公务员期刊网 精选范文 沉淀池在污水处理中的作用范文

沉淀池在污水处理中的作用精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的沉淀池在污水处理中的作用主题范文,仅供参考,欢迎阅读并收藏。

沉淀池在污水处理中的作用

第1篇:沉淀池在污水处理中的作用范文

关键词:平流式沉淀池;悬浮物;BOD

Abstract: By technological transformation of sewage treatment plant, add a set of advection sedimentation tanks and its supporting auxiliary equipment, the total drainage water quality improved, enabling the system to long-term stable operation of.

Key words: Horizontal flow sedimentation tank; Suspended matter; BOD

中图分类号:U664.9+2 文献标识码: A 文章编号:2095-2104(2012)08-0020-02

随着经济的不断发展,化工行业的发展蒸蒸日上。而化工设备成为支撑整个行业的元素之一。在工艺运行中,一套合理的化工设备,将影响着这整套系统的稳定运行、产品的产量及质量等问题。本文是介绍某甲醇厂污水处理工段为除去来水中大量悬浮物而进行的技术改造。

1.技改背景

1.1技改对象

此次技改对象为甲醇厂水汽车间污水处理系统进水预处理工段

1.2技改增加化工设备

本次技改核心内容为在污水处理系统的流程最前端增加平流式沉淀池一座,为了提高沉淀效率配套了相应的加药设施。

1.3技改原因

甲醇厂水汽车间污水处理系统,因在前期设计时甲方提资问题,对装置运行后排放的废水中悬浮物含量估计不足,生产装置在运行后排放的废水含有大量的粉煤灰,悬浮物含量严重超出设计处理能力,导致污水处理装置超负荷运行,出水水质长期达不到设计要求的排放指标,给公司的整体环保检查验收工作带来极大的影响。为解决此问题,公司技术部门决定对污水处理系统预处理工艺进行技改,增加处理设备,以去除来水中超标的悬浮物。经过多方面对比,结合实际情况,决定在废水进入污水处理系统前增加平流式沉淀池及配套系统。

1.4 技改前运行情况

据统计,甲醇厂气化装置排放的废水中粉煤灰含量最高值达20000mg/L左右,甲醇装置废水悬浮物平均在500mg/L左右,综合水质平均悬浮物为800mg/L,而原工艺设计废水来水悬浮物为≤145mg/l。来水超高的悬浮物严重影响整套污水处理系统的正常运行。这些超高的悬浮物未经任何处理直接进入污水处理装置的生产废水收集池和事故排放水池(即初期雨水池),造成以上两池体中沉淀物大量淤积,严重降低了池体的蓄水能力,使该池体几乎失去了对废水来水的缓冲均衡能力。且由于污水处理系统设计时未考虑处理高浓度悬浮物,预处理工艺流程过于简单,使得大量的悬浮物直接进入后续SBR生化处理系统,活性污泥被粉煤灰包裹失去原有处理能力(MLSS测定高达10000mg/l以上,SV30在90%以上),出水水质超标严重,废水处理装置面临瘫痪的危险。

1.5自然条件

1.5.1气象条件

气象资料统计表(灵武农场场部提供资料)

1.5.2地震烈度

地震烈度为8度

2 技改前工艺流程简述及工艺流程图

2.1技改前工艺流程描述

来自生产装置的废水,进入污水处理系统工业废水收集池,厂内初期雨水以及生产事故状态下的排水进入初期雨水池中。工业废水收集池的水经提升泵提升后进入污水总管,初期雨水池的水经初期雨水泵提升后也进入污水总管,两股废水汇合后一起进入高效澄清池中,通过高效澄清池除去废水中的大部分悬浮物后,进入调节池中,然后通过调节池提升泵泵入SBR生化处理池进行生化处理,经过曝气沉淀后,上清液进入出水监测池,在出水监测池设置在线PH、COD、氨氮监测仪,对出水水质进行分析,如三项指标均合格,则排出厂外;如出水水质不合格,则进入初期雨水池中,再经历整个系统进行重复处理。高效澄清池产生的沉淀污泥以及SBR池的剩余污泥,进入污泥收集池中,通过污泥螺杆本泵入污泥浓缩脱水一体机进行浓缩脱水处理,脱水后干污泥外运,带下水至初期雨水池中处理。

2.2技改前工艺流程图

3、技改新增装置及技改后的工艺流程图

3.1平流沉淀池的规格

在进入生产废水收集池和雨水收集池前,先将两股来水进行沉砂处理。采用平流式沉淀池形式,结合当前实际情况,设计流量按最大300m3/h,设计参数如下表所示。

受进水雨水管道(管中心标高-2.80m)、生产废水管道标高影响(管中心标高-2.90m),平流式沉淀池设置为地下式,最大液面高度为-3.0m。

3.2实际配置设备参数如下

在污水处理装置总进口前增设平流式沉淀池一座,初期雨水与生产废水经管网首先进入平流式沉淀池中,经沉淀池去除水中的大部分悬浮物。沉淀池出水进入初期雨水池中,再经提升泵泵送至高效澄清池,进一步去除废水中残留的悬浮物。高效澄清池出水进入调节池进行水质水量均衡,调节池存水由调节池提升泵泵送至后续的SBR生化处理工段进行生物氧化处理,SBR出水进入监测池进行在线PH、COD、氨氮监测,如三项指标均达到排放要求,则出水合格,按要求排至厂外;如三项中有一项超标,则出水不合格,重新排至系统最前端的沉淀池中,再经历整个系统进行重复处理,直至合格外排。沉淀池产生的污泥进入污泥收集池中,与高效澄清池污泥和SBR池剩余污泥一起,通过污泥浓缩脱水设备进行脱水处理后干污泥外运,带下水至初期雨水池进行处理。

4、技改前后的运行参数对比

4.1原有工况下进出水悬浮物对比(单位 mg/l)

4.3新增设施的运行效果

4.3.1 对悬浮物的去除效果

改造后的污水处理工艺,增加了平流式沉淀池,结合混凝剂(10%浓度聚合氯化铝)的投加,对废水中存在的粉煤灰有较好的去除率,对整个污水处理系统也产生了良性影响。经过平流式沉淀池处理后进入污水收集池的混合液悬浮物基本稳定在200-300mg/l左右,再加上高效澄清池的处理,调节池悬浮物基本都小于100mg/l,对SBR池活性污泥絮体不再有包裹作用,SBR池活性污泥性状得到改善,污泥浓度降至4000mg/l左右,SV30为30%-40%之间,镜检微生物生长良好。出水水质COD在100mg/l左右,因污泥沉降比下降,SBR池沉淀效果良好,出水不再有大量悬浮物,水质较为清澈,悬浮物在40mg/l以下。

在运行操作中,要求运行人员要保证混凝剂的投加量,并及时清除残留在池内的积泥,确保澄清层厚度达到运行要求。其运行效果为:进水悬浮物为600-800mg/L,经平流沉淀池沉淀后效果为200-300mg/L,对悬浮物的去除率高达60%-70%。

第2篇:沉淀池在污水处理中的作用范文

技术方案包括污水处理的治理工艺、土建工程、管道工程、设备及安装工程、电气工程、自控工程及给水排水工程等:污泥浓缩及污泥脱水。

参照乳胶漆生产废水特性分析,物化与生化相结合的方法技术路线合理、成熟,投资和运行费用也较为经济,工程设计的关键在于具体工艺选择和细节设计。随着近几年水处理技术的发展,许多新的工艺和水处理药刑都可以考虑使用。

2 工程概况

2.1 废水水质和水量

该厂生产污水排放量达100m3/d,废水的污染物特性可概括如下:

a、废水中的有机污染物主要为苯乙烯、丙烯酸(酯)以及其聚合反应过程中生成的半聚合体等,不易于生物降解。

b、废水中含有微量的有机助剂,但其物质结构复杂,难降解,部分对微生物生长有抑制作用,需在工艺设计中有所注意。

c、各种颜填料带来的大量无机悬浮物,粒径很小,呈乳化状态。

根据处理站进水取样化验结果,考虑最不利因素后确定本工程设计废水的水质如表1所示:

2.2 工艺流程

根据乳胶漆废水处理的技术资料及其具体特点,结合乳胶漆废水处理最新的研究成果,同时考虑到工程投资和运行管理费用,确定如下工艺流程,如图1。

污水处理站总占地面积约230m2,长18m,宽13m。

废水处理站的主要设备见表3。

2.3 主要处理构筑物(见表2)与工艺说明

2.3.1 格栅车间来的生产废水首先经格栅去除漂浮物和大颗粒悬浮物,以保障提升泵的安全稳定运行。

2.3.2 混凝沉淀混凝沉淀工艺分为反应池和序批式沉淀池两部分。反应池配套有加药设备和搅拌设备。废水在此与混凝剂、絮凝剂混合反应后,自流进入两座序批式混凝沉淀池。序批式沉淀池采用24h一个周期,其中进水段为12h,沉淀2h,排泥段为4h,排水6h。废水中形成的絮体汇集至混凝沉淀池的污泥斗,最终由螺杆泵送至污泥长径比卧螺式离心机进行脱水。污水中大部分悬浮物和胶体态物质通过混凝沉淀过程被去除,同时由于混凝沉淀池采用序批式运行,污水的水质水量在此得到调节,削弱来水波动对后续处理效果带来的影响。

2.3.3 过滤器 沉淀池出水自流进入过滤器。通过滤料层物理截留部分剩余悬浮物质,进一步降低污染物浓度,保障后续生化过程进水。过滤器出水自流入复合生化反应池。过滤器滤料选用不易阻塞、易于再生的陶粒滤料。通过定期气水反冲去除滤料层内截留的污染物,恢复其过滤能力。

2.3.4 复合生化反应池污水首先进入复合生化反应池的水解酸化段,水解酸化出水自流进入连续进水连续出水SBR段,污水、空气、微生物在反应池内充分接触混合,污水中的大部分有机物在此被去除。SBR段出水自流进入BAF段。污水中残余的难生物降解物质通过滤料及其表层生物膜的截留和吸附作用被分离,出水达标排放,而截留和吸附在滤料层的污染物由滤料表面的生物膜缓慢降解,被最终去除。BAF曝气生物滤池的基本原理是在滤池内填充大量粒径较小、表面粗糙的填料,通过培养和驯化让填料挂上有用的生物膜,利用高浓度生物膜的生物降解和生物絮凝能力处理污水中的有机物,并利用填料的过滤能力截留悬浮物,保证脱落的生物膜不随水流出。此外,BAF曝气生物滤池采用新型滤料,该滤料对废水难生物降解的物质可以发生有效吸附截留,然后由滤料表面的生物膜实现缓慢降解。BAF工艺可以作为SBR工艺的有效补充,保障系统处理出水稳定达标。

2.3.5 污泥处理混凝沉淀池污泥和复合生化反应池剩余污泥均输送至污泥池,经污泥泵输送至卧螺离心机进行脱水处理。脱水后污泥外运安全添埋。离心脱出水返回集水井。

2.3.6 事故池系统设事故池一座,配套有事故泵。事故池设计与混凝沉淀池结构完全相同。当上游发生误排或因操作失误造成混凝沉淀处理无效时,启动事故处理系统,将污水切入事故池。待查明原因后,通过事故泵将污水输送回混凝反应池,增加投药量,事故池作为混凝沉淀区使用,同时调节出水阀,使出水慢慢汇入主流程。这样系统在处理事故排水的同时,将对系统正常运行的影响降至最低。

3 运行效果

通过对原水,混凝沉淀池出水,过滤池出水以及符合生化反应池出水各项指标的检测,运行效果如表4所示:

由表4可以看出,各个阶段对COD、BOD、SS,都有较好的处理效果,其中SBR段对COD和BOD的去除效果最为明显。而SS主要在混凝沉淀阶段得以去除,混凝沉淀是一个十分复杂的过程,混凝剂溶于水后,经过一系列复杂的化学反应形成各种[,!]水解聚合物,它们附着在水中悬浮颗粒的周围,改变其表面特性,破坏胶粒的凝聚稳定性。随着凝聚稳定性的破坏,动力稳定性也将随之解体,小颗粒悬浮物便凝聚成大颗粒絮状物而缓慢下沉。在这一阶段,选择更合适的混凝剂和絮凝剂可进一步提高混凝沉淀过程处理效果,使出水COD稳定在1500mg/L以下,同时减少投药量,降低运行成本;选用水解酸化工艺使一些难降解大分子物质被转化为易于降解的小分子物质(如:有机酸),从而使废水的可生化性和降解速度大幅度提高,后续的好氧生物处理可在较短的水力停留时间内达到较高的COD去除率,提高了好氧生化工艺处理效率;连续进水连续出水的SBR工艺能够高效去除污水中有机污染物,同时使系统的厌氧、缺氧及主耗氧区保持连续运行:BAF曝气生物滤池能够高效去除极难生物降解和不能生物降解的有机污染物,从而保证了复合式生物反应池出水水质稳定达标。

4 运行费用估算

4.1 电费

污水处理站总装机为46.04KW,运行34.04KW。不需单独设置变压器。本方案配电从污水处理站的配电柜考虑起。取用电负荷0.8,日耗电量313.57Kwh。若电费以0.5元RMB/度计,日运行电费157元,吨水电费:1.57元。

4.2 药剂费

污水处理站日运行药剂费约80元,吨水药剂费:0.8元

4.3 运行费用

污水处理站日常运行吨水处理费:2.37元

5 结论

第3篇:沉淀池在污水处理中的作用范文

关键词:制药废水;工艺提标改造;催化氧化

某制药集团是国内大型医药原料、精细化学品和医药中间体的生产基地,其排放的污水经企业污水处理站处理后排入污水管网,最终排入园区污水处理厂进行处理。为提高污水处理站出水水质,特对污水处理站进行提标改造。

1设计规模及进、出水水质

1.1设计水量

污水处理站日处理水量为3000m3/d,平均流量为125m3/h。

1.2设计进水水质

设计进水为污水处理站现状二沉池出水,设计进水水质指标为:化学需氧量(COD)≤1200mg/L;氨氮≤50mg/L;pH介于6.0~9.0,其余污染物指标均满足《污水综合排放标准》(GB8978-1996)三级标准及《污水排入城镇下水道水质标准》(GB/T31962—2015)表1中的B标准。设计出水水质指标要求为:COD≤200mg/L,氨氮≤20mg/L,pH介于6.0~9.0。

2设计工艺流程及说明

2.1工艺流程

因污水可生化性非常差,一般的生化处理对其基本没有效果,试验采用“催化氧化+絮凝沉淀+曝气生物炭滤池”工艺,可将污水处理站出水COD降低至200mg/L以内,处理效果稳定可靠[1-2]。结合本工程前期中试数据和本工程实际处理水量、水质等要求,确定本工程的处理工艺流程,如图1所示。提标改造工程污泥排至污水处理厂现状污泥处理设施,不再另行处理。

2.2工艺流程说明

2.2.1催化氧化工艺对于高浓度工业废水,由于有机物含量高、成分复杂、可生化性差,采用一般的生化工艺很难进行有效处理,而高级氧化可将其直接矿化或通过氧化提高污染物的可生化性,同时在抗生素等化学物质的处理方面有很大的优势[3-5]。高级氧化技术的特点是通过反应产生羟基自由基(·OH),该自由基具有极强的氧化性,自由基反应能够将有机污染物有效地分解,甚至彻底地转化为无害无机物,如二氧化碳和水等。高级氧化一般分均相催化氧化和非均相催化氧化两种,本次催化氧化反应器设计采用非均相催化氧化工艺。进水和各氧化药剂充分混合,然后进入反应器,在催化剂作用下氧化水中各种有机污染物。该工艺催化剂附着于填料表面,可以大大减少催化剂的流失,提高氧化药剂使用效率,节省药剂使用量,并减少污泥的产生,具有处理效率高、运行稳定、对进水水质适应性强、运行成本低、投资低、操作管理简单、运行成熟可靠等优点。2.2.2絮凝沉淀工艺絮凝工艺的原理是:在混凝剂的作用下,废水中的胶体和细微悬浮物凝聚成絮凝体,然后予以分离和除去。混凝澄清法在水处理中的应用非常广泛,它既可以降低原水的浊度、色度等水质感观指标,又可以去除多种有毒有害污染物。因为机械絮凝池絮凝效果好,水头损失小,可适应水质、水量的变化,适用于污水的深度处理,本工程选用机械絮凝工艺。在沉淀工艺中,用于深度处理的沉淀池主要有平流沉淀池和斜管沉淀池,如表1所示。斜管沉淀池是指在沉淀区内设有斜管的沉淀池,其在平流沉淀池的沉淀区内利用倾斜的平行板或平行管道(有时可利用蜂窝填料)分割出一系列浅沉淀层,被处理的沉泥在各浅沉淀层中相互运动并分离。两块平行斜板构成的空间(或平行管内)相当于一个很浅的沉淀池。经比较,结合实际运行情况,平流沉淀池沉淀效果好,但是配水不易均匀,且占地面积相对斜管沉淀池大,基建投资大;斜管沉淀池具有去除率高、停留时间短、结构紧凑、占地面积小的优点,基建投资小,更适用于本工程。因此,本工程选用斜管沉淀池。2.2.3曝气生物炭滤池工艺曝气生物炭滤池工艺利用活性炭的巨大比表面积、发达孔隙结构以及优良吸附性能,以活性炭作为载体构建生物膜,从而形成生物活性炭,以对污染物进行降解。生物活性炭技术在国内外水处理领域得到了广泛应用,并取得了较好成果。这一技术在国内的研究多集中于微污染源水中有机物的充分去除、印染废水与石油化工废水等有毒或难降解有机废水的深度处理等领域。

3设计方案

3.1工艺设计计算

3.1.1预沉池利用现状4台尺寸为Φ4.5m×5.0m的碳钢防腐罐体进行改造,设计表面负荷为1.97m3/(m2·h),新增中心导流筒4套,新增斜板80m2。3.1.2混合反应器利用现状3台尺寸为Φ4.5m×5.0m的碳钢防腐罐体进行改造,其中1台作为调酸池,2台作为反应池,设计停留时间位1h。新增设备有曝气搅拌设施,服务面积为32m2,另外,新增亚铁盐投加装置2套、浓硫酸计量泵3台(2用1备)、亚铁盐计量泵3台(2用1备)、双氧水计量泵3台(2用1备)。3.1.3中间沉淀池新建中间沉淀池1座,材质为耐酸碳钢防腐,尺寸为12.0m×5.0m×4.9m,设计表面负荷为2.27m3/(m2·h)。主要配套设备堰板和斜板填料。3.1.4集水池利用原有卧式玻璃钢罐改造成集水池1座,容积为25m3,主要配套设备为提升水泵3台(2用1备),采用耐酸蚀泵。3.1.5催化氧化反应器新增316L不锈钢催化氧化反应器2座,尺寸为Ф3.2m×10.0m,内设固体催化剂。3.1.6絮凝沉淀池对原有2座絮凝沉淀池进行改造,原有池体加高1m,尺寸为15m×4.0m×5.6m。设计表面负荷为1.30m3/(m2·h)。主要配套设备有斜板填料、堰板、提升水泵、絮凝加药设备、加药泵、碱罐、计量泵等。3.1.7曝气生物炭滤池利用现状4套曝气生物炭滤池进行改造,尺寸为Ф4.5m×7.0m,主要新增设备为反冲洗水泵,新增材料为活性炭。3.1.8加药间利用路北空地,与现有加碱设备并排布置。浓硫酸加药泵单独设彩钢板方于现状碳钢罐东侧,其余布置于西侧,加彩钢板房保护。

3.2电气及自控仪表设计

提标改造工程低压电源进线引自现状污水处理站变配电室备用回路,现有变压器满足新增负荷的要求,根据艺流程布局,拟设马达控制中心一个,位于电控室内(MCC),供电范围为本次工程涉及的各个单体。本次工程设备总装机功率约为82kW,运行功率为69kW。自控系统设计采用分散控制、集中管理的原则,用于减轻工程操作管理人员的劳动强度,同时通过自控系统节能降耗,具体实现控制方式如下:集水池及絮凝沉淀池提升泵采用液位控制;氧化剂按流量配比或酸碱度投加;絮凝池絮凝剂按絮凝沉淀池进水流量配比投加;曝气生物炭滤池液位与反冲洗过程联动,并设置溢流告警;清水池设置液位在线监测。主要配套设备方面,进水设COD在线分析测定仪1套、电磁流量计1套、PLC(可编程逻辑控制器)控制站1套,氧化剂投加点设pH/温度在线分析测定仪3套,滤池设一体化超声波液位计4套和压力变送器2套。

4工程投资及运行费用

经估算,工程总投资约为606.09万元,其中建筑工程投资为54.91万元,设备购置投资为458.48万元,设备安装费用为52.70万元,其他费用为40万元。运行成本主要包括人工费、综合药剂费和电费。其间可充分利用现有操作人员,按增加3个操作人员考虑,则预计的吨水运行成本如下:综合药剂费用为1.6元/m3污水,电费为0.10元/m3污水,人工费为0.11元/m3污水,总成本为1.81元/m3污水。

5结论

制药废水具有组分复杂、难降解、COD含量高、可生化性差等特点。为提高污水处理站出水水质,特对污水处理站进行提标改造。设计进水为污水处理站现状二沉池出水,采用“催化氧化+絮凝沉淀+曝气生物炭滤池”的主体工艺。提标改造后,出水COD可稳定小于200mg/L,总运行成本为1.81元/m3污水。

参考文献

1陈坤,杨德敏,袁建梅.芬顿氧化/混凝/气浮/厌氧好氧组合工艺处理抗生素类制药废水[J].水处理技术,2021(9):136-139.

2张玉华.红霉素生产废水处理工程设计与运行[J].绿色科技,2021(8):80-82.

3卢钧,陈泉源.制药废水生化出水的强化混凝-高级氧化深度处理组合工艺比较[J].化工环保,2021(2):161-167.

4黄新熠.化工制药废水的处理工艺[J].当代化工研究,2019(2):156-157.

第4篇:沉淀池在污水处理中的作用范文

关键词:A/0工艺污水处理

中图分类号:X752 文献标识码:A 文章编号:

韩城煤业桑树坪煤矿位于韩城市以北,韩宜公路桑树坪段,座落于冶户川入口,东临黄河。

桑树坪煤矿污水处理站位于该矿的东北方向,它始建于二十世纪八十年代,经过二十多年的运转,该站处理工艺落后,地下管网严重腐蚀、堵塞。生物滤塔渗水,表皮脱落,沉淀池失去作用,造成污水外流的现象十分严重。韩城煤业公司各级领导非常重视环保问题。早在2004年6月就上报韩城市环保局,拆除污水站原有设备,污水站改造工程正式开始。这期间污水站附近的村民曾以蚊虫叮咬为由,阻挠工程正常施工,迫使该工程搁浅,直到2006年省环保局、渭南市环保局、韩城市环保局流域限批整改目标下达后,经多次协调,该工程终于在2007年9月再次开工,2008年1月设备进入全工程状态,进入试运行阶段。2008年9月该工程通过了验收工作。

该改造工程经过公开招标,选择采用了上海环境保护科学研究院设计所的设计方案,工艺采用国内较为先进的A/0生物膜法处理工艺,设备选择江苏无锡宜兴市绿亚环保有限公司的设备,设计日处理水量为3360m3/d,即140m3/h,设备24小时运行,A/0污水处理工艺流程图(附后)。

桑树坪矿污水处理站的污水主要来自厨房下水、办公室卫生间、工人洗涤生活排水等。改造后该站采用二级生化处理工艺,综合污水进入污水处理设施前先进入格栅井,格栅井内设置一道人工粗格栅和一台回旋式机械自动格栅,用于拦截废水中的颗粒悬浮物和杂质,以防止后续管道的堵塞和潜水泵的损坏。

格栅除去固体杂质后进入调节池,通过调节池均匀初入水水质,缓冲高浓度污染物对污水处理系统的影响,维持污水处理设施连续正常运行。

废水进入好氧池以后,通过两个接触氧化池的生化处理,降低污水中的COD、BOD5等。

二沉池采用幅流式沉淀池,采用中心进入周边出水形式,氧化池出水自流进入沉淀池,主要沉淀去除接触氧化池脱落的生物膜,从而保证系统的出水质量,二沉池污泥重量力压至污泥浓缩池。二沉池产生的污泥含水率为99%,二沉池出水自动进入消毒池。

污泥浓缩池的污泥由加药装置加聚凝剂浓缩,浓缩后的污泥通过污泥泵部分回流至氧化池,大部分送至污泥干化池。污泥浓缩池的上清液回流至调节池。

污泥干化池的污泥通过自然干化后定期外运,渗滤液回流至调节池。

消毒池的水投加消毒剂进行消毒处理,消毒后的清水通过提升泵抽至过滤器内过滤后排放。

污水处理站污水处理前后主要污染因子的对比表如下:

由上表可以看出,污水处理站主要污染物,总悬浮物的处理效率为69.1%,化学需氧量的处理效率为85.3%,生物需氧量的处理效率为91%,氨氮的处理效率为92%,除悬浮物处理效率略低于设计指标外,其余均符合设计指标,处理后的所有污染物排放均达到《污水综合排放标准》(GB8978-1996)中的一级标准,污水处理设施除满足桑树坪矿区污水处理的需要外,尚有很大处理能力,以备矿区发展的需要。

第5篇:沉淀池在污水处理中的作用范文

关键词:传统活性污泥工艺 膜生物反应器 超滤膜 微滤膜 污水处理 中水回用

1 引言

传统的活性污泥工艺(Conventional Activated Sludge, CAS)广泛地应用于各种污水处理中。由于采用重力式沉淀方式作为固液分离手段,因此带来了很多方面的问题。如固液分离效率不高、处理装置容积负荷低、占地面积大、出水水质不稳定、传氧效率低、能耗高以及剩余污泥产量大等等。传统生物处理工艺处理后的水难以满足越来越严格的污水排放标准,同时,经济的发展所带来的水资源的日益短缺也迫切要求开发合适的污水资源化技术,以缓解水资源的供需矛盾。在上述背景下,一种新型的水处理技术——(Membrane Bioreactor,MBR)应运而生。随着膜分离技术和产品的不断开发,(MBR)也更具有实用价值,近年来许多国家都投入了大量资金用于开发此项高新技术。

2 CAS

CAS是一种应用最广的废水好氧生物处理技术。其基本流程如图1所示,是由曝气池、二次沉淀池、曝气系统(含空气或氧气的加压设备、管道系统和空气扩散装置)以及污泥回流系统等组成。

曝气池与二次沉淀池是活性污泥系统的基本处理构筑物。由初次沉淀池流出的废水与从二次沉淀池底部回流的活性污泥同时进入曝气池,其混合体称为混合液。在曝气的作用下,混合液得到足够的溶解氧并使活性污泥和废水充分接触。废水中的可溶性有机污染物为活性污泥所吸附并为存活在活性污泥上的微生物群体所分解,使废水得到净化。在二次

沉淀池内,活性污泥与已被净化的废水(称为处理水)分离,处理水排放,活性污泥在污泥区内进行浓缩,并以较高的浓度回流曝气池。由于活性污泥不断地增长,部分污泥作为剩余污泥从系统中排出,也可以送往初次沉淀池。

3 MBR法

3.1 MBR及其分类

MBR是指将超、微滤膜分离技术与污水处理中的生物反应器相结合而成的一种新的污水处理装置。这种反应器综合了膜处理技术和生物处理技术带来的优点。超、微滤膜组件作为泥水分离单元,可以完全取代二次沉淀池。超、微滤膜截留活性污泥混合液中微生物絮体和较大分子有机物,使之停留在反应器内,使反应器内获得高生物浓度,并延长有机固体停留时间,极大地提高了微生物对有机物的氧化率。同时,经超、微滤膜处理后,出水质量高,可以直接用于非饮用水回用。系统几乎不排剩余污泥,且具有较高的抗冲击能力。特别是1989年Yamamoto将中空纤维膜应用于活性污泥处理中,使工艺运行成本大大降低,实际应用前景广阔。因此,MBR是当今倍受国内外专家学者重视的一项高新水处理技术。

MBR的特点:

一、出水水质好

由于采用膜分离技术,不必设立、过滤等其它固液分离设备。高效的固液分离将废水中有悬浮物质、胶体物质、生物单元流失的微生物菌群与已净化的水分开,不需经三级处理即直接可回用,具有较高的水质安全性。

二、占地面积小

膜生物反应器生物处理单元内微生物维持高浓度,使容积负荷大大提高,膜分离的高效性使处理单元水力停留时间大大缩短,占地面积减少。同时膜生物反应器由于采用了膜组件,不需要沉淀池和专门的过滤车间,系统占地仅为传统方法的60%

三、节省运行成本

由于MBR高效的氧利用效率,和独特的间歇性运行方式,大大减少了曝气设备的运行时间和用电量,节省电耗。同时由于膜可滤除细菌、病毒等有害物质,可显著节省加药消毒所带来的长期运行费用,膜生物反应器工艺不需加入絮凝剂,减少运行成本。

膜生物反应器(MBR)工艺是膜分离技术与生物技术有机结合的新型废水处理技术。它利用膜分离设备将生化反应池中的活性污泥和大分子有机物质截留住,省掉二沉池。活性污泥浓度因此大大提高,水力停留时间(HRT)和污泥停留时间(SRT)可以分别控制,而难降解的物质在反应器中不断反应、降解。因此,膜生物反应器(MBR)工艺通过膜分离技术大大强化了生物反应器的功能。与传统的生物处理方法相比,是目前最有前途的废水处理新技术之一。

从整体构造上来看,MBR是由膜组件和生物反应器两部分组成。根据这两部分操作单元自身的多样性,膜生物反应器也必然有多种类型。膜生物反应器的一些基本分类见表1。

第6篇:沉淀池在污水处理中的作用范文

    关键字:污水处理生物膜法氧化法

    1城市污水处理的重要性和迫切性

    我国淡水资源十分短缺,人均拥有量2300m3,相当于世界人均水平的1/4,居世界110位。1997年起,全国城市污水排放量占废水排放总量的比例接近45%,改变了我国水污染治理工作一直以工业废水治理为主的局面,开始加强城市污水的综合治理工作。1999年我国城市污水污染负荷首次超过了工业废水污染负荷,我国水污染控制重点已经从工业点源污染为主的控制,逐步转变为以城市污水污染为主的控制。据《2003年中国环境状况公报》公布,2003年,全国废水排放总量为460亿吨,其中城市生活污水排放量247.6亿吨,占污水排放总量的53.8%。废水化学需氧量(COD)排放总量1333万吨,其中生活污水COD排放821.7万吨,占废水COD排放总量的61.6%,由此可见,目前我国的水污染形势严峻,特别是城市污水的排放对地表水和地下水水质的影响显得更加突出。据有关资料统计,全国近80%的生活污水未经处理,直接排入江河湖海,年排污量达400亿m3,造成全国1/3以上的水域受到污染。专家指出,水污染加剧了水资源的短缺,直接威胁着饮用水的安全和人民群众的健康,影响到工农业生产和农作物安全造成的经济损失约为GNP的1.5%~3%,水污染已成为不亚于洪灾、旱灾甚至更为严重的灾害。未来城市的最大危害就是污水。造成我国水污染严重的主要原因之一是由于全国城市污水处理率较低,使大量的城市污水未经处理而直接外排,导致了严重的水污染,并加剧了水资源的短缺。加上随着城市化和工业化进程的加快,城市污水产生量不断增大,使得水环境污染日益严重。城市污水处理的严重滞后,已经成为影响我国区域水污染防治目标实现的一个重要因素,并且严重制约了城市社会经济的可持续发展。国家专门就城市污水处理问题颁布了一系列政策及技术规定,制订城市治污达标的“时间表”,加快建设城市污水集中处理设施刻不容缓。

    2.污水处理常用方法探讨

    2.1活性污泥法。

    长期以来,城市生活污水多采用活性污泥法,它是世界各国应用最广的一种生物处理流程,具有处理能力高,出水水质好的优点。该方法主要由曝气池、沉淀池、污泥回流和剩余污泥排放系统组成。废水和回流的活性污泥一起进入曝气池形成混合液。曝气池是一个生物反应器,通过曝气设备充入空气,空气中的氧溶入混合液,产生好氧代谢反应,且使混合液得到足够的搅拌而呈悬浮状态,这样,废水中的有机物、氧气同微生物能充分接触反应。随后混合液进入沉淀池,混合液中的悬浮固体在沉淀池中沉下来和水分离,流出沉淀池的就是净化水。沉淀池中的污泥大部分回流,称为回流污泥,回流污泥的目的是使曝气池内保持一定的悬浮固体浓度,也就是保持一定的微生物浓度。曝气池中的生化反应引起微生物的增殖,增殖的微生物量通常从沉淀池中排除,以维持活性污泥系统的稳定运行,这部分污泥叫剩余污泥。活性污泥除了有氧化和分解有机物的能力外,还要有良好的凝聚和沉降性能,以使活性污泥能从混合液中分离出来,得到澄清的出水。

    由于污水处理是一项侧重于环境效益和社会效益的工程,因此在建设和实际运行过程中常受到资金的限制,使得治理技术与资金问题成为我国水污染治理的“瓶颈”。归纳起来,目前在城市生活污水处理研究和应用领域,普遍存在的问题有:(1)采用传统的活性污泥法,往往基建费、运行费高,能耗大,管理复杂,易出现污泥膨胀现象;设备不能满足高效低耗的要求;(2)随着污水排放标准的不断严格,对污水中氮、磷等营养物质的排放要求较高,传统的具有脱氮除磷功能的污水处理工艺多以活性污泥法为主,往往需要将多个厌氧和好氧反应池串联,形成多级反应池,通过增加内循环来达到脱氮除磷的目的,这势必增加基建投资的费用及能耗,并且使运行管理较为复杂;(3)目前城市污水的处理多以集中处理为主,庞大的污水收集系统的投资远远超过污水处理厂本身的投资,因此建设大型的污水处理厂,集中处理生活污水,从污水再生回用的角度来说不一定是唯一可取的方案。

    因此,如何使城市污水处理工艺朝着低能耗、高效率、少剩余污泥量、最方便的操作管理,以及实现磷回收和处理水回用等可持续的方向发展,已成为目前水处理技术研究和应用领域共同关注的问题。这要求污水处理不应仅仅满足单一的水质改善,同时也需要一并考虑污水及所含污染物的资源化和能源化问题,且所采用的技术必须以低能耗和少资源损耗为前提。

    2.2生物膜法。

    在污水生物处理的发展和应用中,活性污泥和生物膜法一直占据主导地位。生物膜法主要用于从废水中去除溶解性有机污染物,主要特点是微生物附着在介质“滤料”表面,形成生物膜,污水同生物膜接触后,溶解的有机污染物被微生物吸附转化为H2O、CO

    2、NH3和微生物细胞物质,污水得到净化,所需氧化一般直接来自大气。生物膜法处理系统适用于处理中小规模的城市废水,采用的处理构筑物有高负荷生物滤池和生物转盘,生物滤池在我国南方更为适用。随着新型填料的开发和配套技术的不断完善,与活性污泥法平行发展起来的生物膜法处理工艺在近年来得以快速发展。由于生物膜法具有处理效率高、耐冲击负荷性能好、产泥量低、占地面积少、便于运行管理等优点,在处理中极具竞争力。

    2.3氧化法。

    氧化法是目前广泛采用并极具发展潜力的城市生活污水预处理方法之一。根据氧化剂的种类及反应器的类型,氧化法可分为化学氧化法、催化氧化法、(催化)湿式氧化法,光催化氧化法、超临界氧化法等。化学氧化法虽然操作简单,但由于其处理效果并非十分理想,而且由于其运行成本较高,因此,在城市生活污水处理应用中使用并不很多。为了达到提高处理效果,同时降低运行成本的目的,人们开发了一些其他的氧化技术。光催化氧化法设备简单、运行条件温和、氧化能力强、杀菌作用强、处理彻底,因此,在水的深度处理及对难生物降解的有机废水的处理具有极好的应用前景,目前已成为国内外非常活跃的研究课题,有专家预测,氧化法将成为21世纪废水处理中重要的方法之一。

    结论:

    综上所述,城市污水处理是一个迫在眉睫的问题,目前越来越多的受到人们的关注。但目前遇到的最到的问题是技术的改良和污水处理实际落实的问题。还希望相关部门能够将污水处理真正提上日程,投资进行新技术的研究,为人们的生活带来更多的绿色和清新。

    参考文献:

    [1]储金宇,等·臭氧技术及应用[M].北京:化学工业出版社,2002.

    [2]许建华,等·水的特种处理[M].上海:同济大学出版社,1989.

第7篇:沉淀池在污水处理中的作用范文

关键字:污水处理生物膜法氧化法

一、城市污水处理的重要性和迫切性

我国淡水资源十分短缺,人均拥有量2300m3,相当于世界人均水平的1/4,居世界110位。1997年起,全国城市污水排放量占废水排放总量的比例接近45%,改变了我国水污染治理工作一直以工业废水治理为主的局面,开始加强城市污水的综合治理工作。1999年我国城市污水污染负荷首次超过了工业废水污染负荷,我国水污染控制重点已经从工业点源污染为主的控制,逐步转变为以城市污水污染为主的控制。据《2003年中国环境状况公报》公布,2003年,全国废水排放总量为460亿吨,其中城市生活污水排放量247.6亿吨,占污水排放总量的53.8%。废水化学需氧量(COD)排放总量1333万吨,其中生活污水COD排放821.7万吨,占废水COD排放总量的61.6%,由此可见,目前我国的水污染形势严峻,特别是城市污水的排放对地表水和地下水水质的影响显得更加突出。据有关资料统计,全国近80%的生活污水未经处理,直接排入江河湖海,年排污量达400亿m3,造成全国1/3以上的水域受到污染。专家指出,水污染加剧了水资源的短缺,直接威胁着饮用水的安全和人民群众的健康,影响到工农业生产和农作物安全造成的经济损失约为GNP的1.5%~3%,水污染已成为不亚于洪灾、旱灾甚至更为严重的灾害。未来城市的最大危害就是污水。造成我国水污染严重的主要原因之一是由于全国城市污水处理率较低,使大量的城市污水未经处理而直接外排,导致了严重的水污染,并加剧了水资源的短缺。加上随着城市化和工业化进程的加快,城市污水产生量不断增大,使得水环境污染日益严重。城市污水处理的严重滞后,已经成为影响我国区域水污染防治目标实现的一个重要因素,并且严重制约了城市社会经济的可持续发展。国家专门就城市污水处理问题颁布了一系列政策及技术规定,制订城市治污达标的“时间表”,加快建设城市污水集中处理设施刻不容缓。

二、污水处理常用方法探讨

2.1活性污泥法。

长期以来,城市生活污水多采用活性污泥法,它是世界各国应用最广的一种生物处理流程,具有处理能力高,出水水质好的优点。该方法主要由曝气池、沉淀池、污泥回流和剩余污泥排放系统组成。废水和回流的活性污泥一起进入曝气池形成混合液。曝气池是一个生物反应器,通过曝气设备充入空气,空气中的氧溶入混合液,产生好氧代谢反应,且使混合液得到足够的搅拌而呈悬浮状态,这样,废水中的有机物、氧气同微生物能充分接触反应。随后混合液进入沉淀池,混合液中的悬浮固体在沉淀池中沉下来和水分离,流出沉淀池的就是净化水。沉淀池中的污泥大部分回流,称为回流污泥,回流污泥的目的是使曝气池内保持一定的悬浮固体浓度,也就是保持一定的微生物浓度。曝气池中的生化反应引起微生物的增殖,增殖的微生物量通常从沉淀池中排除,以维持活性污泥系统的稳定运行,这部分污泥叫剩余污泥。活性污泥除了有氧化和分解有机物的能力外,还要有良好的凝聚和沉降性能,以使活性污泥能从混合液中分离出来,得到澄清的出水。

由于污水处理是一项侧重于环境效益和社会效益的工程,因此在建设和实际运行过程中常受到资金的限制,使得治理技术与资金问题成为我国水污染治理的“瓶颈”。归纳起来,目前在城市生活污水处理研究和应用领域,普遍存在的问题有:(1)采用传统的活性污泥法,往往基建费、运行费高,能耗大,管理复杂,易出现污泥膨胀现象;设备不能满足高效低耗的要求;(2)随着污水排放标准的不断严格,对污水中氮、磷等营养物质的排放要求较高,传统的具有脱氮除磷功能的污水处理工艺多以活性污泥法为主,往往需要将多个厌氧和好氧反应池串联,形成多级反应池,通过增加内循环来达到脱氮除磷的目的,这势必增加基建投资的费用及能耗,并且使运行管理较为复杂;(3)目前城市污水的处理多以集中处理为主,庞大的污水收集系统的投资远远超过污水处理厂本身的投资,因此建设大型的污水处理厂,集中处理生活污水,从污水再生回用的角度来说不一定是唯一可取的方案。

因此,如何使城市污水处理工艺朝着低能耗、高效率、少剩余污泥量、最方便的操作管理,以及实现磷回收和处理水回用等可持续的方向发展,已成为目前水处理技术研究和应用领域共同关注的问题。这要求污水处理不应仅仅满足单一的水质改善,同时也需要一并考虑污水及所含污染物的资源化和能源化问题,且所采用的技术必须以低能耗和少资源损耗为前提。

2.2生物膜法。

在污水生物处理的发展和应用中,活性污泥和生物膜法一直占据主导地位。生物膜法主要用于从废水中去除溶解性有机污染物,主要特点是微生物附着在介质“滤料”表面,形成生物膜,污水同生物膜接触后,溶解的有机污染物被微生物吸附转化为H2O、CO2、NH3和微生物细胞物质,污水得到净化,所需氧化一般直接来自大气。生物膜法处理系统适用于处理中小规模的城市废水,采用的处理构筑物有高负荷生物滤池和生物转盘,生物滤池在我国南方更为适用。随着新型填料的开发和配套技术的不断完善,与活性污泥法平行发展起来的生物膜法处理工艺在近年来得以快速发展。由于生物膜法具有处理效率高、耐冲击负荷性能好、产泥量低、占地面积少、便于运行管理等优点,在处理中极具竞争力。:

2.3氧化法。

氧化法是目前广泛采用并极具发展潜力的城市生活污水预处理方法之一。根据氧化剂的种类及反应器的类型,氧化法可分为化学氧化法、催化氧化法、(催化)湿式氧化法,光催化氧化法、超临界氧化法等。化学氧化法虽然操作简单,但由于其处理效果并非十分理想,而且由于其运行成本较高,因此,在城市生活污水处理应用中使用并不很多。为了达到提高处理效果,同时降低运行成本的目的,人们开发了一些其他的氧化技术。光催化氧化法设备简单、运行条件温和、氧化能力强、杀菌作用强、处理彻底,因此,在水的深度处理及对难生物降解的有机废水的处理具有极好的应用前景,目前已成为国内外非常活跃的研究课题,有专家预测,氧化法将成为21世纪废水处理中重要的方法之一。

结论:

综上所述,城市污水处理是一个迫在眉睫的问题,目前越来越多的受到人们的关注。但目前遇到的最到的问题是技术的改良和污水处理实际落实的问题。还希望相关部门能够将污水处理真正提上日程,投资进行新技术的研究,为人们的生活带来更多的绿色和清新。

参考文献:

[1]储金宇,等·臭氧技术及应用[M].北京:化学工业出版社,2002.

[2]许建华,等·水的特种处理[M].上海:同济大学出版社,1989.

第8篇:沉淀池在污水处理中的作用范文

    关键词:序批式混凝沉淀池;SBR;BAF;水解酸化

    1 前言

    本污水治理设施为新建工程,拟在规划用地范围内进行。本着技术先进,运行可靠,操作管理简单的原则选择污水处理工艺,使灵活性、先进性和可靠性有机地结合起来,强化除臭和噪音防治措施,避免二次污染。主要设备国产化,采用目前国内成熟先进技术装备,尽量降低工程投资和运行费用,平面布置和工程设计时,结合现状,布局力求紧凑、简洁,工艺流程合理通畅,节省地。

    技术方案包括污水处理的治理工艺、土建工程、管道工程、设备及安装工程、电气工程、自控工程及给水排水工程等:污泥浓缩及污泥脱水。

    参照乳胶漆生产废水特性分析,物化与生化相结合的方法技术路线合理、成熟,投资和运行费用也较为经济,工程设计的关键在于具体工艺选择和细节设计。随着近几年水处理技术的发展,许多新的工艺和水处理药刑都可以考虑使用。

    2 工程概况

    2.1 废水水质和水量

    该厂生产污水排放量达100m3/d,废水的污染物特性可概括如下:

    a、废水中的有机污染物主要为苯乙烯、丙烯酸(酯)以及其聚合反应过程中生成的半聚合体等,不易于生物降解。

    b、废水中含有微量的有机助剂,但其物质结构复杂,难降解,部分对微生物生长有抑制作用,需在工艺设计中有所注意。

    c、各种颜填料带来的大量无机悬浮物,粒径很小,呈乳化状态。

    根据处理站进水取样化验结果,考虑最不利因素后确定本工程设计废水的水质如表1所示:

    2.2 工艺流程

    根据乳胶漆废水处理的技术资料及其具体特点,结合乳胶漆废水处理最新的研究成果,同时考虑到工程投资和运行管理费用,确定如下工艺流程,如图1。

    污水处理站总占地面积约230m2,长18m,宽13m。

    废水处理站的主要设备见表3。

    2.3 主要处理构筑物(见表2)与工艺说明

    2.3.1 格栅车间来的生产废水首先经格栅去除漂浮物和大颗粒悬浮物,以保障提升泵的安全稳定运行。

    2.3.2 混凝沉淀混凝沉淀工艺分为反应池和序批式沉淀池两部分。反应池配套有加药设备和搅拌设备。废水在此与混凝剂、絮凝剂混合反应后,自流进入两座序批式混凝沉淀池。序批式沉淀池采用24h一个周期,其中进水段为12h,沉淀2h,排泥段为4h,排水6h。废水中形成的絮体汇集至混凝沉淀池的污泥斗,最终由螺杆泵送至污泥长径比卧螺式离心机进行脱水。污水中大部分悬浮物和胶体态物质通过混凝沉淀过程被去除,同时由于混凝沉淀池采用序批式运行,污水的水质水量在此得到调节,削弱来水波动对后续处理效果带来的影响。

    2.3.3 过滤器 沉淀池出水自流进入过滤器。通过滤料层物理截留部分剩余悬浮物质,进一步降低污染物浓度,保障后续生化过程进水。过滤器出水自流入复合生化反应池。过滤器滤料选用不易阻塞、易于再生的陶粒滤料。通过定期气水反冲去除滤料层内截留的污染物,恢复其过滤能力。

    2.3.4 复合生化反应池污水首先进入复合生化反应池的水解酸化段,水解酸化出水自流进入连续进水连续出水SBR段,污水、空气、微生物在反应池内充分接触混合,污水中的大部分有机物在此被去除。SBR段出水自流进入BAF段。污水中残余的难生物降解物质通过滤料及其表层生物膜的截留和吸附作用被分离,出水达标排放,而截留和吸附在滤料层的污染物由滤料表面的生物膜缓慢降解,被最终去除。BAF曝气生物滤池的基本原理是在滤池内填充大量粒径较小、表面粗糙的填料,通过培养和驯化让填料挂上有用的生物膜,利用高浓度生物膜的生物降解和生物絮凝能力处理污水中的有机物,并利用填料的过滤能力截留悬浮物,保证脱落的生物膜不随水流出。此外,BAF曝气生物滤池采用新型滤料,该滤料对废水难生物降解的物质可以发生有效吸附截留,然后由滤料表面的生物膜实现缓慢降解。BAF工艺可以作为SBR工艺的有效补充,保障系统处理出水稳定达标。

    2.3.5 污泥处理混凝沉淀池污泥和复合生化反应池剩余污泥均输送至污泥池,经污泥泵输送至卧螺离心机进行脱水处理。脱水后污泥外运安全添埋。离心脱出水返回集水井。

    2.3.6 事故池系统设事故池一座,配套有事故泵。事故池设计与混凝沉淀池结构完全相同。当上游发生误排或因操作失误造成混凝沉淀处理无效时,启动事故处理系统,将污水切入事故池。待查明原因后,通过事故泵将污水输送回混凝反应池,增加投药量,事故池作为混凝沉淀区使用,同时调节出水阀,使出水慢慢汇入主流程。这样系统在处理事故排水的同时,将对系统正常运行的影响降至最低。

    3 运行效果

    通过对原水,混凝沉淀池出水,过滤池出水以及符合生化反应池出水各项指标的检测,运行效果如表4所示:

    由表4可以看出,各个阶段对COD、BOD、SS,都有较好的处理效果,其中SBR段对COD和BOD的去除效果最为明显。而SS主要在混凝沉淀阶段得以去除,混凝沉淀是一个十分复杂的过程,混凝剂溶于水后,经过一系列复杂的化学反应形成各种水解聚合物,它们附着在水中悬浮颗粒的周围,改变其表面特性,破坏胶粒的凝聚稳定性。随着凝聚稳定性的破坏,动力稳定性也将随之解体,小颗粒悬浮物便凝聚成大颗粒絮状物而缓慢下沉。在这一阶段,选择更合适的混凝剂和絮凝剂可进一步提高混凝沉淀过程处理效果,使出水COD稳定在1500mg/L以下,同时减少投药量,降低运行成本;选用水解酸化工艺使一些难降解大分子物质被转化为易于降解的小分子物质(如:有机酸),从而使废水的可生化性和降解速度大幅度提高,后续的好氧生物处理可在较短的水力停留时间内达到较高的COD去除率,提高了好氧生化工艺处理效率;连续进水连续出水的SBR工艺能够高效去除污水中有机污染物,同时使系统的厌氧、缺氧及主耗氧区保持连续运行:BAF曝气生物滤池能够高效去除极难生物降解和不能生物降解的有机污染物,从而保证了复合式生物反应池出水水质稳定达标。

    4 运行费用估算

    4.1 电费

    污水处理站总装机为46.04KW,运行34.04KW。不需单独设置变压器。本方案配电从污水处理站的配电柜考虑起。取用电负荷0.8,日耗电量313.57Kwh。若电费以0.5元RMB/度计,日运行电费157元,吨水电费:1.57元。

    4.2 药剂费

    污水处理站日运行药剂费约80元,吨水药剂费:0.8元

    4.3 运行费用

    污水处理站日常运行吨水处理费:2.37元

    5 结论

第9篇:沉淀池在污水处理中的作用范文

关键词:粗颗粒分离机;沉降;除尘效果

1 前言

某钢厂老区转炉一次除尘污水通过高架流槽,直接进入斜板沉淀器沉淀池,经沉淀后的水自流如浊环水热水池,经泵组加压后送冷却塔进行冷却,冷却后进入浊环水冷水池。在运行了多年后,出现了一系列问题:泥浆管路和泥浆泵严重堵塞,造成除尘水处理系统经常检修;造成板框压滤机负荷过大,成本居高不下。

对某钢厂炼钢老区进行了全面改造。在这次改造中,提出增加粗颗粒分离机,根据《关于冶金污水治理技术政策》规定: “转炉烟气洗涤废水在进入浓缩池前必须设有粗颗粒分离设施”。本文就影响粗颗粒分离效果的各种因素进行分析,详细分析此设备的优越性,并结合此次改造,选择匹配的设备,使这次改造设计合理经济实用。

2 粗颗粒分离机的工作原理

2.1 设备构成

本设备为一级污水处理流程中将生产污水混合液进行颗粒与水分离,是污水处理过程中理想设备。粗颗粒分离机由上部大水槽、螺旋输送槽、螺旋轴、驱动机构、出水槽、尾部手动调整机械等组成。

2.2 工作原理

从生产车间送出来的污水经过顶部进水口进入上部分离水槽内进行消能减速沉降,污水经过大水槽内的橡胶挂帘的阻挡整流后,由橡胶挂帘的下部进入出水区,从而确保了出水的水质及颗粒的沉降效果。被收集到出水区的水由堰板流入出水槽,由于污水中的大颗粒悬浮物在短时间内沉降到输泥槽内,通过驱动机构带动螺旋体,泥渣在螺旋体的推动下被提升到水面以上500mm至出料口,通过下料溜管排除,渣与水将在水面下500mm范围内进行渣水分离。可以根据水量及悬浮物的含量通过变频器来调整螺旋体的转速,从而确保旋转的排渣能力和设备的处理能力。

采用粗颗粒分离装置对转炉除尘水进行预处理,可以去除水中直径≥60μm的粗颗粒杂质,能减轻设备的磨损以及沉淀池的负荷,避免沉淀池泥浆管道的堵塞,保证水处理系统的连续顺畅运行。多在钢铁厂等企业的转炉浊环水系统中采用,它既可以用于新建的除尘水处理工艺,也可以用于原有除尘水处理系统的改造,是值得推广使用的理想预处理设备。

2.3 粗颗粒分离机的结构特点

(1)采用轴螺旋体避免了与大水槽的硬磨损,有效的延长了设备的使用寿命;

(2) 采用变频装置,从而实现了无极变速,设备可以根据不同的水质采用不同的速度,大大降低污泥水率;

(3) 采用轴装减速机,操作维修方便。

3 改造工艺参数

需要处理水量:1200m3/h;

除尘水的含尘量:2000mg/L

水温:55℃处理颗粒大小:60um

以上处理的粗颗粒占比例:60um以上20%

颗粒性质:三氧化二铁 氧化钙 氢氧化钙

烟气分离槽停留时间一般是2~5min,停留时间过长会使细颗粒沉淀,影响分离机正常工作,分离槽下部椎体不应小于45°,螺旋分级输送机设在分离槽内,用于清除分离槽底部沉泥,其安装倾斜度一般为25°角。

4 配套设备

经设计单位计算配备设备为:

WCFJ -600粗颗粒分离机一台(处理水量1000m?/h,排渣量2~4t/h,分离颗粒直径≥60μm,进水悬浮物10000~6000mg/L,出水悬浮物

螺旋输泥机 ?600×9600L一台(电机功率5.5KW);

减速机BWY5527-319-11(电机功率11KW);

其它有进水斗等配套设备。

值得一提的是,污水水量小于本设备要求水量的20%时,应利用旁通过水。以防过多的活性污泥沉入池中,影响排泥效果。

5 效益分析

本工程改造历时两个月,单体联动试车完成经相关单位联合验收后,一直投入使用中。在使用粗颗粒分离机设备后,转炉烟气除尘污水中的悬浮物明显减少,水质得到显著改善,使流人后道污水处理工序的粗颗粒大大减少。提高了沉淀池排泥泵及带压机滤布的使用寿命,基本上杜绝了污水外排到公司污水处理站,减少了公司污水处理站的压力,对保证污水处理的生产连续性起了至关重要的作用,对设备的保护起到 了至关重要作用。

6 结束语