公务员期刊网 精选范文 量子力学基本原理范文

量子力学基本原理精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的量子力学基本原理主题范文,仅供参考,欢迎阅读并收藏。

量子力学基本原理

第1篇:量子力学基本原理范文

关键词 量子力学 量子教育学 主观性

中图分类号:O413.1 文献标识码:A

量子力学所涵盖的一些思想,在哲学的研究中体现比较广泛,也对教学理论方面起了重要的作用,可以说量子力学对哲学思想的发展有着重要的促进作用。量子力学着重利用图景等表象来认识周围的世界,强调因果关系的认识,对后期形成的教育学理论具有参考性。但是,借助量子力学所形成的“量子教育学”则有很大的不同,这一教育学对原来的量子理论认识存在较大的偏差,充分强调自然科学。

1量子力学的缘起

1900年,量子假说出现在众人的认知里,现在的量子力学仍在不断完善,为后期的科学发展提供了重要的理论基础,可以说量子力学是量子理论的中心,它促进了原子能等一些先进技术的发展,为社会的重大发明打下基础,使人们更加清晰地认识到微观世界,并利用微观运动来更好地服务社会,是人类的重要发现,也是社会的伟大进步。

2量子力学的宇宙观

在宇宙世界中,对量子理论有较多的探讨,从已经存在的氢原子中,找到了量子级别的状态。对于电子而言,比原子更为复杂,这就要求必须要满足求解该原子的特定的方程来解出,并且要求其 场刚好环绕原子核产生驻波而求得。此外,量子态与别的驻波不一样,都有自己特定的频率,并与所蕴含的能量有关,每种量子状态都有所表征的能量。这就是说,预期任何一个态的能量都是一个具体量子所确定的,并不是模棱两可的,只要是有理论依据,就可以科学地估测态的能量多少。由于质子与电子之间存在着相互吸引的力,要想移动一个电子就必须要克服引力做功。

3量子的思维方式

人类思想总是处于不断发展中,当两种思想发生交集时,就会形成一个比较完整的、令人惊叹的思想成果,正如牛顿的世界观与量子理论产生彼此弥合的交集,才会让思想发展得如此迅速,才会让社会发展如此的快。量子思维方式给人类一个重要的启示,要求以人为中心,以人为主体。随着时代的进步和经济发展,信息技术逐渐融入了人的智慧和思想,他们彼此都是看不见的,没有确定的形状,但彼此交汇起来以后,就成了一种可以量化的物质,这是由于物质性比较弱。其实,量子物理学所产生相关的科学智慧,是人类社会发展的重要因素,也是文明进步的重要保障,可以说,量子物理学是计算机重要的组成部分,所形成的计算机芯片是重要的思维体现,量子物理学不仅是科学进步的前提,更是信息发展的重要保障,量子思维更是现代社会发展的必要方式。

4“量子教育学”的唯心主义

从产生量子力学后,“量子教育学”也随之不断发展,虽然也涉及到一些教育学方面的观点,但这些观点都是被众人早就接受了。如:学习是一个整体的过程,在这个过程中各知识点是相互联系、彼此交错的,以及还谈到了关键词:服务、个性化、互补等,但是,这些所谓的观点及结论不是原汁原味的,也不是从量子力学中演变而来,而是与它的原理相悖,从本质上讲,“量子教育学”就是一种唯心主义的表现。

贝克莱比较重视经验,认为所学的知识来源于经验,但是他却犯了一个致命的错误,认为感觉是世界真正存在的东西,其他的都是看不见的。他认为,知识是一切力量之源,但感觉是我们去探索未知世界,追求至高真理的唯一手段,只有能感觉到,才能被发现。也就是说:我们的主观性决定了我们所看见的世界,这也是量子教育学诠释的观点。他认为,只要消除了事物与观念的差异,认同事物等同于所谓的观念,并且观念可以感知任何世界上存在的事物,这样才会让我们的知识更加具有生命力。

5“量子教育学”的曲解

正所周知,量子力学不可能槲ㄐ闹饕搴筒豢芍论创造理论基础,而“量子教育学”却是唯心主义的重要思想来源,这是“量子教育学”对量子力学核心思维的歪曲,或者说对量子力学没有正确的认识,造成思想上出现截然不同的主张,另外,“量子教育学”过分强调感觉和经验,导致偏向于不可知论,与量子力学的思想相悖而驰。

“量子教育学”对量子力学概念和方法认识的偏差表现有。为了进一步认识光的本质特性,提出了波粒二象性的观念。此后,玻尔提出了“气补原理”,再一次诠释了波粒二象性的本质。“测不准”原理而是在某一个方面有较大的缺陷,不是粒子在宏观世界的不适用,只是说明不能单一地应用某一个方面,只有同时应用时才能为物理现象提高全面的解释。玻尔认为,波粒二象性在整个量子力学中的地位较高,它是一种可以很好地描述一种物理现象的原理,也可以说是解释因果关系的一种原理,它可以相互促进、相互排斥,这种互斥的关系不可或缺,这种互补关系后来被广大学者所接受。

6结语

近年来,量子力学逐渐被广大研究者重视起来,探讨量子力学的基本原理以及与量子教育学的重要关系,在量子理论的发展过程中,这已经留下了较多的论争。可以肯定的是量子力学对于科学的进步贡献了一份力量,把微观世界与宏观世界联系起来,而量子教育学并不是量子力学的正确认识,就本身的发展情况来看,量子教育学认同了后现代主义,成为了唯心主义的重要依据。

参考文献

[1] 贺天平.量子力学多世界解释的哲学审视[J].中国社会科学,2012(01):48-61,207.

[2] 乌云高娃.量子力学发展综述[J].信息技术,2006(06):154-157.

[3] 母小勇.量子力学与“量子教育学”[J].教育理论与实践,2006(07):1-5.

第2篇:量子力学基本原理范文

【关键词】量子力学;实验教学;改革

中图分类号:041 文献标识码:A 文章编号:1006-0278(2013)04-193-01

一、引言

作为现代物理学和现代科学技术的理论基础,量子力学将物质的波动性与粒子性统一起来,是研究微观粒子运动规律的物理学分支学科。很多教师在上课时只着重于讲授理论体系本身的知识,往往忽略了理论和实验的紧密联系,从而导致它的实验建设一直是本课程建设的薄弱环节。充分考虑到该门课程的性质和特点,我们在教学中借鉴了工科教学的模式重点围绕“培养学生物理应用的惯性意识与掌握量子力学基本概念和规律”的目标开展了三类不依赖于仪器设备和环境条件的实验,以切实贯彻“德育为先、能力为重”和“育人为本”的原则。

二、量子力学的实验教学

为了让学生从思想上接受并理解量子观念,在学习中透过复杂的数学计算深入理解量子力学的概念和规律,并能主动积极地思考、解决相关问题,我们构建了由思想、演示与创新性实验组成的课内课外教学平台,以辅助量子力学的理论教学过程。

思想实验,又称“假想实验”,是人类按照科学研究的实验过程在头脑中进行的发现和获取科学事实与自然规律的逻辑思维活动,是自然科学家和哲学家经常使用的一种十分有效的研究方法。由于不会受到主客观条件及仪器设备的操作限制,思想实验可以为学生的思维互动启发提供有利的平台。事实上,在量子力学建立与发展的过程中,很多思想实验都起到了重要的推动作用。例如作为量子力学的创始人之一,奥地利物理学家埃尔温・薛定谔提出了著名的“薛定谔之猫”的思想实验,它将量子理论微观领域中原子核衰变的量子不确定性与宏观领域中猫的生死联系在了一起,充分体现了量子力学的奇异性。通过在课堂教学中讲授诸如此类的思想实验可以给学生提供一个动脑“做”理论的机会,这样不仅可以使学生从理性的角度接受量子力学的基本思想并深入理解量子力学的基本概念和基本理论,还可以激发他们对课程的学习兴趣,在无形中培养他们的理性思维、逻辑思维、创新意识和推理能力。

演示实验,即教师在课堂上借助视频、计算机模拟等手段演示实验过程,展示物理现象,引导学生观察、思考、分析并得出结论的过程。量子力学的建立离不开很多重要实验的支撑,如黑体辐射、光电效应等。其中一些实验由于条件及经费的限制目前无法在实验室开展,所以我们可以充分利用丰富的网络资源及Matlab等数学软件构建演示实验的平台,给学生提供一个动眼“做”理论的机会。一方面,通过播放演示实验的视频重现实验过程,加强引导学生对实验的条件、思路和方法等进行思考和分析,培养学生的实验素养和强化他们的实验技能,帮助他们增加感性认识,使他们体会科学的发展过程,克服抽象的物理图景给他们带来的困扰。另一方面,通过利用数学软件实现对量子力学课程中一些问题的静、动态数值模拟,将抽象的量子力学结果形象直观化,帮助学生透过复杂的数学公式推导深入、形象地认识微观粒子的特征,使他们深入理解量子力学的基本原理和基本概念,提高他们运用物理思想进行综合分析的能力。

知识的获得是为了更好地服务于实践,因此为了让学生能将量子力学中所学到的基本理论运用于实践,我们在该门课程的教学中还开设了创新性实验,为学生提供动手“做”理论的机会。首先教师在课堂的教学中始终贯彻科研促教学的思想,有意识地结合具体的教学内容进行近代物理前沿知识的渗透。然后鼓励学生根据自己的实际情况与兴趣并结合毕业论文自由组合选择相应的小课题在教师的指导下进行专题研究,同时对于一些学生在平时教学过程中反映出来的理解上比较模糊或难以理解的部分定期组织专题讨论。该类实验的开设为学生提供了实践的自由发挥空间,可以初步培养学生的数理分析能力与结合自己的兴趣自我发现问题并解决与专业相关领域实际问题的能力及撰写科研论文的能力,同时还增强了学生对量子力学课程学习的兴趣和团结协作精神。

第3篇:量子力学基本原理范文

关键词 量子力学 教学改革 创新能力 研究性教学

中图分类号:G643.0 文献标识码:A DOI:10.16400/ki.kjdks.2015.07.017

Graduate Education Course Advanced Quantum Mechanics Teaching Reform

HU Ping, PENG Zhihua, GUO Ping, HU Jiwen

(College of Mathematics and Science, University of South China, Hengyang, Hu'nan 451001)

Abstract Postgraduate both the learning process to deepen the knowledge of the process is scientific ability, knowledge of scientific basis. From Graduate Teaching Mode existing problems, discusses the necessity of quantum mechanics graduate students in higher education, research teaching model introduced in the teaching process, improve the quality of teaching so that students master the basic principles of quantum mechanics, based on general ability, innovation ability has been greatly improved.

Key words Quantum Mechanics; teaching reform; innovative ability; research teaching

自上个世纪80年初期恢复研究生教育,我国的研究生教育进入了蓬勃发展的时期。①随着我国高等教育的发展,研究生教育规模的也迅速扩大,研究生教育质量已成为一个全社会关注的焦点问题。我国研究生的素质关系到国家的未来发展,研究生教育是为国家培养现代化建设、发展科技培养高水平、高层次人才;研究生教育是我国站上世界知识经济高点的重要支持;同时也是高校实现由教学型向研究型转变的重要基础。研究生教育不同于本科生教育,研究生教育不仅包含课程教学,同时包含了社会实践、学位论文等诸多环节。②然而作为科研能力、自主创新能力发展的基础――课程教学不仅要传授知识,更重要的是要指导研究生思考,是提高研究生培养质量的根本。

研究生教学质量是整个研究生教育的一个重要部分,如何合理利用现有教学资源条件,使得研究生教学质量能够稳步提高,则成为研究生管理的首要解决问题之一。自上个世纪80年代以来,高等教育改革逐渐兴起,其主要目标就是培养创新型人才,教育界越来越多地关注教学方法创新研究。首先,研究性教学,是一种能有效引导学生主动探究、培养学生创新能力的教学方式,引起全世界各地的教育及其相关部门的关注。目前,教育部实施研究生科研创新项目研究计划, 现在全国已有100多所大学参加这项计划。其次,在过去的几十年中,国内外在总结以前高等教育成果与不足的基础上,以培养创新型人才为教育主要目标,对原有的传统高等教育模式进行了改革。

自从20世纪50年代美国施瓦布教授首先提出学生的学习过程和科学家的研究过程是一致的以来,研究性学习引起了人们的广泛关注,提出了各种相关的理论。③④⑤ 然而,现在国内的高校课堂教学大部分都是基于传统教学模式:教师教学――课堂讲授为主的教学模式。而研究性学习,则主要是以研究问题为基础、由学生主动提出问题、并设计解决方案、解决问题,并在这一过程中获得知识、培养相应的能力,基于此中方式来展开教学与研究的教学模式在国内现有的教学理念与教学资源条件下,应用并不广泛。尤其是在相对较为抽象难懂的理工类课程如量子力学课程教学中应用更是甚少。⑥研究生教育主要是培养学生的科研能力与素养,首先要在“研究”的培养上下功夫,而研究生课程教学正好提供了这一平台。在本文中主要以高等量子力学课程教学为主要研究内容,探讨如何进行课堂教学改革。

自1978年国内恢复研究生招生制度以来,高等量子力学就被列为物理系各专业研究生必修的学位课程之一,同时高等量子力学也是报考博士研究生的考试科目之一,在原来本科阶段“量子力学”的基础上进行深化和拓展,主要是提供学生在后学研究工作中要用的一些知识和方法。量子理论已经成为解决物理学、生命科学、信息科学和材料科学等理论问题的关键。

量子力学作为一门微观物理课程,与经典物理学相比,有一个很明显的差异:其中很多理论很难与日常生活和经验对应,涉及的理论、概念非常抽象,同时涉及非常多的数学知识,如(线性代数、Hilbert 空间、群论、数学物理方法和复变函数等),内容繁多,知识结构广泛,使得学生理解起来有非常大的困难,同时容易诱使学生陷入复杂繁琐的计算,而失去对量子力学学习的兴趣。目前,从我校物理系硕士研究生的实际情况来看,学生的量子力学知识水平参差不齐,有的学生以前没有学习过量子力学,有的学生学量子力学学时非常短,同时每个研究方向对量子力学的需求也不尽相同。 因此,量子力学成为教师公认难教的课程、学生公认难学的课程。 高等量子力学的教学效果将直接影响学生以后的科学研究创新能力与论文水平。为了培养研究生日后的科研能力,我们主要从教学内容和教学方法上进行了改革探讨。

在教学内容上,结合本校教学时限(48学时)和本校学生的特点、学生的研究方向,主要目标是将量子力学的知识应用到其它领域,避免冗长的理论计算,激发学生的创新热情。重点学习量子力学的形式理论、微扰理论、对称性和守恒定律、量子散射理论等。

在教学方法上,根据学生的知识基础和教学内容的特点,改变传统的教学方式,采用学生为主的教学方式。传统的教学方式主要是以教师讲授为主的灌输式、填充式,由于量子力学本身的特点,这些教学方法对量子力学的教学实效非常有限。一方面,一个主角的表演使得本身比较枯燥的量子力学课堂毫无生气,学生面对复杂繁琐的数学推导,思维跟不上教师的节奏,学生的学习热情下降。另一方面,学生本身的角色没有改变,自主学习、自主思考没有可锻炼的平台。教师考虑到自然科学的特点,一定要从知识的传承角度出发,这样教师要去贯彻启发式的教学方式。学生学一门课,学的是前人从实践中总结出来的间接知识。一个好的教师,应当引导学生设身处地去思考,自己是否也能根据一定的实验现象,通过分析和推理去得出前人已认识到的规律?自然科学中任何一个新的概念和原理,总是在旧概念和原理与新的实验现象的矛盾中诞生的。⑦作为教师,要充分利用新旧理论的矛盾提出问题,让学生思考问题,并设计一套完成的解决方案。在量子力学的课堂教学中,笔者结合实际情况,主要采取的是学生讲授为主、教师辅导的方式。尽管学生对量子力学知识的理解有限,但是一方面可以促使学生在课前预习;另一方面学生为了准备一堂课,要查阅相关资料,这样就可以极大地提高学生查找资料的能力,拓展学生知识面。作为教师,从学生讲授中也可以得到一些启发,诸如学生对一个问题理解的切入点与教师理解的不同,从而教师可以调整日后的课堂教学,使得课堂教学的内容从抽象化为通俗。

将科学研究融入到课堂教学,也是实现课堂教学改革的有效方式之一。研究生不仅要学习知识,更要的是做科学研究,寓教于研同样可以提高教学效果。在课题教学中,针对一个主题,在讲授基本知识的同时,更多的引入与之相关的前沿知识,并要求学生设计相关的问题,展开调查研究,以论文、学术报告的方式提交研究成果。通过此种方式,研究生的科学研究能力得到锻炼,创新思维能力得到培养,符合我们培养创新型人才的目标。

本文结合本校研究生的实际情况以及量子力学学科特色,我们主要从从教学内容、教学方法两方面探讨高等量子力学课程的教学改革。随着我国高等教育的发展,研究生课程教学改革还有待进一步地深化,这样才能提升我国研究生教育的整体水平,为祖国的发展培养更多的人才,日益增强国家的综合国力。

本文得到南华大学教学改革研究课题,2014XJG49;南华大学研究生教学改革研究项目 资助

注释

① 周萍.量子力学研究性教学[J]. 中国科教创新导, 2011(17): 89-90

② 高芬.美国高校研究生教学中的“教”与“学”――以美国马萨诸塞大学阿默斯特分校教育学院为例[J].学位与研究生教育,2011(3):73-77.

③ 沈元华.设计性、研究性物理实验介绍[J].物理实验,2004(2):33-37.

④ 顾沛.把握研究性教学、推进课堂教学方法改革[J].中国高等教育研究,2009, (7) :3 1-33 .

⑤ 陈兴文,白日霞,李敏.开展研究性教学培养大学生创新能力[J].黑龙江教育:高教研究与评估,2009(1):123-125.

第4篇:量子力学基本原理范文

关键词: 农林院校 大学物理 高中物理 内容 比较与分析

1999年开始的新一轮基础教育课程改革的力度是空前的,在课程理念、课程目标、课程内容、课程实施方式上进行全方位整体改革。为适应21世纪技术化社会的需要,我国基础教育阶段的物理课程在课程设置和教学内容等方面进行了调整和更新,在内容上体现了时代性、基础性和选择性。在农林院校,物理课程所涉及的物理学知识内容而言,主要包括力、电、原子、热四部分。在知识的讲述上,农林院校的讲述方式是简单介绍物理学基本原理,然后就介绍物理理论知识在农林科技及日常科技中的应用、物理学在现代农业方面的应用,较少涉及公式的推导、数学计算等。

一、力学内容的比较和分析

农林院校大学物理课程力学部分讲述了流体力学、振动和波(机械振动、机械波、声波)。流体力学部分的主要内容有:液体的表面张力、液体的流动性质(液体的定常流动、连续性原理、伯努利方程)、液体的猫滞性质(牛顿勃滞定律、泊肃叶公式)、物体在猫滞液体中的流动(斯托克斯公式、雷诺数和流体相似率、离心分离技术)。振动和波的主要内容有:简谐振动的特征及描述、阻尼振动和受迫振动、简谐振动的合成、频谱、机械波的产生和传播、平面简谐波、惠更斯原理、声波、波的干涉、多普勒效应。此外,有些版本的教材如金仲辉(2000)、王海婴(2000)均讲述了牛顿力学和力学的基本定律,两个版本都讲述了质点运动状态的描述、牛顿三定律、力学相对性原理、力学的三个守恒定律、刚体的转动(简述)。除此之外,王海婴(2000)还讲述了非线性力学(线性和非线性力学系统的特点、两种确定性和两种随机性)、相对论力学(相对论运动学、狭义相对论动力学、广义相对论)。刁岗(2001)对于力学基础知识没有专门介绍,在固体一章中涉及应变与应力、杆的弯曲等力学知识。高中物理共同必修中,没有讲述流体力学方面的知识,但是学生在初中物理中学习过浮力、压强、压力方面的知识,高中物理课程涉及的力学基础知识,以及力的应用方面的知识,学生对于流体力学部分的学习应该不会有什么困难。振动和波这部分涉及的知识内容同工科大学物理大致相同,农林学院校对于声波的讲述有所加强。这部分内容的学习同样是以牛顿力学为基础的。

二、电磁学内容的比较和分析

农林院校大学物理电磁学部分涉及的物理学基础知识同工科院校基本一致,但是,在叙述上更精炼和简单,内容更侧重于物理知识在生物学、医学中的应用,如静电场的应用(静电场处理种子、电晕放电处理种子、人工诱发闪电的应用、静电喷农药和静电人工授粉)、磁的应用(磁场处理、磁性肥料、磁化水、磁法检验)、电磁波在农业上的应用、电容器与细胞电容、生物组织的电阻等,以及基尔霍夫定律及应用、直流电的医学应用。基尔霍夫第一定律的物理背景是电荷守恒定律,基尔霍夫第二定律可以在高中全电路欧姆定律的基础上引申得出。农林院校大学物理电磁学部分同高中物理课程的编排思想是一致的,涉及的电磁学知识提供了学生进一步学习所需要的物理学基础知识。

三、光学内容的比较和分析

农林院校大学物理光学部分涉及光的干涉、衍射、偏振,光的吸收与散射等知识内容,在讲述物理基础知识时,更加侧重于在生物学中的应用,如薄膜干涉的应用、夫琅禾费圆孔衍射与生物显微镜、激光在现代农业和生物学中的作用、生物体发光的性质和实际应用、生物学研究中常用的光学仪器(光学显微镜、分光光度计、特种生物显微镜、电子显微镜)等。由此看到,农林院校大学物理光学部分同高中物理的编排思想基本是一致的,高中物理课程涉及的光学、原子物理的知识提供了学生进一步学习所需要的物理学基础知识。

四、量子物理基础知识内容的比较和分析

农林院校量子物理基础知识部分涉及的内容主要有:第一,光的量子性(黑体辐射定律、光电效应实验规律、爱因斯坦光子理论、爱因斯坦光电效应方程、光电效应的应用、光的波粒二象性);第二,量子力学初步(德布罗意波、不确定关系、薛定愕方程、势阱和势垒、氢原子光谱的规律性、泡利不相容原理、能量最小原理);第三,光谱分析(原子光谱、分子光谱、X射线谱及其应用);第四,激光的原理和应用医学院校大学物理该部分讲述了原子物理和量子力学基础知识,原子物理中介绍了X射线(X射线的产生、X射线的强度和硬度、X射线谱、X射线的性质、X射线衍射、X射线的衰减规律、X射线的医学应用)、原子核和放射性(原子核的角动量和磁矩、原子核的稳定性、放射性核素的衰变种类和衰变规律、射线与物质的相互作用、电离辐射防护、放射性核素在医学上的应用)。量子力学基础讲述了玻尔的氢原子理论、德布罗意假设、物质波的统计解释、不确定关系、波函数、薛定愕方程、势阱与势垒、原子结构理论(四个量子数、原子的壳层结构、分子结构)。此外,还介绍了相对论基础(狭义相对论、广义相对论)和混沌动力学基础知识。高中物理对于相对论与量子物理的知识作了初步的介绍,使学生对此有一个感性的认识,而农林院校大学物理对于这部分内容的讲述,是在高中物理已有知识基础上的提高和扩展。高中物理涉及的激光、放射性同位素、核反应方程、衰变、半衰期、结合能、核裂变、链式反应、核聚变等知识,侧重于从应用的角度展开物理知识,这同农林院校大学物理基本是一致的。

五、热学内容的比较和分析

第5篇:量子力学基本原理范文

打开自然科学教科书,映入眼帘的是哥白尼、牛顿、达尔文、法拉第、爱因斯坦等一连串外国科学家闪光的名字。历史将会牢记、人类也将会牢记他们!细心的读者也许会沮丧地发现:在这一串闪光的名字中很难找到中国科学家!

据不完全统计,近一百多年来因为科学贡献而被写进自然科学教科书的中国科学家也就100名左右,除去那些验证性、修正性工作而自己没有重大原始创新的科学家,剩下的可能不足50名,而有正式数学公式传世(被写进教科书)的中国科学家更是不足30名。甘永超,凭借“波粒二象关系式(Gan矩阵与Gan变换)”成为了最新加入这一群体的中国学者。

与卡门-钱学森公式、钱伟长方程、吴文俊公式……相比,甘永超可谓名不见经传,然而他提出的“波粒二象关系式”却能把量子力学的两大开山之作(德国物理学家普朗克1900年提出的能量子假说:ε=hv,获1918年诺贝尔物理学奖;法国物理学家德布罗意1923年提出的物质波假说:λ=h/p,获1929年诺贝尔物理学奖)完美地统一起来,并且还可以揭示“波”与“粒子”之间的直接、线性关系并给出精准的数学表达(那可是物理学所面临的尚未征服的山峰中的最高峰),就像爱因斯坦的质能关系式揭示“质量”与“能量”的直接、线性关系并给出精准的数学表达一样!此外,该公式还揭示了“物质”与“空间”之间的必然联系,就像爱因斯坦的相对论揭示“时间”与“空间”、“质量”与“能量”之间的必然联系一样。

早在大学时代,甘永超就对物质结构理论,尤其是波粒二象性产生了浓厚兴趣。后经我国科学界泰斗王淦昌院士推荐而成为上海大学物理系主任沈文达教授(沈先生早年曾师从诺贝尔物理学奖获得者、量子光学之父、哈佛大学教授罗伊·格劳伯)的研究生。经过20多年锤炼,甘永超创立的一个物理公式(波粒二象关系式)、两个物理模型(“π型三重波粒二象性”与“太极粒子波”)已经被写进“21世纪高等院校教材”《自然科学概论》(娄兆文等编、科学出版社、2012年版44-48页)。这是一百多年以来很少见到的事情。当然,其间的曲折可能一言难尽。这里仅就甘永超所提出的一个物理公式、两个物理模型稍作介绍。

“波粒二象关系式(Gan矩阵与Gan变换)”不仅数学形式对称、优美,而且还可以作为量子力学的基本原理而直接导出量子力学的两大开山之作(普朗克的能量子假设和德布罗意的物质波假设),精辟地揭示“波”与“粒子”、“物质”与“空间”之间的紧密联系。我们知道,实物(粒子)与场(波)之间的关系被前苏联科学家瑞德尼克在《量子力学史话》中称之为“物理学所面临的尚未征服的山峰中的最高峰”,所以,对“波粒二象关系式(Gan矩阵与Gan变换)”的研究,将会打开一座巨大的宝藏,只是这座宝藏(波粒二象关系式的物理内涵)神秘莫测,我们现在还远远没有弄清楚。

作为初步推断,“波粒二象关系式”至少是对“π型三重波粒二象性”这一物理模型的数学抽象,而“太极粒子波”则又是对“π型三重波粒二象性”(当然也包括“波粒二象关系式”) 的进一步解读和发展。事实上,这一个物理公式、两个物理模型,首尾呼应,浑然天成,开辟了继“分子物理”、“原子物理”、“原子核物理”、“粒子物理”之后的又一个新学科与新领域“波与粒子的统一——‘太极粒子波物理’”并预言了一种新式武器——“巨粒子炮”的存在。

我们知道,“第一种波粒二象性(光的波粒二象性)”由爱因斯坦1905年揭示、密立根1916年验证,“第二种波粒二象性(实物粒子的波粒二象性)”由德布罗意1923年揭示、戴维森和小汤姆孙1927年验证,两者的揭示与验证曾四次颁发诺贝尔物理学奖。然而,尽管前两种波粒二象性的揭示与验证四获诺贝尔物理学奖,但“波粒二象性之谜”却并没有完全揭开,它与“光的本性之谜”、“粒子与场的关系之谜”、“物质世界的最基本结构单元之谜”依然是物理学前沿的四大疑难问题。对此,甘永超基于他“经典电磁场按光子对应分解”亦即“第三种波粒二象性”的揭示,完成了“三种波粒二象性的和谐统一”并揭示了微观客体的“π型三重波粒二象性”——这是比“光的波粒二象性”、“实物粒子的波粒二象性”更高层次的理论,蕴含着物质世界的更深刻本质。在这里,“光的波粒二象性”与“实物粒子的波粒二象性”虽然四获诺贝尔奖,却不过是“π型三重波粒二象性”的两个分支或者推论,属于管中窥豹、瞎子摸象,只有“π型三重波粒二象性”才是揭示微观客体深刻本质的实质性内容。换言之,我们司空见惯的“电磁波”与“光量子”不过是“太极光子波”的两种变化形式,就像“白骨精”变化而成的“村姑”与“老媪”一样。

第6篇:量子力学基本原理范文

现代科学技术概论不但应该是现代科学技术成果的概论,而且也应该是现代科学技术发展历史和规律的概论。离开现代科学技术发生、发展的历史,静止、孤立地介绍现代科学技术的基本理论和成果,就会使现代科学技术概论这门课程变得零乱庞杂而不成体系。而如果把“史”与“论”有机地结合和统一起来,则不但能克服“零乱庞杂”的缺陷,而且还能为现代科学技术概论这门课程注入生机和活力。同时,把“史”与“论”结合起来,更是为思想政治教育专业学生开设这门课程的教学目的之所需。作为思想政治教育专业的学生,通过现代科学技术概论课程的学习,不但要了解现代科学技术的主要成果、历史演进和完整体系,而且要了解科学技术发生、发展的一般过程和规律,了解哲学产生的现代科学技术基础以及对于推动科学技术发展的重要作用和意义。因此,只有做到史论结合,才能达到开课的目的和要求。

2现代科学技术概论的教学内容与体系

根据上述三原则,笔者认为,思想政治教育专业现代科学技术概论课程的内容与体系可做如下安排。导言。概要介绍现代科学技术及其理论基础、前沿阵地、中心内容和综合体现。

第一章,现代物理学革命及其影响。介绍现代科学技术的理论基础———相对论和量子力学。引言,概述近代物理学的辉煌成就及其所遇到的“两朵乌云”。第一节,相对论的建立。根据逻辑与历史相统一的原则,具体讲授伽利略变换和力学相对性原理,迈克尔逊—莫雷实验,洛伦兹变换的提出,爱因斯坦的狭义相对论及其主要结论,广义相对论及其验证。第二节,量子力学的建立和发展。一、量子力学产生的历史背景,概要介绍黑体辐射理论和紫外灾难。二、量子力学的建立与发展,具体讲述普朗克的量子假说,爱因斯坦的光量子理论,玻尔对原子结构的量子解释,德布罗意的物质波,薛定谔的波动方程,海森伯的矩阵力学。第三节,现代化学理论的发展。主要讲授元素周期理论的新发展和现代化学键理论。

第二章,原子物理学的开发研究及应用。主要讲授从物质结构的研究到原子能的开发和应用。第一节,对微观世界的探索和认识。一、物质结构初探,复习回忆德谟克利特的原子论,道尔顿的原子说,门捷列夫的元素周期律。二、向原子世界的进军,主要讲授X射线、放射性元素及电子的发现,原子结构模型及其实验和发现,原子核结构模型及其实验和发现,对基本粒子家族的认识。第二节,原子能的开发研究及应用。一、原子能的开发研究:重点介绍原子能开发研究中的三大发现,即慢中子效应的发现、核裂变的发现和链式反应的发现。二、原子能的应用,包括能源方面的应用和放射性同位素的应用。能源方面的应用包括两个方面:一是军用三弹即原子弹、氢弹和中子弹的研制;二是核电站的发展,主要介绍从慢中子反应堆到快中子增殖堆再到核聚变反应堆的历史发展。放射性同位素的应用可概要介绍在生产、生活、科研、军事上的应用及其成果。

第三章,生物学与生物工程技术。生物学是研究生命的科学;生物工程技术是用人工的方法创造生命的技术。生命科学是现代科学的三大前沿阵地之一;生物工程技术是现代科学技术的主要内容。第一节,生命的起源和生物的进化。一、生命起源的化学进化历程:从无机小分子物质生成有机小分子物质;从有机小分子物质形成有机高分子物质;从有机高分子物质形成有机多分子体系;从有机多分子体系演化成原始生命物质。二、生物进化论,主要介绍拉马克的生物进化学说和达尔文的生物进化论。第二节,现代遗传学和分子生物学。一、遗传学:主要讲授孟德尔的豌豆实验及其遗传学说;摩尔根的果蝇实验及其遗传学说。二、分子生物学:重点介绍蛋白质的性质、结构和功能;核酸的性质、结构和功能。第三节,生物工程技术。生物工程包括酶工程、发酵工程、细胞工程和基因工程四个部分的内容。因学时限制,可重点介绍细胞工程和基因工程两个部分。一、细胞工程,应首先讲授细胞的全能性,然后在细胞全能性的基础上具体介绍植物组织培养技术、细胞融合技术、细胞折合和胚胎移植技术、克隆技术等内容。二、基因工程:(1)基因工程的基础研究,主要介绍限制性内切酶、连接酶和基因载体的发现和研制。(2)基因工程的基本程序和方法,包括获取目的基因DNA、获取载体基因DNA、目的基因DNA与载体基因DNA的重组、把重组的DNA转入受体细胞进行增殖和筛选转基因生物体五个步骤及方法。三、生物技术的应用前景。主要介绍生物医药的研制及应用、生化工业的迅速发展、转基因动植物的大量出现,人类基因组计划(HGP)及其广阔的应用前景。

第四章,天文学和天体演化学说。天体演化学说是现代科学的三大前沿阵地之一,本章在重点讲述天体演化学说之前,先把天文学的相关知识作一简单介绍。第一节,天文学及其产生和发展。一、概要介绍天文学的研究对象和分类;二、重点讲授天文学的产生和发展:具体介绍古代天文学、近代经典天文学和现代天文学的发展情况。第二节,获取天体信息的渠道和手段;可分三个大问题来讲述。一、获取天体信息的渠道,主要介绍电磁辐射、宇宙线和中微子三条途径;二、获取天体信息的物质手段和仪器设备,主要介绍人眼的构造和功能、光学望远镜、射电望远镜和天体摄谱仪;三、天文观测发展简史:依次介绍光学天文学、射电天文学和空间天文学。第三节,天体的起源和演化。一、宇宙的起源和演化:主要介绍牛顿“无限无边”宇宙模型及其疑难、爱因斯坦“有限无边静态”宇宙模型及其疑难、哈勃定律与大爆炸宇宙模型;二、星系的形成和演化:先对星系及其类型作一简单的介绍,然后在此基础上介绍星系的形成和演化;三、恒星的形成和演化:具体介绍恒星的形成,表征恒星演化过程的赫罗图,恒星演化过程的三阶段,即主序星阶段、红巨星阶段和恒星的三种归宿(白矮星、中子星和黑洞);四、太阳系的形成和演化:主要介绍太阳系的基本情况和太阳系的形成和演化两部分内容;五、地球的构造和演化:包括地球概况、地球的圈层构造和地球的形成和演化。

第五章,信息技术和激光技术。人类历史在经历了6000年的农业社会和近300年的工业社会以后,现在正在迅速走向第三个文明社会———信息社会。所谓信息社会,就是信息在社会生产和生活中起主导作用的社会。信息技术和信息产业,是信息社会的重要支柱。所谓信息技术,就是信息的获取、传递和处理技术。信息技术以微电子技术为基础,包括计算机技术、通信技术、光导技术和人工智能技术等。第一节,微电子技术。一、微电子技术的出现:具体介绍集成电路的诞生、集成电路的种类及其历史发展和集成电路的制作工艺;二、微电子技术的应用。第二节,计算机技术。一、计算机概述:具体介绍计算机的结构与功能、计算机的特点和计算机的历史发展;二、计算机的应用:主要包括数值计算或科学计算、数据处理或称信息处理、实时控制或称过程控制、计算机辅助系统、人工智能或称智能模拟等;三、信息高速公路。第三节,通信技术。一、电气通信:主要介绍电话通信和非电话通信及传真;二、光纤通信:具体介绍光纤通信的基本原理、光纤通信的优点、光纤通信的应用和发展;三、卫星通信。第四节,激光技术。一、激光与激光器:具体介绍激光产生的基本原理、激光的特点、激光器的构造等内容。二、激光技术的应用:概要介绍激光加工(包括激光铸模、激光切割、激光焊接、激光雕刻等)技术及其在农业、医疗、军事上的广泛应用。

第7篇:量子力学基本原理范文

关键词:量子密码;量子加密;测不准原理;EPR关联;量子纠缠

中图分类号:TP393文献标识码:A 文章编号:1009-3044(2007)03-10732-02

1 引言

传统的加密系统,不管是对密钥技术还是公钥技术,其密文的安全性完全依赖于密钥的秘密性。密钥必须是由足够长的随机二进制串组成,一旦密钥建立起来,通过密钥编码而成的密文就可以在公开信道上进行传送。然而为了建立密钥,发送方与接收方必须选择一条安全可靠的通信信道,但由于截收者的存在,从技术上来说,真正的安全很难保证,而且密钥的分发总是会在合法使用者无从察觉的情况下被消极监听。

近年来,由于量子力学和密码学的结合,诞生了量子密码学,它可完成仅仅由传统数学无法完成的完善保密系统。量子密码学是在量子理论基础上提出了一种全新的安全通信系统,它从根本上解决量子特性不可忽视,测量动作是量子力学的一个组成部分。在这些规律中,对量子密码学起关键作用的是Heisenberg测不准原理,即测量量子系统时通常会对该系统产生干扰,并产生出关于该系统测量前状态的不完整信息,因此任何对于量子信道进行监测的努力都会以某种检测的方式干扰在此信道中传输的信息。

本文内容安排如下:第二部分回顾经典的密码术,第三部分说明基于EPR纠缠对的量子加密原理和技术,第四部分介绍量子密码术,最后给出结论。

2 经典密码术

一般而言,加密体系有两大类别,公钥加密体系与私钥加密体系。经典保密通信原理如图1所示:

图1经典保密通信原理图

密码通信是依靠密钥、加密算法、密码传送、解密、解密算法的保密来保证其安全性.它的基本目的使把机密信息变成只有自己或自己授权的人才能认得的乱码。具体操作时都要使用密码讲明文变为密文,称为加密,密码称为密钥。完成加密的规则称为加密算法。讲密文传送到收信方称为密码传送。把密文变为明文称为解密,完成解密的规则称为解密算法。如果使用对称密码算法,则K=K’ , 如果使用公开密码算法,则K 与K’ 不同。整个通信系统得安全性寓于密钥之中。

公钥加密体系基于单向函数(one way function)。即给定x,很容易计算出F (x),但其逆运算十分困难。这里的困难是指完成计算所需的时间对于输入的比特数而言呈指数增加。举例而言,RSA (Rivest, Shamir, Adleman ) 即是具有代表性的公开密钥算法,其保密性建立在分解有大素数因子的合数的基础上。公钥体系由于其简单方便的特性在最近20年得以普及,现代电子商务保密信息量的95%依赖于RSA算法。但其存在以下主要缺陷。首先,人们尚无法从理论上证明算法的不可破性,尽管对于己知的算法,计算所需的时间随输入的比特数呈指数增加,我们只要增加密钥的长度即可提高加密体系的安全性,但没人能够肯定是否存在更为先进的快速算法。其次,随着量子计算机技术的迅速发展,以往经典计算机难以求解的问题,量子计算机可以迎刃而解。例如应用肖氏(Shor's )量子分解因式算法可以在多项式时间内轻易破解加密算法。

另一种广泛使用的加密体系则基于公开算法和相对前者较短的私钥。例如DES (Data Encryption Standard, 1977)使用的便是56位密钥和相同的加密和解密算法。这种体系的安全性,同样取决于计算能力以及窃听者所需的计算时间。事实上,1917年由Vernam提出的“一次一密码本”(one time pad) 是唯一被证明的完善保密系统。这种密码需要一个与所传消息一样长度的密码本,并且这一密码本只能使用一次。然而在实际应用中,由于合法的通信双方(记做Alice和Bob)在获取共享密钥之前所进行的通信的安全不能得到保证,这一加密体系未能得以广泛应用。

现代密码学认为,任何加密体系的加密解密算法都是可以公开的,其安全性在于密钥的保密性。实际上,由于存在被动窃听的可能性,如果通信双方完全通过在经典信道上传输经典信息,则在双方之间建立保密的密钥是不可能的。然而,量子物理学的介入彻底改变了这一状况。

3 量子加密的原理和技术

量子加密是目前科学界公认唯一能实现绝对安全的通信方式。它依赖于两点:一是基本量子力学效应(如测不准原理,Bell 原理量子不可克隆定理);二是量子密钥分配协议量子密码系统能够保证:(1)合法的通信双方可觉察潜在的窃听者并采取相应的措施;(2)使窃听者无法破解量子密码,无论破译者有多么强大的计算能力。同时,量子密码通信不是用来传送密文或明文,而是用来建立和传送密码本,这个密码本是绝对安全的。到目前为止,实现量子加密的方案主要有如下几种:

(1)基于两组共扼正交基的四状态方案,其代表为BB84协议;

(2)基于两个非正交态的二状态方案,其代表为B92协议;

(3)基于EPR纠缠对的方案,其代表为E91协议;

(4)基于BB84协议与B92协议的4+2协议。

在这里我们主要介绍一下基于EPR纠缠对的方案,Ekert 于1991年提出的基于EPR的量子密钥分配协议(E91)充分利用了量子系统的纠缠特性,通过纠缠量子系统的非定域性来传递量子信息,取代了BB84 协议中用来传递量子位的量子信道,因而可以更加灵活地实现密钥分配。此外,与BB84 不同的是,E91协议借助于Bell 不等式来验证是否存在窃听者,而在BB84 和B92 中,都是通过随机校验来实现窃听验证。

虽然量子密钥分配协议的安全性与Bell不等式之间的确切关系尚不清楚,但是利用Bell不等式的确可以保证量子密钥分配是无条件安全的。也就是说无论Eve采取多么高明的窃听策略,采用多么精密的窃听设备,她的窃听行为必然影响纠缠态,进而使Bell不等式成立。

其中任意角度均表示光子的偏振方向。量子位的信息编码规则为:

相应的测量算子为:

根据上述设置,E91密钥分配的操作按如下步骤实施:

(1)Alice等概率的从{│ω0>,│ω1>,│ω2>}中随机选取一个纠缠态│ωj> ,保留第一个量子位,并把第二个量子位发送给Bob. Alice没有必要记住│ωj>究竟处于什么态, 只要保证三种纠缠态被等概率的选取。该过程可以在密钥分配前任何方便的时候进行,而且还可以有Bob或者可靠的第三方执行。

(2)Alice和Bob各自独立地测量自己的量子位,测量算子等概率地从{M0,M1,M2}中随机选取。

(3)Alice直接记录测量结果对应的编码信息比特,Bob则记录编码信息比特的反码。

(4)Alice和Bob在公开的经典信道公布自己所选取的测量算子。当然,Alice和Bob 都不透露自己的测量结果。

(5)Alice和Bob保留相同的测量算子所对应的信息比特作为原始密钥(raw key)。其余的信息比特记为排异位(rejected bits),与BB84和B92不同,排异位不再被丢弃,而是被公布以用来验证Bell不等式是否成立,并以此判断是否存在窃听者。

然而根据量子力学,对于上述纠缠纯态,应有β= -0.5,Alice和Bob可以利用公布的排异位分别计算β ,若Bell不等式成立,即β≥0 ,则表明纠缠态已经被破坏,原始密钥是不可靠的; Bell不等式不成立,即 β

最后,Alice和Bob利用经典纠错码对密钥进行纠错,最后施行保密增强生成最终密钥。

4 量子密码术

考虑到环境噪声和窃听者的作用,以防止窃听者获得尽可能多信息从而实现高效的量子密码传输通信。因此在实际通信系统中,所有量子密钥分发协议都要完成以下四个过程:

4.1 量子传输

不同量子密码协议有不同的量子传输方式,但它们有一个共同点:都是利用量子力学原理(如海森堡测不准原理)。在实际的通信系统中,在量子信道中Alice随机选取单光子脉冲的光子极化态和基矢,将其发送给Bob, Bob再随机选择基矢进行测量,测到的比特串记为密码本。但由于噪声和Eve的存在而使接受信息受到影响,特别是Eve可能使用各种方法对Bob进行干扰和监听,如量子拷贝,截取转发等,根据测不准原理,外界的干扰必将导致量子信道中光子极化态的改变并影响Bob的测量结果,由此可以对窃听者的行为进行检测和判定。这也是量子密码区别于其它密码体制的重要特点。

4.2 筛选数据

在量子传输中由于噪声,特别是Eve 的存在,将使光子态序列中光子的偏振态发生变化。另外,实际系统中,Bob 的检测仪也不可能百分之百正确地记录测量结果,所以,A1ice 和Bob 比较测量基后会放弃所有那些在传送过程中没有收到或测量失误,或由于各种因素的影响而不合要求的测量基,然后,他们可以公开随机的选择一些数据进行比较,再丢弃,计算出错误率,若错误率超过一定的阈值,应考虑窃听者的存在。A1ice和Bob放弃所有的数据并重新传光子序列,若是可以接收的结果,则A1ice和Bob将剩下的数据保存下来,所获得数据称为筛选数据。假设量子传输中A1ice传给Bob的量子比特(Qubit)为m bit,筛选掉m-n bit,则得到的原数据为n bit。在这个过程中可以检测出明显的Eve的存在。

4.3 数据纠错

所得到的n bit的筛选数据并不能保证A1ice和Bob各自保存完全的一致性,通信双方仍不能保证各自保存的全部数据没被窃听。因此要对原数据进行纠错。人们提出了几种方法,经研究后提出以下方法:

(1)A1ice和Bob约定好随机的变换他们bit 串的位置来打乱错误的位置;

(2)将bit 串分成大小为K 的区,K的选取应使每一个区的错误尽可能的小;

(3)对于每一个区,A1ice和Bob计算并公开宣布了奇偶校验结果;

(4)若相同,A1ice和Bob约定放弃该区的最后一个比持;

(5)若不同,用log(K)反复查找来定位和纠正区中的错误;

(6)由于奇偶校验只能发现奇数个同时出现的错误,所以仍会有小部分错误存在,为了解决这种情况,反复以上步骤,不断地增加区的大小。

4.4 保密增强

保密加强是为了进一步提高所得密钥的安全性,它是一种非量子方法,其具体实现为假设Alice 发给Bob 一个随机变量W , 如一个随机的n bit 串,在随机变量V 中,窃听者Eve 获得一个正确的随机变量V, 设对应的比特为t

4.5 身份认证

经过以上的过程,获得了一个对窃听者Eve完全安全的密钥,但他假定朋Alice和Bob都是合法的,并没有对A1ice和Bob的身份认证。可能会出现A1ice或M是假冒的情况,因此我们在原BM4协议中加人身份认证这一过程:我们可以从量子密钥中获取认证密钥而实现。将以上过程所得到的密钥称为原密钥(Raw Key)rK,将其分成三个部分:rK=Ka+Kb+K,其中Ka,Kb用于身份确认。具体过程如下:A1ice秘密地从rK中选取Ka,并发送给Bob,同时Bob秘密地从rK中选取Kb并发送给A1ice,然后A1ice和Bob分别以Kb,Ka利用单向哈希函数获得各自的秘密密钥Ka',Kb'。最后A1ice和Bob利用双钥认证体制实现身份确认。

5 结论

量子密码术是量子物理学和密码学相结合的一门新兴科学,它成功地解决了传统密码学中单靠数学无法解决的问题并引起国际上高度重视,是主要应用于量子信息领域的一个重要课题。近年来,许多国内外研究机构对量子密码通信的研究非常活跃,这种新的密码通信不同于经典的密码通信,有着绝对安全的优点。

总之,随着单光子探测等技术的不断发展,量子密码通信技术在全光网络和卫星通信等领域的应用潜力会不断挖掘并成为现实,当量子计算机成为现实时经典密码体制将无安全可言,量子密码术将成为保护数据安全的最佳选择之一。因此,对量子保密通信技术以及为合法通信者间的安全通信的进一步研究将是一项非常有意义的工作。

参考文献:

[1]Nicolas Gisin, Gre′ goire Ribordy, Wolfgang Tittel, and Hugo Zbinden,Quantum cryptography[J], REVIEWS OF MODERN PHYSICS, VOLUME 74, JANUARY 2002.

[2]DAVID S. PEARSON, CHIP ELLIOTT, ON THE OPTIMAL MEAN PHOTON NUMBER FOR QUANTUM CRYPTOGRAPHY[J], Quantum Information and Computation, Vol. 0, No. 0 (2003) 000C000.

[3]Chip Elliott,Dr. David Pearson,Dr. Gregory Troxel,Quantum Cryptography in Practice[J], PREPRINT C May 1, 2003

[4]Daniel Collins, Nicolas Gisin and Hugues de Riedmatten,Quantum Relays for Long Distance Quantum Cryptography[R],14 November 2003.

[5]Norbert Lu¨tkenhaus,Security against individual attacks for realistic quantum key distribution[J],PHYSICAL REVIEW A, VOLUME 61, 052304.

第8篇:量子力学基本原理范文

专家论坛

(1)可修备件保障概率的适用模型 丁定浩

可靠性与环境适应性标准信息与行业动态

(4)使用28/20nm工艺,宜特引进高功率高温工作寿命(htol)试验解决方案 无

电子元器件与可靠性

(5)线绕电位器不规则阻值跳变的故障分析 陈雁 段超 王旭 张伟

可靠性与环境适应性标准信息与行业动态

(8)美首次研制出稳定单原予层锗 或取代硅制晶体管 无

电子元器件与可靠性

(9)动态电阻测试问题分析 赖忠有

(12)igbt模块功率循环疲劳寿命预测 姚二现 庄伟东 常海萍

可靠性与环境适应性标准信息与行业动态

(17)黑客软件能让手机控制飞机 无

安全与电磁兼容

(18)电动汽车用动力电池环境下的安全性能 李凯 王奂

(22)瞬态传导骚扰测试方法及其抑制技术的探讨 黎俊勇

可靠性与环境适应性标准信息与行业动态

(25)室温量子比特数据存储再创纪录 无

质量管理与产品认证

(26)实时测控软件研制过程中质量控制方法研究 朱丹 王斌 童艳

可靠性与环境适应性标准信息与行业动态

(29)美军担心军事机器人程序变异 可能毁灭世界 无

质量管理与产品认证

(30)关于大型军贸产品验收规范编制要点的探讨 史红英

(35)装备研制过程中的质量管理 生建友 薛卫娟

可靠性与环境适应性标准信息与行业动态

(40)我国科学家首次在实验上发现量子反常霍尔效应 无

可靠性与环境适应性理论研究

(41)深入理解失效率和瞬时失效率 李沙金 冯敬东

(49)电子产品寿命评估关键技术的研究 陈华平 李辉 张颖 鹿文军 温志英

可靠性与环境适应性标准信息与行业动态

(52)科学家在宏观尺度上验证了量子力学的基本原理 无

计算机科学与技术

(53)物联网安全传输协议的研究与设计 钟晶 王颍凯

(57)图像处理中的正交变换探讨 刘舜鑫 刘少卿

可靠性与环境适应性标准信息与行业动态

(62)2012年《电子产品可靠性与环境试验》增刊征订启事 无

综述与展望

(63)it服务能力成熟度模型综述 王索

计量与测试技术

(70)关

jjg455—2000《工作测力仪》中张力仪的探讨 易军

第9篇:量子力学基本原理范文

课堂不再是老师一个人的舞台。教学中,教师应充分发挥学生在学习中的主体地位,教师只是引导学生进行学习,对于具体问题应当引导学生进行分析思考,答案由学生给出。应当充分肯定学生的想法,对于正确合理的部分给予赞赏和鼓励,同时也需指出不合理的或需要改进的地方。通过启发式教学使得学生在学习上由被动变主动,学生的思维能力得以训练、培养和提高。学生学会如何进行自主学习,培养了学生继续学习和终身学习的态度、习惯与技能。这种素质是现代社会对学习者的要求,这种素质将使学习者终身受益。

二、教学应理论与实践结合

物理所涉及的知识源于实践,它重视对于实践的指导,根据这一特色,在教学过程中,应努力结合物理的基本原理,向科学技术应用延拓,努力培养学生的科学意识。例如,讲磁介质分类时,可以提及具有完全抗磁体性的超导体,介绍超导体特殊性质,特别是超导体无损耗对于现代工业的意义,同时超导要求的低温条件又制约了超导的应用,如何提高超导温度,实现室温下超导是科学家目前遇到的难题,需要进一步去探索研究。在讲授气体分子动理论时,可介绍地球温室效应的形成及危害,从而努力发挥现代科学的潜力,走一条绿色环保的高技术发展道路。

讲波动光学时介绍一些三维影像知识,以及全息照相基本原理,可以凸显物理的实用性,物理的学习不仅可以认识世界,也可以改造世界。实践证明,这些做法使学生认识到物理课程的重要性,懂得如何使用物理知识解决具体问题,激发了学生学习的动机,从而提高学生学习物理的兴趣。

三、教学应培养学生创造性思维

教学过程中应当鼓励学生的怀疑和批判精神,鼓励学生提出标新立异的想法。缺少质疑,人们的认识与思维就报难向前深入发展[3]。从物理发展的历史来看,无不以怀疑和批判为先导。我们知道:如果没有怀疑和批判就不会诞生近代物理的两大基本理论:相对论和量子力学。科学的进步需要不断超越已有的理论,没有怀疑和批判,也就失去了创新的生命力。在教学中,也要注重培养学生想象力,让学生大胆假设,如有一天超光速能够实现了;我们生活在没有摩擦的世界;我们生活的地球失去磁场……会出现一些什么样的情景?这些问题没有标准答案,存在多种可能性,能够培养学生发散思维,学生可以展开想象的翅膀,用一些已有的知识,分析、归纳、总结得到自己的结论,这种思维方式将使学习者终身受益。

四、教学应课内与课外结合

教师应多创设学生间交流机会。经常组织学生参加物理课外活动和竞赛将非常有助于学生发现问题,用集体的智慧创造性地解决问题。学期开始可以让学生自由结合,分组开展各种活动,每周一个主题,可以是对于生活中物理现象的讨论分析,也可以是参观科技馆等。每周每组就活动情况书写书面报告,教师进行指导和评价,鼓励学生用发现的眼光观察世界,用科学的方法认识世界。

五、结语

相关热门标签