前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的光电子科学与技术主题范文,仅供参考,欢迎阅读并收藏。
关键词: 人才培养模式;电子科学与技术;光电子产业;课程体系
中图分类号:G71 文献标识码:A 文章编号:1006-4311(2012)22-0247-030 引言
光电子产业是国家战略性产业结构调整的重点发展领域之一。其显著特征是以激光为代表的光源器件向大功率和小功率微纳器件两个方向发展;以新型LED、LCD和场表面发射为代表的显示器件朝着低功耗小型化方向发展;以光无源和有源器件为代表的光通信器件朝着集成一体化方向发展;以无线传感网为龙头的信息采集传感器件、处理器件向着以硅基为代表的集成小型化方向发展。上述技术和产业特征对科研人员,产业人员和管理人员的学识水平、综合能力以及创新能力提出了新的要求。
产业市场驱动,即立足于光电子产业重点发展领域,主要以“光电子材料与器件”和“光电子系统”为专业方向,建立符合市场需求的人才培养模式。因此,本文解决的核心问题是:在光电子产业市场需求的背景驱动下光电子专业人才培养模式如何与国家战略性产业结构调整对人才的需求相适应,与我校的办学定位求相适应。
1 人才培养模式的改革目标
基于光电子产业的市场驱动和需求,以集成光电子器件制造和无线传感网光电子系统设计为特色专业方向,结合我校的办学定位以及光电学院科研、专业建设的实际,完成了电子科学与技术专业(光电子)定位与人才培养模式的顶层设计,构建与产业对人才需求相适应的特色知识体系。理顺知识领域、知识单元以及核心知识点的关系和相互支撑,使新课程设置体系与我校的办学定位以及国家战略性产业结构调整对光电子材料与器件领域人才的需求相适应。
2 指导思想
厚基础-使学生具备坚实的工科基础和专业基础知识。
重核心-核心课程指学科基础、专业基础和专业课中的学位课程,是电子科学与技术专业的主线,由核心知识构成知识体系的最小集合。
显特色-专业选修知识单元包含光电子技术学科专业的深层次课程、前沿性讲座、体现专业特色的课程。学生可根据自身的学习兴趣及定位选修。
强实践-根据人才培养目标和学生综合实践性教育的具体内涵,按照由浅入深,不断深化的教学规律,建立以能力培养为目标,分层次、多模块,具有科学性、连续性和系统性的实验教学体系。
3 专业知识体系构建
3.1 知识体系结构 知识体系包括基础知识层、技术基础知识层和专业应用知识层等三个层次。各层结构中又包括知识领域、知识单元和知识点三级内容,一个知识领域包括若干个知识单元,一个知识单元又包括若干个知识点。依据专业定位、专业特色确定各层次的核心课程主线,并研究课程间的支撑关系。其知识结构如图1所示。
以集成光电子器件制造和无线传感网光电子系统设计为特色专业方向,构建与产业对人才需求相适应的特色知识体系。
①建立适应社会发展需求,厚基础、宽口径、按大类培养的人才培养模式。在总学分减少的同时,加强数理基础和实践环节,重视综合素质培养,为学生继续攻读硕士/博士学位以及终身学习奠定宽厚的基础,培养相应的能力。
②强化数学和自然科学基础,构建学科大类的公共基础课程平台和具有一定特色的核心课程体系。
③建立课程选择机制。规定通识教育模块、基础教育模块和专业方向模块的必修学分和选修学分,学生可按专业方向在若干门课程中选择课程。
④加强实践教学环节。增加课程设计的门类,拓展专业实验内容,重视仪器设备的操作使用技能。构建包括基础型实验、综合设计型实验和研究创新型实验的三层次教学实验体系。
⑤调整课程体系学分比例。通识教育基础课程比例占总学分的35.0%,学科基础课程和专业课程比例占39.6%,实践环节占25.4%。
3.2 知识体系特点 根据人才培养目标的具体内涵,建立以能力培养为核心,分层次、多模块,具有科学性、系统性的实践教学体系,突出两个符合度。
根据人才培养目标和工科学生综合实践性教育的具体内涵,按照由浅入深,不断深化的教学规律,建立以能力培养为核心,分层次、多模块,具有系统性的实践教学体系。实现与学校办学定位的符合度,与国家战略性产业结构调整对光电子人才需求的符合度。满足国家对创新型人才的需求。培养创新意识和思维。按照继承(原理性)——归纳分析(综合,批判)——创新(科研对教学的支撑)的思路设计实践体系。
实践环节主要包括课内实验教学、独立设课实验、专题实践、专业综合实践、社会实践、综合素质训练、创新训练体系、军事训练等。
3.3 理论教学、课程设计与专业实验间的相互支撑关系
3.3.1 理顺实践教学与理论课程的关系:实践教学与课程是互补关系,课程抽象知识可在实验中直观反映;实验中发现的新现象如何用理论来解释;实践既针对课程内容(基础课程),但不完全依赖于课程,而依赖于课程体系,知识领域,知识点设立(专业课程,独立设课实验,综合课程设计)。
3.3.2 课程设计与理论课程的关系:课程设计依据专业定位(光电子器件,系统)和核心课程体系设置。
器件级:主要是微纳器件设计与制造工艺,因此,设置微光机电系统课程设计;光电子材料与器件课程围绕器件设计与制造,开设光电子材料与器件课程设计;
2、培养目标:本专业培养具备物理电子、光电子与微电子学领域内宽广理论基础、实验能力和专业知识,能在该领域内从事各种电子材料、元器件、集成电路、乃至集成电子系统和光电子系统的设计、制造和相应的新产品、新技术、新工艺的研究、开发等方面工作的高级工程技术人才。
3、培养要求:本专业学生主要学习数学、基础物理、物理电子、光电子、微电子学领域的基本理论和基本知识,受到相关的信息电子实验技术、计算机技术等方面的基本训练,掌握各种电子材料、工艺、零件及系统的设计、研究与开发的基本能力。
4、主干课程:电子线路、计算机语言、微型计算机原理、电动力学、量子力学、理论物理、固体物理、半导体物理、物理电子与电子学以及微电子学等方面的专业课程。
关键词:电子科学与技术;实验教学体系;微电子人才
作者简介:周远明(1984-),男,湖北仙桃人,湖北工业大学电气与电子工程学院,讲师;梅菲(1980-),女,湖北武汉人,湖北工业大学电气与电子工程学院,副教授。(湖北 武汉 430068)
中图分类号:G642.423 文献标识码:A 文章编号:1007-0079(2013)29-0089-02
电子科学与技术是一个理论和应用性都很强的专业,因此人才培养必须坚持“理论联系实际”的原则。专业实验教学是培养学生实践能力和创新能力的重要教学环节,对于学生综合素质的培养具有不可替代的作用,是高等学校培养人才这一系统工程中的一个重要环节。[1,2]
一、学科背景及问题分析
1.学科背景
21世纪被称为信息时代,信息科学的基础是微电子技术,它属于教育部本科专业目录中的一级学科“电子科学与技术”。微电子技术一般是指以集成电路技术为代表,制造和使用微小型电子元器件和电路,实现电子系统功能的新型技术学科,主要涉及研究集成电路的设计、制造、封装相关的技术与工艺。[3]由于实现信息化的网络、计算机和各种电子设备的基础是集成电路,因此微电子技术是电子信息技术的核心技术和战略性技术,是信息社会的基石。此外,从地方发展来看,武汉东湖高新区正在全力推进国家光电子信息产业基地建设,形成了以光通信、移动通信为主导,激光、光电显示、光伏及半导体照明、集成电路等竞相发展的产业格局,电子信息产业在湖北省经济建设中的地位日益突出,而区域经济发展对人才的素质也提出了更高的要求。
湖北工业大学电子科学与技术专业成立于2007年,完全适应国家、地区经济和产业发展过程中对人才的需求,建设专业方向为微电子技术,毕业生可以从事电子元器件、集成电路和光电子器件、系统(激光器、太能电池、发光二极管等)的设计、制造、封装、测试以及相应的新产品、新技术、新工艺的研究与开发等相关工作。电子科学与技术专业自成立以来,始终坚持以微电子产业的人才需求为牵引,遵循微电子科学的内在客观规律和发展脉络,坚持理论教学与实验教学紧密结合,致力于培养基础扎实、知识面广、实践能力强、综合素质高的微电子专门人才,以满足我国国民经济发展和国防建设对微电子人才的迫切需求。
2.存在的问题与影响分析
电子科学与技术是一个理论和应用性都很强的专业,因此培养创新型和实用型人才必须坚持“理论联系实际”的原则。要想培养合格的应用型人才,就必须建设配套的实验教学平台。然而目前人才培养有“产学研”脱节的趋势,学生参与实践活动不论是在时间上还是在空间上都较少。建立完善的专业实验教学体系是电子科学与技术专业可持续发展的客观前提。
二、建设思路
电子科学与技术专业实验教学体系包括基础课程实验平台和专业课程实验平台。基础课程实验平台主要包括大学物理实验、电子实验和计算机类实验;专业课程实验平台即微电子实验中心,是本文要重点介绍的部分。在实验教学体系探索过程中重点考虑到以下几个方面的问题:
第一,突出“厚基础、宽口径、重应用、强创新”的微电子人才培养理念。微电子人才既要求具备扎实的理论基础(包括基础物理、固体物理、器件物理、集成电路设计、微电子工艺原理等),又要求具有较宽广的系统知识(包括计算机、通信、信息处理等基础知识),同时还要具备较强的实践创新能力。因此微电子实验教学环节强调基础理论与实践能力的紧密结合,同时兼顾本学科实践能力与创新能力的协同训练,将培养具有创新能力和竞争力的高素质人才作为实验教学改革的目标。
第二,构建科学合理的微电子实验教学体系,将“物理实验”、“计算机类实验”、“专业基础实验”、“微电子工艺”、“光电子器件”、“半导体器件课程设计”、“集成电路课程设计”、“微电子专业实验”、“集成电路专业实验”、“生产实习”和“毕业设计”等实验实践环节紧密结合,相互贯通,有机衔接,搭建以提高实践应用能力和创新能力为主体的“基本实验技能训练实践应用能力训练创新能力训练”实践教学体系。
第三,兼顾半导体工艺与集成电路设计对人才的不同要求。半导体的产业链涉及到设计、材料、工艺、封装、测试等不同领域,各个领域对人才的要求既有共性,也有个性。为了扩展大学生知识和技能的适应范围,实验教学必须涵盖微电子技术的主要方面,特别是目前人才需求最为迫切的集成电路设计和半导体工艺两个领域。
第四,实验教学与科学研究紧密结合,推动实验教学的内容和形式与国内外科技同步发展。倡导教学与科研协调发展,教研相长,鼓励教师将科研成果及时融化到教学内容之中,以此提升实验教学质量。
三、建设内容
微电子是现代电子信息产业的基石,是我国高新技术发展的重中之重,但我国微电子技术人才紧缺,尤其是集成电路相关人才严重不足,培养高质量的微电子技术人才是我国现代化建设的迫切需要。微电子学科实践性强,培养的人才需要具备相关的测试分析技能和半导体器件、集成电路的设计、制造等综合性的实践能力及创新意识。
电子科学与技术专业将利用经费支持建设一个微电子实验教学中心,具体包括四个教学实验室:半导体材料特性与微电子技术工艺参数测试分析实验室、微电子器件和集成电路性能参数测试与应用实验室、集成电路设计实验室、科技创新实践实验室。使学生具备半导体材料特性与微电子技术工艺参数测试分析、微电子器件、光电器件参数测试与应用、集成电路设计、LED封装测试等方面的实践动手和设计能力,巩固和强化现代微电子技术和集成电路设计相关知识,提升学生在微电子技术领域的竞争力,培养学生具备半导体材料、器件、集成电路等基本物理与电学属性的测试分析能力。同时,本实验平台主要服务的本科专业为“电子科学与技术”,同时可以承担“通信工程”、“电子信息工程”、“计算机科学与技术”、“电子信息科学与技术”、“材料科学与工程”、“光信息科学与技术”等10余个本科专业的部分实践教学任务。
(1)半导体材料特性与微电子技术工艺参数测试分析实验室侧重于半导体材料基本属性的测试与分析方法,目的是加深学生对半导体基本理论的理解,掌握相关的测试方法与技能,包括半导体材料层错位错观测、半导体材料电阻率的四探针法测量及其EXCEL数据处理、半导体材料的霍尔效应测试、半导体少数载流子寿命测量、高频MOS C-V特性测试、PN结显示与结深测量、椭偏法测量薄膜厚度、PN结正向压降温度特性实验等实验项目。完成形式包括半导体专业实验课、理论课程的实验课时等。
(2)微电子器件和集成电路性能参数测试与应用实验室侧重于半导体器件与集成电路基本特性、微电子工艺参数等的测试与分析方法,目的是加深学生对半导体基本理论、器件参数与性能、工艺等的理解,掌握相关的技能,包括器件解剖分析、用图示仪测量晶体管的交(直)流参数、MOS场效应管参数的测量、晶体管参数的测量、集成运算放大器参数的测试、晶体管特征频率的测量、半导体器件实验、光伏效应实验、光电导实验、光电探测原理综合实验、光电倍增管综合实验、LD/LED光源特性实验、半导体激光器实验、电光调制实验、声光调制实验等实验项目。完成形式包括半导体专业实验课、理论课程的实验课时、课程设计、创新实践、毕业设计等。
(3)集成电路设计实验室侧重于培养学生初步掌握集成电路设计的硬件描述语言、Cadence等典型的器件与电路及工艺设计软件的使用方法、设计流程等,并通过半导体器件、模拟集成电路、数字集成电路的仿真、验证和版图设计等实践过程具备集成电路设计的能力,目的是培养学生半导体器件、集成电路的设计能力。以美国Cadence公司专业集成电路设计软件为载体,完成集成电路的电路设计、版图设计、工艺设计等训练课程。完成形式包括理论课程的实验课时、集成电路设计类课程和理论课程的上机实践等。
(4)科技创新实践实验室则向学生提供发挥他们才智的空间,为他们提供验证和实现自由命题或进行科研的软硬件条件,充分发挥他们的想象力,目的是培养学生的创新意识与能力,包括LED封装、测试与设计应用实训和光电技术创新实训。要求学生自己动手完成所设计器件或电路的研制并通过测试分析,制造出满足指标要求的器件或电路。目的是对学生进行理论联系实际的系统训练,加深对所需知识的接收与理解,初步掌握半导体器件与集成电路的设计方法和对工艺技术及流程的认知与感知。完成形式包括理论课程的实验课时、创新实践环节、生产实践、毕业设计、参与教师科研课题和国家级、省级和校级的各类科技竞赛及课外科技学术活动等。
四、总结
本实验室以我国微电子科学与技术的人才需求为指引,遵循微电子科学的发展规律,通过实验教学来促进理论联系实际,培养学生的科学思维和创新意识,系统了解与掌握半导体材料、器件、集成电路的测试分析和半导体器件、集成电路的设计、工艺技术等技能,最终实现培养基础扎实、知识面宽、实践能力强、综合素质高、适应范围广的具有较强竞争力的微电子专门人才的目标,以满足我国国民经济发展和国防建设对微电子人才的迫切需求。
参考文献:
[1]刘瑞,伍登学.创建培养微电子人才教学实验基地的探索与实践[J].实验室研究与探索,2004,(5):6-9.
Abstract: There is more emphasis on scientific research than teaching in current universities. In fact, teaching and research reinforceeach other. This article briefly analyzes the reasons why most universities focus on scientific research and underestimate teaching. Some methods on reinforcing teaching and research mutually are provided based on teaching of optoelectronics-related courses in Huaihai Institute of Technology. Initial teaching results show several methods on integrating scientific research into teaching can improve the training of the talents of the photoelectric information technology. Meanwhile, the teaching process has brought a lot of inspiration to the teachers' scientific research. To a certain extent, we obtain the improvement on scientific research and teaching at the same time.
关键词:教研相长;方法;例子;光电子类课程
Key words: reinforcing teaching and research mutually;methods;example;optoelectronics-related courses
中图分类号:G640 文献标识码:A 文章编号:1006-4311(2015)30-0172-02
0 引言
中国近代力学之父、著名的科学家钱伟长院士在谈论教学与科研的关系时说:“大学必须拆除教学与科研之间的高墙,教学没有科研做底蕴,就是一种没有观点的教育,没有灵魂的教育。”教学是科研的前提和基础条件,科研是提高教育质量和层次的关键,二者相互支撑、相辅相成。但是,当前对于大部分高校来说,教学和科研之间存在的主要问题在于过于重视科研。本文首先简单分析造成这种重科研、轻教学的原因,然后以淮海工学院电子工程学院的光电子类课程教学为例初步探讨教研相长的具体实现途径。相应的研究成果可以在其他工科专业教师中推广,以帮助他们在教学方面和科研方面都取得好的效果。
1 重科研、轻教学原因分析
目前造成大部分高校重科研、轻教学的原因是多方面的,大致可以总结为以下几点:
1.1 与大学教师所处的大环境有关
“目前社会上有很多人认为,我国高校和世界一流大学的差距主要是科研水平低、师资差。包括时下流行各种“高校排行榜”,也多以科研为主要指标”[1],而教学的实际效果对于学校的综合排名则无足轻重。如,时下流行的“武书连2015中国734所大学教师学术水平排行榜”[2]。那些科研搞得好、综合排名靠前的高校,其知名度也高。在这种情况下,高校为了自身的生存与发展,学校投入大量人力、财力力争在科研上有所突破。作为高校一分子的大学教师自然也不可能置身世外。
1.2 与我国现行的职称评审制度有关
目前我国大学教师的职称评审,实际上主要依据的是科研, 包括有没有科研论文、论著,有没有科研立项和科研成果。如评讲师、副教授、教授要多少篇论文,什么级别的论文,论著要有多少字,什么级别的立项和成果等。教学在职称评审中虽然也受重视,作了许多规定,但大都显得笼统模糊,而且缺乏可操作性。教学水平的高低和教学效果的好坏对教师职称的评审几乎没有什么影响。
1.3 与学校的实际情况有关
有一部分教师,尤其是青年教师,几乎很少主持或参与科研工作,这在淮海工学院非常普遍。不参与科研工作则容易造成理论与实践脱节,除了不能提高自己的科研能力,也不利于教学能力和教学效果的提高[3]。这其中部分原因是由于这些教师教学任务繁重,还有一些承担行政工作;同时没有良好的科研团队,形不成一个良好的科研氛围,而不能提供有效的科研条件让他们从事科研工作。
上述几种情况造成科研与教学分离,更难做到相辅相成,共同进步。作为一名普通的高校教师,自然无法去改变整个社会的大环境,也无法撼动现有的职称评审制度,但从大学教师的自身职责来看,我们不仅需要承担教书育人的工作,还需要承担一定的科研任务。同时做好科研与教学是每一位高校教师的职责所在。因此教学和科研孰重孰轻,如何处理好教学工作和科研工作的关系以及如何把自己的科研和教学很好地结合,对于教师自身非常重要。
2 教研相长途径初步探索
本节从普通高校教师角度出发,探索如何处理好教学与科研之间的关系,如何把科学研究应用到教学实践,以做到教研相长。下面分别从专业建设、人才培养及教师的教学和科研能力提高三个方面,以淮海工学院电子工程学院光电子类课程教学为例探讨教学相长的方法和途径。
2.1 专业建设方面
目前淮海工学院电子工程学院的电子科学与技术、测控技术与仪器等专业仅有7年的历史,虽已初具规模,但课程体系与专业建设仍需进一步完善和优化。以光波为信息载体的检测、控制技术、仪器系统、精密测试等内容是电子科学与技术、仪器科学与技术学科中的重要内容。
根据相关专业领域教师的科研基础,本课题组首先对电子工程学院的光电子类课程(光电子技术基础、光电传感与检测技术、光纤通信技术等)实施了教改研究,包括课程体系与教学大纲完善,加深了理论与实践的结合,即将教师的科研新成果融入理论和实验教学,并利用教师科研条件进行直观教学,这样既培养了学生动手能力,也促进了学生对理论知识学习的兴趣。
如,电子工程学院建有自适应光学实验室,是相关任课教师的科研平台。自适应光学技术是一门可以让光波适应外界变化而被能动控制的技术,也可以理解为光学中的自动化技术,集科学性和工程性为一体。相关专业学生已经学习过自动控制原理,对常规的液位、流量等过程控制非常熟悉,但对“光波”这样一个看得见摸不着的物理现象该如何完成控制呢?学生们非常好奇。通过分批次带领相关专业学生亲自动手完成光电成像校正实验,学生既加深了对光信号传输、光电信息转换及光电检测等方面知识的理解,又巩固和拓展了以前学习的自动控制相关理论知识的应用,学习到了教材中没有学到的内容,进一步扩大了学生的知识面,学生反馈非常好。
对于一些不具备实验条件的重点实验内容,由于实验条件比较苛刻,部分光电现象在实际实验中不明显,难以观察;另外也因为实验仪器有限,学生无法通过实验观察到所有的实验现象。针对这种现状,利用了科研过程中获得的数值仿真能力,帮助学生实现虚拟实验。
2.2 人才培养方面
通过科研与教学的有机结合,提高高等学校的教学质量,从而培养出新形势下的“综合型、应用型”人才。注重因材施教,将学有所长的学生引入到教师的科研项目中。通过教学改革,重点突出相关专业中的光电检测方法、光电系统研制与工程应用的能力培养,强调学生实践动手能力与创新意识的培养,使之成为应用型和创新型高级人才。在这个过程当中,学生除了实践书本知识外,还能在科研小组中学会分工及团队协作,为将来攻读研究生或进入相关企业累积经验。
本课题组已承担和参与国家及省市级科研项目多项,通过光电检测和光电子技术课程的学习,已有相关专业的多名学生主动要求参与到教师的科研项目中来。喜欢编程的学生让他们完成实验平台的软件建设,喜欢摆弄光电子器件的学生让他们完成硬件平台的搭建,爱动脑筋的学生让他们直接参与到教师科研课题的实验,和相关教师一起分析实验中出现的问题并解决它们。通过相关科研项目的训练,将科研渗透到教学内容中,培养了学生的创新能力、创新精神以及科研素养。
在2013-2015期间,多名相关专业学生有了参与教师科研项目的经历之后,积极申报各级创新项目。目前,已有多个光电子之创新项目获得校内立项。同时,淮海工学院电子工程学院已有多名毕业生进入光电专业研究生阶段的学习,如太原理工大学物电学院、中国科学院光电技术研究所等,开始了他们人生新的篇章。
2.3 提升教师教学与科研能力方面
教师一方面通过专业知识学习、关注本领域最新研究成果来提高自身业务能力,又通过教学工作,学习最新研究成果并有意识地积累未知问题、认真思考教学过程中学生所提出的疑问,进一步激发科研热情,并帮助了科研选题。
教学内容的主体是“基本理论、基本知识、基本技能”,但是,课堂教学除了围绕基本理论和概念进行外,还要注重科研成果和科技最新发展动态的渗透。让学生了解学科前沿的概况及其发展动态,开阔视野,启迪思维,进一步拓宽学生的知识面。并且使学生能够认识到,基础知识不仅仅是概念理论和公式,更是实际应用中的产品和解决实践问题的手段,以此提高学生的学习兴趣,同时使学生更容易接受抽象的理论知识。
如,教师分别在每学期开始和结束时举办了激光和光电子领域的最新研究成果或相关专题讲座,既提升了自身的业务能力,又达到了教书育人的效果。开学初的专题讲座有助于引领学生对光电子技术领域的兴趣,讲座的内容从围绕人们把光波作为一种载波进行信息传递开始一直到现阶段的激光通信、激光武器等。讲座结束,学生对光电子技术充满了好奇,这为学生学好光电子课程打下了良好的基础。学期结束时专门对学生比较感兴趣的以及近期比较热门的激光3D打印技术从原理到应用及未来发展趋势进行了一次专题讲座,扩大了学生的视野。
又如,基于光电子类课程涵盖知识面广、理论与应用相结合的特点,针对一些典型知识点,为加深学生理解,设置专题讨论课,鼓励学生课前主动查找相关文献,让学生事先做好研讨准备,写好研讨提纲。在课堂上进行交流、讨论,培养学生的表达能力、思维能力、分析能力,让学生充分发表不同意见。学期过程中,这样的专题讨论课进行了2次,学生提出的问题给了相关教师的科研很大的启发。
专题讲座和讨论形式的授课方式深受学生欢迎,教学效果好,学生评教均在90分以上,学生深受其益。课题组教师通过上述教学活动充分认识到要通过高水平科学研究苦练真功夫,又要通过钻研教学规律来加强组织教学的能力,从而真正做到科学研究和教学育人互相促进。
3 结束语
“教研相长”虽是一个老话题,但目前社会大环境中面临的“重研轻教”现象使得我们有必要对这个老话题展开新的研究。如何加强教学与科研的联系、在科学研究中如何开展教学活动以使得科研成果能够支持教学改革、并使得教学与科研互相促进是每一个高校教师的职责。本文以淮海工学院电子工程学院光电子类课程教改为例,分别从专业课程建设、人才培养、教学和科研能力提升等方面初步探讨了实现教研相长的一般化途径。改革的结果表明以上为今后存在这方面困惑的青年教师提供有价值的参考。
参考文献:
[1]张志峰,杨婷.“重研轻教”不可取(关注“朱淼华现象”)[N].人民日报,2005-11-28(11).
关键词:菲涅尔;光电子学;光场分析
中图分类号:G642.4 文献标志码:A 文章编号:1674-9324(2015)05-0254-03
《光电子学与光电器件》是一门实践性与应用型很强的课程。学生在学习了光电子学的基本理论知识的同时,还需要通过实验课进一步理解和消化一些基本原理和基本元件,掌握光电子学的基本技能。相应的实验课的建设直接影响学生的培养质量,影响学生今后进行科研的能力,是学科建设的重要内容之一。如何构建课程体系以及在课程中引入相应的知识训练,是一个重要的研究课题。随着光通信系统技术的飞速发展,光学元件的制作工艺也在突飞猛进。菲涅尔透镜作为一种二元光学元件,在制作工艺上有着加工工艺简单、成本低、易于与其他光路集成等优点,在光束整形、光互连、光照明、太阳能利用等方面都有着广泛的应用前景。菲涅尔透镜又叫菲涅尔波带片,是基于光的衍射理论制作的光学元件。根据菲涅尔衍射理论,在对波前进行比较粗糙的分割,组成一些同心圆环,使得到达波前一点的光程相差半个波长,经过振幅叠加可以达到聚焦的目的。为加强学生对波动光学方面基础知识、基本理论和基本技能的理解和掌握,养成用波动理论分析光学问题的思维习惯,了解菲涅尔透镜的设计与分析方法,吉林大学电子科学与工程学院特为本科生开设《光电子学与光电器件》课程这门专业课。
一、几何光学的局限性
因为在日常生活中遇见的有关光的问题绝大多数都属于几何光学的问题,几何光学比较直观,解决问题的方法比较简单,本科生在进行光电子学实验的时候往往习惯于用几何光学的知识去理解激光,思考问题仅仅停留在宏观尺度上。但是几何光学有局限性,除了直线传播定律之外,作为几何光学基础的另外两条定律――反射定律和折射定律,也都只在波长很小的条件下或者在宏观尺度上应用才能成立。几何光学原理的适用范围是有限度的。光电子学实验主要是培养学生用微观的思维去理解光、了解光的波动性。按照几何光学的知识,激光通过凸透镜会聚焦到一点,如果这个点没有大小,此处能量密度将是无穷大,这是不符合科学的,所以,聚焦的焦点处应该为一个焦斑,用几何光学的知识无法计算出此处焦斑的大小及其能量分布情况。实验过程中,可以测的激光焦点最小为光波长量级的光斑,称为埃里斑,能量主要集中在埃里斑的中心,在埃里斑的周围会有光环,其能量分布如图1所示。
学生这种几何光学的思维定势会影响他们对实验结果的分析以及面对问题时所采取的解决方法。为了让学生在现有知识条件下,就能理解解决这一光学问题,从而改变他们这种思维定势,我们在《光电子学与光电器件实验课》引入菲涅尔理论的应用,对实验项目中的实验现象尽可能让学生用波动光学的知识去理解,从而改变学生波动光学的思维习惯。
二、菲涅尔理论
根据菲涅尔理论,波前上每一个点都可以看成一个新的震动中心,它们发出的次波在空间某一点振动的所有次波的相干叠加即为该点的光强。利用公式描述如下:
其中(P)是波面上P点的复振幅,K是比例常数,F是倾斜因子,d∑是面元。
通过这一公式的形式我们可以看出,经过一个复杂的曲面积分,按照理论,可以计算出激光光场中任何一点的光强。但是这个积分计算是非常复杂的,一般的学生很难完成。如果我们的实验课中让学生进行这样枯燥无味的数学计算,不但不能提高学生波动光学的思维习惯,同时还会影响学生的学习兴趣,这与我们实验课培养学生实验技能的宗旨是相违背的。
可以利用上面的公式,不需要复杂的曲面积分,借助于计算机的快速处理能力,设计出一个激光光场分析系统,在比较短的时间内计算出各种光学元件的光场情况,从而让学生用波动光学的知识去理解激光。在利用菲涅尔公式进行光场分析的时候,学生需要了解激光波长、材料折射率、光学元件的形貌等参数,这些都是光电子学中比较重要的概念。
如在进行《氦-氖激光器模式分析》实验项目的时候,学生可以利用光场分析系统模拟出氦氖激光的情况,然后利用CCD等仪器测量实际的模式,经过对比就可以发现两者之间的误差,并进行误差分析。再比如《氦-氖激光器高斯光束与发散角测量》实验项目,可以让学生在分析系统中计算发散角的大小,以及利用最小二乘法对激光光强分布情况进行拟合,对高斯分布情况进行分析,从而让学生对高斯激光有一个更深入的了解,然后利用CCD对高斯激光发散角测试系统进行测试。这一过程对学生来说可以深入强化其对光电子学概念的理解,同时提高他们对光电子学的兴趣。
三、光场分析系统
光场分析系统为我们自主研发的一套分析软件。该软件主要是针对《光电子学与光电器件实验》教学而设计,学生在使用过程中可以自由设计实验系统中各个光学元件的参数。比如,学生可以设置激光波长,不同的波长会根据光的颜色来进行区分;可以任意设定凸透镜的表面形貌,从而可以让学生了解球面透镜与非球面透镜的区别;可以设定高斯光束中能量分布情况,从而可以比较准确地测量高斯光束的发散角等参数;还可以对菲涅尔波带片的聚焦情况进行模拟,同时还可以模拟非对称的椭圆形波带片,这种非对称光学元件在边发射激光器光束整形方面有很大的应用前景。
四、八阶梯相位型菲涅尔透镜设计与分析
根据菲涅尔衍射公式,我们可以设计菲涅尔波带片,每个圆环的半径满足以下公式:
其中,R1为最小圆环的半径。如果我们对前面所提到的波带片每个波带进行划分,根据不同的波带设定不同的光程,可以制作高阶波带片。公式如下:
rm+f=(f+mλ/2)2 (3)
(由于光波长一般较短,我们可以认为mλ
波带片衍射效率公式为:
当n=2、4、8时,波带片理论衍射效率分别为40.5%,81%,95.1%。为产生相位匹配,必须考虑材料折射率,适当选择每个波带的厚度。
为获得更高的衍射效率,我们设计高阶波带片阵列。当n=8时,波带片理论衍射效率为最高95.1%。为产生相位匹配,必须考虑材料折射率,适当选择每个波带的厚度。厚度公式如下:
其中N为波带片阶数,n为材料折射率,对于n=
1.56的材料,为波带片达到相位匹配,我们设计每层高度为118纳米,一共8层亚波带,半径为18微米,根据公式(4)可以求得该菲涅尔透镜焦距为74微米,模型如下图所示。
然后,我们利用光场分析系统模拟这种菲涅尔透镜的聚焦情况。首先分析主轴上光强分布情况,得到菲涅尔透镜主焦点位置。从图中我们可以看出,主焦点的位置与利用公式获得的主焦点位置比较符合。
然后我们继续分析焦点位置在径向的光场分布情况,获得如下光场能量分布图形与焦点处能量分布情况(图4)。
从图中我们可以看出,实际的聚焦情况与我们分析系统分析出的菲涅尔透镜焦点情况基本完全符合。下图为焦点处光场分布的立体图。
五、总结
光电子学是光学和电学相结合并加以融合的技术领域,相应的实验课在学习光电子学过程中非常重要。本文根据光电子学与光电器件实验课程的特点以及学生在实验过程中所面临的问题,在教学过程中引入菲涅尔理论的应用,设计匹配实验项目的光场分析系统,本文合理采用计算机软件应用作为教学手段,提高授课质量,增加课程设计性实验环节,将实验教学与科研培训相结合,引导学生发现并解决问题。
参考文献:
[1]李海金,刘义,等.《光电子学》课程建设的探索与实践[J].实验科学与技术,2012,(4):126-128.
[2]姚琼,孟洲,等.《光电子学》课程建设的实践与思考[J].高等教育研究学报,2009,32(3):91-92.
[3]赵凯华,钟锡华.光学[M].北京大学出版社,2008:188-190.
关键词: 电子科学与技术 培养目标 课程体系建设
1.引言
常州工学院立足于常州,服务于长三角地区,该地区是国内电子行业和产业的发达地区之一,对电子类人才的需求量非常大。随着该地区经济发展和产业结构升级,社会对人才的需求逐步呈现出多样化和高层次化的要求。面对新形势的发展需要,培养适应社会经济发展和行业技术升级要求的应用型本科人才成为当务之急。电子科学与技术专业的人才培养需要符合口径宽、适应性强、基础扎实、发展潜力大等要求,因此课程体系的建设十分重要。
2.人才培养目标
培养方案和培养目标的制定要充分考虑相关高校、社会的需求,以及学校与专业的具体情况等各方面因素,并以行业技术进步、企事业单位需求和毕业生的反馈为参考依据。
通过对电子科学与技术专业的调研,以社会需求为导向,确定理论基础实、口径宽、实践能力强、知识结构合理的全面培养模式和培养目标,以综合素质培养和工程技术应用能力培养为主线,统筹编排课程体系,充分考虑和遵循学生的认知规律,以学生为主体,制定一套切实可行的、适合应用型本科人才的电子科学与技术专业培养方案和人才培养目标,以适应市场对电子工程技术人才的需求,提高学生的实践和创新能力,从而增强学生的就业竞争力。
电子科学与技术专业的人才培养目标为:适应信息产业化的发展需要,培养具有良好思想道德素质和科学文化素质的应用型本科人才,使学生具有扎实的基础知识和专业知识,具备设计、制造与生产实践能力,具有不断学习进步与更新知识的能力,能够及时跟踪并掌握新理论和新技术,在电子电路与系统、电子材料与元器件、半导体工艺等领域从事分析、设计、制造与测试等工作。为了实现以上人才培养目标,在培养计划的制订尤其是课程体系建设方面提出了更高要求。
3.课程体系建设
为了实现培养计划和人才培养目标,电子科学与技术专业的课程体系建设主要包括以下内容。
(1)课程体系模块化、层次化的应用能力培养体系。
课程体系以应用能力培养为核心,分为学校级、学院级和系部级三个层次。学校级通识课程模块层次教授电子科学与技术专业的基础知识,主要包括基本数学能力、英语能力、物理能力、计算机能力及思想道德法律等基本知识。构建以电气学院专业基础课程模块层次为电类一级学科为基础的知识结构培养体系,学院基础的培养为知识面的拓宽打下良好基础。系部级的电子科学与技术专业课程培养为毕业生的就业和继续深造提供专业技术知识。分级课程建设体系造就了毕业生基础知识扎实、理论知识雄厚、专业技术知识丰富、动手能力强等特点。
(2)理论与实际应用相结合的专业课程建设。
专业课程体系分为理论基础课程和实际应用课程两个层面,除了必备的工程数学与物理知识外,在专业知识方面,逐步建立电子材料、制造工艺、电子器件、基本单元电路、宏单元、子系统及系统的课程体系,打通自顶向下和自底向上的知识培养通路。以半导体物理和器件物理核心的课程体系构成了微电子学与固体电子学的理论基础,为制造工艺和电路设计提供知识的基本结构。以信号与系统、电路设计与测试的核心课程体系作为电路的理论基础,为电路方面能力的培养形成电子系统的知识基本结构。知识结构的分层次化、理论与实际相结合的培养体系覆盖了整个电子科学与技术专业的知识能力点,全方位培养毕业生的理论基础与工程实践能力,重点培养从系统角度审视具体电子技术的能力。
(3)以微电子技术为主干的专业课程体系。
电子科学与技术专业的知识以微电子技术为核心,可以划分为两大体系:第一是半导体材料、器件和制造工艺;第二是集成电路设计与测试。在半导体材料、器件和制造工艺上,除了传统与新型集成电路方面的应用,还与相关新型电光源、光伏材料与器件、光电材料与器件在知识结构上具有互通性。均以半导体材料为核心,引申到其他半导体材料与器件,在理论与实际应用和制造工艺上具有相似性。集成电路设计与测试涵盖了微电子和光电子技术的电路与测试方面的内容,在电路方面,新型电光源的器件、核心芯片、驱动电路等,光伏器件与电路、光电子电路与信号检测,与标准集成电路设计与应用具有共同性。在测试方面,涵盖了电学测试与可靠性测试,完整地建立了功能测试与性能测试的基本概念。电子科学与技术专业的另一个特色是在设计与应用电子系统时,具备其他专业所不具备的电路工艺与器件的底层知识,从而在电子系统的设计与分析中具备更强的理解能力。
(4)全方位的课程实践能力培养体系。
电子科学与技术专业的课程体系以理论与实践相结合为设置理念,在课内实验、课内实践、独立授课实验、课程设计、科研实践、实习及毕业设计等方面全方位构建实验实践体系,重点培养毕业生的动手能力和实践能力。除了电气学院的实验中心和实验室外,电子科学与技术专业有两个专业实验室:集成电路设计实验室和集成电路测试实验室。为教学、科研提供全方位的服务。集成电路设计实验室主要提供学生在系统设计、电路设计、器件与工艺实验等方面的专用软件。集成电路测试实验室主要提供电路测试、半导体材料、半导体器件、半导体工艺等各方面的实验。在电子技术的材料、器件、电路设计、制造、测试等流程方面提供全方位服务。在实验室开放上,实验室开放给所有教师与学生使用,鼓励学生进入实验室参与教师的科研与参与毕业设计。
(5)教学与科研结合,校企结合的工程技术能力培养体系。
电子科学与技术专业的教师承担了多项纵向与横向项目,系部鼓励教师与学生一起参与科研项目,为学生实验实践能力的培养提供良好的实验实践平台和科研平台,从而从项目角度提供给学生实训机会。在校企产学研联盟方面,电子科学与技术专业紧密联系常州和周边地区的企业,如银河电子、天合光能、常州普美、常州欧智等多家企业,形成校企联盟。参考卓越计划的实施,电子科学与技术专业经常邀请外校和企业专家对学生开展前沿性科学讲座与培训,为毕业生的能力培养和就业提供指导。
4.实践的效果
通过培养方案与人才培养目标的制定,重点进行电子科学与技术专业的课程体系建设,并通过多年教学与科研实践,进行以下方面的实践,取得了良好效果。
(1)完善电子科学与技术专业的课程体系,建立材料、器件、工艺、电路、测试和系统的能力点分布。
(2)从社会需求角度和人才知识结构出发,逐步对课程体系进行调整,增强课程体系之间的内在联系,减少或删除部分实用性不强的课程,增设社会急需的专业课程。
(3)强调应用能力培养,强化理论知识教学,增加实践教学环节,增强学生的实践应用能力,培养学生综合应用电子科学与技术专业知识的能力。
(4)探索开设提高学生动手能力和操作能力的集中性实践环节和创新环节,探讨校企结合培养人才的新模式。
根据对本校历届电子科学与技术专业本科毕业生的跟踪调查,九成以上的毕业生去向为长三角地区,平均每年有20%的毕业生进入国内知名高校读研继续深造,其余进入各企事业单位。通过对接收毕业生的各高校、企事业单位,以及毕业生进行的调查和反馈,本校电子科学与技术专业的课程体系建设能够培养学生扎实的理论知识和熟练的实践能力,有利于学生做好职业生涯规划,能够促进毕业生快速进入新领域和岗位,用人单位满意度高。
5.结语
通过几年对电子科学与技术专业课程体系的建设与实践,基础课、专业基础课和专业课的设置逐步得到了发展和优化,梳理清楚了本专业各方面能力的培养,知识点和能力点的分布更系统化和体系化,并通过实践进行了验证和完善,为毕业生的就业和进一步深造打下了坚实的基础。
参考文献:
[1]王伟,杨恒新,蔡祥宝,等.电子科学与技术专业“学、研”结合型人才培养方案的研究与实践.中国科技信息,2013(9):218-220.
[2]杨东晓,章献民,韩雁,等.电子工程类卓越人才培养的实践.中国电子教育学会分会2010年论文集,P20-28.
[3]沈为民,孙翎,杨凯,楼俊.“电子科学与技术”多样性人才培养.电气电子教学学报,2009.9:66-72.
[4]张培昆.电子科学与技术专业课程设置的探索.信息与电脑,2013,03:200-201.
[5]阮凯斌,刘银春,张洪.电子科学与技术专业课程体系建设的研究与实施.时代教育,2012(11):28-29.
[6]殷景华,曹江,宋明歆,等.电子科学与技术专业课程体系优化的研究.信息技术,2007(6):17-19.
[7]邸志刚,贾春荣.电子科学与技术专业培养体系改革及构建.中国电力教育,2013(7):59-60.
南方网消息,“广东LED产业集聚六大优势,产值突破2100亿。”8日下午,大型系列科普讲座“珠江科学大讲堂”第七期在广东科学中心举行,中国科学院院士、华南师范大学信息光电子科技学院教授刘颂豪深入分析了广东LED产业发展状况。
去年,广东出台了《广东省战略性新兴产业发展“十二五”规划》,拟投入220亿元支持战略性新兴产业发展,根据规划LED产业到2015年将率先实现突破。经过近18个月的大力推广,广东LED产业优势凸显,在LED封装工艺及制造技术、MOCVD系统的研发和制造、新产品开发能力及标准光组件、产品标准制定、专利技术、产业规模六个方面均领先全国。数据显示,广东省LED产业产值成功突破2100亿,占全国的比例约为44.25%,产业规模继续位居全国首位。截至目前,广东省拥有外延生长企业6家,芯片大型企业7家,已有从事LED封装上市公司6家,中小型企业数近千家,技术专利占全国逾四成。凭借技术创新优势,广东LED积极推动产品标准制定,率先研发LED照明标准光组件,制定以LED路灯为核心的半导体照明产品标准,引领全国LED产业发展。
刘颂豪在会上透露,广东正在积极研发和制造MOCVD系统,广东省工业技术研究院、广东昭信半导体装备制造有限公司将联合推动LED产业关键技术的攻关与MOCVD设备产业化。“MOCVD设备很贵,都是千万元以上,很多地方都是今年要进口一台MOCVD,政府就补贴一千万,因此我们国家每年引进MOCVD很多,花的外汇也是非常大的,所以我们一直提出我们国家要自己研究MOCVD,也向国家提出过很多建议,现在广东这方面还是走在前面。”刘颂豪说。
目前,MOCVD系统研制已取得阶段性成果。华南师范大学光电子与技术研究所郭志友教授表示,我们产业的最前端,就是做关键元器件、关键原材料的MOCVD的设备。现在MOCVD系统已经有样品,预计2015年将实现产业化。
此前,有媒体质疑广东LED产业缺乏核心技术,粗放式发展,或将步DVD产业后尘。对此,郭志友表示,“业界对LED发展很有信心,我们有专利,有这个平台也有这个技术,广东省也有大量资金投入支持,LED光效突破200流明瓦是没有问题的。LED产业肯定不会走DVD这条路。”
[关键词]比较法; 光电子学; 教学; 双语课程
中图分类号:H319 文献标识码:A 文章编号:1009-914X(2016)02-0001-02
概述
《Optoelectronics》课程是光电信息科学与工程等专业一门重要的专业基础课程,主要讲述光的产生、光的探测、光的调制的基本原理。在高校专业课程教学中,为了让学生接触到本专业的一些前沿知识和最新研究进展,同时也是为了提高学生阅读外文科技书籍和资料的能力,课程采用外文原版教材和中英文参考书[1-3],使用双语教学,学生刚接触该课程时出现畏难情绪,缺乏兴趣和主动性。为调动学生学习的积极性,提高教学效率和效果,在教学中应用比较法,不仅使学生在前修课程或本课程前面章节已学的知识点得到巩固和深化,而且使新知识点的教学事半功倍。
比较法的应用
比较法能够开拓学生的思维空间,在分析鉴别中把握知识的重点,较正确地把握概念、原理、结构、计算方法之间的联系与区别。将比较法如何运用于教学中呢?比较法教学,就是把内容或形式上有联系的知识点进行对比、分析,指出其相同点、不同点的教学方法[4]。其主要方法:
(一)求同比较。就是将相同的知识,或性质相似的知识点放在一起加以比较。这样通过相同点的比较,学生把握两组或多组知识点的内涵,能够使理解深入并真正掌握。
(二)求异比较。事物之间存在差异,这是极普遍的现象。在教学实践中,求异比较是启发学生尽量多地寻找出不同点,通过两组或多组知识点间差异的比较,抓住其本质区别,激发学生拓宽对知识点的理解的广度,并可使学生获得更新的结构、性能的设计思路。
高校教学中,在前修课程的基础上,通过专业基础课的学习,为后面的专业课程打下牢固的基础。《Optoelectronics》着重于与光通信技术相关的光电子器件,知识点教学主要分为概念、原理、结构和特性参量的教学。
一、比较法用于关键概念的教学
《Optoelectronics》双语课程中新概念多,仔细归类,发现可作比较的概念不少,如:带间跃迁和带内跃迁、损耗和增益等。在关键概念的教学中,引导学生与前修课程或本课程前面已学的相关概念进行比较,或者直接将两个并列的概念同时引入,比较其异同点。
如图1的PPT所示,在1.6节引入带内跃迁(Intraband transitions)时,与前面已学的1.4节中的带间跃迁通过示意图、条件、跃迁前后状态的变化以及各自应用进行比较,学生不仅很快理解了“带内跃迁”新概念,而且对“带间跃迁”掌握得更深刻。
自发辐射和受激辐射是4.2节中同时引入的概念,教学中:
先给出定义。在热平衡下,如果在半导体的导带与价带中分别有一定数量的电子与空穴,导带中电子以一定的几率与价带中空穴复合并以光子形式放出复合所产生的能量的过程称为自发发射跃迁;导带电子与价带空穴复合过程在适当能量的光子激励下进行的,由复合产生的光子与激发该过程的光子有完全相同的特性(包括频率、相位和传播方向等),这种跃迁过程称为受激发射。
再进行求同比较和求异比较。相同点如图2所示,两种过程前后的状态变化都是导带电子与价带空穴复合发出光子。不同点主要是条件不同,一个是自发的,一个必须有光子激励且光子能量等于禁带宽度;发出的光子的特性不同,自发辐射发出的光子是非相干的,对应半导体发光二极管(LED)的工作原理;受激辐射发出的光子是全同光子,是相干光,对应
半导体激光器(LD)、半导体光放大器(SOA)的工作原理。
通过这样的教学步骤,学生易于理解并在比较中牢固掌握概念,在后续器件原理的学习中,能够熟练应用概念,结合器件结构易于理解工作原理。
二、比较法用于基本原理的教学
基本原理是各课程的重点和基础。在《Optoelectronics》双语课程中,主要是各种器件的工作原理,如检测器原理与光源原理;各种工作模式的原理,如小信号调制、大信号调制和脉码调制。
《Optoelectronics》双语课程的第二章主要阐述了光电检测器――PIN和雪崩二极管(APD),第三章的重点是LED,第四章着重于LD的静态。那么在第四章教学的开始,如图3所示,将课程中光电子器件的两大类――检测器(PIN、APD)和光源(LED、LD)从整体上进行比较。首先找出共同点,无论检测器还是光源都是换能器(Transmitter),只不过检测器是将光能转换成电能,而光源是将电能转换成光能,这样的相同之处就可以引导学生学习第四章时类比前两章的方法。然后找不同点,主要是结构和偏置状态不同,检测器反向偏置,光源正向偏置,这样就可归结于前修课程中的不同偏置下的半导体PN结的工作原理,所以第四章中的很多公式的推导和分析只要抓住结构和偏置的不同,借鉴已有的知识和方法,难点就迎刃而解了。
类似的原理用比较法讲解,也起到了很好的效果,如图4所示,在5.2节引入LD的三种直接调制方式的原理时,通过三种调制方式输入输出波形的比较,让学生直观明了地理解了这三种调制方式,学生当堂能自己作分析比较:小信号调制和脉码调制本质上属于一类,输入脉冲信号都在阈值之上,所不同的仅在于输入信号在阈值之上的调制幅度的大小;大信号调制,并不是输入信号大,而是指输入信号在阈值的上下变化,因此响应速度是最慢的。
三、比较法用于核心器件结构的教学
前面已提到课程中涉及的光电子器件主要是检测器PIN、APD和光源LED、LD,差别主要在于结构,所以本课程中引入新结构的时候,一般都会与前面同一类型的结构进行比较,如PIN和APD、面发射和边发射LED、增益导引型和折射率导引型LD等。
在2.7节引入APD的典型结构时,与2.6节的PIN的结构比较,如图5所示。找出它们的异同,发现最外的两层都是重掺杂而且很薄,吸收区都很厚,区别在于APD多加了一层,这层作为雪崩区,电场强度大而且尽量保持均匀,因此接下来的教学主要围绕这层高场强的雪崩区展开,这样重点突出而且引入快,也引起学生的兴趣第3.5节阐述LED的先进结构,其中边发射和面发射的结构如图6中左边的两个结构图所示,应用比较法,突出主要异同点:都有异质PN结;不同之处以如图6中右边两个简图所示,边发射LED顶面是条形电极,侧边发光,类似LD的发光方式;面发射LED为了得到准直的光束,在顶面电极开口处放置微透镜聚焦。运用对比的方法,并化繁为简,画出简图,能让学生一目了然,对结构特点也易掌握。
四、比较法用于重要特性参量计算的教学
比较法不仅适用于定性知识的教学,对器件特性的定量计算也起到触类旁通的效果。
2.4节和2.6节中都有光电流的计算,可通过比较法,在2.4节的基础上便捷地推导出2.6节中的光电流。如图7中上面的能带图所示,当光入射到反向偏置的PN结中,产生的光电流包括P区和N区中的扩散电流以及耗尽区的漂移电流;而当光入射反向偏置的PIN检测器,如图7中下面的能带图所示,P和N都很薄,扩散电流可忽略,而I区的厚度比PN结中的耗尽区的厚度大得多,所以计算其中的漂移电流时,积分号中的产生率不能近似为常数。
课程中最重要的参量计算是围绕器件的转换效率,如图8所示,在第二章虽然反复强调PIN和APD的转换效率、输入光子流、输出电流三者的互算关系,但在作业中有不少同学没有理解,只是背公式,因此出现不少错误。在第三章中再次提到LED的转换效率、输入光子流、输出电流三者的互算关系时,利用比较法,抓住共同点都是换能器,输入量乘以转换效率得到输出量,这样大多数学生能马上领会到效率在等式中的位置对于检测器和光源是不同的,因为两者的输入输出量正好相反。
教学法应用体会
实践表明, 充分利用比较法进行课程教学, 可以帮助学生理解新概念、基本原理、器件结构以及特性参量的计算方法,并巩固原有知识,激发学生的学习兴趣,主动在比较中寻找规律,以达到触类旁通,充分培养学生综合分析能力,提高教学效果。
参考文献
[1] Jasprit Singh. 半导体光电子学(英文版)[M].纽约:McGraw-Hill出版社, 1995.
[2] S. O. Kasap.光电学与光子学(英文版)[M]. 伦敦:Prentice Hall出版社, 2001.
[3]黄德修.半导体光电子学[M].成都:电子科技大学出版社,2013.
【关键字】 电子信息 科学技术 发展
一、电子信息技术发展现状
就目前的发展来看,由于电子信息技术的发展和普及,其应用越来越广泛的被应用在不同行业中,电子信息技术的应用领域已从过去的发展方向转变到金融行业中,甚至蔓延到其他领域。就金融行业的发展来看,很多纸币开始转变成电子货币的交易形式,信息技术的进步和发展已不是某个国家的问题,是全球性的,对电子信息技术的发展有推动作用。
二、电子信息技术的应用
1、信息通信网络领域的应用。在信息网络通信领域里,电子信息技术一般是通过信息网络里的数据进行传递,然后采取一系列的技术来设计数据传递终端设备。信息W络通信领域的作用是促进信息的传递,信息网络一般需要通过网络来进行支持。操作和运行的时候,通讯网络里很多都是借助电子设备来对信息进行一定的传递。
2、“互联网+”领域的应用。如今的社会,网络已经普及,不管是工作和学习,都需要利用网络。如果没有网络,社会的发展将会非常滞后。当前这个“互联网+”的时代,也属于互联网 + 各行各业的布局。也就是说,不管哪个行业和领域,都必须要以互联网为依托,借助电子设备和相关的技术,来实现行业的进步和发展。可以这样说,“互联网 +”的现状使得传统行业的限制得到了突破,也使得更多的行业和领域都得到了一定的进步和发展。也因此,其对于行业的保护是非常有利的。
3、医疗电子设备领域的应用。近年来,医疗行业的发展有显著的提升,关键在于采用了电子信息科学这一高新技术,这个技术无论是对治疗、管理上都有很大作用;首先在治疗上,电子信息科学与技术不仅可以勘察手术进展情况,还可以记录全过程,还有很多相关方面的医疗设备都采用了电子信息技术;在管理层面上,电子信息技术也在医院广泛使用,很多医院都开设了电子病例.便于储存。
4、汽车电子领域的应用。在其他领域当中,电子信息技术的应用都是为了对信息进行搜集和处理。但是在汽车电子领域当中,其最重要的技术是借助电子信息技术来对汽车的发电机来实施智能化的控制和操作。汽车电子信息系统里有很多的网络传感结构,比如温度传感器、压力传感器。所有的网络传感器都需要借助发动机的电子控制单元提供发动机相应的数据,再借助一定的处理来获得相应的结果。此外,还有中央喷射器等一系列的部件,其可以完成不同的指令。这就是汽车领域里的电子信息技术的应用,其促使汽车变得更加先进、智能。
三、电子科技在未来的发展
1、光电技术将成为发展重点。随着光电子学和电子学的技术提升,光电子技术开始成为电子信息技术的发展主力,就未来的发展模式看来,3D 技术将会成为电子信息技术应用显示领域的主要方式,随着 3D技术的综合性运用,其对软性显示器等类型设备的设计和出现起到促进作用,3D 技术的出现能显著提升人们的工作效率。近年来,LED技术的应用范围不断扩大,该技术的有效运用关系到了电子信息技术的领域创新,也实现了低碳环保设计的理念,由此可见,LED 技术显著改善了人们的生活方式和生活体验,给人们带来更多新鲜体验,发展前景必定是光明的。
2、网络信息技术更发达。互联网与电子信息科学技术的关系十分密切,他们不但彼此相互依存,而且还彼此促进对方的发展,现阶段,我国互联网的运用范围正不断扩大,电子信息科学技术实现互联网化,可以在一定程度上扩大国际之间电子信息科学技术交流的范围,加深电子信息科学技术交流的深度,打破电子信息科学技术交流在地域条件方面的限制; 除此之外,电子信息科学技术实现网络化,在网络中就可以进行资金与技术的优化配置,降低了电子信息科学技术的交易成本; 总而言之,电子信息科学技术发展网络化是我国在面临互联网时代的必然发展趋势,我国电子信息科学技术人员应该尽最大的努力对会联网体系进行构建以及健全,使互联网与电子信息科学技术之间推动作用更强。
3、通信技术不断壮大。通信技术的出现也是电子信息技术发展的成果,通信技术将会是电子信息工程未来发展的主要方向,就通信技术全面发展的当下来看,通信技术中包含了诸多的卫星通信传播技术、数字化无线技术和有限技术的综合运用,最出名且发展良好的一个案例是中国移动通信技术的发展,当前人类社会已经离不开通信设备的支撑,因此深入研究和分析通信技术将会一直延续。
结语:综上所述,为了使我国的电子信息科学技术得到更好的发展,我国电子信息科学技术人员应该顺应世界未来的发展趋势,努力创新,勇敢面对并克服电子信息技术中存在的问题,为我国电子信息科学技术发展创造良好的氛围。
参 考 文 献
[1]郗旺达.电子信息技术及其应用[J].电子技术与软件工程,2017(03):126.