公务员期刊网 精选范文 量子力学概念总结范文

量子力学概念总结精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的量子力学概念总结主题范文,仅供参考,欢迎阅读并收藏。

量子力学概念总结

第1篇:量子力学概念总结范文

关键词:量子力学;教学探索;普通高校

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2013)50-0212-02

一、概论

量子力学从建立伊始就得到了迅速的发展,并很快融合其他学科,发展建立了量子化学、分子生物学等众多新兴学科。曾谨言曾说过,量子力学的进一步发展,也许会对21世纪人类的物质文明有更深远的影响[1]。

地处西部地区的贵州省,基础教育水平相对落后。表1列出了2005年到2012年来的贵州省高考二本理科录取分数线,从中可知:自2009年起二本线已经低于60%的及格线,并呈显越来越低的趋势。对于地方性新升本的普通本科学校来讲,其生源质量相对较低。同时,在物理学(师范)专业大部分学生毕业后的出路主要是中学教师、事业单位一般工作人员及公务员,对量子力学的直接需求并不急切。再加上量子力学的“曲高和寡”,学生长期以来形成学之无用的观念,学习意愿很低。在课时安排上,随着近年教育改革的推进,提倡重视实习实践课程、注重学生能力培养的观念的深入,各门课程的教学时数被压缩,量子力学课程课时从72压缩至54学时,课时被压缩25%。

总之,在学校生源质量逐年下降、学生学习意愿逐年降低,且课时量大幅减少的情况下,教师的教学难度进一步增大。以下本人结合从2005至10级《量子力学》的教学经验,谈一下教学方面的思考。

二、依据学生情况,合理安排教学内容

1.根据班级的基础区别化对待,微调课程内容。考虑到我校学生的实际情况和需要,教学难度应与重点院校学生有差别。同时,通过前一届的教学积累经验,对后续教学应有小的调整。在备课时,通过微调教学内容来适应学习基础和能力不同的学生。比如,通过课堂教学及作业的反馈,了解该班学生的学习状态,再根据班级学习状况的不同,进行后续课程内容的微调。教学中注重量子力学基本概念、规律和物理思想的展开,降低教学内容的深度,注重面上的扩展,进行全方位拓宽、覆盖,特别是降低困难题目在解题方面要求,帮助学生克服学习的畏难心理。

2.照顾班内大多数,适当降低数学推导难度。对于教学过程中将要碰到的数学问题,可采取提前布置作业的方法,让学生主动去复习,再辅以教师课堂讲解复习,以解决学生因为数学基础差而造成的理解困难。同时,可以通过补充相关数学知识,细化推导过程,降低推导难度来解决。比如:在讲解态和力学量的表象时[2],要求学生提前复习线性代数中矩阵特征值、特征向量求解及特征向量的斯密特正交化方法。使学生掌握相关的数学知识,这对理解算符本征方程的本征值和本征函数起了很大的推动作用。

3.注重量子论思想的培养。量子论的出现,推动了哲学的发展,给传统的时空观、物质观等带来了巨大的冲击,旧的世界观在它革命性的冲击下分崩离析,新的世界观逐渐形成。量子力学给出了一套全新的思维模式和解决问题的方法,它的思维模式跟人们的直觉和常识格格不入,一切不再连续变化,而是以“量子”的模式一份一份的增加或减少。地方高校的学生数学基础较差,不愿意动手推导,学习兴趣较低,量子力学的教学,对学生量子论思维方式的培养就显得尤为重要。为了完成从经典理论到量子理论思维模式的转变,概念的思维方式是基础、是重中之重。通过教师的讲解,使学生理解量子力学的思考方式,并把经典物理中机械唯物主义的绝对的观念和量子力学中的概率的观念相联系起来,在生活中能够利用量子力学的思维方式思考问题,从而达到学以致用的目的。

4.跟踪科学前沿,随时更新科研进展。科学是不断向前发展的,而教材自从编好之后多年不再变化,致使本领域的最新研究成果,不能在教材中得到及时体现。而发生在眼下的事件,最新的东西才是学生感兴趣的。因此,我们可以利用学生的这种心理,通过跟踪科学前沿,及时补充量子力学进展到教学内容中的方式,来提高学习量子力学的兴趣。教师利用量子力学基本原理解释当下最具轰动性的科技新闻,提高量子力学在现实生活中出现的机会,同时引导学生利用基本原理解释现实问题,从而培养学生理论联系实际的能力。

三、更新教学手段,提高教学效率

1.拓展手段,量子力学可视化。早在上世纪90年代初,两位德国人就编制完成了名为IQ的量子力学辅助教学软件,并在此基础上出版了《图解量子力学》。该书采用二维网格图形和动画技术,形象地表述量子力学的基本内容,推动了量子力学可视化的前进。近几年计算机运算速度的迅速提高,将计算物理学方法和动画技术相结合,再辅以数学工具模拟,应用到量子力学教学的辅助表述上,使量子力学可视化。通过基本概念和原理形象逼真的表述,学生理解起来必将更加轻松,其理解能力也会得到提高。

2.适当引入英语词汇。在一些汉语解释不是特别清楚的概念上,可以引入英文的原文,使学生更清晰的理解原理所表述的含义。例如,在讲解测不准关系时,初学者往往觉得它很难理解。由于这个原理和已经深入人心经典物理概念格格不入,因此初学者往往缺乏全面、正确的认识。有学生根据汉语的字面意思认为,测量了才有不确定度,不测量就不存在不确定。这时教师引入英文“Uncertainty principle”可使学生通过英文原意“不确定原理”知道,这个原理与“测量”这个动作的实施与否并没有绝对关系,也就是说并不是测量了力学量之间才有不确定度,不测量就不存在,而是源于量子力学中物质的波粒二象性的基本原理。

3.提出问题,引导学生探究。对于学习能力较强的学生,适当引入思考题,并指导他们解决问题,从而使学生得到基本的科研训练。比如,在讲解氢原子一级斯塔克效应时,提到“通常的外电场强度比起原子内部的电场强度来说是很小的”[2]。这时引入思考题:当氢原子能级主量子数n增大时,微扰论是否还适用?在哪种情况下可以使用,精确度为多少?当确定精度要求后,微扰论在讨论较高激发态时,这个n能达到多少?学生通过对问题的主动探索解决,将进一步熟悉微扰论这个近似方法的基本过程,理解这种近似方法的精神。这样不仅可以加深学生对知识点的理解,还可以得到基本的科研训练,从而引导学生走上科研的道路。

4.师生全面沟通,及时教学反馈。教学反馈是教学系统有效运行的关键环节,它对教和学双方都具有激发新动机的作用。比如:通过课堂提问及观察学生表情变化的方式老师能够及时掌握学生是否理解教师所讲的内容,若不清楚可以当堂纠正。由此建立起良好的师生互动,改变单纯的灌输式教学,在动态交流中建立良好的教学模式,及时调整自己的教学行为。利用好课程结束前5分钟,进行本次课程主要内容的回顾,及时反馈总结。通过及时批改课后作业,了解整个班级相关知识及解题方法的掌握情况。依据反馈信息,对后续课程进行修订。

通过双方的反馈信息,教师可以根据学生学习中的反馈信息分析、判定学生学习的效果,学生也可以根据教师的反馈,分析自己的学习效率,检测自己的学习态度、水平和效果。同时,学生学习行为活动和结果的反馈是教师自我调控和对整个教学过程进行有效调控的依据[6]。

四、结论

量子力学作为传统的“难课”,一直是学生感到学起来很困难的课程。特别是高校大扩招的背景下,很多二本高校都面临着招生生源质量下降、学生学习意愿不高的现状,造成了教师教学难度进一步增大。要增强学生的学习兴趣,提高教学质量,教师不仅要遵循高等教育的教学规律,不断加强自身的学术水平,讲课技能,适时调整教学内容,采取与之相对应的教学手段,还需要做好教学反馈,加强与学生的沟通交流,了解学生的真实想法,并有针对性的引入与生活、现实相关的事例,提高学生学习量子力学的兴趣。

参考文献:

[1]曾谨言.量子力学教学与创新人才培养[J].物理,2000,(29):436.

[2]周世勋,陈灏.量子力学教程[M].高等教育出版社,2009:101.

[3]杨林.氢原子电子概率分布可视化及其性质研究[J].绥化学院学报,2009,(29):186.

[4]常少梅.利用Mathematica研究量子力学中氢原子问题[J].科技信息,2011,(26):012.

[5]喻力华,刘书龙,陈昌胜,项林川.氢原子电子云的三维空间可视化[J].物理通报,2011,(3):9.

第2篇:量子力学概念总结范文

关键词:类比教学法;量子力学;应用探究

中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2014)24-0100-02

量子力学作为描写微观物质结构、运动与变化规律的学科,是现代物理学的基础之一,而且在化学和很多近代技术中也有广泛应用。量子力学是在旧量子论的基础上发展起来的,对于量子数大到一定的极限的量子系统,可以用经典理论精确描述。量子力学、经典力学既有区别也有联系,从这些区别和联系入手可以使学生更加容易理解量子力学的新知识。基于此,本文在分析量子力学和经典力学的相似点的基础上,探究并实践了如何让学生加深理解的问题。将类比教学法应用于量子力学的实践教学当中,这样既可以丰富教学内容,提高学生积极性,又可以培养学生创造性思维,同时还可以巩固学生以前学过的经典物理学的相关知识,进而能提升量子力学课教学质量。

一、类比教学法

类比方法是根据两类物理现象在某些性质的相同或相似处,推断出这两类物理现象的另一些性质也相同或相似的一种逻辑推理方法。类比法是专业术语,指由一类事物所具有的某种属性,可以推测与其类似的事物也应具有这种属性的推理方法。在我们学习一些十分抽象地看不见、摸不着的物理量时,由于不易理解,我们就拿出一个大家能看见的且与之很相似的事物来进行对照学习。类比方法强调在分析、发现不同事物的共同性质的基础上,把一个事物的属性转移到另一类事物上。类比的过程具有创造性,是科学家常用的思维方法。

二、量子力学与经典力学的相似点及类比教学法的应用

物理学研究的目的是总结、概括各种不同物质在时空中的运动规律,并且把这些规律用数学公式表示出来。量子力学和经典力学的研究对象不同,而宏观和微观物质自身性质的巨大差异,造成了学习量子力学相比于学习经典力学的困难。而另一方面,把量子力学和经典力学类比,找到它们之间的共同点,再进一步推理,可以更加容易理解量子力学理论。在处理物体直线运动或是自由落体运动时,我们自然会想到在(x,y,z)所组成的空间坐标系中,根据牛顿运动学定律,分析物体的状态随时间的变化情况。每一时刻,物体的位置可以用三维空间里的任何一个点的坐标表示出来。为了方便地处理不同物理问题,空间直角坐标系可以变换成柱坐标系、球坐标系。处理物体的碰撞时,把实验室坐标系换成质心坐标系,利用动量守恒原理,也可以使表达式更加简单,易于求解。因此,选择最佳的坐标系,可以让复杂的问题变的简单。在微观世界中,量子力学仍然需要在恰当的坐标系中讨论物理问题。在经典力学中,物体处在某个状态的位置和角动量可以被精确的计算。但是,对于微观体系,比如一个电子在原子中的环绕原子核运动,它的位置、动量不能同时精确确定。当该电子处于定态时,它的能量不会随时间变化,即它的能量守恒。这时,我们可以把电子放在能量坐标系中讨论。在数学中,希尔伯特空间是欧几里得空间的一个推广,它不再局限于有限维的情形。在量子力学中,能量坐标系被称为能量表象。量子力学中常见的表象包括:动量表象,能量表象,粒子数表象等。在矩阵力学中,把状态Ψ看成是一个列向量。选择一个特定的Q表象,就相当于选取一个特定的坐标系。■的本征函数u1(x1),u2(x2),u3(x3)…un(xn)就是这个表象的基矢,相当于笛卡尔坐标系的单位矢量i,j,k;波函数a1(t),a2(t)…an(t),是态矢量Ψ在Q表象中沿基矢方向的“分量”,正如A沿i,j,k三个方向的分量是(Ax,Ay,Az)一样;■本征函数的归一性,类似于几何坐标系的i・ij・jk・k1;而本征函数的正交性,类似于几何坐标系中i・ji・kj・k0[5]。在量子力学中,■的本征函数有无限多,称态矢量所在空间是无限维的希尔伯特空间。由此看来,几何坐标和力学表象是同一个概念,只是处理不同的问题时,选择不同的坐标系可以减小复杂程度。在量子力学中如果知道了状态的波函数,那么粒子处于空间某点的几率,以及力学量的平均值均可求得,因此说波函数完全描述粒子体系的运动状态。而对于同一个状态,在不同的表象中,有不同的波函数形式。量子力学的一种基本假设是波函数满足态叠加原理:

ψc1ψ1+c2ψ2+K+cnψn (1)

此式的物理意义是量子体系的一般状态是所有本征态的线性叠加。Ψn是体系的可能态,相应的概率分别为|ck|2,而且满足归一化■c■■1。在经典力学中,伽利略变换可以变换不同的惯性系。量子力学则借助幺正矩阵来实现不同表象之间的变换。那什么是幺正矩阵呢?简单来说就是满足S+S-1的矩阵称为幺正矩阵,而由幺正矩阵所表示的变化称为幺正变换。所以由一个表象到另一个表象的变换是幺正变换。如果以F'表示算符■在B表象中的矩阵,F表示■在A表象中的矩阵,则通过幺正变换可得:F'S-1FS (2) 也就是说力学量F在A表象中的矩阵左右分别乘幺正矩阵的逆矩阵和原矩阵就可以把力学量F转换到B表象中去。量子力学和经典力学间的相似点还有很多。量子力学类比教学法的核心是,注意强调量子力学与经典力学的必然联系,引导学生积极思考、探索量子力学新知识的本质,把新知识与已经掌握的量子力学知识类比,深入透彻的理解量子力学的假设、定义和公式。

综上所述,把量子力学与经典力学做类比,就是要发掘出、并重点讲解它们之间的相似点,让学生在这些相似点的基础上,主动的思考分辨量子力学和经典力学的相同和不同。本文以表象为例,把表象变换与数学上几何坐标进行了类比,讲述了对表象及其变换的理解。总之,在讲授抽象的量子力学时,把它和经典物理进行类比可以帮助学生更好的理解、掌握新知识,能起到很好的教学效果,也有助于培养学生的创新精神。但类比法不是万能的,要灵活、恰当地应用到位,才能最大程度地发挥它的积极作用。

参考文献:

[1]吕增建.从量子力学的建立看类比思维的创新作用[J].力学与实践,2009,(31):90-92.

[2]蔡晓烽.物理教学中的类比教学[J].宁德师专学报(自然科学版),2010,22(3):323-325.

[3]周世勋.量子力学教程(第二版)[M].北京:高等教育出版社,2009.

[4]曾谨言.量子力学教程(第二版)[M].北京:科学出版社,2008.

[5]赵凤娇.对量子力学中表象及变换的理解[J].硅谷,2011,(23):17.

[6]郭华.用类比方法讨论量子力学问题[J].中央民族大学学报(自然科学版),2013,2(2):45-50.

第3篇:量子力学概念总结范文

摘要:

物理概念作为物理学知识体系的支柱,对其理解和掌握的程度直接影响到教学质量。对物理概念教学的实施原则和方式进行了探讨:实施要求在知识传授过程中不仅仅停留在概念本身,更需要从物理概念的需求背景、本质内涵和外延、适用范围、缺陷和改进等诸多方面进行讲解,使学生形成一个完整清晰的物理图像。实施方式要求创造好的学习环境来激发学生的兴趣以及调动学生的主观能动性和创造力。通过有效启发学生的思考,并使其受到科学精神的感染,达到有效理解和掌握物理概念的目的。

关键词:

物理学概念;科学素质;科学精神;教学方法;教学效果

物理学是研究宇宙中存在的各种基本物质结构及其运动和相互作用规律的学科,是人类认识自然和改造自然的工具。大学开设的物理基础课,可培养学生的科学素质和品质,也为后续专业课程学习奠定基础[1]。物理基本概念用于概括、归纳、表述事物变化的基本规律,是学科基础,对其深入学习可培养学生物理学的研究方法和思维[2]。

1物理概念教学的意义

大学物理通过向学生传授基础物理知识,培养学生基本的物理思维能力、科学品质以及物理学研究方法[3]。物理学概念(包括原理、定理、定律)是针对学科发展需要,在实验和理论基础上,通过反复的概括、抽象和归纳得到的,体现了学科的思维和发展方向,相应的学习和掌握至关重要[2]。

1.1培养解决和分析问题的能力

物理概念是物理学发展的支柱,任何一门物理学分支的发展都离不开特有物理概念的引入。如力学的发展,离不开力、力矩、动量、能量等基本物理概念的支撑。为了描述阻止物体的力,引入摩擦力,根据物体运动方式不同,又分为滚动和滑动摩擦力;为了研究物体的形变特性,引入了压力、剪切力等概念[4]。

1.2培养物理学的辩证和统一研究思维

有些物理概念是矛盾的结合体,如光的本质,即“波粒二象性”,对其认识一波三折。最早笛卡尔、牛顿的微粒学说,成功解释了光的直线传播现象。波动学说起源于胡克,认为光是类似水波振动,惠更斯提出光是纵波。“牛顿环”体现了光的波动性,却以微粒和以太进行解释。随着托马斯•杨干涉、菲涅耳衍射、麦克斯韦电磁场理论研究,以及赫兹(Hertz)对光的电磁波本质实验证明,人们逐步接受了光的波动性。直到19世纪末,在光电效应研究基础上,爱因斯坦提出了光的“波粒二象性”[5],为新学说奠定了基础,如康普顿效应,德布罗意物质波、测不准原理、薛定谔波动方程等。

1.3培养融会贯通、触类旁通能力

很多物理概念会经历提出、实验或理论证实,逐步推广和深化,甚至扩展到其他领域的过程。这说明该概念的思维反映事物本质,精确描述了对象特征。如热学里“熵”概念,最先由克劳修斯(Clausius)基于描述热机循环状态的需要而提出,后来分子运动论将其解释为不可逆热力学过程是趋向于概论增加的态变化(波耳兹曼熵)。经过多年沉淀,又被控制论、数论、概率论、生命科学、天体物理等领域引入并应用,说明其思维方式被认同[6]。教学中可以把熵作为专题进行讲解,从不同学科集中阐述物理思维。

2物理概念教学的方法

大学物理学的教学目的如下:

1)通过掌握基础物理知识,为学习后续专业知识打好基础;

2)全面了解物理学研究方法、基本概念、物理图像以及历史渊源、发展等;

3)培养和提高大学生科学素质、思想、品质、精神等,通过了解科学发展的曲折和艰辛,科学研究的合作和乐趣等,培养学生科学思维方法、求真务实的科学品格,使其初步具备科学研究能力[1,7]。下面结合物理学特点以及教育理论和实践,对物理概念教学方法进行探讨。

2.1引入物理概念背景的教育需求

介绍物理学概念背景帮助学生充分理解概念引入的意义和作用。在此基础上,设计问题引导学生进行自我思考,如:若你们在此背景下引入新概念,应该采用什么概念来描述物质特性或规律,它与现有概念相比有哪些优缺点?通过学生的深入思考和讨论,使其充分认识和理解所引物理学概念的意义和重要性。这也是启发式教学的常用方式[8]。如讲解微粒比表面时,根据背景提问:对于一个物体而言,表面原子存在大量断键而很不稳定,表现为较强活性,是不是体积越大活性越强?通过讨论发现单纯的体积特征不合理,体积越大,内部包含原子数越多。进一步提问:如何描述微粒活性,并进行相应对比?这会激发学生的兴趣,出现类似单位质量的物质表面等答案。最后,指出微观粒子的尺寸效应最为重要,引出单位体积的表面积概念,即比表面积。

2.2讲清物理概念的本质内涵和外延物理概念的发展

体现在内涵不断丰富和外延在不同领域的扩展。温度概念的发展就体现了内涵的丰富,从表征“环境的冷热程度”到“分子平均平动动能的量度”,再到“物体内部分子的无规则热运动剧烈程度”,最后推广到“粒子集居数的反转现象”,也就是“系统处于总能量高于平均能量的状态”,并提出负温度的概念。折射率的概念则体现了其外延的扩展,最初表征不同材料之间的偏折,后表征传播速度。其实光传输的速度决定于材料原子之间电场的大小,也体现了原子结合力的高低,所以所承载的外延信息很多,包括光学、原子物理以及物质结构等不同学科。一些物理学概念是联系不同领域的纽带,如阿伏伽德罗常数是联系宏观与微观的桥梁,对其内涵的理解比单纯数值更有意义。

2.3循序渐进和系统性的教学

有些概念贯穿于整个物理学体系中,需要多学科的共同学习才能深入和系统地认识。以物理学中极其重要的“场”的概念为例,最先由法拉第(Faraday)基于电磁相互作用的超距观点提出并进行直观描述;随后麦克斯韦从数学上推导了电场和磁场强度的波动方程,深刻地阐述了电磁场能量的分布[9];列别捷夫(Lebedev)通过对光压的观测证明了电磁场动量特性;爱因斯坦狭义相对论的创立,证明场是物质存在的一种形式,具有能量、动量和质量;量子力学体现了场的“波粒二象性”;电磁场量子理论证明光子是电磁场的基本微粒,可与正负电子对相互转化,具有实物转化性,丰富了场的物理本质和内涵[10]。“场”在电磁学、力学、相对论、量子力学等领域都有体现。教学中要从“场”的基本特性、规律和共性出发,逐步深入:最初通过力学中重力(万有引力)引入重力场强、重力势能(引力场强、引力势函数),初步建立场的概念;电磁学或电动力学则通过电荷库仑力场引入库仑场强和库仑势,通过场矢量的通量分析和环流分析分别得到高斯定理和安培环路定理;相对论和量子力学通过波函数分析进一步加深对场的理解。

2.4引入必要的物理学史教育

物理学的发展过程是科学家为了解决自然界遇到的新问题而不断探索的过程,所提物理概念是对所描述对象的高度概括[11]。新概念的提出、完善和修正需要科学检验和论证,错误的被或修正,正确的被采用或推广,这体现了物理学思维方式。结合物理学史,对成功或失败的物理概念进行分析和对比,有助于培养学生理性思维。成功实例:原子物理中“紫外灾难”催生了普朗克(planck)的量子概念,后来爱因斯坦的光量子说,成功地解释了光电效应,开启了量子力学新篇章;描述基本粒子单元的夸克(quark)概念,被逐渐证实。失败实例:描述光传输的“以太”概念被实验否定。当前还有很多概念亟待进一步论证,波尔(Bohr)与爱因斯坦关于量子力学的著名论战就是一个很好的证明。这可以培养学生思辨的习惯、求实的精神和相互包容的优良品质。

2.5构建清晰物理图像

很多概念的提出都基于不同的研究思路和思维,需要建立完整清晰的物理图像再现其物理思维和描述意义[12]。以麦克斯韦方程组为例,它体现了电磁学基本研究思路:对电场和磁场进行曲面和曲线积分,得到相应的源。学科适用范围体现了不同思维,如电磁学规律是基于宏观的分析,量子力学是处理微观世界的规律,具有完全不同的研究思路和适用范围。以电磁波发射为例,电动力学基于LC振荡,量子力学电子跃迁。对比讲解对构建知识体系和正确应用很有益。形象化表述是构建物理图像的主要方法之一,如在光学中讲述菲尼尔圆孔衍射的光强空间分布规律时,可以采用半波带法、矢量图解法等进行分解,达到获得清晰物理图像的目的[13]。加强实验教学有助于构建物理图像,可分为重建性和探究性,通过实验再现物理知识或根据预设要求通过实验得到结果。

3教学措施和效果

为了有效开展物理概念教学,我们对教学方法进行了改革,主要涉及到:分组讨论式教学、改革考试方式、推行非标准化答案、重建基本概念、推荐内容丰富的教材和参考书、加强实验教学等。分组讨论式教学是创造机会使学生对物理概念的提出背景、必要性、可以解决的问题进行深入讨论,在争论中增强对概念本质的认识。典型问题有:物理概念需求背景、自我设想和构建、解决问题程度和预期目标、现有物理概念对比等。通过以上教学,学生在考试中对基本概念的描述正确率大大增加,平均得分率由72%提高到83%。非标准化答案旨在锻炼学生想象力和发散性思维,围绕物理概念进行问题设计,采用多种表述方式进行分析。采用撰写论文形式进行考试,要求学生通过文献查询、收集信息等方式来阐述物理概念的内涵和外延等,全面锻炼学生能力:信息查询、归纳总结以及写作表述能力等。考试成绩比重由原来的15%增加到30%,更能体现学生能力水平。随着学习不断深入,需要通过扩展物理概念的内涵或外延对新事物及其特性规律进行描述。如随着激光光强的增加,对材料的光电离会由单光子电离扩展到多光子电离,由线性光学扩展到非线性光学以及激光等离子体物理[14]。推荐内容丰富的教材和参考书也是一种很好的方式。如原子物理教学中可推荐杨福家的《原子物理学》[15],该书图文并茂,有很多经典故事,同时设计了很多启发式问题,使用者反映良好。光学教学中可推荐冯国英、周寿桓编写的《波动光学》[16],该书内容丰富,主要物理概念和定律后面附有Matlab应用实例,有利于学生学以致用和形象化理解物理概念。另外,美国学者ArtHobson编写的《物理学的概念与文化素养》等,都能为物理学概念的学习提供很好的参考。

4结语

物理学概念是物理学发展和前进的基石,体现了研究过程中遇到的新问题,反映了为了解决问题提出的新思维和方法,表征了物理学发展的趋势和方向。物理学概念学习主要体现在基础知识的掌握、科学品质和精神的培养、科学素质的锻炼等方面。从教学方法上需要从构建物理图像出发,结合物理学史的引入,激发学生主动性,达到全面掌握物理概念内涵和外延的目的。具体实施方式上,可以结合考试改革、非标准化答案、推荐优秀教材等来实现。

参考文献:

[1]包景东.理论物理教学应在培养学生批判性思维能力上发挥作用[J].大学物理,2014,33(1):1-5.

[2]张玉峰,郭玉英.围绕学科核心概念建构物理概念的若干思考[J].课程•教材•教法,2015,5(35):99-102.

[3]秦吉红,梁颖.在大学物理教学中应加强科学素养的案例剖析:纪念黄祖洽先生[J].大学物理,2015,34(2):15-18.

[4]乔通.科学教育中重要概念教学的国际比较研究:以“力学”概念教学为例[J].全球教育展望,2015,5(44):118-124.

[5]甘永超.波粒二象性研究中的历史学与方法论思考[J].湖北大学学报(哲学社会科学版),2002,29(3):90-95.

[6]孙会娟.熵原理及其在生命和社会发展中的应用[J].北京联合大学学报(自然科学版),2007,21(3):1-4.

[7]濮春英,周大伟.大学物理教学中学生创新素质的培养[J].南阳师范学院学报,2014,13(3):47-48.

[8]吴波.物理概念教学的改革与发展研究[J].上饶师范学院学报,2003,23(6):23-28.

[9]杨振宁,汪忠.麦克斯韦方程和规范理论的观念起源[J].物理,2014,43(12):780-786.

[10]雷蒙德•塞尔维,克莱门特•摩西.近代物理学[M].3版.北京:清华大学出版社,2008:65-106.

[11]申先甲,李艳平,刘树勇,等.谈谈物理学史在素质教育中的作用[J].大学物理,2000,19(11):36-40.

[12]李明.对加强和改进大学物理教学中多媒体技术的探讨[J].大学物理,2005,24(12):48-50.

[13]吴颖,徐恩生,罗宏超.振幅矢量法与半波带法分析光栅衍射的比较[J].沈阳航空工业学院学报,2005,22(1):70-73.

[15]杨福家.原子物理学[M].2版.北京:高等教育出版社,1985:218-219.

第4篇:量子力学概念总结范文

原子物理学是研究原子结构、运动规律及相互作用的学科,是物理学专业的基础课程,也是核类专业重要的专业基础课程,上承经典物理学,下接量子力学和原子核物理等重要课程。相比经典物理学课程原子物理学有很大差别,首先,原子物理学课程不像普通物理学课程从基本物理概念和物理规律出发进行严密的理论运算推导得到更普遍的基础理论,而是遵循从实践出发―理论模型建立―实践检验的认识过程,应用更多的是总结、归纳的方法;其次,研究对象是微观体系,而学生对微观现象缺乏直观的感性认识。正是由于这些差异,大部分学生在学习中感觉原子物理学知识点凌乱,理不清头绪,导致不能巩固和深化所学知识。因此,在教学中如何激发学生的学习兴趣,引导学生把握课程主线,认识原子运动规律,形成新概念,进而培养学生自学能力、思维能力、研究能力等成为原子物理学教学中需要探讨的问题。本文针对褚圣麟先生教材《原子物理学》的教学浅谈个人教学过程中的认识。

1 学习兴趣的培养

学习兴趣指一个人对学习的一种积极的认识倾向与情绪状态。学生对某一学科有兴趣,就会持续地专心致志地钻研它,从而提高学习效果。学习兴趣既是学习的原因,又是学习的结果。由此,培养学生最初的学习兴趣,促进学生在学习中找到乐趣,由被动的学习转变为主动学习、好学、乐学,在培养学生的自学能力过程中具有重要的意义。如何培养学生对原子物理学学习的兴趣,笔者从教学实践中总结如下几个方面。

1.1 结合物理学史增强学习内容的趣味性

原子物理发展史料丰富,若将史料运用于原子物理教学中,将起到事半功倍的效果。在授课中将原子物理学发展史融入知识的传授可增强学习的趣味性。如电子发现最早进行试验的并不是汤姆逊,试验结果最精确的也不是汤姆逊,但汤姆逊是第一个敢于突破常规认识而提出新粒子是电子的人,这一简介让学生明白科学研究中要尊重科学事实,敢于突破传统认识;讲述量子化概念提出时介绍普朗克为解释黑体辐射提出量子化概念的历程,由于这一崭新理论与经典理论的冲突,普朗克本人也不是特别坚决,此后他曾试图放弃量子论,用经典物理学方法重新解决黑体辐射问题,但均未成功,让学生认识科学发展中开创性革新的不易。可以说原子物理的发展中,充满对已有思想观念的颠覆和新思想的建立,这些都需要科学怀疑和批判精神,充分说明科学无绝对权威,科学怀疑精神和独立思考是科学进步的动力。通过物理学史的介绍,能在课堂上吸引学生的注意,使课堂气氛活跃,激发学生对原子物理学的兴趣,在轻松快乐的氛围中学习,同时学习科学的批判精神,培养学生创新能力。

1.2 结合课程内容介绍原子物理学中的难题激发学生钻研兴趣

好奇心和探索欲望是科学研究的原动力,在教学中通过介绍课本中出现而尚未完全认识明白的物理概念、物理问题,能极大激发学生的认识和探索欲望,教师可引导学生对相关问题的研究现状进行调研并汇报,在这一过程中既能促进学生了解学科的研究前沿,也能使学生加深对基本物理概念、原理的认识,同时有助于培养学生的实践能力和初步的科研能力。在原子物理学教材中有不少世界性的难题,如,在索末菲椭圆轨道理论和相对论效应中提出的精细结构常数所包含的物理含义、数值为什么刚好约为1/137;为解释光谱精细结构产生而引人的电子自旋的概念人们是否已经完全认识清楚等,这些问题在教学中可充分利用,调动学生的探索欲望,激发学生的钻研兴趣。

1.3 结合物理学发展前沿介绍激发学生研究兴趣

原子是从宏观到微观的第一个层次,物质世界各个层次的结构和运动变化相互联系、相互影响,很多其他重要学科和技术的发展以原子物理为基础,在课程教学中结合课程内容穿插原子物理学与相关学科的交叉及原子物理学发展的前沿介绍,可激发学生学习兴趣和钻研热情。如讲述α粒子散射实验时,介绍原子碰撞研究方法已经发展成为一个重要的研究方向,涉及各种基本粒子与原子和分子碰撞的物理过程等;讲述激光原理时,介绍激光技术的发展及其对原子物理学发展的促进,介绍我国激光领域研究的国际地位等。学科前沿的介绍能帮助学生认识学习本学科的社会意义及其与个人的关系,有助于激发学生学习的社会责任感。

2 把握课程主线

原子物理学的内容不像经典物理学具有严密的逻辑体系,因此在教学中拎?课程的主线有助于学生系统的掌握课程的知识内容。对原子结构的认识发展,课程以光谱分析法为主线:从原子光谱规律出发,原子光谱规律的变化可以反映出原子内部能级的特点,进而探究原子内部的作用及其规律。对原子内部作用的认识,课程以量子力学中的角动量概念为主线:从玻尔氢原子理论的角动量量子化假设的提出,到单电子的轨道角动量与自旋角动量的耦合解释精细结构的产生,及两个电子体系的LS耦合和JJ耦合等,并进一步明确角动量与磁矩概念的对应,角动量耦合的本质是粒子间电磁相互作用,自旋和轨道运动的相互作用引起原子能级的分裂和塞曼效应能级分裂在本质上是相同的。

3 讲清基本概念

第5篇:量子力学概念总结范文

关键词:电动力学;知识结构;逻辑体系;研究方法

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)33-0167-02

本文根据我校的教学实际并结合电动力学的教学特点,分别介绍了学生学习和教师教学过程中应明确的电动力学的地位、知识结构和逻辑体系以及研究方法,希望能为电动力学的学习与教学提供有益的帮助。

一、明确电动力学的地位

电动力学主要阐述宏观电磁场理论,其研究对象是电磁场的基本属性、它的运动规律以及它和带电物质之间的相互作用,可见它与自然界中的四种基本相互作用(引力相互作用、电磁相互作用、弱相互作用、强相互作用)之一有直接联系。由于光的理论本质是电磁理论,所以电动力学还是光学理论的基础。电动力学作为物理学专业一门理论基础课,是理论物理(理论力学、热力学统计物理、电动力学、量子力学)的重要组成部分,包括物理学发展史上具有里程碑意义的两个物理理论,即麦克斯韦电磁理论和爱因斯坦狭义相对论。本课程最重要、最直接的先行课程是电磁学和数学物理方法,后继课程是量子力学、固体物理等。因此,电动力学要在电磁学的基础上,利用数学工具严格、定量地讲清宏观电磁相互作用的基本概念、基本理论和基本方法,使学生加深对电磁场性质和时空概念的理解,获得本课程领域内分析和处理一些基本问题的初步能力。同时为后继相关课程打下必要的基础。

以上将经典电磁场理论放在整个物理学中做了概括的论述,目的是为了使学生对它的地位和意义有一个恰当的认识,避免过份强调本学科的作用,造成“只见树木,不见森林”的错觉。

二、明确电动力学的知识结构和逻辑体系

在课程内容体系和结构的组成与安排上,一般采用两种方法:“从特殊到一般”的分析归纳法和“从一般到特殊”的演绎法,这两种方法是同样重要的。但是,多年来电动力学的教学大大忽视了分析归纳法,实际上这不符合物理学发展的规律。从认识论的角度来看,分析归纳法所指的“从特殊到一般”就是由实践到理论的过程,即将丰富的实践经验进行深入的分析,由表及里,去伪存真,总结概括出带有规律性的东西而上升为理论。演绎法所指的“从一般到特殊”就是由理论再到实践的过程,即理论要经过实践检验,并且经过实践检验而被证明是正确的理论再指导实践。由此可见,分析归纳法与演绎法的结合正是在某一个认识层次上实践―理论―实践的全过程,同时体现了理论与实践的紧密结合。因此,在电动力学课程内容体系和结构的安排上,可力求从实验事实出发,提出问题,分析问题,总结出规律和假设,再经实验验证升华为科学理论,在更为普遍的意义上解决实际问题。这样,使分析归纳法和演绎法有机地结合起来,更好地贯穿理论联系实际的重要原则。具体来说,对于麦克斯韦理论的讲述,是从静电场、静磁场和时变场的实验定律出发,分析在时变场情形下所出现的深刻矛盾,为解决矛盾提出位移电流这一科学假设,并总结出麦克斯韦方程组和洛伦兹力公式。之后的大量实验验证了它是在随时间变化的普遍情形下完全正确的电磁场理论。然后以此理论为基础,讨论在特殊情形和不同方面电磁场的性质和运动规律,如电磁波的传播,电磁波的辐射、散射和衍射,运动带电粒子的辐射等。对于狭义相对论的阐述,也同样注重理论原理与实验基础之间的紧密结合。

在国内外,有些电动力学书的逻辑体系与上述不同。其中一类是以归纳法和演绎法并重,先详细讨论静态场与似稳场,然后用归纳法得出麦克斯韦方程组,以后就用演绎法讨论电磁波的辐射、传播等问题;第二类是以静电场为起点,应用狭义相对论对库仑力进行洛伦兹变换,从中引出磁场的概念,导出磁场的场方程,继续推出麦克斯韦方程组,然后讨论辐射、传播等问题,基本逻辑体系仍属于演绎法范畴;此外,还有采用“逐步公理法”的逻辑体系,它以矢量场的亥姆霍兹定理为核心,对每种具体电磁场,根据实验规律对该场的源和“涡源”提出假设(即公理),然后对每种场做深入的研究,这也是一种以演绎法为主的逻辑体系;还有人采用分析力学方法,引入电磁场的拉格朗日函数,导出电磁场的基本规律等。

三、注意学习电动力学的研究方法

第6篇:量子力学概念总结范文

固体物理学是凝聚态物理和材料物理专业的必备基础课,它融合了普通物理、热力学与统计物理、量子力学等多学科的知识。也是因为知识面广、量大、深奥难懂,在教学过程中,学生普遍反映较难掌握这门课程。如何取舍教学内容、如何深入浅出地讲解基础知识点、如何改变教学手段和教学形式提高学生的学习和应用能力等,这些都是教学中遇到的主要问题。作者从数年的教学中总结了一些心得体会,希望对这门课的教学有所借鉴作用。

一、多媒体与三维模型的应用

固体物理学是一门研究固体的微观结构、组成固体的粒子(原子、离子、电子等)之间的相互作用与规律,并在此基础上阐明固体宏观性质的学科。因此,固体的微观结构是这门课程的基础。许多固体物理学的教材,例如黄昆等的《固体物理学》经典教材,开篇即讨论晶体的结构。但对晶体结构的理解,特别是对三维的晶体结构的理解,需要学生较好的空间想象能力。由于晶格的周期平移不变性,理想晶格可以通过原胞或单胞的周期平移、重复而得到。那么,如何选取合适的原胞或单胞?原胞的形状如何?原胞内有多少个原子?单胞内的各个原子是否等价?在教学过程中,许多学生对这些问题一时不能很好理解。

随着计算机的普及和利用,多媒体教室普遍存在,并被广泛使用。多媒体教学手段的利用,有助于学生对固体微观结构的理解。例如,可以通过视频或PowerPoint文件,可以直观地展示晶体的微观结构、原胞的选取、原胞的形状等。与传统板书相比,利用多媒体呈现并分析固体的微观结构以及晶体的结构特征,对教师而言,更加省时、省力;几何关系的表达也更为准确,便于学生的理解。此外,若能结合三维的原子实物模型,那么,固体的微观结构将能更为直观地展现在学生眼前。多媒体与三维模型的应用对于学生理解固体的微观结构、晶格的周期性、原胞、晶体的对称性等基础概念很有好处。

当然,多媒体教学也存在着一定的局限性。例如,在公式的推导、基础概念的讲解等方面,板书其实更受学生的欢迎。与多媒体教学相比,板书的节奏慢,师生间可以有较多的互动;学生相对容易跟上教师思考问题、解决问题的步伐,学生也能有较充分的时间来理解各个知识点、梳理要点以及做笔记等。因此,多媒体教学还需适当地与传统板书相结合才能达到较好的教学效果。

二、教学内容的取舍

由于固体物理学融合了普通物理、热力学与统计物理、量子力学、晶体学等多学科的知识,其知识面广、量大,在有限的学时里,不可能面面俱到地讨论固体物理学所涉及的所有知识点。因此,实际教学中可以结合本专业的特色,有选择地取舍部分教学内容。例如,侧重固体热学性质的专业可以考虑以晶格振动等内容为主;而侧重微电子的专业则可以考虑以能带理论、半导体中的电子等内容为主。当然,一些多个领域都涉及到的基础知识也应是这门课程不可缺少的一部分内容。

固体的微观结构和结合方式是固体物理学的基础,因此,晶体的结构和晶体的结合等知识点应是这门课程的基础知识之一。考虑到理想晶格由原子实和电子组成,晶格的运动主要在晶格振动等部分讨论;而电子的运动主要在能带理论等部分讨论,具体还可以分为金属中电子的运动和半导体中电子的运动等部分。尽管这原子实和电子的运动实际上相互联系,但很多时候,可以分别侧重讨论。此外,实际晶体也并非理想晶体;实际晶体除了有边界之外,也常含有缺陷。但在许多情况下,晶格的振动、电子的运动和缺陷的影响依然可以依据实际情况分别讨论,并得到与实际较为符合的理论结果。因此,晶格振动、能带理论和缺陷等知识点之间相对独立,或可根据各专业的实际情况取舍部分教学内容。

在许多固体物理学的教材中,例如黄昆等的《固体物理学》教材和阎守胜的《固体物理基础》教材,密度泛函理论并没有被提到。事实上,密度泛函理论是一个被广泛使用的基础理论,它是凝聚态物理前言研究的有效手段之一,也是材料设计的一种有效方法。教学过程中,教师可以结合各专业的实际情况介绍一些密度泛函理论的基础知识。同时,还可以介绍一些最新的相关研究进展,以拓展学生的知识面、提高学生的学习兴趣。

三、模块化的教学形式

如前所述,固体物理学中的许多知识点间相对独立;基于这门课程的特征,教师在教学过程中可以考虑模块化的教学形式,以子课题的形式将相应内容呈现给学生。可能的模块如:讨论晶体的结构和晶体的结合方式的基础模块――晶体的结构与结合;讨论晶体中原子实运动的模块――晶格振动;讨论晶体中电子运动的模块――能带理论;讨论实际晶体中可能存在的缺陷的模块――晶体的缺陷等;其中,能带理论部分还可分为:近自由电子模型、紧束缚模型、赝势方法等数个部分。这样做首先有利于教学内容的取舍;其次,有利于学生对各知识点的理解、有利于学生梳理清楚各个知识点之间的关系。

此外,固体物理学是凝聚态物理前沿研究的基础之一;其基础知识、理论推导、实验背景以及处理问题的方式方法等,都是开展凝聚态物理研究的基础。而模块化教学,以课题研究的形式提出问题、解决问题,将教学内容以问题为导向呈现给学生,这有助于培养学生的学习能力和解决实际问题的能力。而且,课题研究的教学模式,既是在教授学生知识,也是在开展科研,有助于提高学生对科研的认识、有助于培养学生的科研能力。这种课题研究的模块化教学形式还可以结合基于原始问题的教学来开展。

四、基于原始问题的教学

所谓原始问题,可简单理解为:现实生活中实际存在的、未被抽象加工或简化的问题。于克明教授、邢教授等人详细探讨了原始物理问题的诸多方面;此外,周武雷教授等人还讨论了原始物理问题含义的界定等相关问题,并呼吁将基于原始物理问题的教学实践引入大学物理的教学中。这应是个值得提倡的建议,毕竟现实生活中遇到的具体问题都是原始问题。与传统的习题不同,原始问题未被抽象、加工或简化。学生处理实际问题的第一步便是将问题适当简化,这也是学生需要学习的一种能力。

事实上,合理的模型简化是各种理论的基础,也是实际应用或科研必不可少的一种能力。例如,讨论晶格热容的爱因斯坦模型和德拜模型,尽管模型简单,但它们数十年来是我们讨论、分析相应问题的基础。今天,那些被写进教科书的基础理论,在当时、在理论刚被提出时,都是为了原始问题的解决。下面以晶体热容为例,稍加详述。

问题的背景:根据经典的热力学理论,晶体的定体摩尔热容是个与温度无关的常数。实验发现晶体的热容在高温下确实接近于常数,但是晶体的热容在低温下并不是个常数,其与温度的三次方成比例关系。

问题的提出:理论预言与实验观测为何不相符?如何解释实验现象?20世纪初刚刚发展起来的量子力学是否能解释这个实验现象?这些问题在爱因斯坦的年代应该都是前言的科研问题。

问题的简化:(1)不考虑边界、缺陷、杂质等的影响,将实际晶体抽象为理想晶体;(2)基于绝热近似,不考虑电子的具体空间分布,将原子当作一个整体,原子―原子间存在相互作用;(3)基于近邻近似,只考虑近邻原子间的相互作用;(4)基于简谐近似,将原子间的相互作用势在原子的平衡位置作泰勒级数展开,并保留到二阶项。

问题的解决:基于上面的模型简化,写出描述原子运动的牛顿第二定律,并求解方程组,这些方程组与相互独立的简谐振子的运动方程组相对应。结合量子力学,得到体系的能量本征值;写出晶格振动总能的表达式,继而给出由晶格振动贡献的晶格热容的表达式。由于晶格热容的表达式复杂,很难直接与实验结果对比,因此引入进一步的简化和近似――爱因斯坦模型或德拜模型。

这种提出问题、分析问题、解决问题的方式与做前言科学研究的方式相接近,既能提高学生对科研的认识、培养学生的科研能力,又能培养学生理论联系实际、解决实际问题的能力。

五、小结

针对固体物理学这门课程的一些特点,本文从教学手段、教学内容和教学形式等方面提出了一些教学改革的心得体会。教学手段上,可以利用多媒体和三维模型等教学手段,以便让学生更容易理解固体的微观结构。教学内容上,可以针对专业特色,有选择地取舍部分章节。而模块化的教学形式,可以将相对独立的知识点以子课题的形式呈现给学生,既能帮助学生梳理知识点,又能让学生对课题研究有所认识。最后,通过课题研究的教学形式、理论联系实际的讨论分析以及基于原始问题的教学,培养学生学习和应用的能力。

致谢:感谢上海高校外国留学生英语授课示范性课程《英文大学物理》建设项目的资助。

参考文献:

[1]黄昆,韩汝琦.固体物理学[M].北京:高等教育出版社,1988.

[2]阎守胜.固体物理基础[M].第二版.北京:北京大学出版社,2003.

[3]谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社,2007.

[4]冯端,金国钧.凝聚态物理学[M].北京:高等教育出版社,2003.

[5]陈志远,熊钢,易伟松.多媒体技术应用于固体物理教学的探讨[J].咸宁师专学报2002,22(6):53-55.

[6]梁先庆,何小荣.固体物理学课程教学研究与探讨[J].广西物理,2011,32(3):47-49.

第7篇:量子力学概念总结范文

【关键词】科学;真理;经验

随着科学技术带来社会的变革,现代人们逐渐认识到了科学的巨大功用。于是“科学”一词被广泛提及以至于有滥用之势。食品、营养、养生配方等等都冠以科学之名,而工业生产与设计中家家用的都在用“科学方法”,仿佛科学的就是最好的,永远正确的,等同于放之四海而皆准的永恒真理。我们不禁要问什么才是科学?科学的真正内涵是什么?

为明晰科学,此处先讨论什么是真理。真理者,就是事物的本来面目:对客观对象来说,是其属性、性质,也可以说是物自体本身;对事件来说,则为其因果关系及其必然联系。真理的存在性取决于我们认识事物本来自然面目的全面性与正确性。就盲目乐观者来说,这点似乎是毋庸置疑的:我们每天乘坐着飞机、火车、公交,使用着电脑、手机,享受着科学技术带来的一切便利,国家和政府每年也投资相当可观的基金和经费来支持学者们做科技研究…这些都是我们已经并且希望能够继续正确认识世界自然规律运行的证据。然而事实上我们真的正确认识到了吗?人的感性认识由于外物的影响作用才产生的,人们只能认识到外物作用于感官时所产生的表象。即使现在有了先进的仪器,人们也只是通过一些间接的证据来推测如该物质由多少原子和电子构成,性质如何等等。一旦发现了新的不符,人们就去修改其初始认知。就像万有引力被奉为真理200年后被相对论修正,而相对论与物理学另一支柱――量子力学的矛盾百年来一直未被调和,因此未来的物理基础再次被修正也是必然的事。也就是说,此处如果我们不承认感性认知的局限性,就必须去质疑人类的理性思维,相反,如果我们认为自己的理性是可靠的,我们就必须承认只能根据经验作这样那样的假设来局限地推测客观事物某一方面的属性,而不能正确穷尽的认识到客观事物本身的全面自然属性。

对事件因果而言同样没有必然的真理。虽然我们已经习惯于声称某事之所以发生是因为另一件事发生了,即事件间的因果关系。但事实上:我们能观察到一件事物随着另一件事物而来,却观察不到任何两件事物之间的关联,我们对于因果的概念只不过是我们一厢情愿的想法而已,没有任何逻辑基础――逻辑也产生不了新的认知。所以,张三打伞是因为天下雨了――这种因果关系是荒谬的,它只是根据经验作出的联系判断。

从上述论证我们不难发现,真理是个形而上的哲学概念,我们无法确定无误的回答一个哲学问题,也就不能得到必然的真理。而科学则不同,“科学”的英文单词为“science”,其词根原意为学习和感知。历史上在五四时期“科学”被转译引进国内并尊称之为赛先生,它代指西方船坚炮利后的物理机制,也进一步代表人们对经验范围内观察感知到的自然现象的总结与思考推演,比如上文所述的万有引力、相对论与量子力学。经验世界无疑是我们思维认知的基础,也同时构成科学的边界。为何如此?笛卡尔说,我思故我在,这是一个精神实体对其存在的确认。除此以外,经验是我们认识外在世界时判断存在、真假、正误的唯一依据,也是我们制定宇宙的标尺如质量、长度、时间等单位标准的来源。

进一步,为什么我们如此依赖经验?简单地说,在某种意义上除了经验我们一无所有。没有经验意味着冒险,马斯洛人本主义理论告诉我们这是违背人的安全需求的。在一个优胜劣汰适者生存的达尔文进化体系里,一个没有安全需求的生命体在进化和繁衍中是脆弱的。虽然经验不能告诉我们事件间的必然联系,但长期有利的经历以及失败的教训却可以教会我们趋利避害。如天在下雨,张三有伞,那么张三为了自身的安全和生存的利益趋向,出门很可能要打伞。因为他知道,不打伞会被雨林湿,进而有可能得病,而这对生存和繁衍是不利的,这个经验可能来源于是学习或亲身经历,也可能来自于潜移默化的传承、再举例来说,经验教会我们遇到猛兽就要躲避或逃跑,而缺乏这些经验的人在长期生存中就会被吃掉,遗留下来的就是有此类经验的,所以最终我们每个人遇到猛兽都会两股战战。这同样可以解释为什么我们对未知事物如鬼神之类有种敬畏和恐惧之情,对日常生活中突然出现的奇怪事物会心存害怕――这是经验不能有效处理和及时处理的东西,而它们又对我们的生存带来了直接威胁(虽然有时只是心理上的确信)。

另一方面,过于依赖经验却是不利的。一般来说随着年龄的增长我们对新事物的接受能力或者更确切说是接受新事物的意愿越来越差,这是积累的经验禁锢着我们思想的结果,同时我们翻开历史可以看到世界上的重大创新基本都是由年轻人完成的,而那些已经功成名就的伟人却往往对新科技的发展起着阻碍作用――不是因为害怕别人挑战他们的权威和声望,而是害怕别人否定他们一生时间铸就的宝贵经验。

再回到科学。上面论述表明我们的全部知识来源于经验,而只有经验则不足以满足社会的发展与认知的开拓。为了指导未来的实践就需要在经验中提炼大范围适用的规律体系,即为科学。因为经验的实用主义色彩,所以科学也是经世致用的,也就是说科学能被不同时期不同地区的人复用于生产实践,其适用性也会在实践中得到验证。很显然,不能被证实或证伪的宗教玄学不能称为科学,由公理假设和演绎归纳构成自洽的数学体系也不能严格的称为科学。

由于科学源于时代的局限认知,随着实践范围的扩大和时间的延长,曾经的科学往往会被修正或否定。如地心说盛行的时代,受限于观测工具的匮乏,人们只能看到日月星辰围绕地球东升西落,地球是宇宙中心就成了一种很自然的共识。后来哥白尼日心说的兴起尤其更为重要的是伽利略望远镜的发明才使得太阳是宇宙中心成为一种新科学。而近代如哈勃望远镜等大型观测工具的应用,使人们认识到更科学的说法应该是:宇宙是均衡的并且没有中心。因此科学随着时代的进步而与时俱进,伴随着经验世界的拓展与人类实践范围的扩大不断修正,没有一成不变永恒正确的科学。

总之,我们只能在时代积累的经验世界框架内不断总结实践,发现着新科学,修正着旧科学。而那些放之四海而皆准的永恒真理至多只能是人们心中一颗美丽的信仰。

【参考文献】

第8篇:量子力学概念总结范文

关键词:热力学与统计物理 教学内容 教学方法 考核方式 材料物理专业

中图分类号:G642.0 文献标识码:A 文章编号:1672-3791(2014)07(c)-0170-02

材料物理专业是材料科学与物理学的一个交叉学科,专业特点要求在课程设置上既有材料科学方面的课程又要有物理类课程。安徽工业大学材料物理专业于2003年开始进行筹划建设,2005年实现了首次招生。经过几年的探索、规划和实践,基本完成了专业定位和课程体系设置[1],正逐步完善专业建设。现阶段,保留了量子力学,热力学与统计物理(以下简称热统)和固体物理学作为本专业的物理类必修课程。其中,热力学与统计物理是一门重要的专业基础课,无论对后续的物理类还是材料类课程的学习都起到承上启下的知识连接作用。本课程的设置目的使学生能够熟练掌握热力学和统计力学的基本原理和研究方法,逐步建立分析微观世界的思路和方法,训练学生严格的逻辑思维能力,培养演绎推理能力,提高解决具体问题的能力。

1 热力学与统计物理课程教学中存在的主要问题

热统课程内容由热力学和统计物理两部分组成。其中,热力学是研究热现象的宏观理论,它从若干经验定律出发,通过严密的逻辑演绎方法,最终给出系统的宏观热性质;而统计物理则是研究热现象的微观理论,它从微观粒子的力学规律出发,加上统计假设,获得系统的宏观性质。从内容上来看,热统课程的理论性强,教学内容繁杂。尤其,在当前高校推行素质教育和培养应用型人才的指导下,基础理论课课程教学学时均有不同程度的压缩。我校热统课程安排为40个学时,由此带来了教学学识少和教学内容多的严重矛盾。我们根据我校材料物理专业特色方向和后续课程,在热统教学内容上做出了适当的调整。

现行的热统教材理论性强,较适合理科生使用,缺乏较合适的工科材料类学生使用的热统教材。在组织教学中,我们以汪志诚编写的《热力学・统计物理(第四版)》作为主要参考教材[2],同时综合了多本经典教材,如:胡承正编著的《热力学与统计物理学》,包景东编著的《热力学与统计物理简明教程》等[3~4]。根据我校材料物理专业培养目标和专业特色方向,本着“先进、有效、有用”的原则,对热统课程的教学内容应该进行认真清理与重构,形成适合本校实际的课程讲义。

在教学方法和考核方式上也应根据我校实际进行相应的改革。热统课程是一个理论性强的课程,其中的物理概念抽象,物理公式繁杂。安徽工业大学材料物理专业是在工科背景下成立并发展起来的,学生的数理基础相对薄弱,在学习的过程中会有些吃力。长期的教学实践告诉我们,如果采取传统的灌输式教学方法,只能使热统课堂教学枯燥无味,学生被动的接受知识,失去了学习兴趣,甚至对后续的专业课学习产生抵触情绪。另外,传统的闭卷考试常造成学生不重视平时的学习过程,期末复习只看教学课件,期待老师划重点,搞突击记忆。

针对上述现状,我们尝试着进行了教学内容,教学方法和考核方式的改革和实践。

2 教学内容的改革

2.1 优化教学内容

热统课程的热力学部分与先修课程,如大学物理、物理化学和工程化学基础的部分内容重复率较高。我们在充分了解本专业学生的先修课程和后续课程的教学内容后,对与其他课程有交叉重叠的部分进行了压缩和删减。比如:热力学部分的热力学基本定律,热力学函数,化学平衡条件,理想气体的化学平衡等都在先修课程里面作为重点内容进行讲授的。在实际教学时,只作复习性的简述或以学生自学的方式完成。但为保证热力学基本概念与规律的严格性与系统性,对重要的基本概念和定律还是进行重点讲解。通过这样的调整,节省了热力学部分的教学学时,加大了统计物理部分的学时讲授。统计物理是从宏观系统的微观结构入手,从内容上与量子力学和固体物理课程联系紧密,也为后续的计算材料学课程,甚至可为本科毕业论文工作提供前期的知识准备。在统计物理教学部分,将在先修课程中学习过的麦克斯韦速度分布率和能均分定理略讲;固体的热容量的德拜理论是固体物理课程的重点教学内容,在热统教学中,这部分只简单提及。经过这样的教学内容优化后,节省了课时,加强了课程之间的联系,提高了教学效率。

2.2 适当引入材料学科前沿内容

创新型人才的培养要求课程内容要体现先进性和现代化。通过合理的补充与热统课程相关的材料学和物理学最新的学术成就与进展,有意识的突出课程的广度,丰富和具体化基本理论内容。增加学科前沿内容,我们从两个方面进行。一方面是在讲授基础理论知识的同时,引入与该知识密切相关的科学技术发展的介绍。例如:在对温度和温标作复习简述的时候,介绍测温仪表和测温技术。电阻温度计,热电偶测温技术,红外测温技术等在后续的材料类课程学习,课程设计和实验及毕业论文工作是非常重要的一部分。在讲授气体的节流和膨胀过程一节时,介绍了获得低温的技术,以及与低温有关的材料性能的变化,超导电现象的发展历史及科研现状等;在讲授单元系的相变时,加强了对二级相变和临界现象的讲授,介绍了磁性材料,超导材料,超流体等方面的最新研究进展;在统计物理部分,介绍玻色-爱因斯坦凝聚的新进展,讲授统计物理部分的金属中的自由电子时,适当介绍计算材料学和计算物理方面的研究现状等。另一方面是通过鼓励学生现场听取相关的学术报告,或者观看相关报告的视频。通过前沿知识的适当引进,开阔了学生的视野,激发了学生的学习和科研兴趣,获得了较好的教学效果。

2.3 注重理论联系实际

材料类专业是应用性很强的专业,要求热统课程教学内容要体现实用性,加强理论与实际的联系。我们鼓励学生通过本科生科研训练计划(SRTP)和大学生创新创业计划的方式参与相关教师的课题研究,或者开设课程设计和实验。如在讲授相变的章节时,为了让学生加深对二级相变的理解,开设了高温超导转变的实验,巨磁电阻材料的相变实验等。组织学生参观学校相关的实验室,如参观计算材料实验室,使学生了解相图的理论计算方法,第一性原理计算及材料设计方法。经过这样的训练,学生对物理概念有了深入的理解,提高学生的应用能力,研究能力和创新能力。

3 教学方法和考核方式的改革

3.1 学生为主体,教师为主导

在组织课堂教学时,认真贯彻以学生为主体,教师为主导的教学思想,加强师生互动,争取使学生由被动接受知识变为主动探索知识。在课前,给学生预留思考题进行课前预习,让学生带着问题去听课,做到有的放矢。在组织教学时,对重点章节进行精讲,适时开展物理基本概念和基本问题的讨论,启发学生思考和推理。对相对容易理解的章节组织学生自学,或者制作成ppt课件,在课堂上讲解,教师在做总结式讲授。课后,要求学生独立完成作业和习题,以期加深对基本概念的理解和应用。

3.2 重物理思想 简化数学推导

在组织教学的过程中,重点讲解基本概念,突出物理思想。借助于多媒体教学,对于较抽象、难理解的概念和原理,可通过制作图文并茂的课件,或者观看相关视频的方式,使抽象的概念形象化,增强学生的感性认识。适当补充基本概念辨析题和思考题以促进学生对基本概念的深入理解和掌握。对于必要的数学推导,使用板书的方式进行详解和推导,留给学生足够的时间思考并跟上教师的思路。

3.3 考核方式的改革

考核是教学过程的主要环节之一,应具有实用性和针对性,并能体现学生的综合素质。我们在考核方面,加大了平时成绩的比例,增加了课堂回答问题,课堂讨论,撰写科研小论文等环节的考核。在期末的闭卷考试中,减少死记硬背的概念题和公式,把考核重点放在学生对基本物理概念的理解和基本理论知识的实际应用上。

4 实践效果

在教学实践中逐步形成了适合我校材料物理专业实际的热统课程讲义。实践证明,改革措施在缓解授课学时与教学内容的矛盾,拓宽学生知识面等方面效果显著。尤其,热统课程作为材料物理专业的前期先修基础课,对后续的课程学习起着承上启下的重要作用。通过上述的教学改革后,学生的学习积极性大大提高,热爱本专业的学习,踊跃参加SRTP和大学生创新创业的计划,甚至部分同学提前加入教师团队的课题组,对未来的工作或者继续深造充满信心。

参考文献

[1] 方道来,童六牛,夏爱林,等.材料物理专业定位及课程体系设置的探索[J].安徽工业大学学报:社会科学版,2011(23):104-105.

[2] 汪志诚.热力学・统计物理[M].北京:高等教育出版社,2010.

第9篇:量子力学概念总结范文

[关键词]理论物理;课程群:教学改革;精品课程

[中图分类号]G40-057 [文献标识码]A [论文编号]1009-8097(2013)12-0123-03 [DOI]10.3969/j.issn.1009-8097.2013.12.024

一、引言

理论物理是从理论上探索自然界未知的物质结构、物质运动和相互作用的基本规律的学科。理论物理的研究领域主要有宇宙学、粒子物理与原子核物理、凝聚态物理、统计物理等,几乎包括了物理学所有分支的基本理论问题。我院理论物理课程群包括《理论力学》、《电动力学》、《热力学和统计物理》、《量子力学》、《数学物理方法》和《固体物理》六门主干课程,它们多数是物理学、应用物理、光信息、微电子、新能源和材料学等理工专业的重要必修课程。通过本课程群的学习和训练,可以培养学生具有扎实数理基础、良好科学素养和创新意识,掌握物理学的基本理论和方法,获得相应的科学思维和基础训练,为理论物理、凝聚态物理、材料科学、电子科学、计算机等科学和技术领域培养创新人才和高级专门人才。

虽然我校理论物理各门课程的教学改革取得了一些很多成果,但是理论物理教学系统改革研究相对较少,较多为单一学科、某些方面的研究。为适应当代科技发展和高新技术产业人才的需求,有一些共性和新出现的问题,需要系统的研究和解决。这些问题这主要表现在:

(1)传统思维定势的影响:认为理论物理课程需要的基础知识多、理论性强,部分学生认为课程枯燥、难学是正常的,没有从学生的认知准备和心理准备出发解决这一问题;

(2)由于是集中教学,课程内容又是理论课,教学中不同程度存在着重理论、轻实践,重共性、轻个性等问题,各课程任课教师之间也没有很多交流;

(3)由于微电子、材料学和新能源是近几年新上的专业,教学大纲和教学内容没有很好体现这些专业的需求,没有有效地联系当代高新技术产业发展,教学方法不能完全适应创新型、应用型人才培养的要求。

如何以专业和就业为导向,针对理工科的不同特点,深化教学内容改革,既培养培养素质高、能力强的研究型人才,又培养基础深厚、了解产业特点、符合高新技术产业发展需要的应用型人才,是理论物理教学研究面临的重要课题。本研究在多年跟踪问卷的基础上,重新梳理和设计理论物理的每门课程,提出“点面体”三个层面的教学改革模式。并在此基础上,实践和完善了这一改革体系,取得了较好的教学效果。

二、跟踪问卷调查的部分结果

自2011年起,我们连续三年对学院各专业的同学进行过《理论物理学习问卷调查》,共有1200多人次同学参加,针对各专业和前一年的问卷结果,问卷形式、内容和侧重点也不尽相同,得到了许多翔实的意见和建议。比较一般性的问题有:

(1)大部分同学们觉得学习理论物理概念抽象,难以理解。2013年针对哪些课程的学习难度较大的调查,涉及5个专业,数学基础、普通物理、理论物理等,有效问卷486份。可见,相对于其他课程,学生普遍感到理论物理课程较难。

(2)有关“觉得课程难度较大原因”的调查结果显示:23.3%认为概念和原理太抽象,28.6%认为公式条件或范围搞不清,22.6%认为数学解题能力不行,15.6%认为,老师上课内容基本听不懂,32.5%认为老师讲解能听懂,但作业不能独立完成。由此可见学生觉得学习理论物理课程难,原因很多,除了学习兴趣,集中反映的问题还有自己的认知水平和学习方法等方面。2013年的调查结果现实,较多同学即使听懂了基本概念和公式,接近三分之一的同学也不能独立解题。有的同学虽然理解公式和规律,但仍需老师讲解才能够完成解题过程,这在《电动力学》和《量子力学》等分项问卷中,也得到了验证。

(3)《数学物理方法》这门课程是理论物理的基础课,但对于所有专业的学生来说基本都是难点,这在表一中就可以看出。虽然学生对于该门课程老师们的教授风格非常认可,但很多学生不能理解这门课程的用处,也难于把握学科的主要知识点,2012年调查结果显示:有关“《数理方法》难度较大原因”的调查显示,30.2%认为自己数学基础不扎实,53.1%认为课程知识本身很难,51.7%学生认为数学问题解法多种但不知其目的,41.9%认为不知数学方程对应的物理问题。(问卷涉及5个专业,有效问卷360份),2013年的问卷调查也是类似的结果。

(4)每个专业的同学,均有甚至一半以上的学生,不看理论相关的书籍和文章,只是在考前才看书。在完成作业的方式上,学生多参考同学作业或参考答案,如何能够使学生自觉性学习、更好理解课本知识,并灵活的运用到解题和未来科学研究中,成为值得教学中深思和改变的问题。

(5)学院所设专业中,除了新能源专业,多数同学并非第一志愿报考,这说明很多学生对于大学选择专业上,不了解未来自己专业的发展方向,而且对于相对理论物理课程的学习有一定的惧怕心理。调剂过来的同学中,需要经过一段时间的专业了解和学习,才有可能对自己的专业感兴趣,进而对理论物理产生兴趣。

(6)基本上每个专业有考研意向的同学都在一半以上,并且绝大多数人希望考取专业相关方向的研究生,希望理论物理改革能与专业学习和考研结合起来。

问卷调查中还有其他很多有意义的结论。如,(1)从学生学习层面分析,有些同学没有充分了解学习理论物理的重要性,不能对自己的学习给以准确的定位;虽然一些学生的学习的动机和态度都很好,但自己制定计划不能很好地完成,说明自我控制能力需要加强;学生在学习理论物理的认知准备方面做的不充足或学习方法不恰当时,会给后续的学习带来较大的困扰。(2)对于具体课堂教学,学生们希望老师增加课外相关知识的讲解,以丰富课堂内容。如生活中的物理、现在物理动向、物理高新科技成果、物理学史等方面的内容,提高学生课堂学习的积极性,进而增加同学们对课程的积极性;老师不要一味讲解,可以采用模型进行教学,或运用动画模拟相关内容;多讲习题,尤其是解题的思路和方法;增加课外实验,培养学生的动手能力和实际处理问题的能力可以增加师生互动环节,组织课外研究小组等等。这些都对深化理论物理课程群教学改革有着重要的参考意义。

三、“点面体”结合的教学改革

理论物理课程群的改革,首先要理顺课程群的层次:《数理方法》以《高等数学》为基础,它又是其他理论物理课的基础:理论物理中的四大力学分别以普通物理的《力学》、《热学》、《电磁学》、《光学》和《原子物理》五门课程为基础,也是学习《固体物理》,以及《高等量子力学》和《量子电动力学》等研究生课程的基础,而且它们在不同专业中的地位和作用是不同的,所讲授的内容也有所不同。而这些课程的层次和内容关联,决定着学生认知结构的层次和关联,需要在教学中认真分析和准备。

更重要的是,要深化理论物理教学改革,必须以促进人的全面发展、适应社会需要作为衡量教育质量的为标准,坚持“全面发展、彰显个性、人人成才、服务社会”的培养思路,进行创新人才和应用型为人才主导的培养模式改革。所以,我们将理论物理课程群的改革,按照每一课程从知识点和教学点剖析,进而在课程层面将其教学改革系统化,最终进一步密切各课程衔接,实现理论物理课程群的立体化改革。主要做法如下:

1.点的方面改革,是理论物理课程群改革的着力点和基础,需要做大量细致的工作。具体说:(1)不断根据专业特点和培养人才需要,分析和调整各学科的教学知识点和掌握标准,进而全面修订各学科的教学大纲和各专业的教学计划;(2)为让教师掌握讲课要点和学生特点,大面积开展微课练习和公开课观摩分析,提高教师教学的基本功;(3)通过课堂教学,以及辅导员和专业班主任,尽量了解学生个体的不同差异,以便因材施教,弥补集中教学的不足。

2.课程层面的改革。包括主要两方面的内容:(1)主要是针对课程和专业特点,根据不同的教学要求,系统完善教学内容,并通过课程作业、网络教学、专题讲座和创新实验等多种形式,将这一课程教学改革系统化;(2)理顺课程群中各学科的内在联系,密切各课程之间衔接,各课程教学改革相互借鉴,以适应课程、学生和专业学科的特点,改善和优化教学。

3.体的方面改革。是指“以人为本”完成课程群的改革,按照“宽口径、厚基础、重实践、强创新”的原则,以锻炼学生的独立思考能力,表达能力、沟通能力、创新能力等为出发点,立体改革理论物理课程群,使之不仅适应不同专业特点,更符合学生的成才和发展的需要。它是建立在点面改革基础上的,具体说有以下几个方面:

(1)专业课程模块化,以适应光电产业、新材料、新能源产业需求为目的的课程体系改革,设置专业基础必修模块,以及微电子、光电信息、新能源、材料物理等4个专业选修课程模块。每个专业基础必修和选修模块中理论物理课程不同、教授的内容也不同;

(2)拓展课堂教学改革,在改善课堂教学的同时,采取课程论文为引导的研究性学习的方式,培养学生独立思考的能力;所有理论物理课程都上网,以网络课程和网络辅助教学平台,拓展和丰富学生的课外学习;

(3)在培养方法上,实行课堂教学与课程论文、创新实验等研究性学习相结合,实验教学与动手能力培养相结合,技能训练与企业实训相结合,开阔视野同学术交流相结合,创新能力与科学研究相结合,个性化培养与社会契合度相结合,在更大视野、更全面地提高学生的培养水平;

(4)评价方式上,卷面考试与课程论文相联系,设计性实验与基础性实验相联系,综合素质评价与创新性学分相联系,制定学生素质评价制度,全面考核学生学业水平;

(5)在学生培养模式方面,打破现有班级编制,以选拔和个人志愿相结合的方式,设置创新人才实验班、应用人才实验班,采取小班(不超过30人)授课,每个学生都配有一名专业老师,指导参加创新项目:实验班的每门理论物理课程都增加了学时,用于专题、探究和课程论文等教学环节;对优秀学生实行本硕连读制度等等。

相关热门标签