公务员期刊网 精选范文 生物质燃料的优点范文

生物质燃料的优点精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的生物质燃料的优点主题范文,仅供参考,欢迎阅读并收藏。

生物质燃料的优点

第1篇:生物质燃料的优点范文

高峰竹柳造林的最佳土地条件是低洼湿滩地,这些土地不能种植庄稼,只能短期种植,属于低效益的荒废湿滩地,我国大约有9000万公顷这样的荒滩湿地,这些低洼地大多数都位于江河湖泊的边缘地带,另外还有1.3亿公顷盐碱地,因此在这些地方种植速生竹柳具有变废为宝、生产能源等多种优势。

万里常青公司在湖北搞的烂泥经济试验,一年前还是无人问津的烂泥地,一年后就成了一座一眼望不到边的绿色海洋! 4000亩高峰竹柳种苗现已在这些烂泥地扎根生长。据统计,每亩湖地里的树木每年都能产生效益15600多元,六年以后这片湖地将为社会直接创造财富2个亿以上。每一个到过这里的人,面对这样的场景都忍不住地感叹,万里常青公司为林业界创造了一个奇迹!

一、高峰竹柳与木塑聚合材料

目前,万里常青公司正在进行第三代木塑分子聚合材料生产试验,这是一项造福人类社会的最新技术成果。第三代木塑分子聚合材料是利用聚乙烯PE、聚丙烯PP、聚氯乙烯PVC等与木粉,经分子层次聚合生成,采用挤出、模压、注射成型等常规塑料加工工艺,生产出各种板材、型材和产品。这种新型板材不吸水、不变型、不褪色、不老化、不腐蚀、不霉烂、不虫蛀,节能环保效果好。

生产木塑分子聚合材料的主要成份是木粉,该木粉则是由“高峰竹柳”造林中幼林抚育大树修剪产生的枝条或竹柳大树成材加工剩余的枝叉加工而成,也可以高密度种植高峰竹柳,以小径材制成所需的木粉材料供聚合之用。为此开辟了一条竹柳木材加工新途径。

和普通木材相比,木塑分子聚合材料还具有以下优点:首先,生产木塑分子聚合材料可以节约资源、保护环境,做到废物利用。因为木塑分子聚合材料全部使用竹柳小径材、树木枝条、加工剩余物、废弃物,节约竹柳成材和优质木材,将竹柳木材的木素、半纤维素、纤维素都聚合进了新材料中。使用和损坏后的木塑聚合材料,可以全部再生利用,是一个全回收、全循环、全利用、全环保的项目。

其次,生产木塑分子聚合材料具有低投入、低消耗、高产出、高回报的优势。木塑分子聚合材料用0.6吨竹柳木粉和0.4吨废旧塑料,就可以生产出一吨产品,目前国际市场价格最高达28000元/吨。一个年产10万吨木塑材料的企业,可利用竹柳6万吨,利用废旧塑料4万吨,相当于从垃圾中捡回25万立方米木材、相当于节省水泥、钢材分别为40万吨、替代塑料和铝材分别是8万吨,这是木塑产业发展对循环经济的贡献。

再次,生产木塑分子聚合材料能促进产业结构调整,加快社会经济发展。木塑分子聚合材料改变了商品林的生产方式,由长时间周期性生产向短期林业种植业转变,可实现竹柳当年种植当年受益。有利于调动农民的种植积极性,开展竹柳规模种植。把林业、木材加工业、废旧塑料回收业也聚合到了一起,形成了一个污染治理、环境保护、资源节约的社会系统工程。

最后,木塑分子聚合材料用途广泛,现已被应用于包装运输领域、车辆船舶领域、建筑材料领域、室内装潢领域、军事领域等,它将在众多领域和范围内取代木材、钢材、水泥、塑料等常规材料。

二、高峰竹柳与生物质能源

当前,世界经济的快速发展引发了世界范围内的能源危机,大力发展可再生能源、逐步替代化石能源是克服能源危机的主要出路。据预测,到2020年,在全球可再生能源中生物质能的比重接近60%,而生物质颗粒燃料则占生物质能利用的60%。

所谓生物质能源也就是利用生物体,通过光合作用把吸收的太阳能转化为常规燃料能源。有机物中所有来源于动植物的能源物质均属于生物质能,是一种取之不尽、用之不竭的可再生能源。

柳树是林业能源林的主要树种,“高峰竹柳”则是多基因组合杂交的柳树新品种,具有速生、高产、抗逆等优点。作为能源树种每亩可密植1万株,每亩每年生物产量鲜重可达8至10吨,是普通柳树的十倍。在国外,柳树生物质转化为能源的主要途径是发电,柳树生物质具有较高的燃烧值,发达国家用柳树生物质发电已经有20年以上的历史。将柳树粉碎后制作成生物质能源颗粒和煤炭混合发电,可以大大提高热效率,降低污染50%以上。

生物质颗粒燃料是最具大规模产业化开发前景的新型生物质能源,用途主要包括三个方面:一是取暖和生活用能,生物质燃料利用率高,便于贮存,无污染。二是生物质工业锅炉,用生物质能替代燃煤,解决环境污染。三是发电,可作为火力发电的燃料。据统计,2008年全球生物质颗粒燃料销售量达1.8亿吨,市场规模超过500亿欧元。在全球经济放缓的背景下,生物质颗粒燃料产业以年均18%的速度高速成长,已经成为全球新能源市场中的“香饽饽”。

竹柳是生产生物质颗粒燃料最好的原料。生物质颗粒需求之大,竹柳作为原料种植前景更为广阔。

生物质颗粒燃料发展在我国处于起步阶段,但透过国外的发展我们可以看到,“高峰竹柳”将在生物质能源中发挥重要作用。高峰老人发起的1000万亩竹柳大造林,将可每年产生物质颗粒3.25亿吨,相当于年发电量9000亿KWH以上。

三、高峰竹柳是最好的纸浆来源

随着现代经济的快速发展,我国已成为世界上仅次于美国的第二大纸品消费国,各类纸和纸制品消费量占世界消费总量的14%;同时我国又是森林资源匮乏的国家。在各大纸浆生产国中,中国的净进口量最大,但仍有很大的市场缺口,大量造纸原料斋要进口。

要解决纸浆用材需要日益增长与森林资源匮乏日显突出的矛盾,缓解周际进口纸浆价格暴涨的压力。建立纸浆原料林基地,逐步减少对国外进口资源的依赖,就显得非常迫切。营造速生丰产纸浆林“高峰竹柳”则是最好的选择之一。

中国制浆造纸研究院进行了“竹柳材性纤维质量及制浆性能的研究”,检测分析结果表明:高峰竹柳材质色浅且密度适中,木粉自然白度比杨树高,竹柳木材的纤维质量较好,纤维长宽适中且柔软,符合制浆工业对木材要求。根据竹柳木材密度和材质白度分析,该原料适宜做高得率化学机械浆。竹柳可以作为纸浆材合理地种植并开发利用。

中国作为发展中国家,对纸张、架材、板材等木材的需求与日俱增,特别是当前很多工业企业都呈现出掠夺式的发展,因此大力开展高峰竹柳造林是对我国的能源资源的有效补充和储备,是改善生态缓解能源紧张的务实之举!

中国高峰竹柳产业集团有限公司

地址:北京市朝阳区亚运村凯旋城1号楼2栋1403室

电话:010-5927 3183

158 55582853

香港公司地址:香港九龙尖沙咀厚福街3号华博大厦18楼1806室

电话:00852-23682122

33673126

皖阜阳公司地址:阜阳市经济开发区申寨社区政务大楼1—3楼

电话:0558—2220627

2226697

400-088-2853

手机:15855582853

15955852853

第2篇:生物质燃料的优点范文

关键词:木薯酒精;生物质;乙醇;燃料

文章编号:1005-6629(2008)10-0043-02中图分类号:O623.411文献标识码:E

生物质包括各种速生的能源植物、农业废弃物、林业废弃物、水生植物以及各种有机垃圾等[1]。生物质能源的开发利用不受地理条件限制,利用形态和传统能源的利用形态相似,将现有机器设备稍加改造即可使用,推广价值巨大。各国对发展生物质能源有不同的考虑,但能源替代和环境保护两个主要的原因相同。中国发展生物质能源相对滞后,但在国家政策的扶持下,大力发展燃料乙醇及生物柴油等生物质能源作为实施替代能源[2]。特别是2008年奥运会在北京召开,其倡导的“绿色奥运、科技奥运、人文奥运”的理念将促进中国生物质能源的全面发展。

1 生物质燃料乙醇的应用和效益

生物质燃料乙醇是目前世界上生产规模最大的生物质能源,联合国工业发展组织曾在维也纳乙醇专题讨论会上提出:“乙醇应该被当作燃料和化工原料永久的和可供选择的来源”[3]。据清洁发展机制(CDM)项目咨询机构测算,每吨生物燃料乙醇能够产生2吨的二氧化碳减排量。因此,许多国家将发展生物燃料乙醇列为实现温室气体减排的重要途径。我国已成为仅次于巴西、美国的第三大燃料乙醇生产和使用国。燃料乙醇是通过对乙醇进一步脱水,再加上适量变性剂制成。目前,中国试点推广的E10乙醇汽油是在汽油中掺入10%纯度达99.9%以上的乙醇制成[4]。乙醇燃烧值仅为汽油的三分之二,但其分子中含氧,抗爆性能好,取代传统MTBE为汽油抗爆、增氧添加剂,避免了其毒害性(致癌,地下水污染),具有优良能源、环保效益。如汽油中乙醇添加量≤l5%时,对机动车行驶性能无明显影响而尾气中温室气体的含量可降低30%-50%。添加10%,其辛烷值可提高2-3倍,还可清洁机动车引擎,减少机油替换并使其动力性能增加[3]。

与其他可再生能源和石油替代能源相比,燃料乙醇在中国发展最早,并经过系统有序的试点,市场规模较大,在政策法规、组织管理、生产供应、市场销售以及技术服务等方面都取得了宝贵的经验,而且在能源替代、环境保护和振兴农业三方面都具有突出作用。 既有现实基础,又具有综合发展价值,燃料乙醇得到了国务院能源领导小组的高度认可,并最终确定为中国中长期新能源战略中的重点发展方向[5]。根据我国《生物燃料乙醇及车用乙醇汽油“十一五”发展专项规划》,“十一五”期间,我国将生产600万吨生物液态燃料,其中燃料乙醇500万吨,生物柴油100万吨;到2020年,生产2000万吨生物液态燃料,其中燃料乙醇1500万吨。

2 生物质燃料乙醇的代价和制约

原料保证是生物质燃料乙醇的关键限制,它影响成本和规模生产的可行性。生产1吨燃料乙醇,耗水30m3左右,耗电200kwh左右,约耗标准煤0.6吨左右。大约需要3.3吨玉米或7吨木薯、10吨红薯、15-16吨甜高粱[6]。

中国人均耕地面积已降至1.39亩,不足世界平均水平的40%。粮食安全至关重要。发展生物质燃料乙醇一定要在确保国家粮食安全基础上稳步推进。生物质能源的发展不能依靠对粮食的占有和生产面积的挤压来实现, 也不能以破坏自然生态环境为代价[7]。2007年6月,国家发改委全面叫停粮食乙醇的开发,要求今后生物燃料的发展必须满足不占用耕地、不消耗粮食和不破坏生态环境为前提。中国生物质能源的发展结束了以玉米等粮食为原料的时代,开创了以木薯等非粮生物质能源产业的新时代,非粮生物质能源产业的优势日益凸显。

3 木薯酒精的优势

实践证明我国过去以粮食为原料生产燃料乙醇,不符合国情,利用木薯作为燃料乙醇生产原料,符合国家“非粮替代”的要求。木薯属非粮食农产品,是中国主要的热带作物之一,它对土质的要求低,耐旱、耐瘠薄,符合“不争粮,不争(食)油,不争糖,充分利用边际性土地(指基本不适合种植粮、棉、油等作物的土地)”的国家粮食发展战略,同时发展燃料乙醇也很符合当前国家生物质能源发展战略,有利于保障国家粮食安全和能源安全。种植木薯还有利于拉动农业,改善农村贫困人口的生产生活状况,可形成农业产业化和生态经济、循环经济的模式,促进区域经济的发展。

根据全国土地资源调查办公室统计,我国有荒草地7.39亿亩、盐碱地1.53亿亩,总量占耕地面积的一半。利用这些土地种植耐干旱、耐贫瘠的薯类、高粱、秸秆作物等,对发展非粮燃料的乙醇生产,潜力巨大。木薯是可再生资源,通过推广良种,木薯产量已由过去的亩产1.3吨提高到现在的亩产2~3吨,最高还可以达到5~7吨。

4 木薯酒精的生产及前景

到“十一五”末期,乙醇汽油将占我国汽油消费量的一半以上,形成以“非粮”原料为主、以技术进步为动力、经济效益为中心、缓解能源供应紧张压力和保护环境为目的的生物液体燃料产业链。 作为我国第一个非粮燃料乙醇试点项目,广西中粮生物质能源有限公司年产20万吨木薯燃料乙醇。主要采取生物法:纤维素、半纤维素,酸解或酶解或发酵单糖(五碳、六碳糖), 化学、 酶催化及微生物发酵乙醇。生物法具有选择性高、活性好、反应条件温和等优点,但原料利用率低、反应时间长、产物浓度低及酶、微生物活性易受影响且纤维素降解和单糖转化所需酶、微生物适于不同反应条件,不能很好耦合。其制约因素是成本和寻找高效、廉价的催化剂、酶和合适微生物的开发等关键技术。

随着大力发展生物质能源,木薯作为燃料乙醇的最佳原料,需求量将会不断扩大。木薯酒精生产面临着原料市场不稳定的困难,还存在着木薯种植缺乏组织性,种植粗放,且品种单一、单产低等困难。木薯生产企业的核心竞争力和发展动力在于搞好木薯产业资源的循环利用,充分利用厌氧发酵技术,实现资源的循环利用,走循环经济发展之路。用鲜木薯生产1吨酒精约生成11m3的酒糟醪液,约含660的COD;经厌氧发酵处理可生成约350m3沼气;350m3沼气约等于0.54吨煤。经厌氧后的酒糟废水其COD指标可以达标用于直接农灌,废渣可作有机肥料还田或作食用菌的培养基生产食用菌。合浦当地的农民用木薯渣与鸡粪混合再发酵后作蛋白合成饲料喂猪,已取得良好的经济效益。

5结语

燃料乙醇直接打通了第一产业和第二产业。农民成了“新能源”提供者,这为几千年来以农为本的中国提供了一个新能源由梦想成为现实的可能。以木薯为原料生产燃料乙醇是一条资源消耗低、综合利用率高、环境污染少、经济效益好的可持续健康发展道路,在促进农业和农村发展,提高农民收入方面具有显著的社会效益。

参考文献:

[1]朱锡锋. 生物质热解原理与技术[J]. 合肥:中国科学技术大学出版社,2006:23.

[2]石元春. 一个年产亿吨的生物质油田设想[J].科学中国人,2007,(4):35-37.

[3]雷国光. 用纤维质原料生产燃料乙醇是我国再生能源发展的方向 [J]. 四川食品与发酵, 2007, 43 (135): 39-42.

[4]任波. 乙醇汽油转折 [J]. 财经, 2007, (178): 100-102.

[5]张远欣. 燃料乙醇的发展状况 [J].甘肃科技, 2005, (4):127-128.

第3篇:生物质燃料的优点范文

一直以来,中国生物质能源的发展较远落后于风能及太阳能,甚至不少人士认为生物质能源在我国成不了“大气候”。作为中国农业大学教授、生物质工程中心主任的程序则认为,部分人之所以对生物质能有误解,是因为不了解生物质能的潜力和升级换代的技术。

在第一代生物燃油已近极限,第二代纤维素生物乙醇技术、经济可行性久“攻”不克的情况下,“先进生物燃料”特别是热化学途径的生物天然气和木质原料气化合成燃油有望脱颖而出。

《能源》:全球生物质能源的发展经历了第一代生物燃油和第二代纤维素生物乙醇技术的发展,目前,这两种生物质能的发展情况如何?

程序:目前,这两种技术的发展都遇到了瓶颈,这也助长了部分人认为生物质能发展不起来的认识。

发达国家能源界的学者和企业家越来越认识到,第一代生物燃料作车用有不确定性。因为需要和化石燃油掺混,其总用量有限,也就是所谓的“混合墙”限制。

从2010年起,第一代生物燃料增长形势就明显受挫了。2009-2010年产量增长率还有13.6%,而2010-2011年仅有3.1%。

对于第二代生物燃料,在美国曾经呼声很高。但是,虽然经历了连续多年的研发热潮,目前仍没有完全突破商业化的障碍。其关键在于纤维素乙醇的生产成本还远未达到预想的价位。而且,这种技术使用的原料需要用酸、碱等预处理,会造成环境问题。

《能源》:第一代和第二代生物质能技术都难以继续往前发展,那按您的说法,生物质能源产业要靠什么得以推进?

程序:所以,我说现在要提“先进生物燃料”的概念。实际上在2009年,美国环保署就率先提出了要支持“先进生物燃料”研发的原则。所谓先进生物燃料,就是指第一代生物能源以外的一类新型生物燃料。它们的生命全周期的温室气体排放量,比化石燃料低至少50%。

它采用的技术路线有多条,最主要的方式是用木质纤维类作为原料,如林木下脚料和废弃物、秸秆等,通过热化学途径,生产生物合成液体或气体燃料,英文为Biomass to Liquids,简称 BtL。

《能源》:“先进生物燃料”的最大特点是什么?与前面两代技术相比,“先进生物燃料”有哪些优点?

程序:生物质的组成成分,一般来讲可以分为六类:淀粉、脂肪、蛋白质、纤维素、半纤维素、木质素。第一代生物质能技术利用的成分是淀粉、脂肪、蛋白质。第二代技术用的是纤维素。

但事实上,生物质所含能量中,淀粉、脂肪、蛋白质占40%,纤维素占了20%,剩下占40%的半纤维素和木质素在前面两种方式中并不能被利用。唯一能全部利用这六大类成分的方法是燃烧,也就是通过生物质电厂,但它的热量转化效率在这几种方式中是最低的,是最不经济的方式。

通过热化学方式生产“先进生物燃料”,恰恰能利用和转化半纤维素和木质素,显著提高生物质能的转化效率,而且大大拓宽了原料的来源。

生产出的生物合成燃料,属于所谓的“直接使用燃油”,就是说,可以在发动机不改装的情况下,以纯态或高掺混比车用,因而完全摆脱了前面所说的第一代生物燃料的“混合墙”制约。

《能源》:那目前,“先进生物燃料”在国外的发展情况如何?是否有成熟项目?

程序:在2009-2013年的5年间,先进生物燃料项目,包括中试和生产性示范的,数目增加了3倍,而它的总产量则扩大了10倍,达到了年产24亿公升(相当于168万吨)。

欧盟国家对用气化-费托合成途径制作生物柴油、航空煤油的热情很高。一些大型企业集团如Uhde、UPM、Axen,也都在进行商业化的努力。

德国的科林(Choren)公司在世界上第一次生产出用木屑合成的液体柴油。2012年9月,科林公司将气化技术转让给德国林德(Linde)集团。林德与芬兰Forest BtL Oy合作,在芬兰建设一座年产13万吨的生物合成柴油/石脑油厂,计划于2016年底投产。

美国伦泰克公司在科罗拉多州建成了BtL商业示范厂并投产,年产能1万吨生物合成燃油。该公司还计划2015年在加拿大安大略省建成年产能为60万吨生物气化合成柴油和航煤厂。

《能源》:那您的意思是,目前这一技术并未达到商业化程度?这其中的制约因素是什么?

程序:是的,目前它的技术成熟度还没有完全达到商业化生产、应用的程度,但是已经达到半商业化了,我认为离商业化也不远了。

根据测算,能够达到有规模经济效益的年生产产能,终端产品应该在20万吨以上。

目前主要的制约因素是,项目规模化后,会需要巨大数量的原料,该如何解决原料问题。还有,如何保证相应的较低成本,以及预处理大幅度增大的难度如何克服。

《能源》:先进生物燃料的研究和开发在我国处于一个怎样的情况?

程序:据我调研,目前采用生物质气化-合成途径制取生物燃油的,主要是武汉阳光凯迪新能源公司在做。这家公司于2013年初取得突破,其年产1万吨的半工业化装置于1月投产,并且连续正常运行至今。

据了解,目前,该公司技术放大到年产20万吨级工业化规模的工艺包已经完成。计划在两年时间内,分别在湖北新洲和广西北海筹建年产能10万和30万吨的生物质气化合成燃油的工厂,原料主要为林业剩余物和进口的棕榈油榨渣、枝叶,预计2016年底建成。

《能源》:先进生物燃料的生产成本大约为多少?是否又是需要补贴才能盈利?我国要发展先进生物燃料,需要面临的阻碍有哪些?

程序:阳光凯迪采用的方式生产出以生物合成柴油为主体的合成燃油,目前的成本是可控制在8000元/吨以内。如果今后规模化了,成本应该会有大幅的下降。

在这种成本条件下,不需要政府补贴,也是可以盈利的。目前,阳光凯迪急待向国家要的不是补贴,而是油品准入市场的政策,希望产品能够到市场上去参与公平竞争的准入。因为我国的油品市场准入具有垄断性,如果阳光凯迪生产的生物合成油不能进入市场合法交易,那阳光凯迪就会陷入困境。

《能源》:那您对我国发展先进生物燃料有哪些建议?

第4篇:生物质燃料的优点范文

关键词:燃料乙醇;废醪液;综合利用;环保;浓缩;燃烧;钾盐

作者简介:王勇(1969-),男,广西横县人,热能工程师,从事包括高浓度有机废液在内的生物质能源技术开发和应用工作。

1引言

随着世界原油价格不断飚升,石油储量不断减少,世界各国都在寻找替代石油的新燃料。生物质是唯一可直接生产液化燃料并可储存的可再生能源,发展以燃料乙醇为主的生物质液体燃料(生物燃油)是开辟我国替代石油的新途径。据专家预测估计,到20__年,我国年生产生物燃油约为600万吨,其中生物乙醇500万吨、生物柴油100万吨;到2020年,年生产生物燃油将达到1900万吨,其中生物乙醇1000万吨,生物柴油900万吨[1]。

“十五”期间,我国燃料乙醇生产得到很大发展。据统计分析,20__年酒精产量约为390万吨,20__年酒精产量将达到450万吨,新增供给量在60万吨左右,而这些新增量中玉米酒精占据绝对比重,目前中国仅有4家定点企业产生燃料乙醇,总产能仅110万吨左右,与500-700万吨的发展目标相比,还有5倍的发展空间[2]。

发酵技术是目前成熟的乙醇生产技术,发展以甘蔗、薯类、甜高粱、木质纤维类生物质为原料的生化燃料乙醇生产是大方向,我国20__年发酵酒精产量368.13万吨[3]。发酵酒精的生产原料主要是淀粉类和糖类,原料来源有限,原料成本比较高,能耗大,生产过程废液排放量大,综合利用和环保处理成本高。燃料乙醇产品与石油产品还没有竞争优势,生产企业必须依赖政府补贴才能艰难生存。所以,保障原料供应、控制成本、环保是开发燃料乙醇三大要点。

2废醪液综合利用概况

酒精生产原料多样化,所以,酒精废醪液的综合利用方法较多,其经济效益也不尽相同。

玉米、小麦、陈化粮为原料的酒精生产排放的废醪液,蛋白质成分比较多,采用DDGS工艺生产蛋白饲料,其工艺性、经济和环保效益已经得到多家使用单位肯定。

木薯、甘蔗为原料的酒精生产排放的废醪液,因为其含钾量高,蛋白质成分少,较难做成蛋白饲料,我国南方对这类废醪液的综合治理做了不少尝试,农灌法和浓缩燃烧法被认为是较好的处理工艺。“废醪液对水环境会造成严重危害,但同时废液中含有大量农作物所需的营养物质,所以它又是一种宝贵的资源。据分析,废醪液中含有机物6-8;P2O50.02-0.04;K2O0.6-1.2;总氮0.3-0.5。废醪液中的有机质,经实践证实,能改善土壤的物理、化学和生物性质,可作为农田肥料[4]。目前,农灌法主要是使用运输工具送往田地喷灌,与巴西大规模铺设输送管道有很大距离,对全年上规模生产酒精是否具有可行性有待研究。浓缩燃烧法具有处理彻底、不受地理、气候、生产规模影响等优点,通过浓缩—燃烧—产蒸汽—发电,可以合理利用废醪液中的生物能,具有一定经济效益,在南宁糖业集团蒲庙造纸厂、广西杨森酒精有限公司、广东省遂溪特级酒精酿造有限公司有成功经验。但是,目前运行的浓缩燃烧系统对废液中钾资源的综合利用明显不足,“年产2.5万吨酒精”项目,纯燃烧酒精废液,每天可回收钾灰7-10t,灰分的K2O含量10-30[5],回收率不到50,含钾量低,利用价值低,只局限于以100元/吨左右的价格卖给复合肥厂用作复混肥原料。另外,目前运行的浓缩燃烧系统还存在电耗高、锅炉炉膛结焦、烟道堵灰等问题,所以,与浓缩燃烧技术的高投入比较,其经济效益不够明显、有待提高。

木质纤维原料的乙醇生产刚刚起步,其废液的处理技术还缺乏研究,按现有技术5-6吨木质纤维素生产1吨乙醇计算,吨乙醇排出的废液含生物质能更多,灰分与糖蜜酒精废液的灰分相似,利用浓缩燃烧后产汽、发电更多,经济效益更明显。

3浓缩燃烧处理酒精废醪液同时回收钾盐技术简介

浓缩燃烧处理酒精废醪液同时回收钾盐技术主要是回收废醪液的生物质能产汽、发电同时充分利用废醪液钾资源,直接生产农用级以上的钾盐(K2SO4),大大提高废醪液的综合利用水平。我国是一个严重缺钾的国家,80的钾肥依赖进口,本技术为我国开辟了新的钾源,产品不存在销售问题,废醪液综合治理的社会、经济、环境效益更可观。

下面以配套年产10万吨燃料乙醇(废糖蜜原料)生产线的浓缩燃烧处理酒精废醪液同时回收钾盐系统对其技术路线、主要设备、投资收益作简单分析:

3.1技术路线

3.2主要设备

多效在线自清垢蒸发浓缩装置两套、燃烧废液锅炉两台(35t/h,P=2.5Mpa,400℃)、背压发电机组两套、钾灰分离装置两套、钾盐装置两套、控制装置两套、钾盐包装机一台。

3.3关键技术

3.3.1在线自清垢蒸发浓缩装置:采用在线清垢,提高蒸发负荷,减少设备投资,减少停机清垢时间。

3.3.2纯燃烧废液锅炉:采用双重燃烧、多级配风、在线清灰技术组合,保证灰分含钾纯度和较低的炉膛出口烟温,减少炉膛结焦、烟道堵灰机会,延长锅炉连续运行时间。

第5篇:生物质燃料的优点范文

关键词 新能源;纤维素酶;应用

中图分类号Q1 文献标识码A 文章编号 1674-6708(2011)48-0096-01

随着资源枯竭、能源短缺及环境污染等问题日益加剧,世界各国都在寻找开发新能源。纤维素是植物材料的主要组成部分,也是地球上数量最丰富的可再生资源。但是这些纤维素大部分没有被利用,造成巨大的资源浪费,还造成环境污染。纤维素酶是一组能够降解纤维素生成葡萄糖的酶的总称。利用纤维素酶将纤维素转化为人类急需的能源和化工原料,对于人类社会解决上诉问题具有重大的现实意义[1]。

1 纤维素酶的组成及其来源

纤维素酶的组成比较复杂,根据其催化反应功能的不同可分为内切葡聚糖酶(1,4-β-D-glucan glucanohydrolase或endo-1,4-β-D-glucanase,EC3.2.1.4),来自真菌的简称EG,来自细菌的简称Cen、外切葡聚糖酶(1,4-β-D-glucan cellobilhydrolase或exo-1,4-β-D-glucannase,EC.3.2.1.91),来自真菌的简称CBH,来自细菌的简称Cex)和β-葡聚糖苷酶(β-1,4- glucosidase,EC.3.2.1.21)简称BG。

微生物是纤维素酶的最主要来源,其余生物生产的纤维素酶缺乏大规模应用的实际意义,采用微生物生产是最为方便和有效的方法[2]。不同微生物合成的纤维素酶在组成上有显著的差异,对纤维素的降解能力也大不相同。细菌与放线菌生产的纤维素酶产量均不高,在工业上很少应用。而真菌具有产酶的诸多优点:产酶能力强,产生的纤维素酶为胞外酶,便于酶的分离和提取,且产生纤维素酶的酶系结构较为合理;酶之间有强烈的协同作用,降解纤维素的效率高, 是工业生产的主要菌种[3]。如木霉属(Trichoderma)、曲霉属(Aspergillus)、青霉属(Penicillium)和枝顶抱雄属(Acremonium)的菌株等就是对纤维素作用较强的菌种。

2 纤维素酶的应用

2.1 在食品业中的应用

纤维素酶可用于谷物和马铃薯中淀粉类的有效分离,果蔬汁及橄榄油的提取,豆类发芽中豆衣的去除,从大豆和叶子中分离蛋白质等方面[4]。它在饮品和调味品的酿造中也有广泛应用。在酱油的酿造过程中添加纤维素酶,既可提高酱油浓度,改善酱油质量,又可缩短生产周期,提高产率。在啤酒生产的大麦发芽过程中加入它可帮助大麦发芽,还可以改进啤酒的过滤性能,有利于酒精蒸馏。而在饮料生产中,它还可促进汁液的提取率,使汁液澄清透明,提高可溶性固形物的含量,并可将果皮渣综合利用。

2.2 在畜牧业上的应用

纤维素酶是畜牧业的一种新型饲料添加剂,能够分解饲料中结构复杂的纤维素,生成易消化的葡萄糖,便于动物吸收。该酶主要有3个作用:1)消除抗营养因素;2)补充内源酶;3)改善胃中微生态平衡。大量试验[5-6]表明,在饲料中添加纤维素酶对各种动物的饲喂效果十分显著。

2.3 在制浆造纸业中的应用

回收利用废纸是我国制浆造纸工业解决原料和环保问题的有效途径。酶法旧纸脱墨可以解决废纸利用过程中的环保及纤维质量下降问题。传统的脱墨方法易使纸的网状结构崩溃,纤维溶胀,纸和墨之间粘接力下降。纤维素酶法旧纸脱墨技术是指利用生物酶代替化学药品处理旧纸, 使油墨从纤维上游离出来,较之旧法具有游离度高、物理性能优、滤水性能好、白度高和残余油墨量低的优点,并且可以缩短脱墨时间[7],应大力推广应用。

2.4 在生物质能源开发上的应用

资源的日渐枯竭,大规模开发利用可再生资源显得非常重要。而生物质是唯一可以转化为液体燃料的可再生资源,将生物质转化为液体燃料,不仅能够弥补如石油、煤炭、天然气等化石燃料的不足,而且有助于保护生态环境。纤维生物质中的纤维素可被纤维素酶降解生成还原糖,再利用还原糖的发酵来生产具有更强的可持续性的第二代生物燃料-纤维素燃料乙醇。这对解决人类的发展问题具有化时代的意义。目前生物乙醇主要是采用淀粉为原料生产,其成本价较高。为此,以廉价的农作物秸秆等生物废料为原料的纤维素生物乙醇生产技术已成为研究的热点,全球已有几十套中试生产线。我国现在也对生物燃料这方面积极开展科学研究与利用工作。

2.5 在其他方面的应用

纤维素酶也可用于中药的提取。中药酶法提取是选择适当的酶,将细胞壁的组成成分水解或降解,破坏细胞壁结构而提取有效成分。与传统方法相比,该法具有温度低、效率高、无污染等优点[8]。

3结论

纤维素酶可以安全、高效地降解天然纤维素,这是其它处理方式无法比拟的。特别是在当今能源短缺、污染严重的时代,已经引起全世界的关注,其研究也取得了极大进展。随着研究的不断深入,相信在不久的将来,纤维素酶的应用范围会更加广泛,在更多领域中发挥更大的作用,尤其是在未来生物质能源的开发上。

参考文献

[1]刘小杰,何国庆,袁长贵.康氏木霉液体摇瓶发酵产纤维素酶的初步研究[J].食品科学,2003,24(1):125-128.

[2]武秀琴.纤维素酶及其应用[J].微生物学杂志,2009,29(2):89-92.

[3]陈红歌,张东升,刘亮伟.纤维素酶菌种选育研究进展[J].河南农业科学,2008,8:5-7.

[4]邵学良,刘志伟.纤维素酶的性质及其在食品工业中的应用[J].中国食物与营养,2009,8:34-36.

[5]王振来.高次粉饲粮中添加复合酶制剂对仔猪生长和消化的影响[J].河北畜牧兽医,2005,21(16):3-4.

[6]周娟,杨焕民,姜宁,等.纤维素酶对肉仔鸡生产性能和营养物质利用的影响[J].黑龙江畜牧兽医,2007,3:42-43.

第6篇:生物质燃料的优点范文

专家表示,在目前国际油价高企、国内减排压力剧增的背景下,加快生物质燃料乙醇产业的发展势在必行,而推进纤维素燃料乙醇技术将为燃料乙醇产业摘掉“与民争粮”的帽子。

一、“高油价”时代的新秀

4月15日纽约原油期货价格报收于每桶108.11美元,上涨0.9%。“高油价”时代迫切呼唤燃料替代品的出现。同时,我国提出在“十二五”期间要将我国非化石能源占一次能源消费比重提高到11.4%,主要污染物排放总量减少8%至10%,在核电大规模开发面临安全性质疑的今天,包括燃料乙醇在内的生物质能的开发提速存在必要性。

燃料乙醇产业是当前可行性最高的液体燃料替代方案,在普通汽油中添加10%的燃料乙醇,所形成的乙醇汽油具有的能量利用效率高、尾气排放污染少等优点。截至目前,中国十个省区正在施行这种方式,年消耗乙醇汽油1700万吨,占中国汽油消耗总量的20%以上。

相比较电动汽车,在车用汽油中添加燃料乙醇的方式要容易操作的多,不需要对汽车的动力系统做大规模的改装升级,就能降低对化石能源的依赖,这也决定了燃料乙醇利用在环保领域存在着巨大的市场空间

燃料乙醇产业曾因可能影响粮食安全而引发争议,对此,中粮集团生化能源事业部总经理岳国君表示,目前我国燃料乙醇产业消耗粮食所占比例仅为0.8%,远没有白酒企业消耗得多。

据了解,中粮生化事业部探索发展“非粮”燃料乙醇生产技术取得进展,广西中粮生物质能源有限公司已成为以木薯为原料、年产20万吨燃料乙醇的“非粮”燃料乙醇工厂。数据显示,2010年我国的燃料乙醇产量约为173万吨,其中20万吨为木薯制成。

二、有望消除“与民争粮”

专家分析:提取燃料乙醇的原料正在由最早的玉米、小麦等富含糖分的粮食作物逐渐向玉米秸秆等富含纤维素的农林废弃物过度,一旦从纤维素转化为乙醇的技术成熟,我国燃料乙醇产业将进入发展快轨,“与民争粮”的问题将彻底解决。

目前,中粮集团与国内外知名大学和科研机构合作,正在攻克将纤维素转化为2代燃料乙醇的新技术。技术一旦成熟,各种农作物秸秆都可以用来生产燃料乙醇,这对于我国能源结构调整和农业产业化的推动都会产生巨大影响。据估算,中国每年产生大约6亿吨农业废弃物(主要是秸秆),除了用于饲料和还田之外,还有2亿吨可以被用来生产4000―5000万吨纤维素乙醇,这几乎等于目前中国汽油总消耗量的60%~70%。

第7篇:生物质燃料的优点范文

关键字:生物质能应用生物质发电

中图分类号:P754.1文献标识码: A

一、发展生物质能意义

目前,世界上使用的能源主要为矿物能源,主要包括煤炭、石油、天燃气。矿物能源的不断开发将最终将导致能源的短缺,也造成了全球环境污染严重等问题。人类在经济持续发展过程中正面临着人口、资源和环境的巨大压力,如何使能源、社会、经济、环境协调和可持续发展是当前需要解决的核心问题。

生物质能是一个重要的能源,预计到下世纪,世界能源消费的40%来自生物质能,生物质作为新能源早已引起世界各国政府和科学家的关注。国外生物质能研究开发工作主要集中于液化、气化、固化、热分解和直接燃烧等方面。如日本的阳光计划、印度的绿色能源工程、美国的能源农场和巴西的酒精能源计划等发展计划。其它诸如丹麦、荷兰、德国、法国、加拿大、芬兰等国,多年来一直在进行各自的研究与开发,并形成了各具特色的生物质能源研究与开发体系,拥有各自的技术优势。随着社会经济的发展,生活水平的提高,环保意识的加强,对生物质能的高效合理的开发利用,必然愈来愈受重视。科学利用生物质能,加强其应用技术的研究,具有十分重要的意义。

我国现有森林、草原和耕地面积41.4亿公顷,理论上生物质资源可达65亿吨/年以上。以平均热值为15,000kJ/kg计算,折合理论资源最为32.5亿吨标准煤,相当于我国目前年总能耗的3倍以上。我国生物质能研究开发工作起步较晚。随着近年经济的飞速发展,政府开始重视生物质能利用研究工作,现今已建立起一支专业研究开发队伍,并取得了一批高水平的研究成果,初步形成了我国的生物质能产业,我国现阶段生物质能源主要用于秸秆发电。

二、秸秆发电工艺

农作物秸秆发电在发达国家己受到广泛重视,在奥地利、丹麦、芬兰、法国、挪威、瑞典、美国、加拿大等国。目前我国秸秆发电主要工艺分三类:秸秆锅炉直接燃烧发电、秸秆~煤混合燃烧发电和生物质气化发电。

1、生物质锅炉直接燃烧发电

目前国内外广泛应用的生物质直燃技术为振动炉排直接燃烧锅炉,该技术在国外已经有成熟经验,并已大量投产。目前国内一些锅炉厂家也拥有这项技术,向在国内辽宁、吉林、黑龙江、山东等省陆续建成投产。

振动炉排秸秆直燃炉的工艺流程:粗处理后的燃料经给料机送入炉堂,燃料自然落入炉排前部,在此处由于高温烟气和一次风的作用逐步预热、干燥、着火、燃烧。燃料边燃烧边向炉排后部运动,直至燃尽,最后灰渣落入炉后的除渣口。

直燃炉易存在的问题:由于秸秆灰中碱金属和氯的含量相对较高,因此,烟气在高温时(450℃以上)对过热器具有较高的腐蚀性。此外,飞灰的熔点较低,易产生结渣的问题。如果灰分变成固体和半流体,运行中就很难清除,就会阻碍管道中从烟气至蒸汽的热量传输。严重时甚至会完全堵塞烟气通道,将烟气堵在锅炉中。针对这些问题各锅炉厂家在锅炉设计上,在锅炉结构、锅炉材料等方面采取了相应措施来解决这些问题,效果仍需实际运行中不断检测改进。

2、生物质~煤混合燃烧发电

循环流化床是一种新型的环保锅炉,它主要采取了炉内物料循环、低温燃烧、可进行炉内脱硫的新技术。由于它采取了炉内物料循环,对燃料的适应性强,它可以燃用低位发热值2000~7000kcal/kg的矸石、原煤、煤泥和洗中煤等;还可以燃用热值比较低的糖渣、木霄、各种生物质秸秆及各种垃圾等。

该炉虽然有燃用各种燃料的特性,但是在燃烧的过程中却有不同的效果,或多或少对锅炉都有一定的影响。掺烧糖渣、木屑、各种生物质秸秆及各种垃圾,需要重新计算风量等,并有稳定的燃料来源,相对固定的掺烧比例。循环硫化床锅炉对燃料的适应性非常强,无论燃烧哪种燃料首先要核算经济性,而后计算掺烧量、最后再进行人员培训、注意事项、运行调整等。

根据国家关于可再生能源的相关法律规程规定,生物质发电项目主要为农林生物质直接燃烧和气化发电、生活垃圾焚烧发电和垃圾填埋气发电及沼气发电项目。 现阶段,采用流化床焚烧炉处理生活垃圾的发电项目,因采用原料热值较低,其消耗热量中常规燃料的消耗量按照热值换算可不超过总消耗量的20%。其他新建的生物质发电项目原则上不得掺烧常规燃料,否则不得按照生物质发电项目进行申报和管理。国家鼓励对常规火电项目进行掺烧生物质的技术改造,当生物质掺烧量按照热值换算低于80%时,应按照常规火电项目进行管理。

3、生物质气化发电

生物质气化发电技术的基本原理是把生物质转化为可燃气,再利用可燃气推动燃气发电设备进行发电。它既能解决生物质难于燃用而又分布分散的缺点,又可以充分发挥燃气发电技术设备紧凑而污染少的优点,所以是生物质能最有效最洁净的利用方法之一。气化发电过程包括三个方面,一是生物质气化,把固体生物质转化为气体燃料;二是气体净化,气化出来的燃气都带有一定的杂质,包括灰份、焦炭和焦油等,需经过净化系统把杂质除去,以保证燃气发电设备的正常运行;三是燃气发电,利用燃气轮机或燃气内燃机进行发电,有的工艺为了提高发电效率,发电过程可以增加余热锅炉和蒸汽轮机。

目前国际上采用的生物质气化发电技术有生物质整体气化联合循环(B/IGCC)和CAPS-II/250MT型热分解系统。

传统的B/IGCC技术包括生物质气化,气体净化,燃气轮机发电及蒸汽轮机发电。由于生物质燃气热值低,炉子出口气体温度较高(800℃以上),要使IGCC具有较高的效率,必须具备两个条件,一是燃气进入燃气轮机之前不能降温,二是燃气必须是高压的。这就要求系统必须采用生物质高压气化和燃气高温净化两种技术才能使IGCC的总体效率达到较高水平(>40%),否则,如果采用一般的常压气化和燃气降温净化,由于气化效率和带压缩的燃气轮机效率都较低,气体的整体效率一般都低于35%。

从纯技术的角度看,生物质IGCC技术可以大大地提高生物质气化发电的总效率。目前国际上有很多先进国家开展这方面研究,但由于焦油处理技术与燃气轮机改造技术难度很高,仍存在很多问题,如系统未成熟,造价也很高,限制了其应用推广。以意大利12MW 的IGCC示范项目为例,发电效率约为31.7%,但建设成本高达25000元/kW,发电成本约1.2元/kW.h,实用性仍很差。

CAPS-II控气型秸秆燃料热分解系统,由热分解系统+余热(燃气)锅炉+蒸汽轮机+尾气处理设备组成。

CAPS-II热分解系统的热分解气化反应室在缺氧和微负压状态下工作。热分解过程中所释放的热量可通过调整热分解气化反应室供风量对其进行控制,使其少于完全燃烧所释放的热量。在这种亚化学当量的条件下,农作物秸秆燃料燥、加热和高温分解,释放出水气和可挥发性组分。秸秆燃料中不可分解的可燃部分在热分解气化反应室末端中燃烧,同时为热分解气化反应室提供热量直至成为灰烬。在热分解气化反应室中所释放出的可燃气体通过一个紊流混合区后进入燃气锅炉燃烧室,点火器位于紊流混合区内,附加的助燃空气使氧化反应过程得以完全、彻底地实现。

余热锅炉与CAPS-II热分解气化反应室连接形成一个整体,对热分解气化反应室产生的可燃气体的完全氧化燃烧,并通过热交换将烟气中的热量转化成过热蒸汽。过热蒸汽推动汽轮发电机组发电。

当控制工况允许在热分解气化反应室中出现过载状态时,污染控制作用被降低并造成两个不良后果。首先,气体流速将增大到一定范围,使长链的化合物无法完全氧化分解并送入燃气锅炉。大量的烟尘流入燃气锅炉将超过其燃烧容积,使未反应的烟尘由烟囱排入大气。其次由于农作物秸秆在热分解气化反应室的停留时间可能会被缩短,使排放的灰渣含碳量增加,无法达到环保要求。所以当用户有过载燃烧的要求时或用户经常需要过载燃烧,将会加重尾气处理系统的负荷,同时也不能保证排放灰渣中的含碳量。

三、结束语

生物质能源在未来将成为可持续能源重要部分。我国幅员辽阔,但化石能源资源有限,生物质资源丰富,发展生物质能源具有重要的战略意义和现实意义。合理开发生物质能源将涉及农村发展、能源开发、环境保护、资源保护、国家安全和生态平衡等诸多利益。随着我国国民经济的高速发展和城乡人民生活水平的不断提高,既有经济、社会效益,又能保护环境的生物质发电技术的利用前景将会越来越广阔。

参考文献:

[1]《可再生能源中长期发展规划》中华人民共和国发展和改革委员会,2007年9月.

第8篇:生物质燃料的优点范文

一、烧水做饭用沼气

煤海。这是山西叫的最响的一张名片。正是因为煤炭资源十分丰富。因而多年来人们一直把煤炭作为生活中不可或缺的重要能源。近年来,尽管我省城镇居民的生活逐步实现了气化,即烧水做饭用天然气,冬天采暖用暖气,但是集中供暖的锅炉依然要烧煤,城中村农民自行采暖还是以煤为燃料。一句话,城里人的生活仍然做不到彻底离不开煤。至于在广大农村,煤炭自然还是农民的当家燃料。这不,省政府为了解决农村困难家庭冬季取暖问题,近年来每年为每户家庭发放一吨过冬煤。

然而,名不见经传的水滩村却率先和煤炭说“再见”了。他们通过大力发展农村新型能源,独辟蹊径走出了一条不用煤炭过日子的新路子。

水滩村是太行山上普普通通的一个小山村。全村有71户人家,216口人,别看村子不大,人口不多,但是他们却在农村新能源建设中独领。几年前,村里发展养殖业建起了一个养鸡场。然而,他们没有只盯着养鸡赚钱,而是借着养鸡的便利,又以鸡粪为原料建起了一座200立方米的沼气池和50立方米的储气柜,使得全村一举实现了集中供气,家家户户不再烧煤烟熏火燎,烧水做饭用上了清洁的沼气。

村民毕世青告诉记者,过去烧煤做饭既费时又费力,需要提前把煤火烧旺,否则,火苗起不来干着急也没办法。而且,一顿饭坐下来,厨房里到处都是煤灰。这几年用上沼气后,做饭变得轻松多了,轻轻一打开关,火苗子就腾腾的,几乎和天然气差不多,用起来十分方便。从费用来说,也挺合算,五口之家一月花钱不超30元。

二、冬天取暖用地暖

每到冬天,都是煤炭消费的高峰期,不论城镇集中供暖的大型锅炉,还是乡下农民自行取暖的小火炉,无一不是以煤炭作为燃料。然而,水滩村的村民取暖却不用煤,而是靠地暖,而地暖所需的燃料则是生物质能,即农作物的秸秆、树枝、坚果壳等农业生产后的废弃物。

他们的地暖大致是这样的:将房屋的地面下边按照建筑结构学、流动力学和热力学原理,建成科学的空心结构,使其作为一个巨大的燃料仓储室暨燃料燃烧室,在每年采暖期到来时,将作物秸秆和树枝、坚果壳等粉碎到规定要求,然后填充进来,压实、喷水,使其达到规定的密实度和湿度,然后点燃焖烧,让烟气和热量不断循环,整个地暖就像一张大火炕一样,源源不断供暖。

记者走进村支书冯建林的家,只见屋内窗明几净一尘不染,无论客厅还是卧室都十分整洁。主人高兴地告诉记者,自从用上地暖后,冬天家里就再不用火炉子取暖,再不用搬煤倒碳了。地暖的优点可多了:一是暖和一由于整个屋内的地面都是发热面,散热面积比暖气片和火炉子大出许多倍,所以就是在数九寒天,家里的温度也能保持在18度左右;二是家里干净整齐一生火炉,家里免不了煤灰和烟尘污染环境,摆放火炉安装烟筒会把家里搞的凌乱,而地暖就没有这些麻烦,把暖气片的地方都省了,家里布置起来会格外整齐;三是特别省心省事一地暖一冬天只需添加两次燃料,出两次炉灰,不像生火炉天天都要照看火,一不小心就会熄灭。还有更大的一个优点是,它还能很好的控制室内温度。天气严寒时,把地暖的进风口开大些,炉膛内燃烧就旺一些,室温就会升高,反过来,天气温和时,风门关小些,还能节省燃料。

三、新能源成就“无煤村”

水滩村不仅用沼气和地暖很好地替代了村民做饭取暖对煤炭的需求,而且在村里还全面推广了太阳能这一新型能源。记者看到,村民家家户户的房顶上都安装了太阳能热水器,村里的街道上也是清一色的太阳能路灯。

村支书冯建林说,沼气、生物质能、太阳能等新能源在农村有着可建、可用、可行的好条件,发展养殖业为沼气提供了条件,发展种植业为生物质能提供了原料,太阳能则是老天赐给人们的免费能源。水滩村之所以能够告别煤炭,成为“无煤村”,依仗的就是这些新能源。

第9篇:生物质燃料的优点范文

化石燃料储备的枯竭、全球气候变暖、人口的持续增长、高成本的废物回收及存在的其他问题,都促使了可再生能源或消费品的出现。作为石油能源的替代品,生物质的生产也将会得到发展。这就提供了一个生物炼制的概念,即剩余生物质中的成分可以提取出来并利用它们的功能来生产非食品和食品物质、工农业生产中间体和合成的中间体。其涉及到3个重要的工业领域:分子领域、材料领域、能源领域。以生物残渣为原料不仅能合理利用资源,而且可以减少对环境的危害。基于工厂化生产的生物炼制,可以发展的更普遍。废料和副产品的减少不仅与工厂化生产有关,而且还和属于不同公司的工厂、不同生产过程之间的互补有关。初级产生的废料和副产品,可以作为二级生产的原料或是三级生产的能量来源。原材料、副产品流动的最佳化与不同生产之间能源的最佳化联合在一起,使通过工业代谢实现的生物炼制更普遍化[1]。生物产物对石油产品的取代将会发展成新的生物经济,也会产生新的可持续发展生物工业化过程。工业化的生物炼制,将和基于12个绿色化学产生的新过程有关(如清洁过程、原子经济、可再生原料等)。生物技术,尤其是白色生物技术将会在生物转化(酶和微生物)与发酵工程中占有很大比例。世界上每年都会产出大量的木质纤维素废料,包括农业残渣、食品农业废弃物、绿色食品废弃物、修剪树木残留物、城市有机和造纸部分的剩余固体废料。目前,常用的处置方法对环境和经济不利,包括填埋、焚化,甚至饲养动物。作为替代方案,应开发使废物增值的高附加值产品,也就是废物升级,这具有很大的经济效益和生态优势[2]。可通过升级固体废物来制得范围广泛的高附加值产品,如酶、生物燃料、有机酸、生物聚合物、生物电、食品和药物等。

1废物中的生物燃料

1.1生物乙醇

世界上乙醇生产量较大的国家是美国、巴西和中国。2009年,美国用玉米生产了39.5×109L乙醇,作为第二大乙醇生产国的巴西用甘蔗生产了30×109L乙醇[3]。2015年,生物乙醇市场达到100×109L。事实上,美国能源部已经设定了一个到2030年年产2.7×109L可再生燃料的目标,而欧盟也制定了一个强制性的目标,到2020年,可再生燃料的比例占到10%。然而,利用食物生产乙醇会造成食品供应的竞争,所以唯一可持续化的方法就是利用木质纤维素的剩余物来生产乙醇。其优势在于地球上含量丰富、分布广泛,而且不和食品供应竞争。木质纤维素转换成乙醇主要涉及:①对木质素的预处理和使细胞壁多糖显露出来;②利用酶分解纤维素酶的混合物;③用乙醇工业酵母发酵糖。现在已经有很多预处理方法得到了发展,如物理处理、化学处理(碱性或酸性)、生物处理和物理化学处理。其中,物理化学处理包括蒸汽爆炸、氨纤维膨胀、超临界流体处理和热化学处理[4]。预处理后,用酸或酶使纤维素和半纤维素水解成单糖(己糖和戊糖)。相比较而言,通过纤维素酶水解纤维素是一个首选的方法,因为它与酸水解比较,具有产量高、低腐蚀性、毒性小的优点[5]。然而,对于提高纤维素水解成乙醇的这一过程仍然面临很大的挑战,尤其是酶成本投入仍然是这一技术的关键,降低酶成本的努力还在进行中,这包括通过提高酶的专一性来提高酶的活性,或通过直接进化或定向位点诱变来使酶的剂量最小化,或者通过提高发酵过程中纤维素浓度,使用便宜的取代物生产酶来降低酶生产的成本等。酶水解可能分步发生,这叫做分步水解发酵(SHF),或是己糖的糖化和发酵同时发生(SSF),或是己糖和戊糖的糖化与共发酵同时发生(SSCF)。它们最终的目标是一步到位地将木质纤维素加工成生物乙醇[6],所有步骤都发生在一个单一的反应器里,在这个反应器中微生物可将预处理的生物量转化为乙醇。考虑到当地的气候条件,必须执行严格的木质纤维素废弃物鉴定要求,要考虑到可行性的处理方法。例如,在法国、意大利、西班牙、土耳其和埃及等国,粮食作物、橄榄树、西红柿和葡萄加工的剩余物提供了丰富的木质纤维素来源,在这些国家,他们可以用这些来源作为生产乙醇的原料,这就使他们拥有了生产1.3×108t油当量的乙醇潜力。由于在其他的地中海国家缺少足够的农作物剩余物供应,所以他们正打算用城市固态废弃物作原料生产乙醇。地中海盆地每年生产18×108t废弃物的一半最大程度上可以生产3000×108t油当量的乙醇,而其中的管理将成为最关注的问题[7]。很多水果生产中的废弃物,像香蕉皮、芒果皮、菠萝皮已经成功地作为取代物生产乙醇。非洲广泛生产的木瓜废弃物也已经成为最常见的替代品用于酵母发酵生产乙醇[8],而且通过黑曲霉和酿酒酵母同时糖化发酵24h后,能达到生产乙醇的最大产率5%。最近,葡萄废弃物也被酿酒酵母发酵成乙醇[9]。小麦秸秆、水稻秸秆、燕麦和大麦秸秆用于生产生物乙醇的事例也被大量报道,玉米秸秆和大豆剩余物也被用于发酵生产乙醇[10]。Mutreja等人[11]对8种不同木质纤维素废弃物的预处理进行了研究,并且在30℃下酸处理得到乙醇的最大产率为1.42g/L。Singh和Jain[12]报道了蔗糖作为替代物分批生产乙醇的事例。使用城市固体废弃物生产乙醇这一做法是一个较有前途的战略,可以满足世界能源的需求和减少温室气体排放。尤其是用可降解的城市固体垃圾对废物进行管理,减少二氧化碳排放量,对改善水的质量、增加土地利用率和生物多样性带来很多好处[13]。之前的一项研究表明,约52%的发酵用葡萄糖来源于可降解城市固体垃圾。最近,可降解废弃物,像厨房垃圾、花园垃圾和废纸都很适合于替代乙醇的生产,在优化条件下可产生约90%的葡萄糖。所以,可降解的城市固体废弃物作为生物乙醇生产的原料拥有很大的优点,既可以减少垃圾填埋与焚烧,还可以减少温室气体的排放。作为通过一步发酵直接得到乙醇的例子,利用梭状芽孢杆菌植物发酵柳枝得到乙醇已经成为现实。梭状芽胞杆菌被选来用于一步发酵,是因为可以在不同的底物上生长,而且产出的乙醇中有很少的醋酸盐副产物[14]。研究显示,固体发酵中,乙醇的最大体积分数在第12天测出来,醋酸盐和乙醇的体积分数在开始的前6d接近,从第6天到第14天乙醇体积分数显著增加并且超过了醋酸盐的最大体积分数。不同的是,在淹没状态下发酵,醋酸盐和乙醇的体积分数增加到第6天后就不再增加了。Kamei等人[15]报道了只用单一微生物而不用额外的化学物质或酶将木本植物发酵成乙醇的事例。他们利用白腐病真菌将好氧条件下的脱木质化和厌氧条件下的糖化发酵联合在一起,这种真菌能够在有氧固态发酵条件下选择性地降解木质素,从而直接从好氧培养液中生产乙醇。经过56d的有氧发酵后,40.7%的木质素和葡萄糖被降解,并且在有氧无额外添加纤维素的条件下,20d后会生成乙醇最大理论值43.9%。

1.2生物丁醇

丁醇是ABE(丙酮、丁醇、乙醇)发酵的一种产品[16],它是一种非常好的化学原料(在塑料工业中)。更重要的是,相比乙醇而言,它是一种更好的燃料,它腐蚀性弱、吸湿性弱、污水溶解性好。由于蒸汽压低,因此蒸汽爆炸可能性小,同样的丁醇和乙醇,丁醇的能量比乙醇高30%,与目前未经改装的车使用的汽油相比,它拥有更大的混合比例[17]。丁醇可以通过一系列微生物发酵制得,其中最常用的是丙酮丁醇梭菌和拜式梭菌来进行发酵制得。

1.3生物氢

氢气正在变成良好的新型能源,因为它清洁、可循环,而且可以用于燃料电池来直接提供电能[18]。发酵得到的氢气来源于有机底物的发酵转化,而这是由不同细菌使用多元酶体系体现出来的,这个体系涉及到3个相似的无氧转化。暗发酵反应不需要光源,所以它可以24h持续发酵[18]。光发酵不同于暗发酵,因为它只在有光的条件下才反应,可以通过绿藻进行直接的光发酵或是蓝藻进行间接的光发酵得到。光发酵需要厌氧喜光细菌,而暗发酵需要厌氧发酵细菌。最近的研究工作中发现,光发酵细菌能利用几种不同的废弃物材料作为碳源来进行生产氢气产物的发酵。利用发酵技术将木质纤维素转化成氢气产物,包括纤维素水解和氢气产生两步,而这两步发生在一个反应器中,或者说是两步过程,纤维素水解是第1步,紧接着是无光条件下产生氢气,这是第2步。

1.4生物高聚物

潜在的可以生物降解的聚合物,尤其是可以从农业资源中得到的聚合物逐渐被认识到。可降解塑料从可再生资源中制得,它不仅可以降低石油消耗速率,还可以减少塑料垃圾的处理问题,因为它可以在土壤、堆肥甚至海洋环境中得到降解。这个所谓的农业聚合物,可以取代传统的塑料材料用于食品包装业。聚羟基丁酸酯和聚羟基脂肪酸酯是通过生物技术得到的主要可降解聚合物;聚乳酸也是一个可降解聚合物,它是由木质纤维素得到的乳酸单体聚合而成。

1.5生物电

在生物废弃物处理方面微生物燃料电池(MFCs)是一个新想法,通过微生物新陈代谢的途径将废弃物转变成生物电[19]。MFC(微生物燃料电池)是一种混合型的生物电化学装置,可直接通过微生物介导的生物电化学反应,用化学键的聚集实现能量转换,从得失电子的氧化还原反应中得到所需能量,用于同化作用,这个生物媒介在细菌的新陈代谢活动中得到发展[20]。微生物燃料电池有很多技术之外的优点。首先,可以直接并高效地将底物能量转化成电能,大约转化为氢能源的8倍[21];其次,室温下就可以进行高效操作;第三,不需要气体处理,因为排出的气体中富含二氧化碳;第四,用气体提供阴极时不需要能量输入,因为这是被动充气,具体的转化效率和经济效益取决于废弃物材料的化学组成和特征。

1.6微生物固体发酵得到的附加值产品

固体发酵(SSF)在缺水或接近缺水的条件下实现,具有能源消耗低、定容生产能力大、附加值产品浓度高、废物产生少、异化作用抑制低等特点[22]。很多不同的废弃物都被报道,成功地作为固体发酵底物而得到了高经济价值的一系列产品。固体废料的简单预处理包括研磨和按不同粒径分类,这样就实现了材料同质化并且确保对下步反应有较小的影响,通过这些预处理就可以使细菌活下来。这种固体发酵方法在深层发酵工艺中引人注目。

2结论