公务员期刊网 精选范文 半导体材料应用范文

半导体材料应用精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的半导体材料应用主题范文,仅供参考,欢迎阅读并收藏。

半导体材料应用

第1篇:半导体材料应用范文

关键词:电子科学技术;半导体材料;特征尺寸;发展;趋势

1 对现阶段我国电子科学技术发展进程向前推进的过程中所使用到的半导体材料进行分析

1.1 元素类半导体材料在我国电子科学技术发展初级阶段得到了较为广泛的应用

作为出现最早并且得到了最为广泛的应用的第一代半导体材料,锗、硅是其中典型性相对来说比较强的元素半导体材料,第一代半导体材料硅因为存储量相对来说比较大、工艺也相对来说比较成熟,成为了现阶段我国所生产出来的半导体设备中得到了最为广泛的应用,锗元素是发现时间最早的一种半导体材料。在我国电子科学技术发展初级阶段因其本身所具有的活泼,容易和半导体设备中所需要使用到的介电材料发生氧化还原反应从而形成GEO,使半导体设备的性能受到一定程度的影响,致使人们在使用半导体设备的过程中出现各个层面相关问题的几率是相对来说比较高的,并且锗这种元素的产量相对于硅元素来说是比较少的,因此在我国电子科学技术发展初级阶段对锗这种半导体材料的研究力度是相对来说比较小的。但是在上个世纪八十年代的时候,锗这种半导体材料在红外光学领域得到了较为广泛的应用,并且发展速度是相对来说比较快的,在此之后,GE这种半导体材料在太阳能电池这个领域中也得到了较为广泛的应用。

1.2 对现阶段我国电子科学技术发展进程向前推进的过程中所使用到大化合物半导体材料进行分析

现阶段我国电子科学技术发展进程向前推进的过程中所使用到的化合物半导体一般情况下是可以分为第III和第V族化合物(例如在那个时期半导体设备中所经常使用到的半导体材料GaAs Gap以及石墨烯等等),第II和第VI族化合物(例如在半导体设备中所经常使用到的硫化镉以及硫化锌等等)、经过了一定程度的氧化反应后的化合物(Mn、Cu等相关元素经过了一定程度的氧化反应后形成的化合物)。在上文中所叙述的一些材料一般情况下都是属于固态晶体半导体材料所包含的范畴之内的,现阶段我国电子科学技术发展进程向前推进的过程中研发出来的有机半导体与玻璃半导体等非晶体状态的材料也逐渐成为了半导体设备中所经常使用到的一种材料。

2 对现阶段我国电子科学技术发展进程向前推进的过程中半导体材料使用阶段发生变化的进行分析

在现阶段我国半导体设备中所经常使用到的半导体材料硅遵循着摩尔定律所提出的要求发展进程不断的向前推进,现阶段我国半导体设备中所使用到的硅的集成度已经逐渐接近了极限范围,现阶段我国所研发出来的晶体管逐步向着10nm甚至7nm的特征尺寸逼近。但是因为硅材料本身在禁带宽度、空穴迁移率等各个方面存在一定程度的问题,难以满足现阶段我国科学技术发展进程向前推进的过程中对半导体材料所提出的要求,在10nm这个节点范围之中,GE/SIGE材料或许是可以代替硅材料成为半导体设备所需要使用到的主要材料的。在2015年的时候,IBM实验室在和桑心以及纽约州立大学纳米理工学院进行一定程度的相互合作之后推出了实际范围内首个7nm原型芯片,这一款芯片中所使用到的材料都是被人们称作黑科技的“锗硅”材料,取代了原本高纯度硅元素在半导体材料中所占据的主导地位。

3 对现阶段新兴半导体材料的发展趋势进行分析

因为在经济发展进程向前推进的背景之下,人们对半导体设备的性能所提出的要求也在不断的提升,人们对半导体设备中所需要使用到的半导体材料在集成度、能耗水平以及成本等各个方面提出的要求到达了新的高度。现阶段,第三代半导体材料已经之间的成为了半导体设备中使用到的主要材料之一,作为在第三代半导体材料中典型性相对来说比较强的材料:GaN、SIC以及zno等各种类型的材料在现阶段发展进程向前推进的速度都是相对来说比较快的。

4 对现阶段碳化硅这种材料的发展和在各个领域中得到的应用进行分析

碳化硅是一种典型性相对来说比较高的在碳基化合物所包含的范围之内的半导体材料,其本身所具有的导热性能相对于其它类型的半导体材料来说稳定性是相对来说比较强的,所以在某些对散热性要求相对来说比较高的领域中得到了较为广泛的应用,现阶段碳化硅这种半导体材料在太阳能电池、发电传输以及卫星通信等各个领域中得到了比较深入的应用,在此之外,碳化硅这种半导体材料在军工行业中所得到的应用也是相对来说比较深入的,在某些国防建设相关工作进行的过程中都使用到的了大量的碳化硅。因为和碳化硅这种材料相关的产业的数量是相对来说比较少的,现阶段我国碳化硅行业发展进程向前推进的速度是相对来说比较缓慢的,但是现阶段我国经济发展进程向前推进的过程中所重视的向着环境保护型的方向转变,碳化硅材料能够满足这一要求,所以我国政府有关部门对碳化硅这一种创新型的半导体材料越发的重视了,随着半导体行业整体发展进程不断的向前推进,在不久的将来我国碳化硅行业的的发展一定会取得相对来说比较显著的成果的。

5 对现阶段我国所研发出来的创新型半导体材料氧化锌的发展趋势进行分析

作为一种创新型的半导体材料,氧化锌在光学材料以及传感器等各个领域中得到了较为广泛的应用,因为这种创新型的半导体材料具有反应速度相对来说比较快、集成度相对来说比较高以及灵敏程度相对来说比较高等一系列的特点,和当前我国传感器行业发展进程向前推进的过程中所遵循的微型化宗旨相适应,因为氧化锌这种创新型的半导体材料的原材料丰富程度是相对来说比较高的、环保性相对来说比较强、价格相对来说比较低,所以氧化锌这种创新型的半导体材料在未来的发展前景是相对来说比较广阔的。

6 结束语

现阶段我国经济发展进程向前推进的速度是相对来说比较稳定的,并且当今我国所处的时代是一个知识经济的时代,人们对半导体设备中所需要使用到的半导体材料提出了更高的要求,针对半导体设备中所需要使用到的半导体材料展开的相关研究工作的力度也得到了一定程度的提升,摩尔定律在现阶段电子科学技术发展进程向前推进的过程中仍然是适用的,随着人们针对半导体材料展开的研究相关工作得到了一定的成果,使用创新型半导体材料的半导体设备的性能得到了大幅度的提升,相信在不久的将来,半导体材料市场的变化是相对来说比较大的。

参考文献

[1]王欣.电子科学技术中的半导体材料发展趋势[J].通讯世界,2016,08:237.

[2]王占国.半导体材料发展现状与趋势[J].世界科技研究与发展,

1998,05:51-56.

[3]杨吉辉.光伏半导体材料和Cu基存储材料的第一性原理研究[D].复旦大学,2013.

[4]张绍辉,张金梅.主要半导体材料的发展现状与趋势[J].科技致富向导,2013,12:72.

[5]蒋荣华,肖顺珍.半导体硅材料的进展与发展趋势[J].四川有色金属,2000,03:1-7.

[6]王占国.半导体材料的发展现状与趋势(摘要)[J].新材料产业,

第2篇:半导体材料应用范文

【关键词】电子化工材料 半导体材料 晶体生长技术

半导体材料的发展,是在器件需要的基础上进行的,但从另一个角度来看,随着半导体新材料的出现,也推动了半导体新器件的发展。近几年,电子器件发展的多朝向体积小、频率高、功率大、速度快等几个方面[1]。除了这些之外,还要求新材料能够耐辐射、耐高温。想要满足这些条件,就要对材料的物理性能加大要求,同时,也与材料的制备,也就是晶体生长技术有关。因此,在半导体材料的发展过程中,不仅要发展拥有特殊优越性能的品种,还要对晶体发展的新技术进行研究开发。

1 半导体电子器件需要的材料1.1 固体组件所需材料

目前,半导体电子所需要的材料依然是以锗、硅为主要的材料,但是所用材料的制备方法却不一样,有的器件需要使用拉制的材料,还有的器件需要外延的材料,采用外延硅单晶薄膜制造的固体组件,有对制造微电路有着十分重要的作用。

1.2 快速器件所需材料

利用硅外延单晶薄膜或者外延锗的同质结,可以制造快速开关管。外延薄膜单晶少数载流子只能存活几个微秒[2],在制造快速开关管的时候,采用外延单晶薄膜来制造,就可以解决基区薄的问题。

1.3 超高频和大功率晶体管的材料

超高频晶体管对材料的载流子有一定的要求,材料载流子的迁移率要大,在当前看来,锗就是一种不错的材料,砷化镓也是一种较好的材料,不过要先将晶体管的设计以及制造工艺进行改变。大功率的晶体管就对材料的禁带宽度有了一定的要求,硅的禁带宽度就要大于锗的禁带宽度,碳化硅、磷化镓、砷化镓等材料,也都具有一定的发展前途。如果想要制造超高频的大功率晶体管,就会对材料的禁带宽度以及载流子迁移率都有一定的要求。但是,目前所常用的化合物半导体以及元素半导体,都不能完全满足要求,只有固溶体有一定的希望。例如,砷化镓-磷化镓固溶体中,磷化镓的含量为5%,最高可以抵抗500℃以上的高温,禁带宽度为1.7eV,当载流子的浓度到达大约1017/cm3的时候,载流子的迁移率可以达到5000cm3/ v.s[3],能够满足超高频大功率晶体的需要。

1.4 耐热的半导体材料

目前比较常见的材料主要有:氧化物、Ⅱ-Ⅵ族化合物、碳化硅和磷化镓等。但是只有碳化硅的整流器、碳化硅的二极管以及磷化镓的二极管能够真正做出器件。因为材料本身的治疗就比较差,所以做出的器件性能也不尽人意。所以,需要对耐高温半导体材料的应用进行更进一步的研究,满足器件的要求。

1.5 耐辐射的半导体材料

在原子能方面以及星际航行方面所使用的半导体电子器件,要有很强的耐辐照性。想要使半导体电子器件具有耐辐照的性能,就要求半导体所用的材料是耐辐照的。近几年来,有许多国家都对半导体材料与辐照之间的关系进行了研究,研究的材料通常都是硅和锗,但是硅和锗的耐辐射性能并不理想。据研究表明,碳化硅具有较好的耐辐照性,不过材料的掺杂元素不同,晶体生长的方式也就不一样,耐辐照的性能也就不尽相同[4],这个问题还需要进一步研究。

2 晶体生长技术

2.1 外延单晶薄膜生长的技术

近年来,固体组件发展非常迅速,材料外延的杂质控制是非常严格的,由于器件制造用光刻技术之后,对外延片的平整度要求也较高,在技术上还存在着许多不足。除了硅和锗的外延之外,单晶薄膜也逐渐开展起来。使用外延单晶制造的激光器,可以在室内的温度下相干,这对军用激光器的制造有着重要的意义。

2.2 片状晶体的制备

在1964年的国际半导体会议中,展出了锗的薄片单晶,这个单晶长为2米,宽为8至9毫米,厚为0.3至0.5毫米,每一米长内厚度的波动在100微米以内,单晶的表面非常光滑并且平整,位错的密度为零[5]。如果在制造晶体管的时候,使用这种单晶薄片,就可以免去切割、抛光等步骤,不仅能够减少材料的浪费,还可以提升晶体表面的完整程度,从而提高晶体管的性能,增加单晶的利用率。对费用的控制有重要的意义。

3 半导体材料的展望

3.1 元素半导体

到目前为止,硅、锗单晶制备都得到了很大程度的发展,晶体的均匀性和完整性也都达到了比较高的水平,在今后的发展过程中,要注意以下几点:①对晶体生长条件的控制要更加严格;②注重晶体生长的新形式;③对掺杂元素的种类进行扩展。晶体非常重要的一方面就是其完整性,晶体的完整性对器件有着较大的影响,切割、研磨等步骤会破坏晶体的完整度,经过腐蚀之后,平整度也会受到影响。片状单晶的完整度和平整度都要优于晶体,能够避免晶体的缺陷。使用片状单晶制造扩散器件,不仅能够改善器件的电学性能,还可以降低器件表面的漏电率,所以,要对片状单晶制备的研究进行加强。

3.2 化合物半导体

化合物半导体主要有砷化镓单晶和碳化硅单晶。通过几年的研究发展,砷化镓单晶在各个方面都得到了显著的提高,但是仍然与硅、锗有很大的差距,因此,在今后要将砷化镓质量的提升作为研究中重要的一点,主要的工作内容有:①改进单晶制备的技术,提高单晶的完整度和均匀度;②提高砷化镓的纯度;③提高晶体制备容器的纯度;④通过多种渠道对晶体生长和引入的缺陷进行研究;⑤分析杂质在砷化镓中的行为,对高阻砷化镓的来源进行研究[6]。对碳化硅单晶的研制则主要是在完整性、均匀性以及纯度等三个方面进行。

4 结论

半导体器件的性能直接受半导体材料的质量的影响,半导体材料也对半导体的研究工作有着重要的意义。想要提高半导体材料的质量,就要将工作的质量提高,提高超微量分析的水平,有利于元素纯度的提高,得到超纯的元素。要提高单晶制备所使用容器的纯度。还要对材料的性能以及制备方法加大研究,促进新材料的发展。半导体材料的发展也与材料的制备,也就是晶体生长技术有关。因此,在半导体材料的发展过程中,不仅要发展拥有特殊优越性能的品种,也要对晶体发展的新技术进行研究开发。

参考文献

[1] 李忠杰.中国化工新材料产业存在的问题分析与对策[J].中国新技术新产品. 2011(02):15-16

[2] 张方,赵立群.“石油和化学工业‘十二五’规划思路报告会”特别报导(三) 我国化工新材料发展形势分析[J].化学工业.2011(07):55-57

[3] 原磊,罗仲伟.中国化工新材料产业发展现状与对策[J].中国经贸导刊.2010(03):32-33

[4] 孙倩.面向“十二五”专家谈新材料产业未来发展方向――第三届国际化工新材料(成都)峰会引业内热议[J].新材料产业.2010(06):19-20

第3篇:半导体材料应用范文

关键词:半导体材料 发展趋势

中图分类号:O47文献标识码: A 文章编号:

半导体信息功能材料和器件是信息科学技术发展的物质基础和先导。半导体材料是最重要最有影响的功能材料之一,它在微电子领域具有独占的地位,同时又是光电子领域的主要材料。半导体技术的迅速发展,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

一、几种主流的半导体材料简介

(一)半导体硅材料

硅是当前微电子技术的基础材料,预计到本世纪中叶都不会改变。从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离和SIMOX材料等也发展很快。理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

(二)半导体超晶格、量子阱材料

以GaAs和InP为基的晶格匹配和应变补偿的超晶格、量子阱材料已发展得相当成熟,并成功地用来制造超高速、超高频微电子器件和单片集成电路。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英、法、美、日等尖端科技公司等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(三)光子晶体半导体材料及其发展趋势

光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。有科学家提出了全息光栅光刻的方法来制造三维光子晶体,并取得了进展。

第4篇:半导体材料应用范文

关键词半导体材料量子线量子点材料光子晶体

1半导体材料的战略地位

上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

2几种主要半导体材料的发展现状与趋势

2.1硅材料

从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC‘s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。

从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smartcut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。

理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

2.2GaAs和InP单晶材料

GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。

目前,世界GaAs单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB)方法生长的2-3英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的SI-GaAs发展很快。美国莫托罗拉公司正在筹建6英寸的SI-GaAs集成电路生产线。InP具有比GaAs更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的InP单晶的关键技术尚未完全突破,价格居高不下。

GaAs和InP单晶的发展趋势是:

(1)。增大晶体直径,目前4英寸的SI-GaAs已用于生产,预计本世纪初的头几年直径为6英寸的SI-GaAs也将投入工业应用。

(2)。提高材料的电学和光学微区均匀性。

(3)。降低单晶的缺陷密度,特别是位错。

(4)。GaAs和InP单晶的VGF生长技术发展很快,很有可能成为主流技术。

2.3半导体超晶格、量子阱材料

半导体超薄层微结构材料是基于先进生长技术(MBE,MOCVD)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。

(1)Ⅲ-V族超晶格、量子阱材料。

GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(HEMT),赝配高电子迁移率晶体管(P-HEMT)器件最好水平已达fmax=600GHz,输出功率58mW,功率增益6.4db;双异质结双极晶体管(HBT)的最高频率fmax也已高达500GHz,HEMT逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40Gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。

虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μm)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nmInGaAs带间量子级联激光器,输出功率达5W以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。

为克服PN结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年InGaAs/InAIAs/InP量子级联激光器(QCLs)发明以来,Bell实验室等的科学家,在过去的7年多的时间里,QCLs在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001年瑞士Neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μm的QCLs的工作温度高达312K,连续输出功率3mW.量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μm),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120K5μm和250K8μm的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μm室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。

目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英国卡迪夫的MOCVD中心,法国的PicogigaMBE基地,美国的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(2)硅基应变异质结构材料。

硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米Si/SiO2),硅基SiGeC体系的Si1-yCy/Si1-xGex低维结构,Ge/Si量子点和量子点超晶格材料,Si/SiC量子点材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。

另一方面,GeSi/Si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止频率已达200GHz,HBT最高振荡频率为160GHz,噪音在10GHz下为0.9db,其性能可与GaAs器件相媲美。

尽管GaAs/Si和InP/Si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,Motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的GaAs外延薄膜,取得了突破性的进展。

2.4一维量子线、零维量子点半导体微结构材料

基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基础。它的发展与应用,极有可能触发新的技术革命。

目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在纳米微电子和光电子研制方面取得了重大进展。俄罗斯约飞技术物理所MBE小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的MBE小组等研制成功的In(Ga)As/GaAs高功率量子点激光器,工作波长lμm左右,单管室温连续输出功率高达3.6~4W.特别应当指出的是我国上述的MBE小组,2001年通过在高功率量子点激光器的有源区材料结构中引入应力缓解层,抑制了缺陷和位错的产生,提高了量子点激光器的工作寿命,室温下连续输出功率为1W时工作寿命超过5000小时,这是大功率激光器的一个关键参数,至今未见国外报道。

-

半导体材料研究的新进展

在单电子晶体管和单电子存贮器及其电路的研制方面也获得了重大进展,1994年日本NTT就研制成功沟道长度为30nm纳米单电子晶体管,并在150K观察到栅控源-漏电流振荡;1997年美国又报道了可在室温工作的单电子开关器件,1998年Yauo等人采用0.25微米工艺技术实现了128Mb的单电子存贮器原型样机的制造,这是在单电子器件在高密度存贮电路的应用方面迈出的关键一步。目前,基于量子点的自适应网络计算机,单光子源和应用于量子计算的量子比特的构建等方面的研究也正在进行中。

与半导体超晶格和量子点结构的生长制备相比,高度有序的半导体量子线的制备技术难度较大。中科院半导体所半导体材料科学重点实验室的MBE小组,在继利用MBE技术和SK生长模式,成功地制备了高空间有序的InAs/InAI(Ga)As/InP的量子线和量子线超晶格结构的基础上,对InAs/InAlAs量子线超晶格的空间自对准(垂直或斜对准)的物理起因和生长控制进行了研究,取得了较大进展。

王中林教授领导的乔治亚理工大学的材料科学与工程系和化学与生物化学系的研究小组,基于无催化剂、控制生长条件的氧化物粉末的热蒸发技术,成功地合成了诸如ZnO、SnO2、In2O3和Ga2O3等一系列半导体氧化物纳米带,它们与具有圆柱对称截面的中空纳米管或纳米线不同,这些原生的纳米带呈现出高纯、结构均匀和单晶体,几乎无缺陷和位错;纳米线呈矩形截面,典型的宽度为20-300nm,宽厚比为5-10,长度可达数毫米。这种半导体氧化物纳米带是一个理想的材料体系,可以用来研究载流子维度受限的输运现象和基于它的功能器件制造。香港城市大学李述汤教授和瑞典隆德大学固体物理系纳米中心的LarsSamuelson教授领导的小组,分别在SiO2/Si和InAs/InP半导体量子线超晶格结构的生长制各方面也取得了重要进展。

低维半导体结构制备的方法很多,主要有:微结构材料生长和精细加工工艺相结合的方法,应变自组装量子线、量子点材料生长技术,图形化衬底和不同取向晶面选择生长技术,单原子操纵和加工技术,纳米结构的辐照制备技术,及其在沸石的笼子中、纳米碳管和溶液中等通过物理或化学方法制备量子点和量子线的技术等。目前发展的主要趋势是寻找原子级无损伤加工方法和纳米结构的应变自组装可控生长技术,以求获得大小、形状均匀、密度可控的无缺陷纳米结构。

2.5宽带隙半导体材料

宽带隙半导体材主要指的是金刚石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶体等,特别是SiC、GaN和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,III族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(LED)和紫、蓝、绿光激光器(LD)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年GaN材料的P型掺杂突破,GaN基材料成为蓝绿光发光材料的研究热点。目前,GaN基蓝绿光发光二极管己商品化,GaN基LD也有商品出售,最大输出功率为0.5W.在微电子器件研制方面,GaN基FET的最高工作频率(fmax)已达140GHz,fT=67GHz,跨导为260ms/mm;HEMT器件也相继问世,发展很快。此外,256×256GaN基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本Sumitomo电子工业有限公司2000年宣称,他们采用热力学方法已研制成功2英寸GaN单晶材料,这将有力的推动蓝光激光器和GaN基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重视,这是因为它们在长波长光通信用高T0光源和太阳能电池等方面显示了重要应用前景。

以Cree公司为代表的体SiC单晶的研制已取得突破性进展,2英寸的4H和6HSiC单晶与外延片,以及3英寸的4HSiC单晶己有商品出售;以SiC为GaN基材料衬低的蓝绿光LED业已上市,并参于与以蓝宝石为衬低的GaN基发光器件的竟争。其他SiC相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。

II-VI族兰绿光材料研制在徘徊了近30年后,于1990年美国3M公司成功地解决了II-VI族的P型掺杂难点而得到迅速发展。1991年3M公司利用MBE技术率先宣布了电注入(Zn,Cd)Se/ZnSe兰光激光器在77K(495nm)脉冲输出功率100mW的消息,开始了II-VI族兰绿光半导体激光(材料)器件研制的。经过多年的努力,目前ZnSe基II-VI族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之GaN基材料的迅速发展和应用,使II-VI族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。

宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如GaN/蓝宝石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。

目前,除SiC单晶衬低材料,GaN基蓝光LED材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如GaN衬底,ZnO单晶簿膜制备,P型掺杂和欧姆电极接触,单晶金刚石薄膜生长与N型掺杂,II-VI族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。

3光子晶体

光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。最近,Campbell等人提出了全息光栅光刻的方法来制造三维光子晶体,取得了进展。

4量子比特构建与材料

随着微电子技术的发展,计算机芯片集成度不断增高,器件尺寸越来越小(nm尺度)并最终将受到器件工作原理和工艺技术限制,而无法满足人类对更大信息量的需求。为此,发展基于全新原理和结构的功能强大的计算机是21世纪人类面临的巨大挑战之一。1994年Shor基于量子态叠加性提出的量子并行算法并证明可轻而易举地破译目前广泛使用的公开密钥Rivest,Shamir和Adlman(RSA)体系,引起了人们的广泛重视。

所谓量子计算机是应用量子力学原理进行计的装置,理论上讲它比传统计算机有更快的运算速度,更大信息传递量和更高信息安全保障,有可能超越目前计算机理想极限。实现量子比特构造和量子计算机的设想方案很多,其中最引人注目的是Kane最近提出的一个实现大规模量子计算的方案。其核心是利用硅纳米电子器件中磷施主核自旋进行信息编码,通过外加电场控制核自旋间相互作用实现其逻辑运算,自旋测量是由自旋极化电子电流来完成,计算机要工作在mK的低温下。

这种量子计算机的最终实现依赖于与硅平面工艺兼容的硅纳米电子技术的发展。除此之外,为了避免杂质对磷核自旋的干扰,必需使用高纯(无杂质)和不存在核自旋不等于零的硅同位素(29Si)的硅单晶;减小SiO2绝缘层的无序涨落以及如何在硅里掺入规则的磷原子阵列等是实现量子计算的关键。量子态在传输,处理和存储过程中可能因环境的耦合(干扰),而从量子叠加态演化成经典的混合态,即所谓失去相干,特别是在大规模计算中能否始终保持量子态间的相干是量子计算机走向实用化前所必需克服的难题。

5发展我国半导体材料的几点建议

鉴于我国目前的工业基础,国力和半导体材料的发展水平,提出以下发展建议供参考。

5.1硅单晶和外延材料硅材料作为微电子技术的主导地位

至少到本世纪中叶都不会改变,至今国内各大集成电路制造厂家所需的硅片基本上是依赖进口。目前国内虽已可拉制8英寸的硅单晶和小批量生产6英寸的硅外延片,然而都未形成稳定的批量生产能力,更谈不上规模生产。建议国家集中人力和财力,首先开展8英寸硅单晶实用化和6英寸硅外延片研究开发,在“十五”的后期,争取做到8英寸集成电路生产线用硅单晶材料的国产化,并有6~8英寸硅片的批量供片能力。到2010年左右,我国应有8~12英寸硅单晶、片材和8英寸硅外延片的规模生产能力;更大直径的硅单晶、片材和外延片也应及时布点研制。另外,硅多晶材料生产基地及其相配套的高纯石英、气体和化学试剂等也必需同时给以重视,只有这样,才能逐步改观我国微电子技术的落后局面,进入世界发达国家之林。

5.2GaAs及其有关化合物半导体单晶材料发展建议

GaAs、InP等单晶材料同国外的差距主要表现在拉晶和晶片加工设备落后,没有形成生产能力。相信在国家各部委的统一组织、领导下,并争取企业介入,建立我国自己的研究、开发和生产联合体,取各家之长,分工协作,到2010年赶上世界先进水平是可能的。要达到上述目的,到“十五”末应形成以4英寸单晶为主2-3吨/年的SI-GaAs和3-5吨/年掺杂GaAs、InP单晶和开盒就用晶片的生产能力,以满足我国不断发展的微电子和光电子工业的需术。到2010年,应当实现4英寸GaAs生产线的国产化,并具有满足6英寸线的供片能力。

5.3发展超晶格、量子阱和一维、零维半导体微结构材料的建议

(1)超晶格、量子阱材料从目前我国国力和我们已有的基础出发,应以三基色(超高亮度红、绿和蓝光)材料和光通信材料为主攻方向,并兼顾新一代微电子器件和电路的需求,加强MBE和MOCVD两个基地的建设,引进必要的适合批量生产的工业型MBE和MOCVD设备并着重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基蓝绿光材料,InGaAs/InP和InGaAsP/InP等材料体系的实用化研究是当务之急,争取在“十五”末,能满足国内2、3和4英寸GaAs生产线所需要的异质结材料。到2010年,每年能具备至少100万平方英寸MBE和MOCVD微电子和光电子微结构材料的生产能力。达到本世纪初的国际水平。

宽带隙高温半导体材料如SiC,GaN基微电子材料和单晶金刚石薄膜以及ZnO等材料也应择优布点,分别做好研究与开发工作。

(2)一维和零维半导体材料的发展设想。基于低维半导体微结构材料的固态纳米量子器件,目前虽然仍处在预研阶段,但极其重要,极有可能触发微电子、光电子技术新的革命。低维量子器件的制造依赖于低维结构材料生长和纳米加工技术的进步,而纳米结构材料的质量又很大程度上取决于生长和制备技术的水平。因而,集中人力、物力建设我国自己的纳米科学与技术研究发展中心就成为了成败的关键。具体目标是,“十五”末,在半导体量子线、量子点材料制备,量子器件研制和系统集成等若干个重要研究方向接近当时的国际先进水平;2010年在有实用化前景的量子点激光器,量子共振隧穿器件和单电子器件及其集成等研发方面,达到国际先进水平,并在国际该领域占有一席之地。可以预料,它的实施必将极大地增强我国的经济和国防实力。

第5篇:半导体材料应用范文

1月,奥巴马宣布在北卡罗来纳州成立电力电子半导体先进制造业创新中心。2月奥巴马宣布,在底特律成立轻型金属材料先进制造业创新中心,在芝加哥成立数码科技和数据管理技术先进制造业创新中心。至此,连同2012年8月在俄亥俄州成立的增量制造(3D打印)先进制造业创新中心,美国已拥有4家国家级先进制造业创新中心。美国奥巴马政府2013年提出要成立15所国家级先进制造业创新中心,预计今年还会成立更多的美国国家级先进制造业创新中心。

国家先进制造创新中心的设想源于美国智库布鲁金斯学会“先进工业系列”研究项目。该研究指出,先进制造业事关国家长远竞争力,是一个国家最具战略性的创新,是发达国家经济发展的原动机。研究确定了先进制造业所涉及的17个领域,提出了以国家投资牵引,政府部门内部竞标,民间机构一比一资金配套,组建“国家先进制造业创新中心”的基本模式。

美国媒体指出,“国家先进制造业创新中心”是德国模式的美国翻版,德国已建成60余所此类中心。奥巴马在2013年宣布“国家先进制造业创新中心”计划时称,设立先进制造业创新中心,是学习德国经验,扶持美国制造业和鼓励企业在本土投资。中心将把公司、大学、其他学术与培训实体与联邦机构聚在一起,共同投资技术领域,促进在美国的投资和生产。他说,“我不希望下一个能创造许多就业的重大发现、研究和技术落入德国、中国或日本手里。我希望它发生在美国。”

以最早成立的增量制造创新中心为例,成立时政府投入3000万美元,民间机构投资3900万美元。民间机构包括80家公司、9所研究性大学、6个社区学院和18个非赢利机构。大学和制造商团队将携手开发3D打印程序的新工具、新用途和新理解。其中一个获得资金支持的项目是与洛克希勒·马丁等巨头共同研发航空、医疗等领域零部件的3D打印制造。

电力电子半导体先进制造业创新中心整合了18家公司、6所大学和联邦政府机构的力量。轻质金属材料先进制造创新中心由60个世界领先的高强度钢材制造厂商、大学和实验室组成。数码科技和数据管理技术先进制造业创新中心由73个企业、大学、非盈利组织和试验室组成。

必须指出,美国“国家先进制造业创新中心”均定位在制造业的最高端。以电力电子半导体先进制造业创新中心为例,就定位在处于最前沿的第三代半导材料领域。

第6篇:半导体材料应用范文

《投资者报》:尽管公司认为从半导体转入光伏领域是由于两者技术共通,但有投资者认为公司要么是盲目跟风,要么是原来的半导体产业做得不好了,你认为公司是被迫转型还是顺势而为?

安艳清:公司转型看上去很突然,但背后的逻辑是,IC半导体材料和光伏硅材料同属半导体材料,是同种物质的两种用途存在方式。公司1988年就已经开始从事太阳能级半导体材料的生产制造,因此公司只是将光伏领域的太阳能半导体材料实施了放大。而且,由于用于芯片的IC半导体材料在技术方面的要求远高于用于太阳能电池的硅材料,因此在光伏领域有着技术方面的先天优势。

另外,公司专注于半导体硅材料的研发、生产和制造,是公司的主业,IC半导体材料不但没有做不下去,而且做得非常好。在全球范围内我们的区熔单晶硅(FZ)综合实力排名前三,2010年我们的市场份额为12%至18%,2011年底我们占全球区熔单晶硅(FZ)市场份额约为20%。

《投资者报》:国内做半导体的企业不少,为何是中环率先掌握最领先的技术,你认为中环技术上的优势主要来自于哪些方面?

安艳清:一方面来自公司这些年在半导体材料领域上的技术积淀。早在2002年,环欧公司在国内率先采用多线切割技术切割半导体及太阳能硅片。2007年至2009年期间,环欧公司采用国内领先的晶体生长模拟技术开始研发新一代的太阳能晶体生长技术及设备。

另一方面,也离不开公司总经理沈浩平和技术团队多年的潜心研究。沈总1983年物理系毕业时,毕业论文就是关于薄膜电池的研究,并在重量级学术刊物上刊载,此后沈总一直在中环旗下全资子公司环欧公司从事技术研发,即便后来担任环欧公司副总经理,他也一直在一线工作,坚持在一线工作19年。并带出一大批技术骨干,形成了有着核心竞争力的团队,这才是中环技术不断创新和升级的最重要源泉。

《投资者报》:目前光伏行业一片惨淡,中环股份受到的冲击有多大?你如何看待这次光伏行业调整?

安艳清:这个行业前期是一窝蜂式涌入的跟风行业,只要有资金,各行各业的人都可以进入,不管是专业的还是非专业的,大家都能赚到钱。在这样的时候,像我们这样拥有技术优势但规模不太大的企业是体现不出优势的,只有那些大规模生产的企业才有优势。但这样一个人人参与人人赚钱的行业一定是不正常的,调整和洗牌是必然的。

现在中环一半的利润贡献来自光伏,当然不可能不受影响,但我们主要做单晶硅,而且是品质较高的高端产品,影响相对较小。2011年下半年,30%的企业处于停产和半停产状态,70%的处于产闭状态。但我们目前一直处于满产状态。

《投资者报》:公司受影响小的原因是什么?

安艳清:我们受影响小的原因是这个行业经历一轮疯狂发展后,下游客户的需求发生了变化,前两年是需求大供方少,上游厂商生产什么样的产品都有市场,但现在下游客户变得理性了,也变得挑剔了,需求开始向高端发展,那些产品品质好的、有信誉的而高端需求在向高端企业靠拢,我们这种有长久技术实力,有市场资源和和管理资源的企业才会胜出。

但在这个洗牌过程中,无论是资本市场的人,还是行业外的人,分不清哪个是真李逵哪个是假李逵,在这种情况下,对我们公司有质疑是可以理解的,我们也希望通过我们的业绩说话,通过市场表现说话。

《投资者报》:一项新技术的应用过程比较复杂,得先试生产,再小批量生产,最后才能达到工业生产里面的大规模生产。公司直拉区熔技术正式应用到光伏领域并转化为规模生产?对公司业绩的贡献有多少?

安艳清:公司CFZ技术的大规模生产不存在任何的瓶颈,因为CFZ产品技术是公司CZ技术和FZ技术两种技术的融合,而且公司CZ和FZ的规模化生产历史超过20年。

我们不会担心市场,公司的产品都是以市场为导向的,事实上,是因为当前时点已经有了客户资源,我们才宣布要规模化生产的。对公司的业绩会有大的贡献。

《投资者报》:是因为资金有限还是担心行业低谷产品市场受限?

安艳清:目前公司CFZ没有实现大规模化生产的真正瓶颈来自于资金,我们的计划不是一次性投资之后一次性投产,而是循序渐进,一边增加投入一边扩大产能。

关于行业低谷产品市场受限的问题,我个人认为,如同手机市场中的苹果,没有人能阻挡苹果手机的市场。

《投资者报》:从2009年开始,中环股份的管理层也作了调整理,现在看来,新的管理层为公司带来了哪些变化?

安艳清:2009年我们七个高管中新上任四个,而且来自不同的行业,我认为对公司经营和管理注入了一些活力,这些人不仅仅追求稳定,也属于“折腾型”的高管,喜欢多做些事。从业务层面看,一方面依托公司此前的技术和市场优势,将半导体材料产业规模放大了,通过中环领先项目实现了从材料到器件的枢纽,也布局了新能源项目,这三年里产业转型与布局基本完成,并步入一个良性的发展通道。

《投资者报》:在经营层面和市值管理方面,公司有何近期和中长期的战略规划?

安艳清:目标是至2015年力争实现过百亿的规模,市值达到五百亿至一千亿。

第7篇:半导体材料应用范文

关键词:光导光导开关;皮秒;脉冲发生器

中图分类号:TN782 文献标识码:A 文章编号:1007-9599 (2012) 11-0000-02

准确可靠的触发是脉冲功率技术研究的重要内容。随着脉冲功率技术的发展,触发源技术也日新月异,新型触发源不仅要求快导通前沿、高重复频率还要有高稳定度。上世纪70年代在线性和非线性两种模式下,它对控制光脉冲有很好的响应,几乎可以实现与光同步,它带领着脉冲功率触发技术走到了另一个时代。

一、光导开光

光导半导体开关(Photoconductive Semiconductor Switch,PCSS)是超快脉冲激光器和光电半导体相结合形成的新型器件,通过触发光对半导体材料电导率的控制实现开关的关断和导通。PCSS具有响应速度快(小于0.6ps),重复率高(GHz量级)、易于精确同步(触发晃动仅ps量级)、不易受电磁干扰(光电隔离)、耐高压、寄生电感电容小、结构简单灵活等优点。随着研究的不断深入,至今已能利用光导开光技术研制太赫兹脉冲发生器,结合fs激光触发,光导开光可以产生高功率皮秒脉冲和脉宽在ps量级的电磁辐射,拥有从接近直流到THz级的超宽频带,为超宽带雷达的实现提供了可能。

GaAs光电导开关是由脉冲激光器与半绝缘GaAs相结合形成的器件,如图1所示,基于内光电效应工作原理。

(一)光导开光结构

常见的光导开关结构有横向结构、平面结构和相对电极结构。根据光电导开关的偏置电场和触发光脉冲的入射方向关系可将开关分为横向开关和纵向开关两种基本结构,如图2所示。当触发光脉冲入射方向与开关偏置电场方向相互垂直时,为横向结构的光电导开关。当触发光脉冲入射方向与开关偏置电场方向相互平行时,为纵向结构的光电导开关。

横向光电导开关光作用区域面积大。无论光的吸收深度是几微米还是几百微米,所有光都被激活区吸收。在线性模式均匀光照条件下,开关的峰值电流、上升时间和脉宽仅仅依赖于触发光脉冲的幅值、脉宽、载流子复合时间和开关所处电路结构。横向光电导开关的缺点是在工作时,由于偏置电场穿通开关整个表面,从而使得开关的表面击穿场强远小于材料的本征击穿强度。开关常常会出现表面闪络或沿面放电等现象,从而大大限制了开关的耐压能力和功率容量。

纵向结构开关可以减少开关表面电场,从而提高开关的击穿电压。但这种开关的主要缺点是开关至少需要一个透明电极,而这种透明电极的制作工艺非常复杂。此外开关芯片的吸收深度对开关的瞬态特性有较大影响。

横向开关和纵向开关各有优缺点,具体选用哪一种结构的开关,要根据开关的具体应有来决定。由于横向光电导开关制作简单,有较大光照面积和电导通道,可以用较宽波长范围的光来触发,因而在制作大功率光电导开关时主要采用横向结构的开关。

(二)光导开关半导体材料

光导开关的发展与半导体材料技术的发展密切相关。在半导体材料的发展过程中,一般将以硅(Si)为代表的半导体材料称为第一代半导体材料;将以砷化镓(GaAs)为代表的化合物半导体称为第二代半导体材料:将以碳化硅(SiC)为代表的宽禁带化合物半导体称为第三代半导体材料。与之相对应,相继出现了Si光导开关、GaAs光导开关和SiC光导开关。

Si光导开关,由于Si禁带宽度窄,载流子迁移率低等特点不适合制作超快大功率光导开关;GaAs光导开关,虽然GaAs的大暗态电阻率和宽禁带有利于制作大功率器件,但由于GaAs热导率低、抗高辐射性能较差,运行过程中容易出现热奔和锁定效应,限制了GaAs光导开关窄高温、高重复速率、高功率和高辐射环境中的使用;SiC光导开关可以将触发光的能力大大降低,但其在高电压下容易击穿,在高重复频率下容易出现热击穿,且只能工作在线性模式下。

二、皮秒脉冲源

项目主要任务就是研制一个高稳定度快脉冲源装置,该装置的主要功能是:接到系统给出的触发指令后,打开电光开关,输出脉宽约为2ns的光脉冲,驱动光导开关输出高压脉冲信号。要求输出的高压脉冲信号前沿小于200ps,幅度为3~5kV,系统晃动时间不大于250ps。

本方案的基本工作原理如图3所示:利用高压电源对储能电容充电,充电完成后,激光器在接到触发脉冲指令时,发出脉宽为2ns的光脉冲信号驱动光导开关,储能电容内存储的能量通过光导开关释放到取样电阻上,输出高压脉冲信号。

本项目技术关键点主要在于两个方面:a.主脉冲波形的质量,包括主脉冲的峰值、脉宽、前后沿以及稳定性;b.触发脉冲至主脉冲1的时间间隔T1的稳定性。为了获得满足技术指标要求的主脉冲信号,主放电回路拟采用光导开关对贮能元件进行放电。由于光导开关具有高速导通和关断、高稳定性的特点,只要选择合适的基本回路参数可以确保获得高质量的满足指标要求的主脉冲信号。电路基本参数仿真机波形如图4、5、6所示。

三、结论

光导开关在2ns激光脉冲控制下,输出高压脉冲与控制光脉冲响应良好,上升时间169ps,脉宽2ns。利用光导开关设计的皮秒脉冲发生器可以在重复频率下工作,图7为75kHz下高压脉冲输出波形。

参考文献:

[1]袁建强,刘宏伟.等.50 kV半绝缘GaAs光导开关[J].强激光与粒子束,2009,21(5):783-785

[2]袁建强,谢卫平,等.光导开关研究进展及其在脉冲功率技术中的应用[J].强激光与粒子束,2008,20(1):171-176

[3]谢玲玲,龚仁喜,黄阳.吸收因子对GaAs光导开关输出电压幅值的影响[J].半导体技术,2008,33(7):596-599

[4]Auston D H. Picosecond optoelectronic switching and gating in silicon[J].Appl Phys Lett,1975,26(3):101-103

[5]纪建华,费元春,等.超宽带皮秒级脉冲发生器[J].兵工学报,2007,28(10):1243-1245

[6]James R. Andrews. Picosecond Pulse Generators for UWB Radars.Picosecond Pulse Labs,2000

[7]Lee C H. Picosecond optoelectronic switching in GaAs[J].Appl Phys Lett,1977,30(2):84-86

[8]Cho P S,Goldhar J,Lee C H.Photoconductive and photovoltaic response of high-dark-resistivity 6H-SiC devices[J].JAppl Phys,1995,77(4):1591-1599

[9]Kelkar K S,Islam N E, Fessler C M,et al. Silicon carbide photoconductive switch for high-power,linear-mode operation through sub-band-gap triggering[J].J Appl Phys,2005,98:093102

第8篇:半导体材料应用范文

关键词:电子材料与元器件;教学内容;教学方法

中图分类号:G642.4 文献标识码:A 文章编号:1674-9324(2016)41-0090-02

一、电子材料与元器件课程简介

电子材料与元器件课程是电子科学与技术专业的基础性课程,是后续专业课的学习基础。进入21世纪后,随着以集成电路技术为基石的电子信息技术的加速发展,各类电子器件及系统都在朝着小型化、集成化的方向发展,而其中的集成化不仅意味着要尽可能地实现系统中电路的单芯片集成,而且要实现将包括声、光、电、磁等物理量感知的传感器集成在系统中,实现多功能集成[1]。

处于电子科学与技术产业链前端的电子材料与元器件是众多核心基础产业的重要组成部分,是计算机网络、通讯、数字音频等系统和相关产品发展的基础[2]。

二、电信学院电子材料与元器件课程参考教材内容的选取

我院电子科学与技术本科专业,采用科学出版社出版、王巍主编的,普通高等教育电子科学与技术类特色专业系列规划教材《现代电子材料与元器件》作为“电子材料与元器件”课程的主要参考教材,其内容涵盖了电子信息技术中的主要电子材料与器件类型。笔者结合国内外研究动态、应用前景及发展趋势,并考虑我院微电子教研室及教师的研究特长以及电子科学与技术专业毕业生就业需求等多方面因素,对授课内容进行了适当的增减。

1.增强半导体材料内容。半导体材料是集成电路的基础,在信息的存储、传输、加工处理和显示方面都有重要的应用[1]。笔者授课过程中除了介绍半导体材料结构、性质、制备工艺方法外,还增加了有机半导体材料、液晶材料等相关内容,为集成电路的设计与制造、发光显示储备了扎实的半导体材料基础知识。

2.增强光电子材料与器件内容。授课时,详细介绍了光纤材料、激光材料与器件,还增加了半导体中光吸收及光电效应基础知识、光电导效应型与光伏效应型光敏器件相关内容。

3.增强敏感陶瓷材料与器件内容。除了讲解常见敏感陶瓷器件特性及应用外,增加了各种敏感器件结构、制作工艺和ZnO、SnO2等无机敏感陶瓷材料和有机敏感材料的制备方法、工艺等内容,为信息技术中传感器的设计与制作奠定扎实的基础。

4.增加了化合物晶体缺陷化学内容。鉴于我校电子科学与技术相关教师在传感器、光电、太阳能电池等方面的研究,以及国内外对于高性能敏感陶瓷材料与器件和太阳能电池等涉及到新能源材料与器件方面的迫切需求,结合笔者在纳米半导体材料与器件方面的研究,授课中增加了缺陷化学表示方法、晶体中缺陷平衡、杂质对晶体中缺陷平衡影响、晶体中点缺陷扩散与分布等相关内容。为敏感陶瓷材料制备,太阳能电池材料制备奠定良好的基础。

5.弱化磁性材料与器件内容。考虑到磁性材料的独特性,授课时只讲述磁性材料特性、应用,对于磁性元器件内容采用学生自学的方式。

三、课程教学方法改进

1.课堂讲授与研讨并行。该课程采取课堂讲授与研讨并行,学习与研讨相结合的教学方法,提倡教师与学生、学生与学生研讨问题,从而提高学生对于汲取、创造知识的兴趣。通过研讨启发学生的创新思维,使整个课堂教学成为教师为辅、学生为主,教师与学生、学生与学生互动的网状结构[3]。

研讨的内容可以为教师拟题,学生自选。采取分组讨论,并且每一组派代表到讲台上进行相应内容的讲解,所有学生进行讨论。从而促使学生主动出击去学习、解决相关问题,最终实现教师传授、学生自学研究、教师与学生相互解惑的教学模式。

2.与实验中心“联动教学”机制。我院传统课程讲授往往局限于普通的多媒体教室,学生无论是听取教师传授还是互动研讨都是凭空进行学习和理解。笔者讲授该课程是采取与实验中心“联动教学”模式,使传统的课堂讲授与研讨“搬入”实验中心相关实验室进行,学生在真实接触电子材料的制备和元器件制作的过程中,更加深入地理解所学的知识,并能够更好地启发并锻炼学生提出问题、分析研讨问题、解决问题的能力。该课程的讲授采取二分之一学时分配机制,即:一半学时在普通多媒体教室进行;一半学时在相应电子材料与元器件实验室“联动教学”进行。

3.多媒体教学与实验教学相辅相成。多媒体教学是指采用计算机和视频技术相结合的一种教学方式,与传统的教学方式不同,它有其自身鲜明的特色,如信息量输入紧凑、量多、质高,文字图像清晰直观、风格多样,内容丰富等等[4]。电子材料与元器件课程教学中,采用多媒体教学能丰富多彩地演示各种元器件结构、半导体材料的制备工艺等相应的教学内容。并且在教学过程中辅以相关的视频,让学生更加清楚地了解电子材料制备、元器件制作相关设备,更清楚地理解相应的原理。并且安排相应的配套实验,让学生真正能动手接触实物,不但可增强学生学习本课程的兴趣,而且可以提高学生对电子材料及元器件实体的感性认识,达到理论与实践相结合的目的。

4.理论考试与科学研究相结合。素质教育的电子材料与元器件课程学生评价机制应该区别于传统的仅考试评价方式,教师应将学生的平时表现、理论基础知识掌握、实践动手能力、科学研究(综合训练项目)等纳入对学生的评价体系中。课程考核除了前面提到的配套实验外,还包括平时表现、考试和综合训练情况。考试是检验学生对电子材料与元器件课程基础知识掌握程度的手段,但不宜开发学生自身科学研究的潜力,有时更无法判别学生对所学知识是死记硬背还是融会贯通。我院本课程实施过程中要进行综合训练项目,即通过分组开展综合训练题目(题目可以是教师提出,也可根据自身知识储备自拟),进行电子材料或元器件相关设计,最终形成综合训练报告,并且所做设计要分组在课堂上进行展示讲解和讨论。

5.学生对该课程授课的评价。虽然教师在进行课程设计过程中可提出一些创新性的方式方法,但毕竟只是从教师的角度去设计课程。我院在面向每一届电子科学与技术专业学生开设电子材料与元器件课程后,开展学生对本课程讲授内容、授课方式方法等的意见和建议的活动,并形成书面意见书存档。从学生角度了解学生各方面的需求,集思广益发挥学生对于本课程创新性的教学方式方法。

四、结语

本文通过对电子科学与技术专业特点以及电子材料与元器件课程性质及内容的分析,结合国内外研究动态、应用前景及发展趋势,并考虑教学单位及教师的研究特长以及电子科学与技术专业毕业生就业需求等多方面因素,对电子材料与元器件教学内容的选取、教学方式方法的改进等方面进行了改革。教学过程中增强了半导体材料、光电子材料与器件、敏感陶瓷材料与器件内容,增加了化合物晶体的缺陷化学的教学内容。对电子材料与元器件课程的教学方式方法提出了课堂讲授与研讨并行、与实验中心“联动教学”机制、多媒体教学与实验教学相辅相成、理论考试与科学研究相结合、学生对课程授课评价的改进,以便提高本课程的教学质量,提升本专业学生的专业素养。

参考文献:

[1]王巍,冯世娟,罗元.现代电子材料与元器件(第1版)[M].北京:科学出版社,2012.

[2]杨锋.浅谈电子材料与器件课程教学[J].北京:文理导航,2015,(4).

[3]王春雨,王春青,张威,温广武.“电子材料”课程教学实践与提高措施探讨[J].石家庄:价值工程,(2010),14.

[4]于英霞,刘小敏,张益华,谢镭.多媒体教学在土木工程施工教学中的应用和实践[J].廊坊:廊坊师范学院学报(自然科学版),(2011),11(4).

The Reform in Teaching of Electronic Materials and Component Course

ZHONG Tie-gang,JIANG Fang,ZHAO Wang

(College of Electronics and Information Engineering,Liaoning Technical University,Huludao,Liaoning 125105,China)

第9篇:半导体材料应用范文

关键词:热电材料;Seebeck效应;教学体会

中图分类号:G642 文献标志码:A 文章编号:1674-9324(2017)14-0235-02

近年来,随着全球人口的增长,能源危机越来越严重,因此开发新能源已经刻不容缓。热电材料是一种利用载流子的传输,实现热能和电能之间相互转换的功能材料。采用热电材料制备的发电器件具有无噪声、无污染、无机械振动等优点,对于节能减排具有重要意义。热电材料的理论基础是Seebeck效应,这是物理学中的一个基本概念,同时也是我校为本科生开设的《新能源与芯时代》这门研讨课程中的一个重要概念。然而对于这一基本概念,学生却较难完全理解和掌握。为了提高教学效果,本人经过多次的尝试和努力,最终总结出了以下这种有效的教学方法。

一、通过视频播放和提问来引入Seebeck效应的基本概念

如何引起学生对Seebeck效应学习的兴趣,对于提高教学效果至关重要。因此,本人在介绍Seebeck效应之前,首先通过视频的播放,为学生展示热电发电材料目前在各个领域的应用,引起学生的注意,激起学生学习的兴趣。然后通过提问以下问题,如:(1)当大家在打一个重要电话的时候,手机突然没有电了,而周围并没有固定和移动电源,我们能否使用热电发电器件为手机充电?(2)能否将人体释放的热量转变成电能为低功率的电子产品充电?(3)能否在炎热的沙漠地区,使用热电发电器件为微型军用电子产品供电?等。通过上述问题的提问,进一步刺激学生对热电材料应用的思考,为引入Seebeck效应奠定基础。

二、通^示意图讲解Seebeck效应的原理

Seebeck效应是由德国科学家赛贝克(Seebeck)于1821年发现的,因此被命名为Seebeck效应[1]。其原理如下[2,3]:将两种半导体材料连接在一起,如果接头处的温度不同(一端置于热源上,温度为T1;另一端置于冷源上,温度为T2,且T1=T2+T),那么在开路位置就会产生开路电压(V),且V可以按照公式1进行计算:

V=Sab(T1-T2)=TSab (公式1)

其中:Sab为材料a和b的Seebeck系数,Sab可以由公式2进行计算。

Sab=■■(公式2)

从公式1和2可以看出,V和T、Sab成正比。不同材料的Seebeck系数是不同的,一般来说,无机半导体材料,如:Bi-Te基合金、Pb-Te基合金、具有较高的Seebeck系数;导电高分子如聚苯胺、聚噻吩、聚吡咯、聚(3,4-乙烯二氧噻吩)等去掺杂时一般也具有较高的Seebeck系数;碳材料如:碳纳米管、石墨烯、炭黑等Seebeck系数较低。其实Seebeck系数的大小并不能完全决定材料的热电性能,因为材料的热电性能是由无量纲热电优值ZT来决定的,ZT的计算见公式3:

ZT=■(公式3)

式中,S、σ、T和κ分别为Seebeck系数、电导率、热力学温度和热导率。

三、通过示意图结合动画讲解Seebeck效应的物理机制

在上述Seebeck效应基本概念的基础上,通过示意图结合动画演示的方式为学生进一步讲解Seebeck效应的物理机制(具体示意图和动画见参考文献[4])。对于P型半导体材料来说,当材料中没有温度梯度时,材料中的载流子(空穴)是均匀分布的,但是当材料中一旦存在温度梯度时,材料中热端的空穴就会向冷端进行扩散,扩散的结果就会导致热端的空穴越来越少,而冷端的空穴越来越多,当达到平衡后,热端和冷端之间形成了电势差。N型半导体材料与P型半导体材料类似,当N型半导体材料中存在温度梯度时,材料中热端的电子就会从向冷端扩散,当达到平衡后,热端和冷端之间同样会形成电势差[4]。一个P型或者N型单元所产生的输出电压是有限的,往往难以满足电子设备的要求,因此为了提高器件的输出电压,工业上通常将很多对P型和N型材料串联起来,以达到使用效果(如图2)。

四、通过问题讨论进一步加深理解和应用拓展

通过上述介绍,学生已经基本理解和掌握了Seebeck效应这一知识点,为了进一步引发学生关于此内容的理解和应用拓展,最后请学生简单的讨论如如何提高器件的输出电流?通过这一问题的讨论,引发学生对于Seebeck效应具体应用的思考。同时通过讨论使学生理解提高器件的输出电流的一个解决方案就是将多个P型和N型单元交替、规律的并联起来

五、结语

目前热电发电材料和器件已经应用到各个领域,如军事、航空、航天、医疗、日常生活等。Seebeck效应则是热电发电材料和器件的理论基础,因此对于Seebeck效应的理解和掌握对于《新能源与芯时代》课程的学习以及学生以后从事热电发电材料和器件的研究工作以及至关重要。本人采用上述教学方法使得教学效果大幅度提高,当然本人将继续摸索、思考、和总结,期望《新能源与芯时代》课程的每一个章节均能取得优异的教学效果。

参考文献:

[1]戴岩伟,戴晓明.温差电效应及其应用,现代物理知识,2008,1(20),20-21.

[2]周东一,王红梅.基于温差电技术的热电材料研究进展,化工新型材料,2015,9(43),13-16.

[3]张腾,张征,温差发电技术及其一些应用,能源技术,2009,1(30),35-39.

[4]Yong Du,Kefeng Cai,Song Chen,Hongxia Wang,Shirley Z.Shen,Richard Donelson,Tong Lin,Thermoelectric Fabrics:Toward Power Generating Clothing,Scientific Reports,2015,(5):6411,1-6.