电项目补贴电价比上年批准项目递减2%。发电消耗热量中常规能源超过20%的混燃发电项目,不享受补贴电价[11]。通过招标确定投资人的生物质发电项目,上网电价按中标确定的价格执行,但不得高于所在地区的标杆电价。
2010年,中国生物质能产量将达到22TWh,生物质发电装机容量5.5GW,占全国总发电量的0.78%;2020年,中国生物质能产量达到120TWh,生物质发电装机容量30GW,占全国总发电量的2.6%;2010年和2020年可再生能源发电占发电总量的比例仍然较小,分别为8.63%和11.86%[12]。国家发展与改革委员会计划到2020年底将可再生能源发电的比例提升到15%~16%。
据农业部提供的数据[13],中国拥有充足的可发展能源作物,如农作物秸秆年产6亿吨、畜禽粪便年产21.5亿吨、农产品加工业如稻壳、玉米芯、花生壳、甘蔗渣等副产品的年产量超过1亿吨、边际土地4.2亿公顷,同时还包括各种荒地、荒草地、盐碱地、沼泽地等。据中国科学院石元春院士估计,如果能利用现有农作物秸秆资源的一半,生物质产业的产值就可达近万亿元人民币。截止到2005年底,中国生物质发电量2GW,距离2010年的5.5GW和2020年的30GW还有很大的发展空间。作为唯一可运输并储存的可再生能源,凭其优越的先天条件,中国生物质能发电产业具备广阔的发展空间,拥有巨大的投资价值。
3.3 生物质固体燃料的发展模式
生物质固体成型燃料也是农业部今后的重点发展领域之一。农业部将重点示范推广农作物秸秆固体成型燃料,重点在东北、黄淮海和长江中下游粮食主产区进行试点示范建设和推广,发展颗粒、棒状和块状固体成型燃料,并同步开发推广配套炉具,为农户提供炊事燃料和取暖用能。
丰富、清洁、环保又可再生的生物质能源过去却没有得到重视,而被白白浪费掉。河南农业大学张百良教授分析指出,除去饲养牲畜、工业用和秸秆还田,中国每年还具有4亿吨制作成型燃料的资源可以生产1.5亿吨成型燃料,可替代1亿吨原煤,相当于4个平顶山煤矿的年产量[8]。以农作物秸秆为原料的生物质固体燃料产业规模虽然不是很大,但因目前开发程度低,发展空间仍巨大。
3.4生物质液体燃料的发展模式
3.4.1 生物液体燃料生产大国的典型模式
生物液体燃料具有替代石油产品的巨大潜力,得到了各国的重视,主要包括燃料乙醇和生物柴油。国际油价的持续攀升,提高了生物液体燃料的经济性,在一些国家和地区已经具有了商业竞争力。目前,巴西燃料乙醇折合成油价约25美元/桶,低于原油价格。2005年,巴西和美国仍然是燃料乙醇的生产大国,分别以甘蔗和玉米为原料,掺混汽油,占其国内车用交通燃料的50%和3%,比2004年分别提高6%和1%。美国在2001~2005年,燃料乙醇产量已经翻了一番,2005年最新的能源法案中又提出,到2010年燃料乙醇产量再增加一倍的目标。欧盟确定了到2010年生物液体燃料在总燃料消耗的比例达到6%的目标[14]。
目前,生产生物液体燃料比较成功的典型模式有巴西模式和美国模式。
1)巴西甘蔗-乙醇模式
巴西是推动世界生物燃料业发展的先锋。它利用从甘蔗中提炼出的蔗糖生产乙醇,代替汽油作为机动车行驶的燃料。如今巴西乙醇和其他竞争燃料相比,价格上已具有竞争性。这也是当前生物燃料业发展最为成功的典范。巴西热带地区的光照使得那里非常适合种植甘蔗。现在,巴西已经是世界上最大的甘蔗种植国,每年甘蔗产量的一半用来生产白糖,另一半用来生产乙醇。
最近几年,由于过高的汽油价格和混合燃料轿车的推广,巴西燃料乙醇工业更是得到了长足的发展。混合燃料轿车能够以汽油和乙醇的混合物为燃料,自从2003年在巴西大众市场销售后,销量节节攀升,目前已经占据了巴西轿车市场的半壁江山。在混合燃料轿车需求的拉动下,巴西燃料乙醇的日产量从2001年的3000万升增加到2005年的4500万升,已能满足国内约40%的汽车能源需求[14]。
用蔗糖生产乙醇是目前世界上制造乙醇最便宜的方法。在未来4年中,巴西计划将新建40~50家大型乙醇加工厂。为了保证原料供应,甘蔗的种植面积也将不断扩大。
当前巴西生物燃料发展战略的成功,并不意味着巴西的蔗糖乙醇会成为世界生物燃料业未来的选择。因为即使只替代目前全球汽油产量的10%,也需要将巴西现有的甘蔗种植面积扩大40倍。巴西不可能“腾”出这么多土地用于种植甘蔗。另外,由于甘蔗的品种有强烈的地域性,巴西的技术路线在别的国家很难走得通。就连非洲、印度、印度尼西亚都无法照搬,更别说主要地处温带的中国了。
因此,巴西模式尽管取得了迄今最大的成功,但却不是未来世界生物燃料业发展的方向,更不适合地处温带、缺少耕地的中国。探索适合中国国情的生物液体燃料发展模式成为当务之急。
2)美国玉米-乙醇模式
美国是主要的燃料乙醇生产国之一,但与巴西不同,它用的不是甘蔗而是玉米。尽管有不少反对的声音,但美国燃料乙醇的日产量仍从1980年的100万升增加到现在的4000万升。目前,美国已投入生产的乙醇生产厂有97家,另外还有35家正在建设当中。这些工厂几乎都集中在玉米种植带。
玉米中用于生产乙醇的主要成分是淀粉,通过发酵它可以很容易地分解为乙醇。这正是用玉米生产乙醇的优势,但这也是人们反对的原因,因为淀粉是一种重要的粮食。2007年美国计划投入4200万吨玉米用于乙醇生产,按照全球平均食品消费水平,同等数量的玉米可以满足1.35亿人口一年的食品消耗[14]。
中国现在80%的乙醇的原料是谷类,由于原本过剩的谷物在2000年后产量快速减少,使得燃料乙醇的发展再次面临挑战[15]。玉米加工燃料乙醇业过快发展,一些地区甚至玉米主产区已在考虑进口玉米了。国家已经制定相关政策,对玉米加工燃料乙醇项目加以限制,强调发展燃料乙醇要以非粮原料为主,因为谷类供给安全问题对于拥有巨大人口的中国来说,始终应该放在首位。粮食安全始终是国家重大战略问题。中国粮食不能承受“能源化”之重。中国国情和美国、巴西不一样,其成功经验虽有可资借鉴之处,但不能照搬他们的模式。
生物液体燃料方面新技术的研发,在很大程度上取决于解决生物燃料生产的原料供应问题。目前生产液体燃料大多使用的是粮食类作物,如玉米、大豆、油菜籽、甘蔗等。但是从能源的投入、产出分析,利用粮食类作物生产液体燃料是不经济的。因此,利用木质纤维素制取燃料乙醇将是解决生物液体燃料的原料来源和降低成本的主要途径之一。
3.4.2中国生物质液体燃料的产业化发展途径
中国生物液体燃料的发展已初具规模。当前,中国以陈化粮为原料生产燃料乙醇的示范工程,年生产能力已达102万吨,生产成本也达到了消费群体初步接受的水平。在非粮食能源作物种植方面,中国已培育出“醇甜系列”杂交甜高粱品种,并建成了产业化示范基地,培育并引进多个亩产超过3吨的优良木薯品种,育成了一批能源甘蔗新品系和能糖兼用甘蔗品种。具备了利用菜籽油、棉籽油、木油、茶油和地沟油等原料年产10万吨生物柴油的生产能力[16]。
1)油菜籽-生物柴油模式
中国农科院油料作物研究所所长王汉中研究员呼吁:国家应大力推广“油菜生物柴油”。生物柴油相对于矿物柴油而言,是通过植物油脂脱甘油后再经过甲脂化而获得。发展油菜生物柴油具备三大优点:一是可再生;二是优良的环保特性:生物柴油中不含硫和芳香族烷烃,使得二氧化硫、硫化物等废气的排放量显著降低,可降解性还明显高于矿物柴油;三是可被现有的柴油机和柴油配送系统直接利用。因此,生物柴油在石油能源的替代战略中具有核心地位。
目前,发展生物柴油的瓶颈是原料。木本油料的规模有限,大豆、花生等草本油料作物与水稻、玉米等主要粮食作物争地,扩大面积的潜力不大。而作为生物柴油的理想原料,油菜具有其独特的优势。首先适应范围广,发展潜力大:长江、黄淮流域、西北、东北等广大地区都适宜于油菜生长;其次油菜的化学组成与柴油很相近:低芥酸菜油的脂肪酸碳链组成与柴油很相近,是生物柴油的理想原料;第三,可较好地协调中国粮食安全与能源安全的矛盾:长江流域和黄淮地区的油菜为冬油菜,充分利用了耕地的冬闲季节,不与主要粮食作物争地。
根据欧洲油菜发展的经验和油料科技进步的情况,王汉中预计,只要政策、科技、投入均能到位,经过15年的努力,到2020年,中国油菜种植面积可达到4亿亩,平均亩产达到200千克,含油量达到50%左右。届时,中国每年可依靠“能源油菜”生产6000万吨的生物柴油(其中4000万吨来源于菜油,2000万吨来源于油菜秸秆的加工转化),相当于建造3个永不枯竭的“绿色大庆油田”[17]。
2)纤维素-乙醇模式
在整个生物燃料领域,当前最吸引投资者的并不是用蔗糖、玉米生产乙醇,或是从油菜籽中提炼生物柴油,而是用纤维素制造乙醇。所有植物的木质部分--通俗地说,就是“骨架”--都是由纤维素构成的,它们不像淀粉那样容易被分解,但大部分植物“捕获”的太阳能大多储存在纤维素中。如果能把自然界丰富且不能食用的“废物”纤维素转化为乙醇,那么将为世界生物燃料业的发展找到一条可行的道路。
虽然因技术上的限制,目前还没有一家纤维素乙醇制造厂的产量达到商业规模,但很多大的能源公司都在竞相改进将纤维素转化为乙醇的技术。最大的技术障碍是预处理环节(将纤维素转化为通过发酵能够分解的成分)的费用过于昂贵。但是,要想用纤维素生产乙醇,预处理环节无法回避。技术上的不确定性,迫使制造乙醇的大部分投资仍集中在传统的工艺--通过玉米、蔗糖生产乙醇,但这些办法无法从根本上解决当前的能源危机。为了保证能源安全,美国总统布什说,美国政府计划在6年内把纤维素乙醇发展成一种有竞争力的生物燃料。
因为发展能源不可能走牺牲粮食的道路。尽管现在技术上还存在障碍,但大部分人仍相信,利用纤维素生产燃料乙醇代表了未来生物燃料发展的方向。中国生物质液体燃料的未来也同样寄希望于用纤维素生产燃料乙醇。一旦技术取得突破,纤维素乙醇产业化发展空间巨大,产值难以估量。但是,各国的国情与能源结构不同,不能寄希望于某个方面来解决,因为任何国家都不可能单靠技术引进发展本国的生物燃料产业。因此,需要因地制宜,多能互补。
3)能源作物-生物液体燃料模式
石元春院士表示,在能源结构的历史转型中,中国发展生物质能源有很强的现实性和可行性。目前,中国对石油的进口依存度为近40%;SO2和CO2的排放量也分居世界第一和第二位。中国发展生物质能源不仅原料丰富,而且还有自行培养的甜高粱、麻疯树等优良能源植物;燃料乙醇、生物柴油等主产品工业转化技术基本成熟且有较大的改进空间,成本降幅一般在25%~45%,且目前在新疆、山东、四川等地已取得进展[4]。
发展能源作物不会威胁粮食安全与环保。曾有专家提出能源安全和粮食安全存在矛盾。解决这个问题需要充分认识到粮食安全和能源安全有统一性,发展能源农业将是促进农民增收、调动农民种粮积极性的有效措施。粮食作物和能源作物有很好的互补性。首先,能源作物大都是高产作物,既能满足粮食安全的需求,又是很好的能源作物。其次,能源农业开发的领域很广,可以做到不与或少与粮食争地。能源农业开发的领域,大多是利用农业生产中的废弃物,如利用畜禽场粪便、农产品加工企业的废水与废物开发能源,既能增加农民收入,又能为粮食生产提供优质肥料,是生产清洁能源、促进粮食生产、保证粮食安全和能源安全的双赢举措。
除粮食外,中国其他可用于生物质能生产的植物和原料还有很多,如甘蔗、甜菜、薯类等。广西科学院院长黄日波说,仅广西的甘蔗资源和木薯资源分别具备年产830万吨和1300万吨生物乙醇的生产潜力,加起来超过2000万吨[15]。
科技部中国生物技术发展中心有关专家指出,根据能源作物生产条件以及不同作物的用途和社会需求,估计中国未来可以种植甜高粱的宜农荒地资源约有1300万公顷,种植木薯的土地资源约有500万公顷,种植甘蔗的土地资源约有1500万公顷[15]。如果其中20%~30%的宜农荒地可以用来种植上述能源作物,充分利用中国现有土地与技术,生产的生物质可转化5000万吨乙醇,前景十分可观。
据农业部科教司透露,为稳步推动中国生物质能源的发展,并为决策和进一步开发利用土地资源提供可靠的数据,该司决定按照“不与人争粮,不与粮争地”的原则,开展对适宜种植生物质液体燃料专用能源作物的边际土地资源进行调查与评价工作,以摸清适宜种植能源作物边际土地资源总量及分布情况[18]。
以能源作物为原料的生物液体燃料模式发展潜力巨大,将是未来生物质能源发展的方向之一。
4) 林木生物质-生物柴油发展模式
利用中国丰富的林木生物质资源生产生物柴油,将薪炭林转变为能源林,实现以林木生物质能源对油汽的替代或部分替代,探索兼顾能源建设和生态环境建设的新模式,实现可再生能源与环境的可持续发展。开发林业生物质能产业是林业的一个很有潜力的新产业链,既是机会,也是创新,不仅具有巨大潜力和发展空间,更是林业发展新的战略增长点。
“森林具有可再生资源的属性。林业是天然的循环经济。生物质能技术是林业发展的新契机。”专家研究指出,中国生物质资源比较丰富,据初步估计,中国仅现有的农林废弃物实物量为15亿吨,约合7.4亿吨标准煤,可开发量约为4.6亿吨标准煤[19]。专家预测2020年实物量和可开发量将分别达到11.65亿吨和8.3亿吨标准煤。中国现有木本油料林总面积超过600多万公顷,主要油料树种果实年产量在200多万吨以上,其中,不少是转化生物柴油的原料,像麻疯树、黄连木等树种果实是开发生物柴油的上等原料。
中国现有300多万公顷薪炭林,每年约可获得近1亿吨高燃烧值的生物量;中国北方有大面积的灌木林亟待利用,估计每年可采集木质燃料资源1亿吨左右;全国用材林已形成大约5700多万公顷的中幼龄林,如正常抚育间伐,可提供1亿多吨的生物质能源原料;同时,林区木材采伐、加工剩余物、城市街道绿化修枝还能提供可观的生物质能源原料[19]。
中国发展林业生物质能源前景十分广阔。中国林业可用来发展生物质能源的树种多样,可作为能源利用的现有资源数量可观。在已查明的油料植物中,种子含油量40%以上的植物有150多种,能够规模化培育利用的乔灌木树种有10多种。目前,作为生物柴油开发利用较为成熟的有小桐子、黄连木、光皮树、文冠果、油桐和乌桕等树种。初步统计,这些油料树种现有相对成片分布面积超过135万公顷,年果实产量在100万吨以上,如能全部加工利用,可获得40余万吨生物柴油[19]。
目前全国尚有5400多万公顷宜林荒山荒地,如果利用其中的20%的土地来种植能源植物,每年产生的生物质量可达2亿吨,相当于1亿吨标准煤;中国还有近1亿公顷的盐碱地、沙地、矿山、油田复垦地,这些不适宜农业生产的土地,经过开发和改良,大都可以变成发展林木生物质能源的绿色“大油田”、“大煤矿”,补充中国未来经济发展对能源的需要[18]。国家林业局副局长祝列克介绍,“十一五”期间,中国主要开展林业生物质能源示范建设,到2010年,实现提供年产20万吨~30万吨生物柴油原料和装机容量为100万千瓦发电的年耗木质原料。到2020年,可发展专用能源林1300多万公顷,专用能源林可提供年产近600万吨生物柴油原料和装机容量为1200万千瓦发电年耗木质原料,两项产能量可占国家生物质能源发展目标30%以上,加上利用林业生产剩余物,林业生物质能源占到国家生物质能源发展目标的50%以上[19]。
可见,林木生物质能源的发展将逐步成为中国生物质能源的主导产业,发展空间巨大,前景广阔。
4 结 语
国家已出台的《生物燃料乙醇及车用乙醇汽油“十一五”发展专项规划》及相关产业政策,明确提出“因地制宜,非粮为主”的发展原则,发展替代能源坚持“不与人争粮,不与粮争地”,要更加依靠非粮食原料。从大方向来看,用非粮原料能源替代化石能源是长远方向,例如薯类和纤维质以及一些植物果实来替代。为避免粮食“能源化”问题[20],必须开发替代粮食的能源原料资源。开发替代粮食资源,如以农作物秸秆和林木为代表的各类木质纤维类生物质,及其相应的生物柴油和燃料乙醇生产技术,被专家们认为是未来解决生物质液体燃料原料成本高、原料有限的根本出路。
生物质能源将成为未来能源重要组成部分,到2015年,全球总能耗将有40%来自生物质能源,主要通过生物质能发电和生物质液体燃料的产业化发展实现。
有关专家也对生物质能源的发展寄予了厚望,认为中国完全有条件进行生物能源和生物材料规模工业化、产业化,可以在2020年形成产值规模达万亿元。
虽然生物质能源发展潜力巨大、前景广阔,并正在逐步打破中国传统的能源格局,但是生物质能的产业化发展过程也并非一帆风顺,因为生物质原料极其分散,采集成本、运输成本和生产成本很高,成为生物质燃料乙醇业的致命伤,若不能妥善解决将可能成为生物质能产业发展的瓶颈。
生物质能的资源量丰富并且是环境友好型能源,从资源潜力、生产成本以及可能发挥的作用分析,包括生物燃油产业化在内的生物质能产业化开发技术将成为中国能源可持续发展的新动力,成为维护中国能源安全的重要发展方向。在集约化养殖场和养殖小区建设大中型沼气工程也将成为中国利用生物能源发电的新趋势。从环保、能源安全和资源潜力综合考虑,在中国推进包括以沼气、秸秆、林产业剩余物、海洋生物、工业废弃物为原料的生物质能产业化的前景将十分广阔。
[参考文献]:
[1] 中华人民共和国可再生能源法.china.org.cn/chinese/law/798072.htm.
[2] 生物质能发展重点确定沼气固体成型燃料能源作物[EB/OL]. (2007-01-26)[2007-03-18].(来源:人民日报)。
[3] 生物质能的概况. (2006-11-22)[2007-04-02].
[4] 潘 希. 生物质能欲开辟中国农业“第三战场”。 科学时报,2005-04-30.
[5] 佚 名。我国确定农村生物质能发展战略目标[EB/OL]. (2006-10-13)[2007-03-18]. 来源: 新华网.
[6] 生物质能发展重点确定沼气固体成型燃料能源作物[EB/OL]. (2007-01-26)[2007-03-18].(来源:人民日报)。
[7] 师晓京. 农业部正制定《农业生物质能产业发展规划》,今后重点发展沼气、固体成型燃料和能源作物[N]. 农民日报,2007-01-26.
[8] 王琼杰. 日生物质能源能挑起我国未来能源的“大梁”吗?中国矿业报,2007-03-06.
[9] 世界可再生能源发展现状及未来发展趋势分析.[EB/OL]
[10] 谭利伟,简保权. 生物质能源的开发利用[J]. 农业工程技术.新能源产业,2007,总291期,第3期:18-27.
[11] 《可再生能源发电价格和费用分摊管理试行办法》[S]. [2007-04-03].
[12] Hu Xuehao. The Development Prospects of Renewable Energy and Distributed Generation in Power System and the Requirement for Energy Storage Technology[R/OL]. 2006 International Conferences on Power System Technology, Chongqing, China, October 22-24, 2006.
[13]中国科学技术信息研究所. 农业生物质资源-待开发的金矿。2006[2007-04-2].
[14] 蔡如鹏. 生物燃料走在路上[J]中国新闻周刊,2006,第48期,第66页.
[15] 王一娟 徐时芬. 专家为中国生物能源发展献策--开发替代粮食原料,破解燃料乙醇困局[J]. 经济参考报,2005-09-30.
[16]农村生物质能利用大有可为[EB/OL] . (2007-02-25)[2007-04-04].
[17] 胡其峰.专家呼吁大力推广“油菜生物柴油”[N/OL].光明日报, 2005-08-02.
[18] 师晓京. 农业部开展适宜种植能源作物边际土地资源调查[N/OL]. 农民日报,2007-03-21.
关键词:生物质 能源
一、福建生物质能源发展现状
福建地处亚热带,生物质资源非常丰富。目前可作为能源利用的生物质主要有林业生物质、木质油料植物、农作物秸秆、畜禽粪便、农产品加工副产品以及能源作物。在林业生物质方面,福建现有植物种类达5000种以上,其中用材树种有400余种,为全国6大林区之一。福建省生物质能资源丰富,开发利用具有一定基础,生物质能的利用方式目前主要集中在以下几个方面:
1.沼气。
福建省从20世纪80年代就开始发展沼气,沼气的发展近年来越来越受重视,农村户用沼气建设工程被列入2006年省委省政府为民办实事项目。“十五”以来,在农业部沼气建设项目的带动下,以“一池三改”为基本建设单元,“猪-沼-果”等生态农业模式得到积极推广。沼气建设从70年代能源需求型阶段转化为目前的生态需求型阶段。沼气技术不断成熟,“常规水压型”、“曲流布料型”、“强回流型”、“旋流布料型”等池型不断推广;“一池三改”(改厕、改圈、改厨)功能效应不断扩展,以沼气为纽带、“畜-沼-果”、“猪-沼-渔”、 “畜-沼-菜”、“庭院生态经济综合利用”、“农业废弃物综合处理及资源化利用”等生态农业模式不断创新;沼气配套管理与服务得到不断完善,从省到地市、县、乡、村都建立了沼气管理和推广机构以及服务站。
2.生物燃料乙醇
目前国家发改委批准的燃料乙醇试点项目全部集中在东北和华北地区,东南沿海还没有一家企业获准,福建目前也无燃料乙醇生产企业。“十一五”期间,国家将继续实行生物燃料乙醇“定点生产,定向流通,市场开放,公平竞争”相关政策。总体思路是积极培育石油替代市场,促进产业发展;根据市场发育情况,扩大发展规模;确定合理布局,严格市场准入;依托主导力量,提高发展质量;稳定政策支持,加强市场监管。“十一五”期间将是我国燃料乙醇发展的重要时期,据预测,“十一五”末国内乙醇汽油消费量占全国汽油消费量的比例将上升到50%以上。因此,福建省应抓住这个机遇,认真分析论证,尽早立项引进生产线,力争使福建省燃料乙醇项目走在我国东南沿海前列。
3.生物柴油
福建省生物柴油生产发展较早,主要是民营企业生产,目前已形成产业化发展。福建生物柴油三代技术都有不同程度的发展。目前第一代技术是以动植物废油脂为原料加工提炼成生物柴油。现已建成具有相当技术装备水平规模的生物柴油企业11家(其中5万t级生产能力3家、2万t级3家、1万t级6家),境外上市3家,形成年生产能力35万t左右。第二代技术以木本油料林的油脂为原料加工提炼成生物柴油。在有关部门大力支持下,多家民营、外资企业与科研机构合作,小规模建立示范基地,繁育栽培优良树种,探索经济模式,取得了可喜的成果;第三代技术是以海洋藻类和纤维素为原料制取生物柴油,在福建师大、厦门大学开展试验,也取得了阶段性的研究成果。
由于我国一直没有自己的生物柴油标准,造成民营企业生产的生物柴油无法进入官方销售渠道,生物柴油的质量处于混乱状态。虽然卓越企业起步早,发展较快,2006年在伦敦成功上市,但是缺乏共同承认的产品标准,生物柴油没有通过官方系统销售到中石油、中石化的销售网络中,一定程度上限制了生物柴油的发展。2007年1月国家标准化管理委员会颁布了首个生物柴油国家标准《柴油机燃料调和用生物柴油》,这意味着不久我省生物柴油将进入产业化大发展阶段。
4.生物质发电
福建省生物质发电近年发展较快。我国首个鸡粪发电厂――亚洲最大的鸡粪发电厂,2007年在福建省光泽县正式动工建设,该项目由福建圣农公司和武汉凯迪发电控制公司共同投资,总投资4.8亿元,分两期进行:首期建设两台汽轮发电机组和循环硫化床锅炉,投资2.8亿元,年处理鸡粪30万t以上,于2008年10月建成发电,年发电量达1.68亿kwh。该厂利用鸡粪与谷壳混合物为原料,通过直接燃烧发电,整个项目建成后,可以满足1.2亿羽肉鸡产生废弃物的资源化处理需求,并为当地农民提供更多就业岗位。
垃圾焚烧发电方面,福建表现也较为突出。垃圾焚烧发电是利用焚烧垃圾的余热发电,可减少排放垃圾体积85%~95%,避免土地资源浪费,垃圾焚烧产生烟气中的有害气体经处理达标后排放,可避免垃圾填埋而产生的二次污染,从而达到城市生活垃圾的减量化、无害化、资源化。福建省是全国第一个对垃圾焚烧发电设施进行规划的省份。自《福建省城市生活垃圾焚烧发电设施建设规划》,2007~2010年已建设(包括扩建)20座垃圾焚烧发电厂,总规模为17400 t/d,近期内形成规模为13300t/d;2010年全省城市(含县城)垃圾无害化处理率达到60%以上、设市城市垃圾无害化处理率达95%以上的目标。其中,焚烧发电处理量占全省生活垃圾无害化处理总量的78.9%。规划顺利实施后,福建省城市垃圾无害化处理水平将处于全国先进行列,福州、厦门、泉州三大中心城市的垃圾无害化处理水平在全国同类城市中也将处于前列。
二、生物质能源发展趋势
中国良好的宏观环境与能源政策逐渐形成,为生物质能产业提供了机会。2006 起开始正式实施《可再生能源法》。此后又相继颁布了《可再生能源发展专项资金管理办法》、《关于发展生物能源和生物化工财税扶持政策的实施意见》、《全国农村沼气建设规划》、《全国生物质能产业发展规划》、《节能减排综合性工作方案》、《可再生能源电价补贴和配额交易方案》等一系列的政策措施。这为生物质能的开发利用提供了良好的宏观环境,通过建立这一系列有效的机制来推进生物质能又好又快的发展。
现代生物质能发展的方向是高效清洁利用,将生物质能转化为优质能源,包括电力、燃气和液体燃料等。预计到2015年,我国生物质发电装机容量达到720万千瓦,生物质液体燃料达到700万吨,沼气年利用量达到240亿立方米,生物质固体燃料达到120万吨。2010年11月,国家质检总局、国家标准委了生物柴油调和燃料(B5)标准名列,2010年12月26日,国家税务总局宣布对利用废弃的动物油和植物油为原料生产的纯生物柴油免征消费税。这表明,未来针对生物质产业的政策和标准将陆续出台,相关产业政策缺失的问题将在“十二五”得以解决。
以非粮作物乙醇、纤维素乙醇和生物柴油等为代表的第二代生物燃料已成为许多国家开发生物燃料时的新宠。与第一代生物燃料相比,第二代生物燃料具有非常大的优势。首先,汽车发动机不需要改造就可以直接使用掺入了生物乙醇的汽油或柴油;其次,生产第二代生物乙醇的催化酶技术近两年成本快速下降,大规模工业生产的可行性非常强;第三,秸秆等纤维素类农业废弃物大量存在,比如中国每年农业大约产生7亿吨秸秆,供给非常充足。而且从长期来看,农业生产废弃物还可以用来生产生物高分子新材料。对于第二代生物燃料的关键技术是催化酶技术,酶是一种生物催化剂,可使生物化学反应在温和的环境下进行得更加迅速、效率更高。新型酶制剂能将植物中的纤维素分解成可发酵糖,并进一步转化为乙醇。就在几年前,该技术的成本还比较高,这两年来,随着生物技术的不断创新,其成本已经下降数倍,从而使第二代生物燃料越来越具有竞争力。
福建省提出至2015年全省生物质发电装机容量达40万千瓦。生物质能发展最有前景的就是垃圾发电和农林能源作物的利用。城市生活垃圾焚烧发电厂中远期规划:扩建9座焚烧发电厂,新增建设规模为4100?t/d。建设投资为12.7亿元。
三、福建生物质能产业发展中存在的问题
1. 对开发生物质能源战略意义的认识不足。福建省拥有适合发展的生物质能源产业,特别是生物液体燃料中的燃料乙醇和生物柴油均有较成熟的技术和资源,但开发生物质能源对可持续发展的重要意义尚未引起全社会的重视。因为生物质能源在能源领域里所占的比重较小,有些人认为生物能源成本较高,近期替代常规能源的潜力有限,无足轻重,因此从政策支持、资金扶持、加快发展、检查落实上都未引起足够重视。
2. 福建省对生物质能源产业的投入较少。因为对生物质能源的认识不足,所以在生物质能源产业方面投入太少。生物质能源建设项目还没有规范地纳入各级财政预算和计划,没有为生物质能源建设项目建立如常规能源建设项目同等待遇的固定资金渠道。
3. 缺乏完整的激励政策。生物质能源产业在发展初期是弱势产业,投资高、技术含量高。在发展初期,政府支持和引导十分重要。政府应当把开发可再生能源技术作为一项减少常规能源消费量和改善环境的措施加以扶持,并采取税收、补助、低息贷款和信贷担保、建立风险基金、加速折旧、帮助开拓市场等一系列激励政策.以扶持生物质能源产业的发展。
4. 尚未建立有效的技术支撑体系。作为一个新兴产业,目前福建省的大部分相关企业生产规模偏小,集约化程度低,原料来源困难,产品质量不稳定,生产成本高。在不考虑常规能源对生态、环境造成负面影响的情况下,目前一部分生物质能源产品的成本较高,难以适应市场竞争的要求。另外,省内高校和研究机构缺乏这方面专门人才的培养体系,企业缺乏熟悉生产流程和工艺的技术人员和管理人员。
四、福建生物质能产业发展思路
福建省拥有发展生物质能源的优势和特色,在未来发展福建生物质能源的研发和产业化方面,应重视以下五点:
1. 加强生物质能源产业化技术的研发,发展具有福建特色的生物质能源产业。福建可设立一个生物质能源发展专项基金,重点资助生物质转化为能源的关键技术。比如,生物质预处理,水解,催化热解,气化和合成气催化转化等。还要依托省内的一些主要高校和研究所,比如厦门大学、福州大学和福建农林大学等进行生物质产业化技术的联合攻关。注重自主创新、集成创新、技术开发和技术引进消化吸收在创新相结合。重点支持能源作物的品种选育、高效生产燃料乙醇、生物柴油以及生物基材料的成套生产技术,促进重点技术与产业的新突破。促进产学研的联合,重点扶持合作关系清晰、合作实体明确、合作任务落实的产学研合作的示范工程,重点投资应用型或具有较大产业化潜力的研究项目。
2. 加强林业生物质能源产业发展。目前,福建省在能源甘蔗、能源林草、燃料酒精和生物柴油方面已具有一定的优势。福建省多山的地理条件似乎更适合于发展林业生物质,可以重点在以上领域多投入,以扩大成果,强化优势。建议在品种选育、科研投入、企业培育、基地建设、技术开发等几个重要环节,进行全面的规划布局,投入相应的人力物力,以尽快形成林业生物质能源产业。
3. 解决好投入机制问题。生物质能源产业是个新兴产业,技术和工艺的成熟需要一个过程,雏形期经营成本相对较高,需要较大投入。因此,要注意解决投入机制问题。政府应充分利用政策资源,依靠市场机制,培育企业主体,营造投资渠道,鼓励并支持民营资本进入生物质能源产业领域。充分利用市场机制。发挥国家投资引导作用,鼓励企业和社会投资,培育具有较强自主创新、技术开发能力和市场竞争力的生物能源企业。
4. 积极建设一批沼气发电厂、垃圾焚烧发电厂、农林生物质发电厂等。充分利用荒山、盐碱地积极规划能源植物的规模化种植,扩大生物质液体燃料的原料来源,发展非粮食生物质液体燃料规模化加工业;支持以餐饮业废油、油榨厂油渣、油料作物为原料的生物柴油规模化生产,开发替代油源制造生物柴油新技术;鼓励研发新型催化剂及高效生物转化酶,提高生物质液体燃料制备转化率。
参考资料:
[1]刘叶志:福建新能源产业布局的战略构想《发展研究》2010年12
[2]林孟涛:加快发展福建省新能源产业的对策研究《东南学术》2012 年第3 期
[3]刘运权 王夺 :福建生物质能源产业的发展思路与对策《能源与环境》2011年4期
[4]官巧燕:福建生物质能利用与城市可持续发展《绿色中国》2011年1月5日
论文关键词:新能源汽车,发展现状,发展趋势,经验总结
一、新能源汽车定义及分类
根据我国《新能源汽车生产企业及产品准入管理规则》,新能源汽车是指采用非常规的车用燃料作为动力来源(或使用常规的车用燃料、采用新型车载动力装置),综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。新能源汽车包括混合动力汽车、纯电动汽车(包括太阳能汽车)、燃料电池汽车、氢发动机汽车、其他新能源(如高效储能器、二甲醚)汽车等各类别产品。
二、国际新能源汽车发展态势分析
(一)发展环境分析
1.能源危机成为新能源汽车发展的动力。石油资源的日益枯竭和石油价格的巨幅波动,不仅对世界各国经济造成了重要影响,更引起各国汽车产业的深刻变革:大排量、高油耗的汽车不再受到大多数消费者的青睐,燃油节约型汽车逐渐成为汽车市场的主流。世界各国欲借发展新能源摆脱其对石油的依赖发展趋势,逐步形成了新的世界经济增长模式。
2.金融危机提供新能源汽车发展的机遇龙源期刊。全球金融危机的爆发给新能源汽车的产业化发展提供了新的机遇。为了摆脱经济低谷,拉动经济复苏,获得市场[1]竞争先机,并使自己在未来的产业竞争格局中占据有利位置,发展新能源汽车成为世界各大汽车企业共同的战略选择。
3.环境污染呼唤新能源汽车时代的到来。随着汽车产业的快速发展,汽车已经成为城市的污染源之一。汽车尾气主要成分是CO、HC、NOX和颗粒物等,在城市中心,交通排放的CO形成的污染物浓度占CO总浓度的90%~95%,HC和NOX占80%~90%,而这些排放物正是造成地球气候变暖的重要原因之一。
4.技术变革促进新能源汽车的研发和生产。除了常规的化石能源(煤、石油)以外,新能源与可再生能源(太阳能、风能、水能、生物能等)的开发和利用比例逐渐提高,并由此产生了相应的多种新技术。能源的多样化发展给汽车新技术的应用带来了无限可能,各类新能源汽车的研发和生产必然会将汽车产业领域延伸、拓展到更加广泛的产业范畴。
(二)发展特点分析
新能源汽车在全球刚刚起步,代表着汽车产业未来的发展方向。混合动力作为新型汽车能源动力技术共性平台发展趋势,继承了先进内燃机技术,结合了高效洁净的电力驱动方式,既充分利用现有燃料基础设施,又能包容各种代用燃料,已成为新型动力系统汽车产业化的典型代表,开始大规模产业化发展,其中插电式混合动力汽车越来越受到重视;纯电动汽车借助各种高新技术特别是新型动力电池技术的进步找到了新的发展机遇,开始进入市场,并有快速增长的趋势;燃料电池作为一种新兴能量转换装置,尽管目前还存在很多需要克服的技术障碍,但其作为新一代汽车能源动力系统的远期解决方案仍然被看好,各种资助和示范验证正在进行,真正进入市场将还有一个较长的时期;代用燃料汽车可以用天然气、液化石油气、生物柴油、合成燃料、醇类燃料、醚类等多种清洁替代能源,成为解决石油资源短缺的重要途径。
(三)发展战略比较
美国长期侧重降低石油依赖、确保能源安全的战略发展趋势,将发展新能源汽车作为交通领域实现根本上摆脱石油依赖的重要措施,并以法律法规的形式确定其战略定位。美国从20世纪80年代起在不同的阶段提出了不同的车用能源发展战略,克林顿时期以提高燃油经济性为目标,混合动力是其主要的技术解决方案;布什时期追求零排放和对石油的零依赖,氢燃料电池汽车是其主要的技术解决方案,后期还计划用10年时间实现20%的石油替代和节约,主要措施是使用生物质燃料;近期奥巴马大力发展电动汽车,实施了总额48亿美金的动力电池以及电动汽车的研发和产业化计划,其中40亿美金用于动力电池的研发。
日本长期坚持确保能源安全、提高产业竞争力的双重战略,通过制订国家目标引导新能源汽车产业的发展,同时高度重视技术创新龙源期刊。日本在2006年“新国家能源战略”中明确提出,通过改善和提高汽车燃油经济性标准、推进生物质燃料应用、促进电动汽车应用等途径,到2030年交通领域对石油的依赖能够降低20%。重视生物燃料和燃料电池等技术开发,拟在2011年单年度生产生物燃料5万千升发展趋势,计划在五年内斥资2090亿日元开发以天然气为原料的液体合成燃料技术、车用电池,以及氢燃料电池科技。近期又将大力发展电动汽车作为低碳革命的重要内容,计划到2020年以电动汽车为主体的下一代汽车能够达到1350万辆。日本的混合动力汽车已形成产业化,丰田、本田、日产等日本厂商的混合动力汽车不仅在国内热销,在国际市场上也令其他国家厂商望其项背。
欧洲更加侧重于温室气体减排战略,将满足日益严格的二氧化碳排放限制要求作为发展新能源汽车的主要驱动力。欧洲新能源汽车发展的主要目标在早期以生物质燃料和天然气为主,在本世纪初期提出到2020年实现23%的石油替代,主要是生物质燃料、CNG以及氢燃料,但近期对于电动汽车给予高度关注。欧洲在发展电动汽车方面起步较晚,但是国家规划非常细致、系统,从基础研发做起,分阶段从研发产业化、基础设施方面给予统筹布局。2009年下半年德国的电动汽车计划以纯电动汽车为重点,分别提出了2015年、2020年的产业化和市场化的发展目标。
(四)产业政策分析
上世纪90年代以来,美日欧等国先后出台了一系列法律、规划、政策文件发展趋势,加强了对形成本国电动汽车产业的有效支持,主要体现在以下几方面:高度重视产业初创期的政策扶持;主要采用税收和补贴等政策支持措施;税收、补贴政策往往与油耗控制政策及尾气排放控制政策相结合;注重加强对降低整车重量的政策引导。2008年国际金融危机爆发以来,世界各国加强了对本国汽车产业的扶持力度,尤其是针对培育形成本国的新能源汽车产业出台了一系列扶持政策,关注点重在两个方面:大力支持先进电池等技术的研发和鼓励购买电动汽车。
2009年1月,韩国颁布“新增长动力规划及发展战略”,将绿色技术、尖端产业融合、高附加值服务等三大领域共17项新兴产业确定为新增长动力,在绿色运输系统方面,提出重点开发油电混合动力汽车等自主核心技术,实现关键零部件和材料国产化,2013年进入绿色汽车世界4强。2009年9月,美国“美国创新战略:推动可持续增长和高质量就业”,提出拨款20亿美元,支持汽车电池技术等的研发和配件产业的发展发展趋势,尽快生产出全球最轻便、最廉价和最大功效的汽车电池,使美国电动汽车、生物燃料和先进燃烧技术等站在世界前沿。
2009年4月1日,日本开始实施“绿色税制”,免除消费者在购买纯电动汽车、混合动力汽车、清洁柴油汽车时的多项税收,还提出在2009年11月后的一年时间里再提供2300亿日元左右的资金用于支持节能环保车型的补贴龙源期刊。2009年7月1日,美国政府提出了总额10亿美元的“汽车折价退款机制”——以旧换新补贴政策,计划为期一年;“美国创新战略:推动可持续增长和高质量就业”提出,为鼓励消费者购买电动汽车,美国政府将提供总额高达7500亿美元的税收抵免。英国政府在2010年度预算案中提出“绿色复苏”计划,其核心是挑选2~3个城市作为仅适用电动汽车的纯绿色城市,重点推动普及电动汽车;在全国范围内建立一个充电网络,保证电动汽车能在路边充电站及时充电;对放弃污染较高旧车、购买清洁能源车的消费者,提供每车2000英镑的补贴。
(五)发展趋势分析
在车用动力电池领域,混合动力和纯电动车用动力电池负责储存并为电动机提供电能发展趋势,其性能、成本和安全性很大程度上决定着混合动力汽车和纯电动汽车的发展进程。从当前的技术水平以及发展趋势来看,镍氢电池是目前应用最为广泛的车用动力电池,由于其技术成熟度和成本上的优势,在短期内仍将是混合动力汽车的首选动力。锂离子电池具有无记忆性、低自放电率、高比能量、高比功率、环保等诸多优点,应用前景较好,一旦成本问题得到解决,将成为纯电动汽车和插电式混合动力汽车的主要动力选择。
在车用驱动电机领域,永磁无刷电动机结构灵活、设计自由度大、性能较好,适合成为电动汽车高效、高密度、宽调速牵引驱动,已经在混合动力轿车上进行较多应用,但是受永磁材料工艺影响和限制较大,而且控制系统复杂,造价很高;开关磁阻电动机调速系统兼具直流、交流两类调速系统的优点,结构简单、维护修理容易、可靠性好、转速和效率高、调速范围宽、控制灵活发展趋势,如果其技术瓶颈(转矩波动大、噪声大、需要位置检测器、结构复杂性较大等)得到突破,将更适合电动汽车动力性能要求,被视为最具潜力的电动车电气驱动系统。
电子控制技术在新能源汽车中发挥着极其重要的作用,应用在汽车的各个领域,包括动力牵引系统控制、车辆行驶姿态控制、车身控制和信息传送。随着集成控制技术、计算机技术和网络技术的发展,汽车电子控制技术已明显向集成化、智能化和网络化三个主要方向发展。
三、国际新能源汽车发展经验总结
从国际经验看,各国政府都制定和实施了系统的激励性政策,在发展规划、关键技术研发投入、消费政策、环境标准、道路交通管理等方面,都为新能源汽车产业的发展提供了宽松的环境。
1.发展规划制定。美国、日本、韩国、欧盟等根据产业发展所处阶段的实际需要,制定分阶段、分类别发展规划,动态调整新能源汽车产业发展的扶持政策,使电动汽车产业顺利实现由政府推动过渡到市场推动。
2.基础研究资助。美国、日本、欧盟等地政府组织科研大攻关,协调全境范围内甚至全球范围内的政府机构、科研单位、汽车和燃料厂商,对未来新能源汽车技术进行大规模的基础研究发展趋势,并对新能源汽车的示范运行直接补贴龙源期刊。
3.财税政策激励。各国政府通过财税政策降低消费环节新能源汽车的购车成本和使用成本,从经济上激励消费者购买、使用新能源汽车,主要措施包括:购置税减免、返还以及直接补贴,许多欧盟国家基于燃油效率和环保性能制定车辆税费,针对消费者购置新型、清洁和高能效汽车给予税收减免;征收燃油税,欧盟实施高税率燃油税激励消费者选用节能环保的先进柴油车。
4.技术法规限制。美国、日本、欧盟等普遍采用强制性技术法规限制燃油消耗和尾气排放,并逐步提高技术标准,促使汽车生产商加大研发投入,生产新能源汽车。各国和地区的法规主要有:美国的CAFE标准和Tier标准、日本燃料经济性标准和尾气排放标准、欧洲自愿协议和欧盟尾气排放标准。
5.交通管理奖罚。为鼓励新能源汽车的发展,美国、日本、欧盟等地在交通管理措施中也有所体现,给予新能源汽车交通优先和停车免费等奖励,对高油耗、污染大的汽车采用惩罚性的措施。
参考文献
[1]陈柳钦.新能源汽车国际路线观察[J].决策,2010,(10).
[2]程广宇.国外新能源汽车产业政策分析及启示[J].中国科技投资,2010,(5).
关键词:生物柴油产业 发展现状 趋势 预测
中图分类号:F416.22 文献标识码:A 文章编号:1007-3973(2013)010-024-03
近年来,全球受到能源危机和环境污染的双重压力,寻求缓解能源和环境方面压力的办法,已经成为世界各国的共识。世界许多国家已经认识到生物柴油的重要性,在能源战略中,都把生物柴油作为后石油时代的一种新能源。
1 世界生物柴油产业发展现状
1.1 世界生物柴油产业持续快速增长
近几年来,世界上很多国家都将生物质能源发展作为本国的能源战略重点,各国对生物柴油产业的投资额度不断加大,优惠政策不断增多,生物柴油产业化规模明显增大。据Global Data的全球生物柴油市场报告,从2001年到2009年,全球生物柴油生产量从9.59亿升增长到157.60亿升,年均增长率为41.9%。其中2004年到2005年的增长率达到86%。图1为截止到2012年底的世界生物柴油产量的变化,可以看出世界生物柴油产业增长比例很大,2006年前处于导入期,从2006年开始,生物柴油产业呈现井喷增长。
1.2 欧美领跑世界生物柴油产业
欧盟一直很重视生物柴油的发展,是全球最大的生物柴油生产和消费地区,也是全世界生物柴油发展最快的地区。欧盟的生物柴油产量占世界生物柴油总产量的50%左右,2009年,生物柴油产量达到840万吨,消费量达到1180万吨。欧盟颁布的相关政策要求生物液体燃料在汽车燃料消费中的比例在2005年达到2%,2010年为5.57%,2015年为8%。欧盟的生物柴油产量从2001年的78万吨,增长到2010年的956.9万吨,以每年30%左右的速度增长,其中2005年增长最多,达70%左右。生产能力也由2005年的422.8万吨/年增加到了2009年的2100万。在欧盟成员国中,德国是生物柴油使用最广的国家,也是世界上最大的生物柴油生产国,它主要以纯态生物柴油(B100)做为车用燃料进行市场流通,且免征燃油税。美国,是世界上第二大生物柴油生产国,2009年生物柴油产量为140万吨,占世界生物柴油的17.7%。目前生物柴油约占美国柴油消耗量的8%,根据美国国家生物柴油委员会的计划,到2015年,生物柴油产量达到610万吨,将占全国运输柴油消费总量的比例为5%。
2009年,欧洲是全球生物柴油领先的市场,生产份额占49.8%,美国为32.8%,亚太地区为4.4%。世界五大生物柴油生产国是德国、美国、法国、阿根廷和巴西。这些国家所生产的生物柴油总量占世界生物柴油总量的68.4%,在亚太地区,澳大利亚是最大的生物柴油生产国,其次是中国和印度。可以看到,欧美国家一直是生物柴油产业的领跑者,是生物柴油的主要生产国家和地区,而且产业规模在持续扩大。
2 世界生物柴油产业发展趋势
2.1 作为长期的能源战略重点,产业将持续化发展
生物柴油与传统的柴油相比具有不可比拟的优势,随着能源危机和环境污染压力的增大,其替代石化柴油的趋势更加明显,大力发展并推广使用生物柴油将是世界各国长期的能源战略重点。目前欧美在发展生物柴油方面走在世界前列,对该产业出台了一系列的扶持政策,通过立法、规划和鼓励补贴等政策,持续推动生物柴油的研究、开发和利用。马来西亚、印度、日本、巴西、西班牙等国家陆续制定了本国的生物柴油发展规划,出台相关优惠政策,扶持该产业的发展。随着技术的不断改进以及原料的多元化,加上各国的大力推动,生物柴油产业将具有很大的发展空间。
2.2 作为生物柴油产业发展的核心,科技将创新化发展
科学技术是第一生产力,科学技术因素一直以来是制约生物柴油产业发展的一个瓶颈。为了降低成本,提高生产效率和产品质量,需要加强对生物质能转化的研发和技术工艺的研究,完善生物柴油生产的技术标准。生物柴油生产国通过投入科研资金,建立专业的研究机构,加强与高校及科研机构的合作等措施,不断提高技术创新能力,增强生物柴油的技术研发能力,促进世界生物柴油产业的发展。目前,世界很多国家围绕第二代生物燃料展开研究,“工程微藻”也是各国研究的新方向。
2.3 作为生物柴油产业的基础,原料将多元化发展
目前,世界上生产生物柴油的原料主要有大豆、油菜籽、废弃动植物油脂以及木本油料作物等。其中,欧盟主要以菜籽油为主,美国主要以大豆油为主,我国坚持以非粮原料生产,东南亚国家大多以棕榈油为主要原料进行生产。以大豆、油菜籽、玉米等农作物为原料,违背了“不与民争粮,不与粮争地”的原则。同时,生物柴油的产量,会直接影响大豆、油菜籽等农作物的市场,影响农作物的价格,这样不仅影响人们的日常生活,同时企业的生产成本与其直接挂钩,最终影响到企业的利润,制约整个产业的发展。因此,走原料多元化之路,是生物柴油产业长远发展的策略。一方面,依据本国国情,充分利用各种可能发展的原料,比如废弃动植物油脂。利用废弃动物油脂发展生物柴油不仅可以将废弃油脂回收利用,而且还能有效遏制“地沟油”回流餐桌的情况发生。另一方面,以木本油料作物果实作为生物柴油原料的发展空间有很大,发展木本油料作物,不仅可以绿化荒山、改善生态环境,充分利用起山地和荒漠化土地、盐碱地,而且可以保证原料供应,解决生物柴油的原料问题。
2.4 作为生物柴油产业发展的后盾,扶持举措将长效化
生物柴油产业作为新兴产业,各个方面发展还不成熟,需要政府提供支持政策,以保证该产业的持续发展。世界各国对该产业出台了一系列的扶持政策,通过立法、规划和鼓励补贴等政策,持续推动生物质资源的研究、开发和利用。比如,发达国家从20世纪90年代开始相继出台B5/B20/B30/B100的生物柴油标准,美国早在2003年就规定了B10生物柴油可免除部分消费税,B10以上生物柴油可免除全部消费税。世界各国通过提业发展的服务和支撑,以促进该产业的有效发展。
3 世界生物柴油产业发展预测
近几年,世界生物柴油产业发展速度很快。我们根据2000年到2012年的生物柴油产量数据建立了曲线回归模型对未来生物柴油产量进行预测。
根据历年数据画出散点图(year为自变量,amount是因变量),如图2。
由方差分析表给出的结果看,R 方大于0.9,说明模型的拟合效果还是不错的。
根据模型预测2013-2023年世界生物柴油数据,如表4。
通过模型对世界生物柴油产量进行预测,我们看到世界生物柴油产业发展是很有潜力的。
参考文献:
[1] 刘轩.中国木本油料能源树种资源开发潜力与产业发展研究[D].北京林业大学,2011.
[2] 汤颖,陈刚,穆淑珍.国内外生物柴油发展现状及中国的应对策略[J].世界农业,2010(8).
[3] 茹蕾,司伟.欧盟生物燃料政策转向对油菜籽贸易的影响[J].世界农业,2013(3).
[4] 吴方卫,付畅.我国及上海餐饮废油“能源化”的潜力与政策建议[J].科学发展,2013(5).
关键词 秸秆;政策;成型燃料;就地焚烧;大气污染
中图分类号X3 文献标识码A 文章编号 1674-6708(2014)111-0113-04
0引言
当前,我国农作物秸秆就地焚烧的现象较为严重,焚烧过程中产生大量微小粒子,影响当地空气质量,成为引发雾霾的重要因素之一。2011年国庆期间,周口焚烧秸秆再成“雾都”,并造成高速路5次关闭。2013年6月,印度尼西亚的“烧芭”活动(即通过焚烧热带雨林获得耕地的非法行为),引发了森林大火和严重的雾霾,殃及新加坡、马来西亚等邻国,对所在地区造成了非常恶劣的大气污染和经济损失。
进入21世纪,能源安全和环境保护已成为全球化的焦点问题。世界许多国家将发展可再生能源作为缓解能源供应紧张、应对气候变暖(温室气体减排)的重要举措。生物质能源除了可再生和清洁外,还是目前主要的可以直接使用和大规模生产的能源产品,生物质综合利用和生物质能可以促进农村经济发展,发展生物质能源已成为世界许多国家能源发展战略。
中国作为一个农业大国,农作物秸秆每年总产量超过8亿吨,有1/3没有被资源化利用而被就地焚烧,不但造成资源浪费,还造成环境的严重污染。因此,研究如何消除农作物秸秆就地焚烧现象,并提出农作物秸秆合理利用的对策十分必要。
1 秸秆利用及就地焚烧现状
1.1 基本概念
1.1.1 生物质和生物质能
广义的生物质是指一切有生命的、可以生长的有机体及其产生的废弃物。组成生物质最重要的元素为碳和氢,碳和氢可以与氧气发生剧烈氧化还原反应,同时释放出大量热。因此,所有生物质都含有一定的能量,称为生物质能。生物体是通过光合作用,直接或间接地将太阳能转化为化学能,并储存于生物质中。生物质能来源于太阳能,是太阳能的一种表现形态。生物质能可以转化为固态、液态和气态燃料,是一种可再生能源,同时也是唯一可再生的碳源。
光合作用:6CO2 + 6H2O === C6H12O6 + 6O2
1.1.2 农作物秸秆
农作物秸秆是指去除籽果实的农作物茎、叶、秆及根等部分,包括各种粮食作物、经济作物、油料作物和纤维类作物的秸秆,如玉米秸秆、高粱秸秆、小麦秸秆、水稻秸秆、豆类作物秸秆和棉麻秆等。农作物秸秆属于生物质。农作物秸秆中蕴含生物质能。
1.2 农作物秸秆总量及分布
根据农业部组织的全国秸秆资源调查结果,目前我国农作物秸秆理论资源量为8.2亿吨,秸秆可收集资源量为6.87亿吨。我国农作物秸秆产量按照人口增长趋势,将在2030年左右逐步增加到最高水平,达到10亿吨。
我国的农作物秸秆主要集中分布在河北、内蒙古、辽宁、吉林、黑龙江、江苏、河南、山东、湖北、湖南、江西、安徽、四川、云南等粮食主产区。考虑到收集成本,人均秸秆资源量高的省份依次为吉林、黑龙江、内蒙古、新疆、辽宁、山东、宁夏、河南、河北等省。
1.3 秸秆利用现状及剩余秸秆量估算
目前秸秆的用途主要是作为肥料还田,作为饲料喂猪喂牛,作为燃料用于炊事和取暖,以及少量作为工农业生产的原料。调查结果表明,在秸秆可收集资源量中,作为肥料的使用量约为1.02亿吨,占比14.83%;作为饲料的使用量约为2.11亿吨,占比30.66%;作为燃料的使用量约为1.29亿吨,占比18.75%(其中生物质发电3000万吨,生物质固体成型燃料320万吨,其余均使用低效的户用炉灶直接燃烧使用);作为种植食用菌基料的使用量约为1500万吨,占比2.18%;作为造纸等工业原料的使用量约为1600万吨,占比2.33%;秸秆废弃及焚烧量约为2.15亿吨,占比31.25%。如图1所示。
图1 秸秆利用现状―各种用途所占比重
1.4 秸秆剩余量增长和秸秆就地焚烧的原因
笔者2013年1月对河南省周口市农户进行了走访调查,同时结合之前对发展改革委能源研究所专家采访,发现目前农作物秸秆的剩余量逐年增长的主要原因有三个。一,由于农业生产过程中化肥、配合饲料用量的增加,导致用于还田和饲料的秸秆需求量减少;二,随着农村经济的发展,农民生活水平的提高,农村生活用能中电力、液化石油气等化石能源用量的比例增加,导致用于燃料的秸秆量减少;三,随着城市化发展,农村常年居住人口大幅度减少,对燃料的需求也急剧下降。这些农作物秸秆的剩余部分本来是可以作为生物质能源来利用的,但是目前我国生物质能源化利用市场还未完全形成,剩余秸秆还没有被有效利用。
中国农村大多实行一年两季、两年三季、甚至一年三季的种植制度。农作物收割后,大量秸秆闲置在田间。农民由于农忙,没有时间、没有人力将秸秆打捆收集,也没有地方放置秸秆,他们将剩余秸秆在田间就地焚烧处理,以便尽快种植下一季农作物。对农民而言,这是处理剩余秸秆比较经济、方便、有效的方式。
1.5 秸秆就地焚烧的时间和空间分布
由于粮食主产区粮食产量大,秸秆产量也相应大,就有更多剩余秸秆被就地焚烧,所以秸秆就地焚烧地区主要分布在粮食主产区,如河北、内蒙古、辽宁、吉林、黑龙江、江苏、河南、山东、湖北、湖南、江西、安徽、四川、云南等地。
中国面积广大,纵跨热带、温带、寒带,所以粮食播种与收割季节也不相同。图2为中国四季农作物秸秆焚烧遥感图,深色部分为秸秆焚烧区域。图中显示,夏季和秋季,长江中下游平原以及华北平原秸秆焚烧现象十分严重。而春季和冬季,则以较南端地区为首要焚烧地区。中国大部分地区实行一年两季耕作制度,小麦在夏季收获后必须立即种植秋粮,收割和播种的时间仅有10-15天,称为“双抢”即抢收抢种。由于没有足够的时间处理农作物秸秆,就地焚烧成为农民处理秸秆的首选,在图2(b)季节,无论秸秆焚烧的区域范围、还是焚烧强度,均远远大于其他季节。
图22003-2010年中国四季农作物秸秆焚烧时间和空间分布(a-春,b-夏,c-秋,d-冬)
1.6 秸秆就地焚烧的危害
秸秆就地焚烧对环境危害极大。图3为2006年中国秸秆焚烧一氧化碳排放分布遥感图,图3和图4显示秸秆焚烧时产生大量粉尘以及未燃烧完全的碳氢化合物。这些物质在空气中形成了气溶胶,处于介稳状态。当空气湿度较大时,焚烧产生的微小颗粒物很容易和空气中的水汽凝结形成雾气,此时雾气液滴是固液两相混合物,呈灰白色,即为结合形成的雾霾。雾霾中液滴浓度小于雾,液滴比重也小于雾,因此可以将秸秆焚烧产生的微小颗粒物带到更高的空间高度和更为广泛的区域,也大大延长了颗粒物的沉降时间。雾霾产生的原因很多,农作物就地焚烧即为其中之一,虽然总量不大,但是秸秆就地焚烧的时间和空间分布比较集中,燃烧不充分产生的大量粉尘分散在空气中,成为气溶胶,难以散去。所以秸秆就地焚烧在特定的区域和特定的时间段内,将对雾霾的产生起到显著的作用。
图32006年中国秸秆焚烧一氧化碳排放分布[9]
图42014年1月河南省周口市某村秸秆焚烧现象
(笔者实地调查)
检测数据表明,就地焚烧秸秆时,大气中二氧化硫、氮氧化物、可吸入颗粒物3项污染指数达到高峰值,其中二氧化硫的浓度比平时高出1倍,二氧化氮、可吸入颗粒物的浓度比平时高出3倍。当可吸入颗粒物浓度达到一定程度时,对人的眼睛、鼻子和咽喉含有黏膜的部分刺激较大,轻则造成咳嗽、胸闷、流泪,严重时可能导致支气管炎发生。
秸秆就地焚烧不仅污染了环境,而且还严重地浪费了资源,我国每年有超过三分之一的可收集秸秆被废弃及焚烧。这些秸秆的有效利用,不仅需要当地政府出台相应政策,而且还需要一个与之配套的生物质能源产业的发展。
2 秸秆就地焚烧治理对策
2.1 对策设计思路
目前,各地政府对秸秆焚烧主要采取的策略主要是“堵”,颁布禁令,禁止就地焚烧秸秆,但这种做法不能从跟本上解决问题,因为剩余秸秆依然无法得到妥善处理,除了就地焚烧,农民没有更好的处置剩余秸秆的利用途径。所以我们设计对策的思路主要是“疏”,即以政策引导,开创秸秆回收利用市场,引导农民把剩余秸秆卖给企业,让企业加工转变为“可再生能源资源”,再由政府出台相应的财税政策予以支持,形成秸秆高值化加工和利用产业链,使“废弃物”变为“资源”、“高值商品”。其结果是一种“疏”、“堵”结合的政策,力求从根本上减少和杜绝秸秆就地焚烧现象。
2.2 生物质固体成型燃料技术路线
生物质固体成型燃料是利用木质素充当粘合剂,在一定温度和压力作用下,将松散的秸秆、树枝和木屑等农林废弃物挤压成的固定形状燃料。
生物质固体成型燃料具有原料量大、适用范围广、规模适应性强、易于运输和存储等特点,可以明显提高单位体积能量密度和燃烧效率,易于实现产业化和规模使用,大大提高农林废弃物的热效率,是一种低投资、低成本的生物质能利用方式。图5和图6是生物质固体成型燃料样例和加工流程 。
图5部分生物质固体成型燃料样例
图6 生物质固体成型燃料的加工流程
传统的薪柴炉灶热效率一般在5%-8%,经过技术改造的省柴节煤灶的实际使用热效率也只能达到15%,而使用生物质固体成型燃料的高效炉具的热效率可以达到60%-80%。这种燃料燃烧时黑烟少、火力旺、燃烧充分,烟气中未燃烧充分的C颗粒和SO2、NO2等腐蚀性气体较少,因此对炉具的腐蚀相对较小,对环境污染程度较轻 。
生物质固体成型燃料符合我国农业资源特点,相应的设备和工程建设已经不存在技术障碍。而且这项技术已有了一定程度的市场化应用,具备了产业化条件,并具有潜在的足够大的应用市场,生物质固体成型燃料将是利用剩余秸秆的有效方式。图7显示我国压缩成型秸秆燃料产量在逐年递增。
图7近年全国压缩成型秸秆燃料产量
2.3 具体建议
针对目前中国农村秸秆就地焚烧现象严重,同时在企业中存在大量污染物排放较高的燃煤锅炉,造成大气污染日益严重的现状,我们建议:
1)政府制定更为严格的大气污染物排放标准并加强监管和处罚力度;
2)政府在农村地区加强对禁止就地焚烧秸秆的宣传力度;
3)政府出台鼓励和支持秸秆能源化利用及其产业发展的财税政策;
4)政府对进行锅炉改造的企业给予一定的资金支持和税收优惠。
2.4 对策建议的可行性分析
2.4.1 技术可行性
现在生物质能固体成型燃料的生产设备,如压块机、粉碎机、锅炉等,已有成熟的技术,并投入了实际使用。相应的技术体系、产业模式也都趋于完善。
2.4.2 经济可行性
我们分别从对策建议所涉及的农民、企业和政府等利益相关方,以及从普通公众的角度进行分析,分析各利益相关方是否能够受益,当各方均能受益时,则认为对策建议可行。
1)对于农民。我们在河北省固安县3个村对农民家庭进行走访,并做了问卷调查(农村秸秆资源问卷调查表见附录)。由于农村青壮年人员普遍外出打工,只剩下老人和小孩在家,导致当地农户普遍劳力不足。由于秸秆历来被认为是极少有利用价值的废弃物,所以就地焚烧这种最为简单的处理秸秆的方式,成为当地农民的首选。调查中我们了解到,如果有人收购秸秆,当地农民是愿意出售的。例如,这几个村农民生活水平较为贫困,农民愿意以一吨100元的价格(在全国属于较低价格)出售秸秆。因此保守估计,如果全国范围每年2.15亿吨剩余秸秆全部得到回收,就有215亿元转化为农民收入,这将大大增加全国农民的经济收入。同时在此过程中还会产生一些为企业收购秸秆的中间人。一吨秸秆的收集、运输、储存等环节大约需要一个劳动力工作两天,按每个全职劳动力每年工作200天计,2.15亿吨秸秆利用过程的初级环节就将为农村增加约200万个工作岗位。这些工作使农民无需到外地打工,做到“离土不离乡”,势必会受到农民的欢迎;
2)对于企业。在出台更为严格的环保指标后,仍然坚持使用燃煤的企业将会比使用秸秆燃料的企业花费更大的成本来达到环保指标。此外,使用燃煤而不对烟气排放系统进行改造,还可能增加企业运行的社会成本,甚至影响企业的正常经营。如处在华中地区的郑州某洗浴中心,原先用煤烧热水,排放大量浓烟和粉尘,影响附近居民的生活环境,居民经常向环保部门投诉,致使洗浴中心不时遭到有关部门的处罚和查封。更换了生物质燃料锅炉后,污染物排放达到国家标准,再没有居民投诉,从而使洗浴中心可以正常营业,生意兴隆,实现了环境保护和自身利益的双赢。目前我国大气环境污染较为严重,可以预见政府将会出台更为严格的环保标准,同时也将加大对污染物排放的监管力度,使用高污染燃料的企业必将会付出较高的代价,这是一个不可回避的问题。燃煤企业在环保改造时也可以选择使用清洁的天然气,但由于天然气锅炉的运行成本远远高于秸秆燃料,因此,从长远看,使用秸秆燃料替代燃煤,是目前燃煤企业环保改造时一个更为经济的明智选择。燃煤锅炉和生物质成型燃料锅炉投资和运行效果对比,及烟气净化系统运行成本对比见表1与表2。
设备名称 投资(万元)
燃煤锅炉 生物质成型燃料锅炉
锅炉 48.50 48.50
辅机 19.78 20.97
除尘系统 2.00 2.00
脱硫系统 湿式脱硫3.26 布袋除尘27.50
合计 73.54 98.97
烟气硫含量 脱硫前1000mg/m3 脱硫前5mg/m3
烟尘浓度 除尘前19000mg/m3 除尘前60~70mg/m3
注:按锅炉容量10吨/时计
表1 燃煤锅炉和生物质成型燃料锅炉投资和运行效果对比表
运行费用 运行成本(万元)
燃煤锅炉 生物质成型燃料锅炉
更换布袋 0.00 6.00
脱硫剂 9.50 0.00
水电费 2.50 1.00
合计 12.00 7.00
烟气硫含量 50mg/m3 5mg/m3
烟尘溶度 100mg/m3 20mg/m3
注:按锅炉容量10吨/时、年运行5000小时计
表2 燃煤锅炉和生物质成型燃料锅炉烟气净化系统运行成本对比表
对于生产秸秆固体成型燃料的企业,其经济效益将在秸秆固体成型燃料拥有庞大市场后得到极大改善。以山东省某一秸秆成型燃料企业项目为例,此项目年产2000吨秸秆成型燃料,建设项目投资总额为150万元,设备折旧时间为10年。企业以200元成本(包括收集和运输成本)从当地农民手中收集秸秆,加上水电、场地、人工、包装、销售及其他费用,每吨成本约为345元。市场销售价为450元每吨,毛利润约为105元每吨,企业只需约7-8年即可收回成本。可见,在秸秆市场得到完全开发后,秸秆固体成型燃料的工厂将增多,技术也会逐渐发展,设备成本会降低,其经济前景会越来越好;
3)对于当地政府。实行这项政策可以改善当地环境,其生态环保效益不可小觑,并且还可节省化石能源,同时可以增加就业率。由于该政策将使广大人民群众受益,自然会产生良好的社会反响,从而提高政府声誉,成为当地政府的一项重要政绩;
4)对于广大的公众来说,企业减少燃煤而改用生物质能源,最明显的结果是烟尘、雾霾的减少,从而改善环境,因此也必将得到民众的赞同。
总的来说,在有大量剩余秸秆资源、拥有较成熟的处理技术、以及利益相关方和公众支持的地区,考虑经济和环境两方面的效益,这种剩余秸秆治理方案是可行的。
3 结论与预期效果
综上所述,秸秆就地焚烧不但对空气质量和人们身心健康造成较大影响,也造成资源的严重浪费。为解决此问题,要从根源入手。建议:首先,当地政府可制定更为严格的环保指标,加强对污染物排放的监管力度,促使使用高污染锅炉的企业进行技术改造,减少大气污染物排放,同时在农村加强就地焚烧秸秆危害性的宣传力度。其次,对从事秸秆能源化利用产品生产的企业予以财税政策鼓励,引导企业增加农村剩余秸秆的收购量,为农民增加收入;最后,给予企业燃煤锅炉改造提供一定的财政资金支持和政策优惠,为秸秆能源化产品开辟市场,形成秸秆能源化利用产业。
本对策方案标本兼治,因而是可行和有效的。将秸秆加工成固体成型燃料可使多方受益,既从根源上杜绝了秸秆就地焚烧,减少了环境污染的危害,又使原本被废弃的秸秆成为具有经济价值的资源,最大限度地利用了秸秆这种生物质能源。企业经济上获得效益,政府则创造了就业机会且改善了环境,农民也增加了收入。同时煤炭使用的减少将有利于改变我国以煤为主的能源结构。
该对策建议实施后,我国秸秆剩余资源将得到充分利用,提高资源使用效率,增加农民收入和就业机会,推动企业革新,促进经济和市场良好发展;同时,还能减少污染烟尘排放,改善环境,提高人民健康水平和生活质量,最终形成对环境友好、可持续发展的良性产业链,使链条中的各方实现共赢,协同发展。
建议各地政府抓住目前社会各方面高度关注环境保护和新能源利用的有利时机,尽快开展相关工作,切实解决秸秆焚烧问题。
参考文献
[1]胡润青,秦世平,等.中国生物质能技术路线图研究[M].北京:中国环境科学出版社,2011.
[2]韩文科. 中国战略性新兴产业研究与发展――生物质能[M].北京:机械工业出版社, 2013.
[3]苏伟. 清洁发展机制读本[M]. 北京:中国标准出版社,2008.
[4]雅克・范鲁,等.生物质燃烧与混合燃烧技术手册 [M].北京:化学工业出版社,2008.
[5]秦世平等. 生物质成型燃料规模化项目可研编制方法与实践 [M].北京:中国环境科学出版社,2011.
[6]曹国良,张小曳,郑方成,王亚强.中国大陆秸秆露天焚烧的量的估算 [J].北京:资源科学,2006,28(1).
[7]毕于运,高春雨,王亚静,李宝玉.中国秸秆资源数量估算[J].北京:农业工程学报,2009,25(12).
[8]韩鲁佳,闫巧娟,刘向阳,胡金有.中国农作物秸秆资源及其利用现状[J].北京:农业工程学报,2002,18(3).
一、我国农村生物质能产业发展整体状况
近年来,国家高度重视生物质能的开发和利用,整体上呈现出如下特点:
(一)政府高度重视
2008年3月出台了《可再生能源发展“十一五”规划》,规划明确提出,积极推进可再生能源新技术的产业化发展,建立可再生能源技术创新体系,形成较完善的可再生能源产业体系。
(二)产业巨头介入,民营企业突起
2007年我国乙醇总产量约350万吨,以废弃油脂为原料生产的生物柴油达到6万吨,农村沼气产量突破1.7亿立方米。山东金沂蒙集团以木薯为原料生产20万吨乙醇并投资建设15万吨生物丁醇,成功探索了非粮原料制造化学品的循环经济模式,民营企业大量涌现。
(三)市场需求巨大
海关总署2009年12月公布的数据显示,中国11月份进口的原油量为1712万吨,同比增长接近三成,对外依存度44%,其中车用燃油占石油消费总量的35%,并以每年15―16%的速度增长。满足国内车用燃油的需要必须发展燃料乙醇,国家燃料乙醇发展规划确定到2010年燃料乙醇使用量达到300万吨,到2020年突破1000万吨,可见生物燃料在我国有巨大的市场需求。
二、我国农村生物质能产业发展存在的问题分析
(一)技术支撑和研发不力
目前生物质能加工利用技术集成化和成熟度不高,一些新技术的使用成本较高,企业生产受限。同时大型、精密设备需从国外引进,国产化水平不高,这是造成长期以来生物质能开发的工程造价居高不下,有时不能及时提供所需备件的主要原因,其结果使我国生物质能价格水平大大高于常规能源的电价水平。
(二)产业化发展程度低
2007年国家发改委印发了《关于促进玉米深加工业健康发展的指导意见》,明确提出以“因地制宜,非粮为主”的发展原则来发展生物质能产业,给产业的发展带来巨大压力,进而降低了产业发展程度。以其他能源作物为原料生产生物质燃料尚处于技术试验阶段,要实现大规模生产,还需要在生产工艺和产业组织等方面做大量工作。
(三)资金投入不足
生物质能属于高新技术和新兴产业,其技术研发和市场培育需要大量资金投入,但我国目前的投融资渠道较为单一,基本仅靠政府有限支持;同时,财政投入力度不大,除农村户用沼气等部分领域外,国家及地方政府的财政投入严重不足。主要原因:一方面,我国生物质能建设项目还没有规范地纳入各级财政预算和计划,没有建立相应的固定资金渠道。另一方面,由于生物质能国内市场前景不明朗,因此国内银行不愿贷款,使得生物质能企业缺少融资能力。
(四)政策体系不完善
尽管我国已经实行《可再生能源法》,以法律形式规定了相应的财税扶持政策如弹性亏损补贴、原料基地补助、税收优惠等来支持我国农村生物质能产业的发展。但是,现行的政策体系仍旧存在不足之处,如目前我国常规液体燃料行业尚存在相当程度的垄断经营,制约了农村生物质能产业尽快进入流通市场。
三、我国农村生物质能产业发展路径的选择
(一)企业层面
1、实施税收和价格优惠政策
根据我国《可再生能源法》,我国应研究制定支持农村生物质能发展的配套法规和政策措施,出台税收优惠和价格优惠等经济激励政策。加大对我国农村生物质能产业的补贴力度,对从事生物质能技术研发和设备制造等企业给予所得税优惠。把秸秆综合利用列入我国产业结构调整和资源综合利用鼓励与扶持的范围,完善秸秆发电等生物质能源价格政策。
2、加大资金投入
我国应继续探索构建政府引导、企业带动、农户参与、多方投入的农村生物质能产业建设机制,在发展适当时建立农村生物质能发展专项资金,主要用于生物质能技术研发、人才培养、产业体系建设和新技术示范项目的建设。对生物质开发利用龙头企业和农机服务组织购置机械设备给予信贷支持,鼓励和引导社会资本投入。
3、推进生物质能产业化
结合我国农村环境整治,积极利用秸秆生物气化(沼气)、固化成型等技术,逐步改善农村能源结构。充分考虑在粮食安全的背景下,积极推进利用纤维素生产燃料乙醇,逐步实现产业化,合理安排秸秆发电项目。
(二)合作社层面
1、实现技术中心与合作社的联合
我国的专项生物质能技术中心在向农民提供相应技术的同时,应积极联合当地农村合作社,使得技术能更进一步得到传播,积极引导农民发展能源作物种植、农作物秸秆收集与预处理,建立生物质原料生产与物流体系。
2、保障合理用地
我国生物质能开发利用专业合作社应创办农村科技示范基地、建设标准化生产基地、从事农村生物质原料收购等需要的农村用地,坚持农户自愿、有偿的原则,由村集体组织协调,动员群众采取租赁、经营权入股等流转方式予以解决。
(三)农户层面
1、提高农民开发利用意识
我国应充分利用网络、电视、报纸、杂志等多种媒体,采取多种形式,广泛宣传农村生物质能开发利用的重要意义,宣传我国先进典型村和成功经验,使我国农民拥有农村生物质能开发利用的良好氛围。在农村开展这种生物质能开发利用宣传教育活动,对提高农民对生物质能开发利用的认识水平与参与意识会产生重要影响。
2、加强技术培训和技术推广
我国应充分发挥现有技术中心与农村基层服务组织的作用,从相关技术的传播入手,重视技术推广、知识普及,提高农民综合利用生物质的技能,使生物质能开发利用真正成为农村增产增效和农民增收致富的有效途径。建立生物质能开发利用科技示范基地,通过组织生物质能源化利用产业示范,加快适用技术的转化应用。
农村生物质能产业发展是一项利国利民的大事,功在当代,利在千秋。建议我国政府及其相关部门能够充分认识到做好农村生物质能产业发展工作的重要性,制定一系列支持农村生物质能产业发展的配套法律、法规来促进产业的发展;采取税收等优惠政策,保障农村生物质能产业化发展的速度;大力发展农村教育事业,提高人民对农村生物质能产业化发展的意识,抓紧制定规划,明确目标,认真做好项目示范和试点工作,为建设资源节约型、环境友好型社会,为社会主义新农村建设和实现可持续发展做出新的贡献。
Abstract: Heze city is in a critical period of reform, development and economic transformation. It is of great significance for transforming the pattern of economic development, achieving industrial upgrading and building regional science development highland to make scientific top-level design of industrial development, improve the industry development policy environment, promote the scientific, rapid and cluster and sustainable development of the high technology industry. New energy industry is the important component of the high technology industry. This article analyzes the long-term development strategy of the new energy industry through building energy industry technology roadmap.
关键词: 新能源;生物质能;太阳能;风能;产业技术路线图
Key words: new energy;biomass energy;solar energy;wind power;industry technology roadmap
中图分类号:F062.9 文献标识码:A 文章编号:1006-4311(2016)01-0059-03
0 引言
菏泽市正处在改革发展和经济转型的关键时期,科学做好产业发展顶层设计,完善产业发展政策环境,引导创新资源加快聚集,推动高技术产业科学发展、快速发展、集群发展和可持续发展,对于转变经济发展方式、实现产业升级,打造区域科学发展高地,具有十分重要的意义。新能源产业技术路线图按照“技术领域-技术基础-关键技术-技术路径”这条主线进行分析。基于菏泽的产业技术基础,结合菏泽新能源产业规划以及相关专家的指导意见,确立菏泽产业发展方向。依托德尔菲问卷结果,综合考虑技术综合重要度指数(技术推动重要度和市场拉动重要度的综合)、预期实现时间和技术发展路径,以时间序列系统描述菏泽各产业关键技术实现的时序。
1 菏泽市新能源产业技术基础
近年来,菏泽市依托自身的自然资源优势以及持续的项目建设和科技投入,已逐步发展成为山东省重要的新能源基地,其中生物质发电起步最早,同时在太阳能发电、风能发电、以及相关的设备制造方面也形成了一定的产业技术基础。依据菏泽市产业基础同时结合专家建议,将菏泽新能源产业划分为生物质能、太阳能、风能和LED产品制造四个领域。
1.1 生物质能领域 在生物质发电领域,单县、巨野县生物质发电项目已并网发电,曹县、牡丹区和成武等生物质发电项目也在陆续建设中,目前菏泽已具备了灰色秸秆、黄色秸秆、灰黄秸秆掺烧工艺,并引进了丹麦BWE公司生物质直燃锅炉技术,同时也采用了国内制造的第一台生物质直燃发电机组,带动了生物质发电设施的国产化进程。在生物质能综合利用领域,生物质电厂产生的草木灰已经作为生物复合钾肥的生产原料,农村沼气工程全面展开,秸秆纤维素分解生产乙醇、供热燃煤机组掺烧农产品废渣废液改造、生物质成型燃料、薯类秸秆液体生物质燃料生产、大型畜牧养殖沼气发电工程等一批生物质能综合利用项目已进入前期工作阶段,掌握了棉籽、动植物脂肪酸等原料制取生物柴油的技术。
1.2 太阳能领域 在太阳能热利用领域,热水器设备制造产业快速成长,重点发展了高效太阳能热水器真空集热管生产及热水器成套设备生产项目。在太阳能光伏电站领域,单县、巨野、郓城、鄄城等多个10~15MW的光伏并网发电项目正在建设中。在光伏产品装备制造方面,先后形成了单县舜亦新能源光伏发电、宇泰光电产品、巨野鲁麟有机硅单体生产、光伏发电逆变器等一批晶硅、非晶硅薄膜太阳能光伏电池、电池板及相关组件生产项目,并陆续竣工投产,初步形成了光伏电池300MW的生产能力,具备正面叠加多重太阳能电池组件生产技术等提高太阳能转化效率的技术。
1.3 风能领域 风力发电领域,菏泽正围绕黄河滩区、单县浮龙湖水库及黄河故道等区域,开展风场测速等准备工作,建设规模总计200kW,项目建成后预计发电量达到4亿kWh。风电设备制造方面,巨野巨益新能源、成武呈祥电气等风力发电设备生产项目已竣工投产。
1.4 LED产品制造 LED产品制造领域初具规模,单县宇泰光电科技、牡丹区路达光电科技、曹县LED路灯一体化等项目正在加紧建设中,具备了LED路灯灯具、LED外延芯片、大功率激光器件和LED显示屏等产品以及LED产品封装等技术。
2 新能源产业国内外技术热点
基于菏泽新能源产业技术基础,采用专利分析和文献分析的方法,研究了新能源领域当前国内外的技术热点。
2.1 新能源共性技术 目前,新能源共性技术研究热点主要集中在两个方面:一是智能电网的智能型与灵活性技术。未来的智能电网将通过分布式发电技术、大规模间歇式新能源并网技术、自动化控制、智能传感器等技术实现主动的用户需求侧管理,并通过将太阳能、风能等新能源产生的电力整合从而实现经济和环境的目标。二是先进高效的储能技术。储能技术既作为负载也作为电源将为电网的稳定和可靠运行发挥重要的作用,其中大规模直接储能技术,以及与热泵技术和热电联产技术相关的热蓄能技术将是未来储能技术的发展趋势。
2.2 生物质能领域 生物质能共性技术的研究热点集中于能源植物筛选与培育,包括拓展能源植物及生物质原材料种类,提高能源植物光能利用效率,从育种、种植到实现规模化采收与运输;在生物质能高效利用方面,生物质高效直燃、混燃、气化供热及发电技术将成为主要发展趋势。生物质发电领域中,清洁高效的生物质直燃、混燃、气化发电技术及设备是生物质发电的一个重要发展方向,具体包括生物质气化发电与热联供系统、生物质锅炉和物化转换技术、大型低热值燃气内燃机组。生物质燃料领域方面,生物质液体燃料中乙醇、丁醇以及生物柴油的生产技术是目前主要的热点;生物质气体燃料以农业废弃物制备合成气为主要方向;生物质固体燃料主要趋势集中于开发提高能量密度、生物质成型燃料加工技术、生物质燃料炭化技术。
2.3 太阳能领域 太阳能共性技术热点集中于太阳能分布式发电、太阳能与其他可再生资源互补式发电技术,以及用于建筑的太阳能热利用及光伏发电一体化(BIPV)和长周期储热技术。太阳能热利用方面,按照利用的温度分为低温(
(>500℃)利用,按照关键部分――集热器的不同分为主要用于太阳能热水器的平板集热器、真空管集热器技术,以及用于聚光太阳能发电(CSP)的槽式、塔式和碟式聚焦器,未来趋势为超大规模高温蓄热技术以及耐高温、耐腐蚀高效率集热器和高温传热工质的核心技术。太阳能光伏发电目前主要有三种技术:晶体硅电池未来需要降低硅消耗量,进行多晶硅副产物综合利用;薄膜电池未来需要提高转化率,降低光衰减,并开发研制铜铟镓硒等新兴薄膜电池;聚光太阳能电池未来重点将在于对追踪器的研究与开发。在光伏电站方面,未来趋势在于突破大规模、分布式、适用于离网和微网运行的技术。
2.4 风能领域 风能领域中,关于风能资源评价的热点在于不断完善资源评价的模型、标准、检测和认定体系,建立风能资源、条件和运行经验数据库,改进风力发电系统运行采用的预测模型。陆上风电场领域主要涉及在风电场和风电设备两方面,其中,风电场热点集中于风电场优化设计技术,主控制器及数字风力发电场调度和并网控制、在线监测与故障诊断等系统核心技术。
2.5 LED产品制造领域 LED领域的研究热点集中于高亮度发光二极管、大功率白光制造、大功率激光器(LD)、光伏与LED结合、器件封装技术以及LED高效驱动和智能化控制技术。
3 菏泽市新能源产业关键技术选择及路线图绘制
基于菏泽市新能源产业技术基础,根据专家意见,确定未来重点发展生物质能、太阳能、风能和LED产品制造四个领域,并筛选29项关键技术或项目,结果如表1所示(技术综合重要度满分5分)。
根据研究结果,近期(0~3年)主要发展的技术包括太阳能与风电等可再生能源互补发电的微网技术、提高光伏电站的能效及使用寿命等13项,中期(3~6年)主要实现的技术包括与当地农业畜牧业相结合的光伏发电分布式应用、农业废弃物制备合成气关键技术及装备、黄河故道大型风电场开发等11项,远期(6~9年)主要发展的技术包括光伏电站智能化、LED高效驱动和智能化控制等4项,长远期(9年以上)主要实现非粮能源作(植)物育种、种植、规模化采收、储运技术及相关设备技术,进而实现生物能源植物原料的育种与产业化。新能源产业技术路线图如图1所示。
4 结论
菏泽市新能源产业主要涵盖生物质能、太阳能、风能和LED产品制造四个领域。其中:生物质能领域,菏泽市采用了国内制造的第一台生物质直燃发电机组,已有多个生物质发电项目并网发电,同时,农村沼气工程全面展开,生物质成型燃料等一批生物质能综合利用项目已进入前期阶段。通过产业技术路线图研究,确定了8项技术为未来重点发展方向。近期重点突破生物质发电技术及装备,以及生物质成型燃料技术;中期实现生物质发电热点联供,生物质制备合成气和乙醇的技术及装备;从远期来看,争取实现能源作物从育种、种植、采收到存储的产业化。
太阳能领域,菏泽市在太阳能热水器制造业具有一定基础,多个10~15MW的光伏并网发电项目正在建设,舜亦新能源和宇泰光电等一批太阳能电池、电池板及相关组件生产项目陆续竣工投产。通过产业技术路线图研究,确定了13项技术为未来重点发展方向。近期重点提高太阳能集热器和光伏电站的能效,以及可再生能源互补发电微网等技术;中期进一步降低光伏电站的运维成本,促进光伏发电的分布式应用;远期则努力实现光伏电站的智能化,并开发高效低成本的薄膜电池。在提高能效和降低成本的基础上,努力实现光伏发电的智能性、灵活性以及与其他能源的互补性。
风能领域,菏泽正在围绕黄河滩区进行风电场建设,并依托巨益新能源、呈祥电气等企业进行风电设备生产。通过产业技术路线图研究,确定了5项技术为未来重点发展方向。在近期,完善风力发电基础构件的技术和生产能力;中期在完成风能资源评价和资源数据库建设的基础上,进行大型和分散式的风电场开发,并通过研发轻量化叶片等提升风能发电设备的寿命和性能。
LED产品制造领域,菏泽市具备了较为完善的产业链条,具备LED路灯、外延芯片、显示屏的生产能力以及LED产品封装技术。通过产业技术路线图研究,确定了3项技术为未来重点发展方向。在近期重点突破LED与光伏结合的关键技术;在远期则努力实现LED产品的高效驱动和智能化控制。
近年来,菏泽市新能源产业总体规模保持增长态势,但结构发展中的一些深层次问题也日益突出,制约了经济在高平台上持续快速发展,科学的推进经济发展方式转变亟待进行。该研究成果明确了菏泽新能源产业的建设方向,可有效避免各区县之间的产业趋同恶性竞争,促进同类企业的交流合作,提高公共技术平台资源的利用效率,从而全面推动菏泽市新能源产业发展,同时该研究成果的应用推广能够为菏泽市科技创新把握大致发展方向,加速创新要素集聚,在探索和把握新时期经济发展规律的基础上推动新能源产业结构优化升级方面起到积极作用,带动全市经济快速发展。
参考文献:
[1]冯之浚.中国可再生能源和新能源产业化高端论坛[M].中国经济出版社,2007.
[2]汤倩,金银亮.中国新能源发展战略研究[J].现代商贸工业,2010(17).
“真正可再生的就是林木”
国家林业局副局长张永利在日前举行的一次论坛上指出,目前生物质能源替代化石能源的优势还没有得到充分认识。“可持续发展不仅对中国,对全人类都是当前最大的一个问题。要讲可再生,真正的可再生就是林木”。
张永利表示,尽管“十一五”以来,中国林业生物质能源工作初步打开了局面。但林业生物质能源建设才刚刚起步,与国家对林业生物质能源的需求和应发挥的作用相比,还有很大差距。
“生物质能源在整个能源结构中应该增加比重,发展的力度应该加大。在林业生物质能源中,我认为液态燃料的发展是最需要关注的问题。”张永利说。
按能源当量计算,生物质能源仅次于煤炭、石油、天然气列第四位。根据国际能源署和联合国政府间气候变化专门委员会统计,全球可再生能源的77%来源于生物质能源,而生物质能源中的87%是林业生物质能源。不过,目前我国生物质能源的利用尚不到能源总量的0.5%,林业生物质能源所占比例更是微乎其微。
《规划》制定了未来10年林业生物质能源发展的目标和思路。
《规划》同时明确了具体发展目标,到2015年,林业生物质能源替代700万吨标煤的石化能源,占可再生能源的比例达1.52%,其中,生物质热利用贡献率为90%,生物柴油贡献率为10%。
到2020年,林业生物质能源可替代2025万吨标煤的石化能源,占可再生能源的比例达2%,其中,生物质热利用贡献率为70%,生物柴油贡献率为25%,燃料乙醇贡献率为5%。
扶持政策“货币化”
分析人士指出,生物质燃料行业发展的主要途径就是加大政府补贴力度,促使行业尽快实现产业化和规模化,提高技术降低成本,逐步实现自我赢利。
事实上,近年来我国对加快林业生物质能源建设尤为重视,生物质能的相关扶持政策也日益指向“货币化”。
据张永利介绍,为全面加快林业生物质能源建设,中国实施了财税扶持政策。自2009年以来,政府对7个企业营造的近90万亩油料原料林基地进行了补贴,补助资金达1.78亿元。
美国库鲁萨生物能源公司已经成功地研制出综合利用水稻生产废弃物(稻草和谷壳)为原料,生产燃料乙醇和化工原料的高新技术,并已成功产业化。加州水稻种植区已经建设一座工厂,并已投产。美国第二大水稻产区阿肯色州正在新建一座工厂,预计2009年10月投产并产生效益。
通过综合利用稻草和谷壳生产的产品除燃料乙醇外,还有化工原料硅氧化物与褐煤。硅氧化物是价值较高的电子工业和光学工业的重要原料,如用于生产高质量光学玻璃与电子产品,具有较高的价值与广阔的市场。生产的褐煤可以转化为优质燃气,还可以生产其它化工产品。
该技术综合利用稻草效率高,经济性好,生产过程绿色、清洁、环保。每100t稻草或谷壳能够生产10t燃料乙醇、31t硅氧化物、5.5t褐煤。按照目前市场价格,燃料乙醇批发均价4 500元/t,最低规格的氧化硅价格12 300元/t,褐煤460元/t计算,产值分别为4.5万元、38.1万元、0.25万元,合计43万元。而100t稻草的收购价格在2万元左右,经过加工增值达到21.5倍。
美国建综合利用稻草生产厂的原料收购范围为方圆50km,稻草收购率14%~16%,每年使用稻壳25万t、稻草24万t。年产燃料乙醇4.7万t,硅氧化物15万t,褐煤2.5万t。产值分别为2.1、18.45、0.115亿元,合计年产值约为21亿元。总投资5~6千万美元,建设期11个月。投产后45天产生利润,投资回收期34个月。
利用稻草等秸秆生产燃料的研究已成为国内外的热点,一些地方已经开始产业化示范,但是几乎所有的技术都只是单一利用,生产燃料乙醇的成本较高,难于推广。
二、应用效益
该高新技术能大幅度提高水稻种植的附加值,变废为宝,增加稻农收入,延长农业链,创造更大的社会价值。
四川年种植水稻约200万hm2,占中国水稻种植面积的6%,年产稻谷
1 500万t,占中国稻谷总产量的7.5%。年产稻草1 500余万t。如利用50%的稻草与相应的稻壳,就能够使农民每年增加收入15亿元,全省约6 500万农民人均能增加收入23元,每年能够生产约75万t燃料乙醇、232.5万t硅氧化物、41万t褐煤,年产值分别为33.75亿元、286亿元、2亿元,合计322亿多元。如果再把麦草等秸秆利用一部分,每年可以为四川创造500亿元以上的产值。
三、引进可能性
美国农业部水稻资源评估改良中心的美籍华人严文贵博士已就该技术引进中国的事务与库鲁萨生物能源公司商谈,该公司总裁Tom Bowers很高兴与中国合作,愿意并希望尽快到成都来洽谈引进事宜。中国科学院成都生物研究所,具有引进转化该技术的能力。该所曾主持国家农业引进项目,正在开展科技部、农业部红薯燃料乙醇的研究工作,已经与中国石油公司南充分公司在南充开展红薯燃料乙醇生产厂的建设有关技术研究。
四、有关建议
2009年1月6日,两院院士石元春、清华大学新能源研究所副所长李十中于致函新华网的《生物燃料良机莫失 走出观望谋大局》一文中,客观分析生物燃料在创造内需市场、提供就业机会、替代石油、改善环境、解决三农问题上的作用,并指出:世界能源正处在历史的十字路口。中国需要向发达国家学习和跟踪,更要凭借自身优势,敢于创新与超越。
新能源是拉动地方经济发展的引擎。生物能源是新能源中最具有前景的新能源。利用什么原料发展生物能源是最关键的问题。为在全国抢占先机,尽快引进该技术,建设以水稻生产废弃物综合利用产业体系,使四川在生物能源产业走到全国的前列,同时促进农业稳定发展农民持续增收,确保粮食面积,进一步强化“米袋子”,为此特建议:
1.成立领导小组成立以省领导为组长,省委农办、省发改委、省科技厅、省农业厅、省化工厅领导为副组长的四川水稻生产废弃物综合利用产业发展协调领导小组,协调领导小组办公室设在省委农办,负责制定有关政策以及协调有关部门。
2.组织协作攻关组成立由中国科学院成都生物研究所作为主持单位,联合四川大学、四川省化工研究院、四川省农业科学研究院等有关单位参与的四川水稻生产废弃物综合利用产业发展研究攻关组,负责研究引进技术,并根据四川的情况进行组装以及再创新。
3.加快引进技术步伐组织对外联络与引进谈判工作组,工作组由省外国专家局、四川省外事办、省科技厅以及中科院成都生物研究所组成,负责联络美国的有关部门,与美方进行引进技术的有关协商,争取尽快落实技术的引进工作。
4.建立专项资金支持由省财政建立一个地方发展特别重大专项,拨出专款支持,为该项目的前期工作的运行及试点提供经费;由省科技厅从科技经费中建立专项攻关项目经费,支持有关技术的引进、消化、集成以及技术再创新研究。同时,积极争取国家项目支持。
5.建立综合加工示范点选择3个具有代表性的水稻的集中产区,建设示范点。一个选址双流县,重点解决机场周边50km范围内的秸秆综合利用问题;第二个选址在以前石化产业发展相对较高,目前燃料乙醇有较好基础的南充市;第三个点选择在电子工业城绵阳,为下一步利用硅生产电子产品与高质玻璃奠定基础。力争1~2年内完成示范工程的建设,以后再向全省水稻生产面积较大的地级市推广。