公务员期刊网 精选范文 半导体的制造方法范文

半导体的制造方法精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的半导体的制造方法主题范文,仅供参考,欢迎阅读并收藏。

半导体的制造方法

第1篇:半导体的制造方法范文

【关键词】电子化工材料 半导体材料 晶体生长技术

半导体材料的发展,是在器件需要的基础上进行的,但从另一个角度来看,随着半导体新材料的出现,也推动了半导体新器件的发展。近几年,电子器件发展的多朝向体积小、频率高、功率大、速度快等几个方面[1]。除了这些之外,还要求新材料能够耐辐射、耐高温。想要满足这些条件,就要对材料的物理性能加大要求,同时,也与材料的制备,也就是晶体生长技术有关。因此,在半导体材料的发展过程中,不仅要发展拥有特殊优越性能的品种,还要对晶体发展的新技术进行研究开发。

1 半导体电子器件需要的材料1.1 固体组件所需材料

目前,半导体电子所需要的材料依然是以锗、硅为主要的材料,但是所用材料的制备方法却不一样,有的器件需要使用拉制的材料,还有的器件需要外延的材料,采用外延硅单晶薄膜制造的固体组件,有对制造微电路有着十分重要的作用。

1.2 快速器件所需材料

利用硅外延单晶薄膜或者外延锗的同质结,可以制造快速开关管。外延薄膜单晶少数载流子只能存活几个微秒[2],在制造快速开关管的时候,采用外延单晶薄膜来制造,就可以解决基区薄的问题。

1.3 超高频和大功率晶体管的材料

超高频晶体管对材料的载流子有一定的要求,材料载流子的迁移率要大,在当前看来,锗就是一种不错的材料,砷化镓也是一种较好的材料,不过要先将晶体管的设计以及制造工艺进行改变。大功率的晶体管就对材料的禁带宽度有了一定的要求,硅的禁带宽度就要大于锗的禁带宽度,碳化硅、磷化镓、砷化镓等材料,也都具有一定的发展前途。如果想要制造超高频的大功率晶体管,就会对材料的禁带宽度以及载流子迁移率都有一定的要求。但是,目前所常用的化合物半导体以及元素半导体,都不能完全满足要求,只有固溶体有一定的希望。例如,砷化镓-磷化镓固溶体中,磷化镓的含量为5%,最高可以抵抗500℃以上的高温,禁带宽度为1.7eV,当载流子的浓度到达大约1017/cm3的时候,载流子的迁移率可以达到5000cm3/ v.s[3],能够满足超高频大功率晶体的需要。

1.4 耐热的半导体材料

目前比较常见的材料主要有:氧化物、Ⅱ-Ⅵ族化合物、碳化硅和磷化镓等。但是只有碳化硅的整流器、碳化硅的二极管以及磷化镓的二极管能够真正做出器件。因为材料本身的治疗就比较差,所以做出的器件性能也不尽人意。所以,需要对耐高温半导体材料的应用进行更进一步的研究,满足器件的要求。

1.5 耐辐射的半导体材料

在原子能方面以及星际航行方面所使用的半导体电子器件,要有很强的耐辐照性。想要使半导体电子器件具有耐辐照的性能,就要求半导体所用的材料是耐辐照的。近几年来,有许多国家都对半导体材料与辐照之间的关系进行了研究,研究的材料通常都是硅和锗,但是硅和锗的耐辐射性能并不理想。据研究表明,碳化硅具有较好的耐辐照性,不过材料的掺杂元素不同,晶体生长的方式也就不一样,耐辐照的性能也就不尽相同[4],这个问题还需要进一步研究。

2 晶体生长技术

2.1 外延单晶薄膜生长的技术

近年来,固体组件发展非常迅速,材料外延的杂质控制是非常严格的,由于器件制造用光刻技术之后,对外延片的平整度要求也较高,在技术上还存在着许多不足。除了硅和锗的外延之外,单晶薄膜也逐渐开展起来。使用外延单晶制造的激光器,可以在室内的温度下相干,这对军用激光器的制造有着重要的意义。

2.2 片状晶体的制备

在1964年的国际半导体会议中,展出了锗的薄片单晶,这个单晶长为2米,宽为8至9毫米,厚为0.3至0.5毫米,每一米长内厚度的波动在100微米以内,单晶的表面非常光滑并且平整,位错的密度为零[5]。如果在制造晶体管的时候,使用这种单晶薄片,就可以免去切割、抛光等步骤,不仅能够减少材料的浪费,还可以提升晶体表面的完整程度,从而提高晶体管的性能,增加单晶的利用率。对费用的控制有重要的意义。

3 半导体材料的展望

3.1 元素半导体

到目前为止,硅、锗单晶制备都得到了很大程度的发展,晶体的均匀性和完整性也都达到了比较高的水平,在今后的发展过程中,要注意以下几点:①对晶体生长条件的控制要更加严格;②注重晶体生长的新形式;③对掺杂元素的种类进行扩展。晶体非常重要的一方面就是其完整性,晶体的完整性对器件有着较大的影响,切割、研磨等步骤会破坏晶体的完整度,经过腐蚀之后,平整度也会受到影响。片状单晶的完整度和平整度都要优于晶体,能够避免晶体的缺陷。使用片状单晶制造扩散器件,不仅能够改善器件的电学性能,还可以降低器件表面的漏电率,所以,要对片状单晶制备的研究进行加强。

3.2 化合物半导体

化合物半导体主要有砷化镓单晶和碳化硅单晶。通过几年的研究发展,砷化镓单晶在各个方面都得到了显著的提高,但是仍然与硅、锗有很大的差距,因此,在今后要将砷化镓质量的提升作为研究中重要的一点,主要的工作内容有:①改进单晶制备的技术,提高单晶的完整度和均匀度;②提高砷化镓的纯度;③提高晶体制备容器的纯度;④通过多种渠道对晶体生长和引入的缺陷进行研究;⑤分析杂质在砷化镓中的行为,对高阻砷化镓的来源进行研究[6]。对碳化硅单晶的研制则主要是在完整性、均匀性以及纯度等三个方面进行。

4 结论

半导体器件的性能直接受半导体材料的质量的影响,半导体材料也对半导体的研究工作有着重要的意义。想要提高半导体材料的质量,就要将工作的质量提高,提高超微量分析的水平,有利于元素纯度的提高,得到超纯的元素。要提高单晶制备所使用容器的纯度。还要对材料的性能以及制备方法加大研究,促进新材料的发展。半导体材料的发展也与材料的制备,也就是晶体生长技术有关。因此,在半导体材料的发展过程中,不仅要发展拥有特殊优越性能的品种,也要对晶体发展的新技术进行研究开发。

参考文献

[1] 李忠杰.中国化工新材料产业存在的问题分析与对策[J].中国新技术新产品. 2011(02):15-16

[2] 张方,赵立群.“石油和化学工业‘十二五’规划思路报告会”特别报导(三) 我国化工新材料发展形势分析[J].化学工业.2011(07):55-57

[3] 原磊,罗仲伟.中国化工新材料产业发展现状与对策[J].中国经贸导刊.2010(03):32-33

[4] 孙倩.面向“十二五”专家谈新材料产业未来发展方向――第三届国际化工新材料(成都)峰会引业内热议[J].新材料产业.2010(06):19-20

第2篇:半导体的制造方法范文

在半导体产业的发展中,一般将硅、锗称为第一代半导体材料;将砷化镓、磷化铟、磷化镓等称为第二代半导体材料;而将宽禁带eg2.3ev的氮化镓、碳化硅和金刚石等称为第三代半导体材料。本文介绍了三代半导体的性质比较、应用领域、国内外产业化现状和进展情况等。

关键词

半导体材料;多晶硅;单晶硅;砷化镓;氮化镓

1前言

半导体材料是指电阻率在107Ωcm10-3Ωcm,界于金属和绝缘体之间的材料。半导体材料是制作晶体管、集成电路、电力电子器件、光电子器件的重要基础材料[1],支撑着通信、计算机、信息家电与网络技术等电子信息产业的发展。电子信息产业规模最大的是美国和日本,其2002年的销售收入分别为3189亿美元和2320亿美元[2]。近几年来,我国电子信息产品以举世瞩目的速度发展,2002年销售收入以1.4亿人民币居全球第3位,比上年增长20,产业规模是1997年的2.5倍,居国内各工业部门首位[3]。半导体材料及应用已成为衡量一个国家经济发展、科技进步和国防实力的重要标志。

半导体材料的种类繁多,按化学组成分为元素半导体、化合物半导体和固溶体半导体;按组成元素分为一元、二元、三元、多元等;按晶态可分为多晶、单晶和非晶;按应用方式可分为体材料和薄膜材料。大部分半导体材料单晶制片后直接用于制造半导体材料,这些称为“体材料”;相对应的“薄膜材料”是在半导体材料或其它材料的衬底上生长的,具有显著减少“体材料”难以解决的固熔体偏析问题、提高纯度和晶体完整性、生长异质结,能用于制造三维电路等优点。许多新型半导体器件是在薄膜上制成的,制备薄膜的技术也在不断发展。薄膜材料有同质外延薄膜、异质外延薄膜、超晶格薄膜、非晶薄膜等。

在半导体产业的发展中,一般将硅、锗称为第一代半导体材料;将砷化镓、磷化铟、磷化镓、砷化铟、砷化铝及其合金等称为第二代半导体材料;而将宽禁带eg2.3ev的氮化镓、碳化硅、硒化锌和金刚石等称为第三代半导体材料[4]。上述材料是目前主要应用的半导体材料,三代半导体材料代表品种分别为硅、砷化镓和氮化镓。本文沿用此分类进行介绍。

2主要半导体材料性质及应用

材料的物理性质是产品应用的基础,表1列出了主要半导体材料的物理性质及应用情况[5]。表中禁带宽度决定发射光的波长,禁带宽度越大发射光波长越短蓝光发射;禁带宽度越小发射光波长越长。其它参数数值越高,半导体性能越好。电子迁移速率决定半导体低压条件下的高频工作性能,饱和速率决定半导体高压条件下的高频工作性能。

硅材料具有储量丰富、价格低廉、热性能与机械性能优良、易于生长大尺寸高纯度晶体等优点,处在成熟的发展阶段。目前,硅材料仍是电子信息产业最主要的基础材料,95以上的半导体器件和99以上的集成电路ic是用硅材料制作的。在21世纪,可以预见它的主导和核心地位仍不会动摇。但是硅材料的物理性质限制了其在光电子和高频高功率器件上的应用。

砷化镓材料的电子迁移率是硅的6倍多,其器件具有硅器件所不具有的高频、高速和光电性能,并可在同一芯片同时处理光电信号,被公认是新一代的通信用材料。随着高速信息产业的蓬勃发展,砷化镓成为继硅之后发展最快、应用最广、产量最大的半导体材料。同时,其在军事电子系统中的应用日益广泛,并占据不可取代的重要地位。

gan材料的禁带宽度为硅材料的3倍多,其器件在大功率、高温、高频、高速和光电子应用方面具有远比硅器件和砷化镓器件更为优良的特性,可制成蓝绿光、紫外光的发光器件和探测器件。近年来取得了很大进展,并开始进入市场。与制造技术非常成熟和制造成本相对较低的硅半导体材料相比,第三代半导体材料目前面临的最主要挑战是发展适合gan薄膜生长的低成本衬底材料和大尺寸的gan体单晶生长工艺。

主要半导体材料的用途如表2所示。可以预见以硅材料为主体、gaas半导体材料及新一代宽禁带半导体材料共同发展将成为集成电路及半导体器件产业发展的主流。

3半导体材料的产业现状

3.1半导体硅材料

3.1.1多晶硅

多晶硅是制备单晶硅和太阳能电池的原料,主要生产方法为改良西门子法。目前全世界每年消耗约18000t25000t半导体级多晶硅。2001年全球多晶硅产能为23900t,生产高度集中于美、日、德3国。美国先进硅公司和哈姆洛克公司产能均达6000t/a,德国瓦克化学公司和日本德山曹达公司产能超过3000t/a,日本三菱高纯硅公司、美国memc公司和三菱多晶硅公司产能超过1000t/a,绝大多数世界市场由上述7家公司占有。2000年全球多晶硅需求为22000t,达到峰值,随后全球半导体市场滑坡;2001年多晶硅实际产量为17900t,为产能的75左右。全球多晶硅市场供大于求,随着半导体市场的恢复和太阳能用多晶硅的增长,多晶硅供需将逐步平衡。

我国多晶硅严重短缺。我国多晶硅工业起步于50年代,60年代实现工业化生产。由于技术水平低、生产规模太小、环境污染严重、生产成本高,目前只剩下峨嵋半导体材料厂和洛阳单晶硅厂2个厂家生产多晶硅。2001年生产量为80t[7],仅占世界产量的0.4,与当今信息产业的高速发展和多晶硅的市场需求急剧增加极不协调。我国这种多晶硅供不应求的局面还将持续下去。据专家预测,2005年国内多晶硅年需求量约为756t,2010年为1302t。

峨嵋半导体材料厂和洛阳单晶硅厂1999年多晶硅生产能力分别为60t/a和20t/a。峨嵋半导体材料厂1998年建成的100t/a规模的多晶硅工业性生产示范线,提高了各项经济技术指标,使我国拥有了多晶硅生产的自主知识产权。该厂正在积极进行1000t/a多晶硅项目建设的前期工作。洛阳单晶硅厂拟将多晶硅产量扩建至300t/a,目前处在可行性研究阶段。

3.1.2单晶硅

生产单晶硅的工艺主要采用直拉法cz、磁场直拉法mcz、区熔法fz以及双坩锅拉晶法。硅晶片属于资金密集型和技术密集型行业,在国际市场上产业相对成熟,市场进入平稳发展期,生产集中在少数几家大公司,小型公司已经很难插手其中。

目前国际市场单晶硅产量排名前5位的公司分别是日本信越化学公司、德瓦克化学公司、日本住友金属公司、美国memc公司和日本三菱材料公司。这5家公司2000年硅晶片的销售总额为51.47亿元,占全球销售额的70.9,其中的3家日本公司占据了市场份额的46.1,表明日本在全球硅晶片行业中占据了主导地位[8]。

集成电路高集成度、微型化和低成本的要求对半导体单晶材料的电阻率均匀性、金属杂质含量、微缺陷、晶片平整度、表面洁净度等提出了更加苛刻的要求详见文献[8],晶片大尺寸和高质量成为必然趋势。目前全球主流硅晶片已由直径8英寸逐渐过渡到12英寸晶片,研制水平达到16英寸。

我国单晶硅技术及产业与国外差距很大,主要产品为6英寸以下,8英寸少量生产,12英寸开始研制。随着半导体分立元件和硅光电池用低档和廉价硅材料需求的增加,我国单晶硅产量逐年增加。据统计,2001年我国半导体硅材料的销售额达9.06亿元,年均增长26.4。单晶硅产量为584t,抛光片产量5183万平方英寸,主要规格为3英寸6英寸,6英寸正片已供应集成电路企业,8英寸主要用作陪片。单晶硅出口比重大,出口额为4648万美元,占总销售额的42.6,较2000年增长了5.3[7]。目前,国外8英寸ic生产线正向我国战略性移动,我国新建和在建的f8英寸ic生产线有近10条之多,对大直径高质量的硅晶片需求十分强劲,而国内供给明显不足,基本依赖进口,我国硅晶片的技术差距和结构不合理可见一斑。在现有形势和优势面前发展我国的硅单晶和ic技术面临着巨大的机遇和挑战。

我国硅晶片生产企业主要有北京有研硅股、浙大海纳公司、洛阳单晶硅厂、上海晶华电子、浙江硅峰电子公司和河北宁晋单晶硅基地等。有研硅股在大直径硅单晶的研制方面一直居国内领先地位,先后研制出我国第一根6英寸、8英寸和12英寸硅单晶,单晶硅在国内市场占有率为40。2000年建成国内第一条可满足0.25μm线宽集成电路要求的8英寸硅单晶抛光片生产线;在北京市林河工业开发区建设了区熔硅单晶生产基地,一期工程计划投资1.8亿元,年产25t区熔硅和40t重掺砷硅单晶,计划2003年6月底完工;同时承担了投资达1.25亿元的863项目重中之重课题“12英寸硅单晶抛光片的研制”。浙大海纳主要从事单晶硅、半导体器件的开发、制造及自动化控制系统和仪器仪表开发,近几年实现了高成长性的高速发展。

3.2砷化镓材料

用于大量生产砷化镓晶体的方法是传统的lec法液封直拉法和hb法水平舟生产法。国外开发了兼具以上2种方法优点的vgf法垂直梯度凝固法、vb法垂直布里支曼法和vcz法蒸气压控制直拉法,成功制备出4英寸6英寸大直径gaas单晶。各种方法比较详见表3。

移动电话用电子器件和光电器件市场快速增长的要求,使全球砷化镓晶片市场以30的年增长率迅速形成数十亿美元的大市场,预计未来20年砷化镓市场都具有高增长性。日本是最大的生产国和输出国,占世界市场的7080;美国在1999年成功地建成了3条6英寸砷化镓生产线,在砷化镓生产技术上领先一步。日本住友电工是世界最大的砷化镓生产和销售商,年产gaas单晶30t。美国axt公司是世界最大的vgf

gaas材料生产商[8]。世界gaas单晶主要生产商情况见表4。国际上砷化镓市场需求以4英寸单晶材料为主,而6英寸单晶材料产量和市场需求快速增加,已占据35以上的市场份额。研制和小批量生产水平达到8英寸。

我国gaas材料单晶以2英寸3英寸为主,

4英寸处在产业化前期,研制水平达6英寸。目前4英寸以上晶片及集成电路gaas晶片主要依赖进口。砷化镓生产主要原材料为砷和镓。虽然我国是砷和镓的资源大国,但仅能生产品位较低的砷、镓材料6n以下纯度,主要用于生产光电子器件。集成电路用砷化镓材料的砷和镓原料要求达7n,基本靠进口解决。

国内gaas材料主要生产单位为中科镓英、有研硅股、信息产业部46所、55所等。主要竞争对手来自国外。中科镓英2001年起计划投入近2亿资金进行砷化镓材料的产业化,初期计划规模为4英寸6英寸砷化镓单晶晶片5万片8万片,4英寸6英寸分子束外延砷化镓基材料2万片3万片,目前该项目仍在建设期。目前国内砷化镓材料主要由有研硅股供应,2002年销售gaas晶片8万片。我国在努力缩小gaas技术水平和生产规模的同时,应重视具有独立知识产权的技术和产品开发,发展我国的砷化镓产业。

3.3氮化镓材料

gan半导体材料的商业应用研究始于1970年,其在高频和高温条件下能够激发蓝光的特性一开始就吸引了半导体开发人员的极大兴趣。但gan的生长技术和器件制造工艺直到近几年才取得了商业应用的实质进步和突破。由于gan半导体器件在光电子器件和光子器件领域广阔的应用前景,其广泛应用预示着光电信息乃至光子信息时代的来临。

2000年9月美国kyma公司利用aln作衬底,开发出2英寸和4英寸gan新工艺;2001年1月美国nitronex公司在4英寸硅衬底上制造gan基晶体管获得成功;2001年8月台湾powdec公司宣布将规模生产4英寸gan外延晶片。gan基器件和产品开发方兴未艾。目前进入蓝光激光器开发的公司包括飞利浦、索尼、日立、施乐和惠普等。包括飞利浦、通用等光照及汽车行业的跨国公司正积极开发白光照明和汽车用gan基led发光二极管产品。涉足gan基电子器件开发最为活跃的企业包括cree、rfmicrodevice以及nitronex等公司。

目前,日本、美国等国家纷纷进行应用于照明gan基白光led的产业开发,计划于2015年-2020年取代白炽灯和日光灯,引起新的照明革命。据美国市场调研公司strstegiesunlimited分析数据,2001年世界gan器件市场接近7亿美元,还处于发展初期。该公司预测即使最保守发展,2009年世界gan器件市场将达到48亿美元的销售额。

因gan材料尚处于产业初期,我国与世界先进水平差距相对较小。深圳方大集团在国家“超级863计划”项目支持下,2001年与中科院半导体等单位合作,首期投资8千万元进行gan基蓝光led产业化工作,率先在我国实现氮化镓基材料产业化并成功投放市场。方大公司已批量生产出高性能gan芯片,用于封装成蓝、绿、紫、白光led,成为我国第一家具有规模化研究、开发和生产氮化镓基半导体系列产品、并拥有自主知识产权的企业。中科院半导体所自主开发的gan激光器2英寸外延片生产设备,打破了国外关键设备部件的封锁。我国应对大尺寸gan生长技术、器件及设备继续研究,争取在gan等第三代半导体产业中占据一定市场份额和地位。

4结语

不可否认,微电子时代将逐步过渡到光电子时代,最终发展到光子时代。预计到2010年或2014年,硅材料的技术和产业发展将走向极限,第二代和第三代半导体技术和产业将成为研究和发展的重点。我国政府决策部门、半导体科研单位和企业在现有的技术、市场和发展趋势面前应把握历史机遇,迎接挑战。

参考文献

[1]师昌绪.材料大辞典[m].北京化学工业出版社,19941314

[2]http//bjjc.org.cn/10zxsc/249.htm.我国电子信息产业总规模居世界第三.北方微电子产业基地门户网

[3]蓬勃发展的中国电子信息产业.信息产业部电子信息产品管理司司长张琪在“icchina2003”上的主题报告

[4]梁春广.gan-第三代半导体的曙光.新材料产业,2000,53136

[5]李国强.第三代半导体材料.新材料产业,2002,61417

[6]万群,钟俊辉.电子信息材料[m].北京冶金工业出版社,199012

[7]中国电子工业年鉴编委会.中国电子工业年鉴2002[m].

第3篇:半导体的制造方法范文

关键词:半导体材料 发展趋势

中图分类号:O47文献标识码: A 文章编号:

半导体信息功能材料和器件是信息科学技术发展的物质基础和先导。半导体材料是最重要最有影响的功能材料之一,它在微电子领域具有独占的地位,同时又是光电子领域的主要材料。半导体技术的迅速发展,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

一、几种主流的半导体材料简介

(一)半导体硅材料

硅是当前微电子技术的基础材料,预计到本世纪中叶都不会改变。从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离和SIMOX材料等也发展很快。理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

(二)半导体超晶格、量子阱材料

以GaAs和InP为基的晶格匹配和应变补偿的超晶格、量子阱材料已发展得相当成熟,并成功地用来制造超高速、超高频微电子器件和单片集成电路。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英、法、美、日等尖端科技公司等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(三)光子晶体半导体材料及其发展趋势

光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。有科学家提出了全息光栅光刻的方法来制造三维光子晶体,并取得了进展。

第4篇:半导体的制造方法范文

关键词:双语教学;半导体制造技术;CMOS工艺集成

中图分类号:G642.4 文献标志码:A 文章编号:1674-9324(2017)11-0213-02

随着中国加入WTO及中国改革开放的日趋深化,使得我国对双语复合型人才的需求程度迅速提高。为了培养双语复合型人才,2001年教育部颁发的《关于加强高等学校本科教学工作提高教学质量的若干意见》中对高等院校的本科教学提出了使用英语等外语进行公共课和专业课教学的要求[1]。“双语教学”的英文是“bilingual teaching”。《朗曼应用语言学词典》给出的定义是“The use of a second or foreign language in school for the teaching of content subjects”,即能在W校里使用第二语言或外语进行各门学科的教学[2]。

《半导体制造技术》是电子科学与技术专业的主干课程,系统介绍了集成电路芯片的制造工艺及工艺原理,详细描述了集成电路制造的全过程。学生在初步掌握硅材料制备、氧化、淀积、光刻、刻蚀、离子注入、金属化、化学机械平坦化等工艺及其设备的基础上,掌握CMOS、双极集成电路的工艺集成及测试封装等。

一、《半导体制造技术之CMOS工艺集成》双语教学存在的问题

《半导体制造技术》涉及电子、机械、材料、制造、物理、化学等多种学科,其理论性和实践性均较强,且内容更新快,在这样的课程中开展双语教学必定会遇到一些问题。

1.学生英语听、说、阅读能力有待提高。《半导体制造技术之CMOS工艺集成》双语课的授课对象是大三学生。经过两年多的大学本科教育,大三的学生虽然具备了一定的专业基础知识,大多数学生过了国家英语四级考试,而少部分学生过了国家英语六级考试,但学生的听、说、读、写训练也仅限于围绕《大学英语》课程及应试来进行,致使学生们并没有将这些技能应用于专业知识的学习。学生们没有接触过专业英语,英语专业词汇掌握得少之又少,也缺乏英语专业论文阅读的经验,专业论文的写作更无从谈起。《半导体制造技术之CMOS工艺集成》课程内容广泛,知识点多。双语教学中要求学生在英语环境中听、读并掌握这些专业知识点有相当的难度。

2.双语教学师资短缺。双语教学教师不仅要有过硬的教学能力和系统的专业知识,还要有精深的专业英语和流利的英语口语功底。这样不仅让学生系统掌握了专业知识,而且能运用外语熟练进行专业交流,使他们的整体素质得以提高。近年来虽国内外交流日益频繁,但就我校的情况而言聘请的国外专家学者、海归博士等多从事经济、金融等领域,还没有从事电子科学相关领域的外聘的国外学者和海归博士。双语教学的任务主要由有过旅美经历的、有丰富的专业课教学经验的高级教师来负责。但具备这样条件的教师数量也非常有限,不能形成团队协作。

3.教材及教学方法的选择。《半导体制造技术》国内外教材很多,各教材侧重点不同,有的偏重于科学研究,有的偏重于工程实践;内容各不尽相同;难易程度各不相同;受者群也各不相同。从良莠不齐的众多教材中选择合适的教材是至关重要的。选择什么样的教学方法也是要重点思考的,以最大程度地提高学生的专业知识和专业英语读、说、写能力。

二、《半导体制造技术之CMOS工艺集成》双语教学实践

本文第一作者于2013年夏季小学期开设《半导体制造技术之CMOS工艺集成》双语课,授课对象为电子科学与技术专业三年级本科生。此时三年级本科生已经学过了《半导体工艺》,掌握了《半导体制造技术》的基本概念、工艺原理及流程。在此基础上开设《半导体制造技术之CMOS工艺集成》双语教学既能巩固相关的专业知识,也能掌握专业英语的听、说、阅读能力。

1.教材。综合考虑各种因素,本课程选择的教材是英文版的《硅超大规模集成电路工艺技术:理论、实践与模型》,作者James D.Plummer等,由电子工业出版社出版。该教材内容由浅入深,写作简单明了易于理解,适于大专院校电子专业高年级学生使用。考虑到学生的英语水平及授课时间的限制,双语教学仅选择该教材的第二章《CMOS工艺集成――CMOS反相器制造工艺流程》。辅助教材为中文版的《芯片制造――半导体工艺制程实用教程》(第五版),作者Peter Van Zant,韩郑生等译,由电子工业出版社出版。

2.教学方法。考虑到学生的实际情况,本双语课程采用英文教材,英文版书,中英文授课的模式。课前要求学生充分预习。课堂上教师对基础英语中常见的重点词汇、固定搭配、句式结构等进行适当讲述,在此基础上重点讲解专业词汇及科技文献常用的表达方式。通过举例归纳总结词汇的专业性及日常应用中的差异及科技文献与通俗小说等写作手法的不同。让学生们参与教学,由学生先用英文通读一段再用中文来讲解,再由老师进行讲解总结。同时每次课都会利用一定的时间给学生播放Intel和斯坦福等多家机构联合出品的《Silicon Run》,该套视频是微电子行业的经典纪录片,其详细讲述了硅集成电路(IC)工艺制程中的各单项工艺,如晶圆的制备、氧化、光刻、淀积、离子注入、刻蚀、金属化、封装等等。让学生们生动形象地了解实际生产线上各工艺的同时,也能练习听力,课后还能跟读,一举三得。待到学生听、说、读英语的能力提高了,教学模式最终会过渡到英文教材,英文版书,英语授课。

3.教学反馈。课程结束前对教学效果进行的调查问卷显示[3],80%的学生认为本课程教学有助于提高自己的专业英语水平,对阅读专业英文论文及著作起到了抛砖引玉的作用。学生们认为教学中的视频在提高听力的同时,让他们更真切地了解了实际生产线上器件、集成电路的制造过程。

三、对开展《半导体制造技术之CMOS工艺集成》双语教学的几点建议

通过几年的《半导体制造技术之CMOS工艺集成》双语教学实践,针对当前的不足进行了有益的探索,对开展双语教学有几点建议仅供探讨。

1.在授课中意识到很多学生对英语心理上存在恐惧感,限制了他们学习的积极性,同时许多学生误认为专业英语的学习是重点,而忽略了专业英语只是教学工具,利用这个工具或媒介掌握专业知识才是根本。只有克服对英语的恐惧感,对双语教学有正确认识才能达到预期效果。

2.针对双语教学师资缺乏的情况,学校应依据“引进来,送出去”的原t,在大力加强外国专家学者、海归博士引进工作的同时,可在校内组织专门的培训,或者通过送到外校学习的形式提升教师讲授双语课的综合能力。如果有条件聘请国外相关领域的知名专家学者、海归博士与本校教师组成双语课教学团队不失为非常好的解决办法。

3.双语教学应循序渐进,不能操之过急。双语教学不能一蹴而就,防止一味硬灌和被动接受。应循序渐进,因地制宜,因材施教。教师与学生应相互配合,相互信任,充分发挥各自的积极性和主动性,从双语的教与学中获得知识,收获快乐。

四、结束语

双语教学是培养复合型人才必不可少的手段。虽然国内的双语教学开展了十多年也取得了长足的进步,但仍有诸多问题需要探讨。本文介绍了《半导体制造技术之CMOS工艺集成》双语教学的教学实践并提出了相关的建议,以便完善今后的双语教学实践。

参考文献:

[1]徐晓娟,屈健,梁亚秋.材料科学基础课程双语教学的调查与分析[J].硅谷,2010,(1).

[2]黄海艳.大学双语教学的目标研究[J].郑州航空工业管理学院学报(社会科学版),2006,25(5).

[3]桑应朋,李悒东,邬俊.操作系统课程双语教学时间与探讨[J].教育教学论坛,2016,(19).

Discussion on Bilingual Teaching in Semiconductor Fabrication Technology-CMOS Process Integration

LV Pina,QIU Weia,YUE Cheng-junb

(a. Physics School,Liaoning University;

b. College of Information,Liaoning University,Shenyang 110036,China)

第5篇:半导体的制造方法范文

关键词:量子点 发光 量子点尺寸效应

近几年来,宽禁带半导体发光材料引起人们极大的兴趣,是因为这些材料在蓝光及紫外光发光二极管、半导体激光器和紫外光探测器上有重要的应用价值。这些器件在光信息存储、全色显示和紫外光探测上有巨大的市场需求,人们已经制造出III族氮化物和ZnSe等蓝光材料,并用这些材料制成了高效率的蓝光发光二极管和激光器,这使全色显示成为可能。量子点(QuantumDot)凭借自身独特的光电特性越来越受到人们的重视,成为研究的热点。

由于量子点所具有的量子尺寸、量子隧穿、库仑阻塞、量子干涉、多体关联和非线性光学效应非常明显,故在低维量子结构的研究中,对载流子施以尽可能多的空间限制,制备零维量子点结构并开发其应用,受到世界各国科学家和企业家的高度重视。

1、半导体量子点的制备方法

高质量半导体量子点材料的制备是量子器件和电路应用的基础,如何实现对无缺陷量子点的形状、尺寸、面密度、体密度和空间分布有序性等的可控生长,一直是材料科学家追求的目标和关注的热点。

应变自组装量子点结构生长技术是指在半导体外延生长过程中,由于衬底和外延层的晶格失配及表面、界面能不同,导致外延层岛状生长而制得量子点的方法。这种生长模式被称为SK生长模式。外延过程的初期为二维平面生长,平面生长厚度通常只有几个原子层厚,称为浸润层。随浸润层厚度的增加,应变能不断积累,当达到某一临界层厚度时,外延生长则由二维平面生长向三维岛状生长过渡,由此形成直径为几十纳米、高度为几纳米的小岛,这种材料若用禁带较宽的材料包围起来,就形成量子点。用这种方法制备的量子点具有尺寸小、无损伤的优点。用这种方法已经制备出了高质量的GaN量子点激光器。

化学自组装量子点制备方法是一种通过高分子偶联剂将形成量子点的团簇或纳米颗粒联结起来,并沉积在基质材料上来制备量子点低维材料的方法。随着人们对量子线、量子点制备和应用的迫切需求,以上物理制备方法显得费时费力,特别是在批量制备时更是如此,化学自组装为纳米量子点的平面印刷和纳米有机-无机超晶格的制备提供了可能。由于化学自组装量子点的制备具有量子点均匀有序、制备速度快、重复性好等优点,且选用不同的偶联剂可以对不同的量子点前驱颗粒进行不同对称性的组装,从而能制备出不同的量子点。它的出现为批量制备高功率半导体量子器件和激光器提供了一种有效的途径,因此这种方法被认为是制备量子点最有前途的方法之一。

2、 II-VI族半导体量子点的发光原理和发光特性

2.1 发光原理

半导体量子点的发光原理(如图1-1所示),当一束光照射到半导体材料上,半导体材料吸收光子后,其价带上的电子跃迁到导带,导带上的电子还可以再跃迁回价带而发射光子,也可以落入半导体材料的电子陷阱中。当电子落入较深的电子陷阱中的时候,绝大部分电子以非辐射的形式而猝灭了,只有极少数的电子以光子的形式跃迁回价带或吸收一定能量后又跃迁回到导带。因此当半导体材料的电子陷阱较深时,它的发光效率会明显降低。

2.2 发光特性

由于受量子尺寸效应和介电限域效应的影响,半导体量子点显示出独特的发光特性。主要表现为:(1)半导体量子点的发光性质可以通过改变量子点的尺寸来加以调控;(2)半导体量子点具有较大的斯托克斯位移和较窄而且对称的荧光谱峰(半高全宽只有40nm);(3)半导体量子点具有较高的发光效率。半导体量子点的发光特性,除了量子点的三维量子限制作用之外,还有其他诸多因素需要考虑。不过人们通过大胆尝试与努力探索,已在量子点的发光特性研究方面取得了很大的进展。

3、量子点材料的应用

鉴于量子点的独特理化性质,科学工作者就量子点材料的应用研究开展了大量的工作,研究领域主要集中在纳米电子学、光电子学、生命科学和量子计算等领域,下面介绍一下量子点在这些方面的应用。

3.1量子点激光器

用量子线或量子点设计并制作微结构激光器的新思想是由日本的两名年轻的科学家在1982年提出了,但是由于制备工艺的难度很大而搁浅。随着技术的进步,到90年代初,利用MBE和MOCVD技术,通过 Stranski―Krastanow(S―K)模式生长In(Ga)As/GaAs自组装量子点等零维半导体材料有了突破性的进展,生长出品格较完整,尺寸较均匀,且密度和发射率较高的InAs量子点,并于1994年制备出近红外波段In(Ga)As/GaAs量子点激光器。

3.2量子点红外探测器

半导体材料红外探测器的研究一直吸引人们非常广泛的兴趣。以量子点作为有源区的红外探测器从理论上比量子阱红外探测器具有更大的优势,这些优势包括:(1)量子点探测器可以探测垂直入射的光,无需像量子阱探测器那样要制作复杂的光栅;(2)量子点分立态的间隔大约为50meV-70meV,由于声子瓶颈效应,电子在量子点分立态上的弛豫时间比在量子阱能态上长,这有利于制造工作温度高的器件;(3)三维载流子限制降低了热发射和暗电流;(4)探测器不需冷却,这将会大大减少阵列和成像系统的尺寸及成本。因此,量子点探测器已经成为光探测器研究的前沿,并取得了重大进展。

3.3 单电子器件

电子器件是基于库仑阻塞效应和单电子隧道效应的基本原理,通过控制在微小隧道结体系中单个电子的隧穿过程来实现特定功能的器件,是一种新型的纳米电子器件。

3.4 量子计算机

量子计算机是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。当某个装置处理和计算的是量子信息,运行的是量子算法时,它就是量子计算机。1998年,Loss和Di Vincenzo描述了利用耦合单电子量子点上的自旋态来构造量子比特,实现信息传递的方法。

除此之外,量子点在生物化学、分子生物学、细胞生物学、基因组学、蛋白质组学、药物筛选、生物大分子相互作用等研究中有极大的应用前景。

结束语 我们相信量子点技术应用的未来出现很多奇迹,随着对量子点的深入研究,其在各个领域的应用前景还将更加广阔。

参考文献

[1] Hong S, Hanada T, Makino H, Chen Y, Ko H, Yao T, et al. Band alignment at a ZnO/GaN (0001) heterointerface [J]. Appl. Phys. Lett. , 2001, 78(21): 3349-3351.

[2] Yarelha D A, Vicet A, Perona A, Glastre G, Fraisse B, Rouillard Y, et al. High efficiency GaInSbAs/GaSb type-II quantum well continuous wave lasers [J]. Semicond. Sci. Technol. , 2000, 15(4): 390-394.

第6篇:半导体的制造方法范文

关键词:节能;电源管理;功率半导体;智能电网

随着环保问题日益引起重视,低碳、环保之词充斥于各大媒体,引发了一系列关于环保问题的讨论。其实。在我们讨论环保问题之时,必须明确的一个前提是不影响现阶段的生活状态。试想,如果让人们强调环保以至于回到过去“钻木取火”“日出而作日落而息”的状态,估计没多少人会继续坚持将环保的口号喊下去。因此,所谓环保,就是在现有生活水准基础上尽可能减少对地球环境的破坏,直观点就是尽可能减少不可再生能源的应用,以缓解二氧化碳给气候带来的压力。然而人类现代化生活所需要的正常能源又是不可或缺的,因此必须在解决必要能源需求的基础上实现环保的要求。

开源节流,从来都是相辅相成的两个方面,对于环保而言同样如此。开源,就是充分开发如太阳能、风能、水利等可再生资源,而节流则是在相同生活需求的前提下,尽量降低能源损耗。对于半导体产业而言,环保的责任就是通过尽可能降低半导体产品的电力消耗以及由半导体产品带来的电力节省来实现能源消耗的节流。

BP世界能源报告指出,2007年全球能源消耗的三分之一来自于电子系统,累计耗电量超过17:IM Gwh(17.1兆千瓦时),这个数字还将以3%左右的速度不断攀升。2007年,中国电子系统的能源消耗超过2.8兆千瓦时,仅次于美国,如果通过半导体技术将现有电能消耗节约5%,就相当于每年节省出5个三峡水电站的发电总量。

半导体的节能趋势

无论从半导体厂商还是电源制造商的观点来看(往往两者有很多共同点),今后的主体发展趋势仍将集中在进一步提高转换效率,提升功率密度,高可靠性及更低成本。电源的效率几乎是电源技术与应用中永恒的主题,随着全球经济的一体化和对节能环保的关注,更高的转换效率意味着对能源的有效利用和减少能耗开支。以马达驱动为例,近年来逐渐得到普及和应用的电力电子变频调速技术就变革性地改变了全世界工业和家庭用的交流电动机的使用,并极大程度地节约能源。配合液晶显示技术而来的背光源电力电子应用完全改变了传统彩色电视机的市场、产品和消费。

Microsemi功率产品部应用工程经理钱昶认为,随着电源系统功率处理能力的不断上升和对系统体积不断减小的要求,功率密度变成未来发展的重要课题:不同于早期的体积重量要求主要集中在航天军工等特殊领域,功率密度现在大量的民用产品和应用中也占据了举足轻重的地位。便携式电脑和手持移动通信设备就要求有极高的功率密度,使得设备本身变得更小超薄。另外,在中等功率范围的应用中。例如集中式的太阳能逆变器和工业电焊机,设备体积和重量也是重要的考虑因素。

高可靠性和成本常常是一对矛盾:在提高可靠性的同时,将会牵涉到使用更昂贵的材料或更多的元器件与电路。如何在此二者之间找到最佳的平衡和折衷也是未来电源技术与市场发展的主题之一。在通信电源领域,器件工作的可靠性历来受到制造商和终端客户的重视。半导体和系统的可靠性越高,生产厂商所承担的产品保证所带来的费用就越低,而且同时降低了用户在设备维护方面的人工与成本。在可靠性与成本方面突破性的发展将依赖于半导体器件的新工艺技术,以及无源元件,特别是磁元件和电容的材料,设计和制造的进展。

直面设计挑战

帮助工程师提升电源设计效率,一直是半导体厂商与电源系统工程师最关注的问题。进一步提高能效依赖于半导体器件,电路拓扑结构和封装技术的新发展或优化选取。

首先,从器件方面,功率型金属氧化物场效应管(MOSFET)一直以来在小功率应用方面占主导地位。沟道栅极技术已普遍于低压MOSFET以减小通态电阻从而降低损耗。而在未来几年里,淘道栅极技术有向较高电压MOSFET推广的趋势。所以这对于300V以上的功率型MOSFBT管是一个新变化。近些年来超结(SuperJunction)MOSFET发展也很快,对应于传统的500V以上的平面MOSFET在通态电阻和电流密度方面具有竞争力,但是它的动态开关特性还是弱于平面MOSFET,从而使高频高电压应用仍然偏向传统型的MOSFET。另外宽禁带MOSFET器件。例如氮化镓(GaN)和碳化硅(sic)MOSFET在研发中不断取得的成就也表明这些新型的复合半导体器件会逐步走向商用化,极大提升系统能效,改变硅半导体目前在市场上的一统局面。

其次,工程师可以灵活运用各种各样的拓扑结构以提高系统效率。像现在通信电源和服务器电源设备中常用的零电压开关相移式全桥结构就是新拓扑加新控制的典范。在太阳能功率变换中,三电平二极管钳位逆变器具有低成本、高效率的特点,作为一种新兴的电路拓扑结构能在特定应用场合下提高能效。

最后,优化半导体器件或电路的封装也是提高系统能效的一种积极手段。关于这点常常被人们忽视。优化的封装可以直接改善电路中的杂散参数,例如寄生电感,从而优化电特性。实践表明紧凑的封装不仅减小电路体积,更重要的是能减小开关过程中的电压电流尖峰。使用相对低电压等级的器件将有利于减少损耗。另外,优化的封装可改善系统散热,以减低电路或器件的工作温度,从而进一步降低损耗。

概括地说,从系统角度出发,认真选择与优化器件,电路与封装配合优化的控制方法就一定能最大限度地降低损耗,提升系统能效。

凌力尔特公司电源产品市场总监Tony Armstrong介绍,任何系统中的功耗都必须以两种方式解决,首先,跨整个负载电流范围最大限度地提高转换效率,其次,降低DC/De转换器在所有工作模式时的静态电流。因此,为了在降低系统功耗方面发挥积极作用,电源转换和管理Ic必须提高效率,也就是降低功耗,并在轻负载和休眠模式具有非常低的功耗水平。特别是很多大功率系统都采用多种单阶转换或两阶转换方法的组合来应对有关的热量问题。然而,系统设计师面临着一个以哪种方式来满足特定系统需求的难题。电压不断下降的同时提高电流的需求日益增加,这持续促进了很多这类大功率系统的开发。在这一领域取得的大多数进步都可以追溯到电源转换技术领域的改进,尤其是电源Ic和电源半导体的改进。总之,这些组件允许在对电源转换效率影响最小的情况下提高开关效率,对提高电源性能做出了贡献。这是通过降低开关和接通状态的损耗、同时允许高效率去除热量而得以实现的。不过,向较低输出电压迁移给这些参数施加了更大的压力,这反 过来又导致了极大的设计挑战。

节能方法大家谈

当能效标准逐渐成为电子产品新的紧箍咒,各大电源半导体厂商不得不面对电源管理技术的全新挑战。

节能减耗是电源技术发展的主要趋势和方向。目前的国际国内标准对待机功耗,负载效率提出严格要求,比如EnergyStar、EPA等,对于半导体厂家来说要求提供更为有效方案来节能减耗。数字电源是另外一个发展趋势,其具有传统模拟所不具备的许多优势,在通信电源,新能源等将会得到更多应用。德州仪器高级技术市场开拓工程师刘学超认为,对于电源半导体供应商来讲,主要是通过新的控制方式和模式转换来帮助提高效率降低功耗,在电源领域未来比较重要的发程热点包括谐振控制技术、低待机功耗、超薄电源、LED驱动电源和数字电源。

半导体制造商正在开发多种创新技术,如全新的控制方法,可以省去附加的外部组件,从而也可以降低功耗。同时,虽然效率主要由所选择的外部功率级设计和开关频率来决定,但是半导体组件能够减少I2R损耗。飞兆半导体亚太区市场行销及应用工程副总裁蓝建锎认为,主要发展趋势和市场需求将会集中在提高功率转换效率、组件集成度和降低待机功耗等方面。同步整流、交错式拓扑和数字通信等应用不断增多,未来数年,这三个方面将给电源和功率管理方式带来重大的影响。

美国国家半导体(Ns)亚太区资深市场经理吴志民介绍。NS一直在提高电源产品的易用性和功率密度方面进行不懈的努力:客户希望减少在电源设计方面的工作量,因此倾向于选择易于使用的电源技术。电子设计业的专业化分工日趋明显,许多客户并非电源管理技术的专家,他们希望电源厂商提供容易使用的电源模块,并且能够提供相应的设计指导来加快产品设计进程。另一方面,由于现在的电子越来越朝着“轻薄”方向发展,供电系统占用越来越少印制电路板的板面空间,因此电源管理解决方案的功率密度必须不断提高。美国国家半导体目前有多个办法可以解决这些问题,例如采用更高的开关频率、更先进的封装技术以及更精密的生产工艺。

安森美半导体电源及便携产品全球销售及营销高级总监郑兆雄认为,主体趋势将是以创新技术来帮助电子产品提高能效,进一步推动绿色节能趋势。举例来说,目前液晶电视市场快速发展,就其背光源而言,仍是传统的冷阴极荧光灯(ccFL)占主导地位;新兴的发光二极管(LED)背光源与之相比,色彩表现更优势,大幅降低能耗,且更加环保,但碍于成本因素,目前市场渗透率还相对较低,不过,LED背光源的液晶电视市场将在今后几年内赶上及超过CCPL背光源。除了液晶电视背光应用,LED通用照明市场也将快速发展,随着应用规模的扩大,将进一步从商业应用向主流消费及住宅市场渗透,让用户更广泛地享受到绿色节能的好处。

更高层面的机遇

第7篇:半导体的制造方法范文

关键词半导体材料量子线量子点材料光子晶体

1半导体材料的战略地位

上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

2几种主要半导体材料的发展现状与趋势

2.1硅材料

从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC‘s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。

从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smartcut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。

理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

2.2GaAs和InP单晶材料

GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。

目前,世界GaAs单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB)方法生长的2-3英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的SI-GaAs发展很快。美国莫托罗拉公司正在筹建6英寸的SI-GaAs集成电路生产线。InP具有比GaAs更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的InP单晶的关键技术尚未完全突破,价格居高不下。

GaAs和InP单晶的发展趋势是:

(1)。增大晶体直径,目前4英寸的SI-GaAs已用于生产,预计本世纪初的头几年直径为6英寸的SI-GaAs也将投入工业应用。

(2)。提高材料的电学和光学微区均匀性。

(3)。降低单晶的缺陷密度,特别是位错。

(4)。GaAs和InP单晶的VGF生长技术发展很快,很有可能成为主流技术。

2.3半导体超晶格、量子阱材料

半导体超薄层微结构材料是基于先进生长技术(MBE,MOCVD)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。

(1)Ⅲ-V族超晶格、量子阱材料。

GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(HEMT),赝配高电子迁移率晶体管(P-HEMT)器件最好水平已达fmax=600GHz,输出功率58mW,功率增益6.4db;双异质结双极晶体管(HBT)的最高频率fmax也已高达500GHz,HEMT逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40Gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。

虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μm)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nmInGaAs带间量子级联激光器,输出功率达5W以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。

为克服PN结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年InGaAs/InAIAs/InP量子级联激光器(QCLs)发明以来,Bell实验室等的科学家,在过去的7年多的时间里,QCLs在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001年瑞士Neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μm的QCLs的工作温度高达312K,连续输出功率3mW.量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μm),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120K5μm和250K8μm的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μm室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。

目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英国卡迪夫的MOCVD中心,法国的PicogigaMBE基地,美国的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(2)硅基应变异质结构材料。

硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米Si/SiO2),硅基SiGeC体系的Si1-yCy/Si1-xGex低维结构,Ge/Si量子点和量子点超晶格材料,Si/SiC量子点材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。

另一方面,GeSi/Si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止频率已达200GHz,HBT最高振荡频率为160GHz,噪音在10GHz下为0.9db,其性能可与GaAs器件相媲美。

尽管GaAs/Si和InP/Si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,Motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的GaAs外延薄膜,取得了突破性的进展。

2.4一维量子线、零维量子点半导体微结构材料

基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基础。它的发展与应用,极有可能触发新的技术革命。

目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在纳米微电子和光电子研制方面取得了重大进展。俄罗斯约飞技术物理所MBE小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的MBE小组等研制成功的In(Ga)As/GaAs高功率量子点激光器,工作波长lμm左右,单管室温连续输出功率高达3.6~4W.特别应当指出的是我国上述的MBE小组,2001年通过在高功率量子点激光器的有源区材料结构中引入应力缓解层,抑制了缺陷和位错的产生,提高了量子点激光器的工作寿命,室温下连续输出功率为1W时工作寿命超过5000小时,这是大功率激光器的一个关键参数,至今未见国外报道。

在单电子晶体管和单电子存贮器及其电路的研制方面也获得了重大进展,1994年日本NTT就研制成功沟道长度为30nm纳米单电子晶体管,并在150K观察到栅控源-漏电流振荡;1997年美国又报道了可在室温工作的单电子开关器件,1998年Yauo等人采用0.25微米工艺技术实现了128Mb的单电子存贮器原型样机的制造,这是在单电子器件在高密度存贮电路的应用方面迈出的关键一步。目前,基于量子点的自适应网络计算机,单光子源和应用于量子计算的量子比特的构建等方面的研究也正在进行中。

与半导体超晶格和量子点结构的生长制备相比,高度有序的半导体量子线的制备技术难度较大。中科院半导体所半导体材料科学重点实验室的MBE小组,在继利用MBE技术和SK生长模式,成功地制备了高空间有序的InAs/InAI(Ga)As/InP的量子线和量子线超晶格结构的基础上,对InAs/InAlAs量子线超晶格的空间自对准(垂直或斜对准)的物理起因和生长控制进行了研究,取得了较大进展。

王中林教授领导的乔治亚理工大学的材料科学与工程系和化学与生物化学系的研究小组,基于无催化剂、控制生长条件的氧化物粉末的热蒸发技术,成功地合成了诸如ZnO、SnO2、In2O3和Ga2O3等一系列半导体氧化物纳米带,它们与具有圆柱对称截面的中空纳米管或纳米线不同,这些原生的纳米带呈现出高纯、结构均匀和单晶体,几乎无缺陷和位错;纳米线呈矩形截面,典型的宽度为20-300nm,宽厚比为5-10,长度可达数毫米。这种半导体氧化物纳米带是一个理想的材料体系,可以用来研究载流子维度受限的输运现象和基于它的功能器件制造。香港城市大学李述汤教授和瑞典隆德大学固体物理系纳米中心的LarsSamuelson教授领导的小组,分别在SiO2/Si和InAs/InP半导体量子线超晶格结构的生长制各方面也取得了重要进展。

低维半导体结构制备的方法很多,主要有:微结构材料生长和精细加工工艺相结合的方法,应变自组装量子线、量子点材料生长技术,图形化衬底和不同取向晶面选择生长技术,单原子操纵和加工技术,纳米结构的辐照制备技术,及其在沸石的笼子中、纳米碳管和溶液中等通过物理或化学方法制备量子点和量子线的技术等。目前发展的主要趋势是寻找原子级无损伤加工方法和纳米结构的应变自组装可控生长技术,以求获得大小、形状均匀、密度可控的无缺陷纳米结构。

2.5宽带隙半导体材料

宽带隙半导体材主要指的是金刚石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶体等,特别是SiC、GaN和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,III族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(LED)和紫、蓝、绿光激光器(LD)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年GaN材料的P型掺杂突破,GaN基材料成为蓝绿光发光材料的研究热点。目前,GaN基蓝绿光发光二极管己商品化,GaN基LD也有商品出售,最大输出功率为0.5W.在微电子器件研制方面,GaN基FET的最高工作频率(fmax)已达140GHz,fT=67GHz,跨导为260ms/mm;HEMT器件也相继问世,发展很快。此外,256×256GaN基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本Sumitomo电子工业有限公司2000年宣称,他们采用热力学方法已研制成功2英寸GaN单晶材料,这将有力的推动蓝光激光器和GaN基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重视,这是因为它们在长波长光通信用高T0光源和太阳能电池等方面显示了重要应用前景。

以Cree公司为代表的体SiC单晶的研制已取得突破性进展,2英寸的4H和6HSiC单晶与外延片,以及3英寸的4HSiC单晶己有商品出售;以SiC为GaN基材料衬低的蓝绿光LED业已上市,并参于与以蓝宝石为衬低的GaN基发光器件的竟争。其他SiC相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。

II-VI族兰绿光材料研制在徘徊了近30年后,于1990年美国3M公司成功地解决了II-VI族的P型掺杂难点而得到迅速发展。1991年3M公司利用MBE技术率先宣布了电注入(Zn,Cd)Se/ZnSe兰光激光器在77K(495nm)脉冲输出功率100mW的消息,开始了II-VI族兰绿光半导体激光(材料)器件研制的。经过多年的努力,目前ZnSe基II-VI族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之GaN基材料的迅速发展和应用,使II-VI族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。

宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如GaN/蓝宝石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。

目前,除SiC单晶衬低材料,GaN基蓝光LED材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如GaN衬底,ZnO单晶簿膜制备,P型掺杂和欧姆电极接触,单晶金刚石薄膜生长与N型掺杂,II-VI族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。

3光子晶体

光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。最近,Campbell等人提出了全息光栅光刻的方法来制造三维光子晶体,取得了进展。

4量子比特构建与材料

随着微电子技术的发展,计算机芯片集成度不断增高,器件尺寸越来越小(nm尺度)并最终将受到器件工作原理和工艺技术限制,而无法满足人类对更大信息量的需求。为此,发展基于全新原理和结构的功能强大的计算机是21世纪人类面临的巨大挑战之一。1994年Shor基于量子态叠加性提出的量子并行算法并证明可轻而易举地破译目前广泛使用的公开密钥Rivest,Shamir和Adlman(RSA)体系,引起了人们的广泛重视。

所谓量子计算机是应用量子力学原理进行计的装置,理论上讲它比传统计算机有更快的运算速度,更大信息传递量和更高信息安全保障,有可能超越目前计算机理想极限。实现量子比特构造和量子计算机的设想方案很多,其中最引人注目的是Kane最近提出的一个实现大规模量子计算的方案。其核心是利用硅纳米电子器件中磷施主核自旋进行信息编码,通过外加电场控制核自旋间相互作用实现其逻辑运算,自旋测量是由自旋极化电子电流来完成,计算机要工作在mK的低温下。

这种量子计算机的最终实现依赖于与硅平面工艺兼容的硅纳米电子技术的发展。除此之外,为了避免杂质对磷核自旋的干扰,必需使用高纯(无杂质)和不存在核自旋不等于零的硅同位素(29Si)的硅单晶;减小SiO2绝缘层的无序涨落以及如何在硅里掺入规则的磷原子阵列等是实现量子计算的关键。量子态在传输,处理和存储过程中可能因环境的耦合(干扰),而从量子叠加态演化成经典的混合态,即所谓失去相干,特别是在大规模计算中能否始终保持量子态间的相干是量子计算机走向实用化前所必需克服的难题。

5发展我国半导体材料的几点建议

鉴于我国目前的工业基础,国力和半导体材料的发展水平,提出以下发展建议供参考。

5.1硅单晶和外延材料硅材料作为微电子技术的主导地位

至少到本世纪中叶都不会改变,至今国内各大集成电路制造厂家所需的硅片基本上是依赖进口。目前国内虽已可拉制8英寸的硅单晶和小批量生产6英寸的硅外延片,然而都未形成稳定的批量生产能力,更谈不上规模生产。建议国家集中人力和财力,首先开展8英寸硅单晶实用化和6英寸硅外延片研究开发,在“十五”的后期,争取做到8英寸集成电路生产线用硅单晶材料的国产化,并有6~8英寸硅片的批量供片能力。到2010年左右,我国应有8~12英寸硅单晶、片材和8英寸硅外延片的规模生产能力;更大直径的硅单晶、片材和外延片也应及时布点研制。另外,硅多晶材料生产基地及其相配套的高纯石英、气体和化学试剂等也必需同时给以重视,只有这样,才能逐步改观我国微电子技术的落后局面,进入世界发达国家之林。

5.2GaAs及其有关化合物半导体单晶材料发展建议

GaAs、InP等单晶材料同国外的差距主要表现在拉晶和晶片加工设备落后,没有形成生产能力。相信在国家各部委的统一组织、领导下,并争取企业介入,建立我国自己的研究、开发和生产联合体,取各家之长,分工协作,到2010年赶上世界先进水平是可能的。要达到上述目的,到“十五”末应形成以4英寸单晶为主2-3吨/年的SI-GaAs和3-5吨/年掺杂GaAs、InP单晶和开盒就用晶片的生产能力,以满足我国不断发展的微电子和光电子工业的需术。到2010年,应当实现4英寸GaAs生产线的国产化,并具有满足6英寸线的供片能力。

5.3发展超晶格、量子阱和一维、零维半导体微结构材料的建议

(1)超晶格、量子阱材料从目前我国国力和我们已有的基础出发,应以三基色(超高亮度红、绿和蓝光)材料和光通信材料为主攻方向,并兼顾新一代微电子器件和电路的需求,加强MBE和MOCVD两个基地的建设,引进必要的适合批量生产的工业型MBE和MOCVD设备并着重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基蓝绿光材料,InGaAs/InP和InGaAsP/InP等材料体系的实用化研究是当务之急,争取在“十五”末,能满足国内2、3和4英寸GaAs生产线所需要的异质结材料。到2010年,每年能具备至少100万平方英寸MBE和MOCVD微电子和光电子微结构材料的生产能力。达到本世纪初的国际水平。

宽带隙高温半导体材料如SiC,GaN基微电子材料和单晶金刚石薄膜以及ZnO等材料也应择优布点,分别做好研究与开发工作。

(2)一维和零维半导体材料的发展设想。基于低维半导体微结构材料的固态纳米量子器件,目前虽然仍处在预研阶段,但极其重要,极有可能触发微电子、光电子技术新的革命。低维量子器件的制造依赖于低维结构材料生长和纳米加工技术的进步,而纳米结构材料的质量又很大程度上取决于生长和制备技术的水平。因而,集中人力、物力建设我国自己的纳米科学与技术研究发展中心就成为了成败的关键。具体目标是,“十五”末,在半导体量子线、量子点材料制备,量子器件研制和系统集成等若干个重要研究方向接近当时的国际先进水平;2010年在有实用化前景的量子点激光器,量子共振隧穿器件和单电子器件及其集成等研发方面,达到国际先进水平,并在国际该领域占有一席之地。可以预料,它的实施必将极大地增强我国的经济和国防实力。

第8篇:半导体的制造方法范文

NASA的Glenn研究中心研发的新型气凝胶具有很强的灵活性,能够承受折叠、褶皱、破碎、踩压等各种极限测试。专家称这种新材料能够承受1400摄氏度以上的高温,而且在重量方面具有很强的优势,一块厚皮能够完整承受一辆汽车的重量。同时,它良好的隔热抗冲击等优良性能能够为目前的工业研发提供更多可能。

半导体上生长出石墨烯

挪威科学家开发出一种低成本的方法,能够在砷化镓纳米线上生长出石墨烯。这种石墨烯半导体混合材料具有优良的光电性能和透明、可弯曲等特性,而作为一种半导体器件制造的新方法,有望成为制造新型电子设备的基础材料,加速石墨烯的商业化进程,为半导体产业带来变革。

首个纳米线光子开关

美国宾夕法尼亚大学用硫化镉纳米线制造出了第一个全光光子开关,并将其与逻辑门结合,而这是计算机芯片处理信息的基本组成部分。作为光子学前沿领域的重要进展,其为依靠光脉冲计算的光子计算机的诞生打下了基础。在未来,人们可能会看到“消费电子产品”一词,变成了“消费光子产品”。

透明胶带诱发出高温超导现象

由多伦多大学领导的国际小组使用了透明胶带和玻璃载片来放置高温超导体,使其接近一种特殊类型的半导体——拓扑绝缘体,从而在这种新奇的半导体内诱发出了高温超导现象。这一方法为研制可用于量子计算机和提升能效的新型设备铺平了道路。

从微观水平“嗅”出癌症味道

迄今为止,精确识别癌细胞的标准方法是用一种能与癌细胞壁结合的生物受体,但其缺点是你要先知道相应受体是什么。一个美国研究小组开发出一种快速、灵敏的探测方法,能从微观水平识别出活组织内各种细胞类型,几分钟内就能区分出癌转移组织和正常组织。这为快速诊断癌症提供了一种比较通用的方法,并能减小活体检查的入侵性。

可溶解的超薄电子器件助伤口快速愈合

可溶解的电子器件不仅具有环保价值,还有医学价值。《科学》杂志近日刊文表明,一种名为纳米薄膜的超薄硅板,能够在数天内融化。溶解的速度是由桑蚕丝控制的,研究人员通过改变桑蚕丝的结晶方式来改变它的特性,从而控制电子器件的持久时间。这种名为“瞬态电子设备”领域的技术已经被用于加热伤口来避免伤口被细菌感染。

利用碳纳米管获得最小全息像素

全息影像技术主要指利用干涉和衍射原理记录并再现物体真实的三维图像,这种技术曾展现在许多描述未来生活的科幻电影中。英国剑桥大学的研究人员利用只有头发丝七百分之一粗细的碳纳米管传导和散射光线,形成迄今最小的全息像素,从而获取高清晰度的全息影像,且像素越小,清晰度就越高,这一技术未来有望提升全息图像的视觉感受。

目前最有效的热电材料问世

美国西北大学和密歇根州立大学基于常用的半导体碲化铅,合作开发出一种稳定的环保型热电材料,热电品质因数(ZT)创下世界纪录,达到2.2,可将15%至20%的废(余)热转换成电力。这是迄今报告的最高效率。与此相比,“好奇”号火星探测器采用的碲化铅热电材料的热电品质因数为1,效率只有这种新材料的一半。

变异蛋白在血细胞中逐渐积累引发亨廷顿病

亨廷顿病是一种致命的遗传神经疾病,有发展成痴呆最后致死的可能性。而英国科学家利用新的检测技术证明,导致亨廷顿病的有害蛋白是逐渐在血液细胞中积累起来的。他们对这些有害细胞是如何损害人的大脑进行了详细阐述。这一新发现不仅有助于监测亨廷顿病的进展情况,也有助于开发抑制有害蛋白的新药。

人类首次测量超级黑洞半径

黑洞作为宇宙中最神秘的天体之一在于其拥有强大的引力场,哪怕是光也无法逃脱。日前,由麻省理工学院海斯塔克天文台研究人员领导的国际科学家小组首次测量了遥远星系中央区域黑洞的半径。他们通过“事件视界望远镜”观测到黑洞边缘附近发出的光线,即在物质彻底落入黑洞之前可以抵达的最远事件视界边缘来测量黑洞半径,且发现一个质量达到太阳质量的60亿倍超大质量黑洞。

第9篇:半导体的制造方法范文

关键词:集成电路;创新;系统;平台

DOI: 10.3969/j.issn.1005-5517.2012.5.004

IC主要驱动力是市场

现阶段我国的IC(集成电路)业快速发展,主要去驱动力是市场。因此满足应用是最大的挑战,但这对本土IC业是陌生的,因为过去我们只管做芯片。芯片企业该如何理解应用?如何能从市场的变化中感受出芯片的方向?这长期来说是本土企业的弱项。

当前,还有很多人混淆创新和发明之间的差异,国家核高基重大专项总体专家组组长、中国半导体行业协会副理事长魏少军指出,我们更多的是在做发明而不是创新。创新是当发明走向市场、形成销售、有钱赚的时候才是创新。魏少军在从事重大专项工作时,见到很多企业在谈技术上有新的想法,但离变成钱还有一定的距离。“所以企业的创新意识需要有重大改变。创新也是企业家精神中最重要的,即如何把技术变成钱,如何给企业创造效益。”

照片从左至右:工信部电子信息司司长丁文武,中国半导体行业协会集成电路设计分会理事长魏少军,华润微电子CEO邓茂松,中芯国际(SMIC)技术研发副总裁李序武,大唐微电子副总裁穆肇骊,飞思卡尔大中国区业务拓展总监殷钢

应用创新的实现

在IC设计业发展过程中,技术门槛实际上在逐步降低。但以应用为中心的创新难度却在加大,即怎么去创新?怎么和市场结合?怎么才能够发展?

大唐微电子技术有限公司副总裁穆肇骊的经验是,由于IC设计企业的投入很高(包括人才、设计工艺等),因此,要想持续、健康地发展,核心是解决IC产品的市场应用。

IC和整机的结合帮助IC公司解决了定位问题。中国大唐集团从芯片设计到整机都具备,大唐的模式是:当你一开始去做时,就要想到这个IC的应用领域是什么,应用规模是否足够;当这个产品发展的时候,你要想到它的下一个应用产品的市场是什么?

大唐反思多年来较为成功的产品,例如SIM(用户识别模块)卡、身份证卡,都较好地解决了和整机市场应用结合的问题。现在大唐在做社保、金融IC等市场,也是在延续这种思路。

与应用结合的速度也是很重要的。在中国设有多家研发中心的飞思卡尔[注1]非常注重贴近用户,进行应用创新,其大中国区业务拓展总监、中国半导体行业协会理事殷钢称,应用创新要跟得上应用的步伐,无论你芯片的核心技术怎么做,但是你和应用的结合速度一旦慢了,你的客户可能就选择离开了。

另外,芯片厂商需要向系统/平台发力。飞思卡尔名称的变迁就反映了现代半导体业的这个方向。2000年以后,飞思卡尔在中国大量投入研发,不仅有芯片设计,还有应用及芯片平台的研发。这主要是根据市场需求改变的。并且2011年初,飞思卡尔进行了一个很大的改动,2004年飞思卡尔从摩托罗拉分离出来时叫“飞思卡尔半导体”,现在去掉了“半导体”[注2]。原因是飞思卡尔不仅仅提供半导体,实际上已经是靠近系统、平台,逐渐集成软件。

具体来看,基站SoC(系统芯片)的应用带来了技术和支持上的难度,

图1 持续进化的半导体业新导向来源:ADI公司芯片供应商一定要了解你将来的用户——网络提供商,例如华为、爱立信去发展LTE时,需要做什么产品,将怎样整合?这无疑给芯片设计和制造商带来了挑战。

因此,殷钢非常赞同很多国内专家的这种观点:在制造上,不仅仅是线宽的问题,还可做精、做好。例如若能把加工MCU(微控制器)做好,也是一种技术。

那么,如何符合客户的需求?飞思卡尔在中国大量地和客户建立合作伙伴的关系,包括了成立联合实验室。甚至与不是飞思卡尔的直接客户合作,例如在汽车厂——东风、奇瑞、比亚迪建立了联合实验室,原因是这些整车厂虽然不直接做汽车电子,但是飞思卡尔要和他们共同探索下一个发展方向。另外,飞思卡尔还参与很多技术标准的制定,比如汽车标准制定。

总之,新不见得都好,一定要和整机厂结合(当然整机厂也要和市场结合)。例如苹果的很多创意不是半导体厂商想做的,而是整机厂商想做的。再有,在汽车电子市场,热门话题之一是“主动安全性”,需要做到77GHz汽车雷达速率[1],很不容易实现,但是如果不达到这么高速率,可能车开快时性能就达不到。所以就带来了这种需求的研发,也可以说是创新。

商业模式的创新

我们所处的行业是一个全球竞争的企业,产品的推陈出新很快,因此,业内流传着一句话:“老大吃香喝辣、老二啃啃骨头、老三就喝西北风”。相对弱小的本土企业需要联手起来,把珍珠串成项链——进行资源整合和产业协同[2]。

华润微电子有限电子公司CEO(首席执行官)邓茂松介绍了经验。首先,华润微电子希望在全产业链下,能够更好地为客户提供价值,方法是必须在更细分的市场聚焦。

同时,在这些细分聚焦的门类上,必须要能够提供全方位整合的方案。现在的产业竞争,各个门类缺一不可,最典型的例子,不久前台积电和三星在竞争苹果处理器制造订单时,台积电就是败在整个方案里缺乏基于芯片的IP(知识产权)(注:台积电正用其它创新的方法来解决,可能在下一轮竞争中会胜出)。

另外,人们对创新常常会产生误解,特别是在管理团队的时候,好象创新和纪律是对立的。恰恰相反,很多创新公司的纪律是世界一流的,例如Intel的CEO没有固定的停车位,三星项目做失败了就把人开除,台积电的纪律表现在内部的生产、制造上,对数字极致的追求。

技术创新

中芯国际集成电路制造有限公司技术研发副总裁李序武称,创造一个有特色的制造企业是挑战,但无论怎样,都需要基于工艺上的创新。

在强手如林的代工业,中芯怎么应对挑战?一方面中芯在做28nm研发;另一方面反思从40nm学到了什么,即做事的方法、工具等,若要继续向下走22/20nm,甚至16/14nm时,要靠研发团队不断地做工艺。中芯准备在2013年第二季度末、第三季度初期基本完成28nm工艺,并计划在2015年底把22/20nm工艺做出来。

同时,中芯也在寻找自己的长处,例如在机台上如何把工艺做得更好,并打算具备这种特色。

为了加强研发实力,中芯正与国内的科研院所密切合作,希望今后这种合作更进一步,使这些合作大学、研究所、科学院相当于中芯的技术部门。

政策创新

工业和信息化部电子信息司司长丁文武称,从政府角度来说,需要在基础创新的技术上面进行机制/体制的创新。把产业链打造起来,把软硬件结合起来了,把从产品到整机、应用的整个产业链结合起来,这靠谁来组织?政府组织一个最有效的途径就是要创新我们企业的机制。“如果我们不这样做,我们花了钱,研发得到了产品、得到了技术都是没用的。”

飞思卡尔的殷钢认为,十二五规划是很准确的,例如要支持研发。但是怎么来支持?支持哪一部分?不是所有人有个好主意都去发展,要从国家战略的角度出发。例如日本发展电动车,日本早期比世界上任何国家都发展得早,政府从研发机构、大学去解决电动车所需要的一些技术,这样给日本的车厂减少了大量的投入,车厂可以享用这些技术,所以现在无论是东芝的混合动力还是尼桑的纯电动车,都跑得很快。因此,实际上有很大的作用来自于政府的行为。建议大家统一方向,专注地往这个行业发展。例如现在国家在发展新能源、节能上有一个大方向,怎样把它整合?如何利用我们大学和研究所的研发能力,结合这个产业,用“项链”串起来。

华润微电子的邓茂松建议,作为企业,希望看到中国能够发展出旗舰型的企业。纵观欧美日和我国台湾,既有稳健发展的企业,也有非常活跃的设计公司群。在很多的政策上,如果能两条腿走路,一方面关注我国的旗舰型企业,一方面有蓬勃发展的半导体公司群,是半导体业所期待的。

有时,国内的政策需要细化,比如应该有个圈内的竞争底线,使产业的发展更加有序。否则大家一窝蜂地抢同质性的产品。公司要有纪律、行业也要有行规,这和创新不违背。

中芯国际的李序武称,在国家投资上,要挑选一些专注对象,一分散可能什么都没有。在政府支持方面,“不但要放开他们做一些事情,也要给他们更多空间,这样我们可以服务国内的企业,在某种条件下,可以把他们的工艺带到中国来生产。”

结论

逆水行舟,不进则退。创新是电子业永恒的主题。围绕应用的创新是当今的主旋律,提供系统/平台,并且与其他企业打造合作产业链,对于企业的发展非常有益。期望本土企业用创新精神继续做下去,实现中国芯做大做强的梦想。

(注1:飞思卡尔由于在中国建有多个研发机构,并为本土设计芯片,在本文中称其为中国芯企业。

注2:在其Logo下面,原来是“飞思卡尔半导体”,现在是“飞思卡尔”。由于在中国注册的公司是“飞思卡尔半导体公司”,因此注册公司名称无法改变。)

参考文献:

[1] 飞思卡尔:安全节能舒适为汽车主旋律,77GHz将成为汽车雷达标准频率[R/OL].(2010-12-30). 省略/ interview/100029033

[2]王莹.从“2012中国半导体市场年会”解读中国半导体市场.电子产品世界,2012(4):6

[3]赛迪顾问.2012中国半导体市场年会暨集成电路产业创新大会,苏州,2012-3-15[C]