前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的概念教学的定义主题范文,仅供参考,欢迎阅读并收藏。
(上海市金汇高级中学,201103)
概念是事物的本质属性,合理准确地建立概念的重要性不言而喻。本文对椭圆第一定义教学的多种方式进行分析研究,以说明“实验型学习”在数学概念建立的必要性、合理性表达以及数学概念本质的意义揭示等方面的优越性。
一、教学案例
【案例1】
教师打开PPT课件,呈现出一幅天体运行图,同时说道:“大家对椭圆图形都不陌生,比如月球绕地球运行或地球绕太阳运行的轨道。那么什么是椭圆呢?”见学生没有什么明确的回应,教师立即开始板书:“椭圆定义:……”然后,教师解释定义中的“定点”“定长”等要素。
【案例2】
课前,教师在黑板上挂了一块KT板。课始,教师开门见山地说:“这节课我们学习椭圆,请大家先看我做一个实验。”然后,教师拿出一根细绳和两颗按钉,将细绳两端分别系上按钉。接着,教师一边操作,一边讲解:“这是一根没有弹性、固定长度的绳子,现在我把它两端的钉子分别插在KT板上,然后用笔尖拉紧绳子,此时笔尖所在点到两个钉子所在点的距离之和就是绳子的长度。我随意拉动绳子,笔尖落在另一点,这个点仍保持到两个钉子的距离之和为绳长(不变)。看我再不停地拉动……”随着教师的动作,KT板上出现了椭圆的痕迹。在学生观察椭圆的过程中,教师提问:“你能准确地说出什么叫椭圆吗?”在学生描述定义的过程中,教师一边纠正和简化学生的语言,一边标记两个定点的位置:分别标上字母F1、F2。随后,教师拔下其中一颗按钉,拉紧绳子,再把这颗按钉插在KT板上,同时问道:“你认为两个定点之间的距离和绳子的长度应该符合什么关系呢?”经过分析后,教师给出椭圆的定义,并再次解释定义中的各要素。
【案例3】
教师用手电筒从不同方向照射实物圆锥体模型,让学生观察其投影。由此,得到椭圆的“形象”。然后,教师通过案例2中的实验给椭圆下定义。
【案例4】
教师用几何画板课件演示:拖动图1中的点M,显示出平面截圆锥面所得截线的各种情形。当画面静止在图1中的情形时,教师提问:“请大家看,图中的截线是什么曲线?”学生回答:“椭圆。”教师表示肯定后,用课件出示图
【案例5】
教师打开几何画板课件,呈现出一个圆,如图3所示。教师提问:“这是什么图形?”学生齐答:“圆。”教师在课件中拖动“圆心”,图形发生变化:重叠在一起的两个点(焦点)分离,图形由圆变为椭圆,如图4所示。教师提问:“你发现圆变成了什么图形?”学生齐答:“椭圆。”教师追问:“那么什么是椭圆?如何下定义?”学生纷纷议论:“好像圆变成了椭圆,一个圆心变成了两个圆心。”“圆半径不变,但椭圆好像有两条半径。”“肯定不能叫圆心、半径,两个中心也不对,动点P到两个定点的连线是变化的。”“不过两条线段总长不变。”学生讨论,教师巡视,并对听到的简单问题当即予以回答。然后,教师在课件中将动点P到两个定点的距离测量出来,并将它们的和计算出来(界面如图5所示),同时说道:“有些同学认为动点到两个定点的距离之和不变,我们用计算机来验证一下吧。”接着,教师在课件中不断移动点P,同时说道:“果然不变。你能准确地给椭圆下定义了吗?”学生得出包含定点与定长的初步定义。此后,教师又在课件中拖动定点F1、F2,椭圆变得越来越扁平直到消失,并反复演示。学生很快明确了定长和定点之间距离的关系:F1F2≤PF1+PF2。最后,教师将椭圆的完整定义写在黑板上。
二、案例分类及评价或改进
以上7个案例,形式上都是做数学实验,但反映出执教者对数学概念形成的认知心理的研究水平以及对“实验型学习”的理解和态度是不同的。“实验型学习”所提倡的数学实验类型,主要是案例5、6、7所代表的“模拟实验”和案例2、3代表的“实物实验”两大类。
案例1是比较普遍的“PPT图片展示”。但这种方式不属于“实验型学习”,因为对于高中学生来说,看到椭圆图片与听到椭圆描述没有什么区别,都没有实质性的实验功能,不能说明任何“原理”,不能有效地调动思维活动。实际上,用PPT、flash等非数学教学专业软件演示的“实验”,都不是真正意义上的数学实验,反而具有更强的灌输、说教性质。
案例2是多数教材都采用,多数教师都用过而且仍在运用的“实物实验”。但有人认为这种方式过时了,没有必要了,因为用多媒体动画制作软件可以制作出那种效果。另外,案例2的引入不自然,可以用案例3的“实物投影”作为铺垫。
案例3是在案例2的“实物演示”之前,先用“实物实验”呈现椭圆的形象。这里暗含了人类发现椭圆的“历史事实”,即人类是从自然的光学现象中发现椭圆的。这种设计有让学生经历初始状态和发现过程的意图。不过,这里可以将用作投影的实物改为圆形硬质纸片(或瓶盖之类的圆形物件),因为这比圆锥体模型更容易获得,产生的现象更明显,而且更符合认识发生的原始状态。
对案例2和案例3的手工画图,要注意用动作展示思维。教师演示时,可先将两颗按钉固定在一起,将细绳两端分别系在按钉上,将笔套入细绳中,拉直画图,一边画,一边让学生描述画图的法则,说出圆的定义。这样可以让椭圆概念出现得更自然、直观,学生体验得更深刻、透彻,也能更有效地调动学生思维的主动参与。
案例4、5、6、7都是运用几何画板进行“模拟实验”(不依靠实物,而用计算机处理数学模型的实验)来帮助学生建立概念,但对几何画板的作用和用法有不同的理解。
案例4的课件制作太难,技术要求和时间投入过高,不具有推广价值。不仅如此,用不同的平面去截圆锥,是已经抽象概括并数学化了的想法,不可能是学生的自然想法;而且教师按这一顺序引出椭圆概念,很难避免概念循环的错误,即用椭圆解释椭圆。
案例5的优点是直观,演示效果好,适合学习能力水平较弱的学生。但这种做法需要事先制作课件,使得两个焦点可以自由移动,而且已经用到了椭圆的性质,只是玄机暗藏在画面背后,学生不知道而已。因此,对资质好、能力强的学生,这种方式就会显得“真实性不够”,看不到现象的源头,不如改进过的案例2,用实物演示圆变为椭圆的过程。
案例6是对圆上一个动点作一个变换(横坐标不变,纵坐标按一定比例压缩),实验从学生已知的圆开始,过程明白无疑,现象真实可信,而且解析思想表现得简洁深刻。但缺陷是,两个焦点是“构造”出来的,教学过程中若处理不好,会出现因果倒置的逻辑问题。
案例7与案例6-样,初始问题、条件都很明白,定长线段和定点(焦点)都是现场作出来的,因而后面基于此的各种构造都不会有疑义。优点是几何本质突出、探究空间大、开放性强(如由“和为定值”很容易联想“差为定值”“积、商为定值”等等,并很容易做类同的实验),适合资质好、能力强的学生。但同时这也是缺点,若面对的学生能力不够,依赖性较强,采用这种方式就很可能出现启而不发的场面,也可能因部分特别“好事”的学生提出一些教师预料不到的问题或进行想当然的操作尝试,使得课堂很难把控(当然,把控课堂是一种“中国特色”)。
案例5、6、7的优缺点都是相对而言的,没有固定的标准。教学中要根据学生的实际情况进行选择、借鉴、改造,即因材施教是基本的原则。由此也说明,“实验型数学学习”是能从实践上打破“一个模子的教育”的有效方式。
三、案例中的关键问题研究
教学情境的创设,是教学中常谈的问题,而信息技术往往能在这方面发挥作用。因为多种媒体的综合运用,可以具体地制造视觉、听觉甚至触觉和嗅觉信息,创设出设计者想象中的“真实”情境。但教学这一内容时,首先要考虑的是,情境是为建立椭圆的概念服务的,因此,要在学生的视野内,先呈现椭圆的形象,再分析它的特征属性,根据特征属性下定义。案例1并没有在视觉上呈现椭圆,而只是用概念“卫星的椭圆轨道”来描述椭圆,对学生观察、认识椭圆图形的特征属性没有作用;案例4则刻意追求了实验的形式,而忽视了实验的目的,操作复杂,理解困难。其余5个案例都注意了概念形成的基本过程,即首先呈现具象,然后动态观察规律,抽象出本质属性,最后将其形式化、符号化。
教师与学生的经验背景不同,建立概念的基础方式也不同。学生在没学过椭圆之前,对椭圆确切的几何特征是不清楚的,根本不会想到“距离和为定长”之类,简单的印象就是“压扁的圆”。案例5、6就是出于对学生经验背景和认知心理的思考,由圆说起,过渡到椭圆。案例5不仅是话题过渡,而且通过拖动圆心,使圆变为椭圆的过程自然地表现出圆与椭圆的关系;案例6还同时表现出了代数变换与几何现象之间的关系。这种顺应学生心理的做法,能促进学生新认识的有效建构。而案例4用平面截圆锥面得到椭圆的形象,则是在对椭圆的本质属性十分清楚的情况下,为了此后与其他圆锥曲线的定义形式保持一致,运用“思维返溯”去构造椭圆和其焦点,然后再解释这样构造出来的图形符合椭圆的定义。这样是不可能帮助学生形成概念的,弄不好就只能硬灌,而且是“反灌”。
课件的优劣是相对于具体上课的需要和用法而言的,概念课应特别重视概念从直观到抽象的形成过程的表现。因此,课件应在概念的形成过程和变抽象为直观上下功夫,千万不可“怎样巧妙怎样做”,甚至“怎么困难怎么做”。有不少教师的潜意识中存在求难、求巧的倾向,觉得问题太简单、太直接了,就没有价值,不够刺激了。其实,按一般审美心理分析,“难”导致的心理反应首先是“烦”,其次是“玄”;只有当主体真切感受到“明白无疑,简洁而深刻”时,心理反应才能是“美”“妙”。案例4的设计者之所以犯这样的错误,很可能是因为想把一个做得很成功的课件(平面动态截圆锥面)用到课堂上。这个课件所要求的制作技术的确很高,用于解释圆锥曲线的统一性很好,但却不适合用于椭圆概念的教学。
四、通过“实验型学习”建立数学概念的意义探讨
造成数学概念教学困难的原因是多方面的。首先,在应试的功利性动机的驱使下,师生对解题教学的重视远远超过概念教学,用于解题训练的时间与精力远远多于用于剖析概念形成的过程。其次,生存环境的快速变化,使得大量无序的信息蜂拥而至,学生已经习惯于用眼睛而不是用头脑处理信息,追求数量大和速度快,不求理性,也无暇思索。因此,数学概念几乎成为了“差不多”“有印象”的同义词,而追根溯源、求本究理的心理机制的淡化,则是数学概念学习的最主要障碍。事实上,数学概念涉及数学的本质,理应给予更多的重视。
对于建立数学概念是否需要运用实验的方法,一般有以下不同的看法:
1.数学概念离不开抽象思维以及严谨的数学语言表述,而抽象与严谨正是学生疏远数学的原因。实验能将复杂、抽象的原理和计算结果,通过信息技术表达得生动、直观,甚至借助实物调动触觉、嗅觉等多种感官。
2.借助信息技术进行的数学实验,只能表现“描述式”的数学内容,而对于表现需要深层思考的数学概念,恐怕是无能为力的。
3.概念是事物本身属性的规定,并没有什么道理可说,基本上不存在什么需要尝试、猜想、探究的东西,所以在数学概念教学中,无需做实验。
4.把一些需要用抽象形式表达的数学对象表达得太形象,本身就破坏了数学的严谨性,这种形象化的做法不利于学生(尤其是“学优生”)学会真正的数学。
关键词:数学;概念教学;形式
中图分类号:G630 文献标识码:A文章编号:1003-2851(2010)07-0187-01
高中数学新课程标准指出:教学中应加强对基本概念和基本思想的理解和掌握,对一些核心概念和基本思想要贯穿高中数学教学的始终,帮助学生逐步加深理解。由于数学高度抽象的特点,注重体现基本概念的来龙去脉。在教学中要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质,笔者结合参加新课程教学中的实践,谈一些粗浅的看法。
一、体验数学概念的形成过程
每一个概念的产生都有着丰富的知识背景,舍弃这些背景,直接抛给学生一连串的概念是传统教学模式中司空见惯的做法,这种做法常常会使学生感到茫然。概念引入时教师要鼓励学生猜想,即让学生依据已有的知识和材料作出符合事实的推测性想象,让学生经历数学家发现新概念的最初阶段。猜想作为数学想象表现形式的最高层次,属于创造性想象,是推动数学发展的强大动力,因此,在概念引入时培养学生敢于猜想的习惯,是发展数学思维,获得数学发现的基本素质,也是培养创造性思维的重要因素。
二、在挖掘新概念的内涵与外延的基础上理解概念
新概念的引入,是对已有概念的继承、发展和完善。有些概念由于其内涵丰富、外延广泛等原因,很难一步到位,需要分成若干个层次,逐步加深提高。如三角函数的定义,经历了以下三个循序渐进、不断深化的过程:( 1 )用直角三角形边长的比刻画的锐角三角函数的定义;( 2 )用点的坐标表示的锐角三角函数的定义;( 3 )任意角的三角函数的定义。由此概念衍生出:( 1 )三角函数的值在各个象限的符号;( 2 )三角函数线;( 3 )同角三角函数的基本关系式;( 4 )三角函数的图象与性质;( 5 )三角函数的诱导公式等。可见,三角函数的定义在三角函数教学中可谓重中之重,是整个三角部分的奠基石,它贯穿于与三角有关的各部分内容并起着关键的作用。
再如讲解“函数单调性” 的概念时,给出概念后应该对其进行剖析: (1)x 1 ,x 2 是该区间内任意的两个实数,如果忽略任意取值这个条件,就不能保证函数是增函数 ( 或减函数 ) ,然后举例说明。 (2) 函数的单调区间是其定义域上的子集. (3) 定义的内涵与外延:内涵 : 用自变量的变化来刻划函数值的变化规律 . 外延 : ①一般规律:自变量的变化与函数值的变化一致时是单调递增,自变量的变化与函数值的变化相反时是单调递减 . ②几何特征:在自变量取值的区间上,若单调函数的图象从左向右上升则为增函数,图象从左向右下降则为减函数 . “磨刀不误砍柴工”,重视概念教学,挖掘概念的内涵与外延,有利于学生理解概念。
三、在寻找新旧概念之间联系的基础上掌握概念
数学中有许多概念都有着密切的联系,如平行线段与平行向量,平面角与空间角,方程与不等式,映射与函数等等,在教学中应善于寻找,分析其联系与区别,有利于学生掌握概念的本质。再如,函数概念有两种定义,一种是初中给出的定义,是从运动变化的观点出发,其中的对应关系是将自变量的每一个取值,与唯一确定的函数值对应起来;另一种是高中给出的定义,是从集合、映射的观点出发,其中的对应关系是将原象集合中的每一个元素与象的集合中唯一确定的元素对应起来。从历史上看,初中给出的定义来源于物理公式,而函数是描述变量之间依赖关系的重要数学模型,函数可用图象、表格、解析式等表示,所以高中用集合与映射的语言来刻画函数,抓住了函数的本质属性,更具有一般性。认真分析两种函数定义,其定义域与值域的含义完全相同,对应关系本质也一样,只不过叙述的出发点不同,所以两种函数的定义,本质是一致的。
四 、在运用数学概念解决问题的过程中巩固概念
数学概念形成之后,通过具体例子,说明概念的内涵,认识概念的“原型”,引导学生利用概念解决数学问题和发现概念在解决问题中的作用,是数学概念教学的一个重要环节,此环节操作的成功与否,将直接影响学生对数学概念的巩固以及解题能力的形成。学生通过对问题的思考,尽快地投入到新概念的探索中去,从而激发了学生的好奇心以及探索和创造的欲望,使学生在参与的过程中产生内心的体验和创造。除此之外,教师通过反例、错解等进行辨析,也有利于学生巩固概念。
一、探究性教学注重概念的形成和推导过程
波利亚指出“学习最好的途径是自己去发现”.因此在数学概念形成过程中,要引导学生通过对具体事物的感知、观察分析、抽象概括,自主获得知识的本质特征,从而建构新的数学概念.在新概念形成的同时不仅培养了学生的抽象概括能力、激发学生了创新精神、引起学生的探究欲望,而且让学生从“被动”学习中发展成为主动地获取和体验数学概念,自主建构新概念的形成过程.
例如,在反正弦函数概念的推导和形成过程中,通过教师的连续设问,启发全体学生回忆反函数的定义及存在的条件,让学生自主地观察分析正弦函数,是否也像指数函数、幂函数一样具有反函数及y=x2具有反函数条件的确定,引导学生概括出反正弦函数的本质特征,将反函数的定义迁移到正弦函数中,从而使反正弦函数的概念形成水到渠成.该节课概念的形成与推导过程充分展示了以学生为本,尊重学生主体地位的教学理念,同时也促进学生学习方式的转变和良好探究习惯的养成.
二、探究性教学重视概念的内涵和外延的挖掘
从数学概念定义的表层看并不能体现概念所包含的全部本质属性,学生经常将所学数学概念和接下来的数学应用分离开,这样就不利于学生对数学概念的全面掌握.结合这种情况,教师应在数学概念形成后,针对学生的实际学习情况进行恰当的引导,让学生深层挖掘概念的内涵和外延,帮助学生内化概念,建构新的知识系统.教师可引导学生对概念进行逐字逐句的解析,同时教师要多角度、多层次地剖析概念,启发学生抓住概念的关键词眼,深刻挖掘概念中隐藏的性质和命题,使学生学会自主掌握概念的理解.
例如,在引进数列极限的概念后,学生由于学习和理解上的粗糙,经常将数列极限定义中的关键词“无限增大”“无限趋近于”“某个常数”等忽略或者将“无限趋近”和“无限接近”等同理解,从而引起概念把握的失误.针对这种情况,教师可以选取一些具体数列让学生进行自我辨析,加深概念的理解.
通过一定时间互助小组的谈论,问题肯定很快得以解决.在问题解决后,让学生进行深层次思考是非常必要的,学生由此可自主提炼出若干极限的结论,从而深化学生对极限概念的理解.学习数列极限概念后,我们采取通过具体数列极限的研究和甄别,在教师的引导下使学困生也能掌握数列极限概念的内涵和外延,能大大增加学生对数列极限概念的明晰度,提升学生对数列极限概念的理解和把握.
三、探究性教学重视概念的应用与巩固
心理学告诉我们,概念一旦形成,若不及时应用和巩固,就会被遗忘.在概念教学过程中,教师经常会出现这样的情况:学生课堂上听懂了,却不会应用概念去解决问题,而且对知识遗忘的程度比较高,因此概念的巩固尤其重要.可依据数学概念的内涵和外延,进行多种题型的尝试,也可有意设置错误解法和易错习题,学生通过思考、解析、反思等途径,加强概念的应用和巩固.
案例:函数的性质——奇偶性
关键字:数学 概念 教学
我国数学教育界历来都十分重视数学概念的教学,但由于传统教育思想的影响,使得在进行数学概念教学活动时存在这样或那样的问题,直接影响着教育教学质量的提高。
一、正确认识数学概念教学的现状
第一,在概念教学中过分重视定义的叙述,对定义是字字推敲、句句斟酌,不厌其烦的举正、反两方面的例子,并且要求学生熟读定义,熟记定义。这种教学往往是费时费力,注重了形式而忽视了实质,因而实际效果欠佳。
第二,在概念教学中,不注意揭示概念的形成过程,只注重概念的应用。导致学生不能从知识结构的总体上去把握数学中的观念、定理、公式、方法和技巧,使他们所学的知识处于零散的、“混沌”无序状态,无法形成优化的数学认知结构,不能用数学思想和方法去观察、发现、分析数学问题,不能理解和领悟结论的实质。
二、数学概念教学的策略
为了克服目前在数学概念教学中存在的上述问题,我们可以从以下三个方面来加强数学概念的教学:
1.把概念教学贯穿于数学教学的全过程
数学公式、定理和方法都是反映数学对象和概念间关系的,学生只有建立起了正确明晰的概念,才能牢固的掌握基础知识。这就决定了在新课的讲授过程中一刻也不能离开数学概念。而我们常说的复习课更是离不开概念,通过复习达到系统掌握知识的目的,而一个个的数学知识点就是靠概念“串联”在一起的,复习时只要把本单元所涉及的概念串联起来就能“再现出”教材的上述知识结构。所以从数学教学的形式和内容上看,数学概念教学始终与课堂教学并存。
另外,从学生思维能力的发展来看,概念也起着重要的作用。数学思维的主要形式和活动过程是数学概念、判断和推理,而概念是思维活动的核心与基础。概念教学是培养学生思维能力的起始阶段和基本出发点,学生在深入理解数学概念的过程中能使自己的抽象思维得到发展。可见,概念教学的质量,直接影响到学生思维能力的形成,关系到其思维能力的发展。所以,我们要把数学概念的教学融入到教学的全程之中去。
2.注重数学概念的过程教学
我们一直强调,数学教学应重视过程教学,只有揭示知识的形成过程才能从源头上强化知识与智力的内在联系,引发学生探索发现的意识和创新思想的形成,从而促进学生思维的发展和数学能力的提高。一个数学概念的教学就是一个完整的教学过程,研究表明这个过程大致可以分为如下四个阶段。
(1)概括。数学概念的获得有两种基本形式:一种是从大量具体例子出发,从学生实际经验的肯定例证中,以归纳的方法概括出一类事物的本质属性,这种获得概念的方式称为概念形成;另一种是向学生展示定义,利用原有认知结构中的有关知识理解新概念,这种方式称为概念同化。可以说概念形成主要依赖的是对具体事物的抽象概括,而概念同化主要依赖的是学生对经验的概括和新旧知识的联系,所以无论是哪种方式都离不开“概括”。这一阶段的任务就是在对具体事例或原已掌握知识的分析过程中,抽象出事物的本质特征,摒弃非本质特征。
(2)表述。对某类具有相同关键特征的事物进行命名,根据实际选择一种易于学生理解的方式揭示概念的本质,陈述定义。
(3)识别。在给出概念表述以后,教师应该区分学生对新概念是否真正理解了。为此,教师可以举出一些该概念外延之内或之外的例子,让学生根据定义进行判别练习,通过这样的练习可以帮助学生更加准确地把握概念的本质特征,排除无关特征,从而真正理解概念。
(4)运用。对已经获得的概念在知觉水平和思维水平上进行运用。所谓在知觉水平上运用就是指当遇到这类事物的特征时,能立即把他看作是一类事物的具体例子;而在思维水平上进行运用则指新的概念或命题被类属于包摄水平较高的原有概念或命题中,或一类已知事物的一个新的不太明显的代表被识别出来。对数学概念的学习不仅要注意知觉水平上的运用,还要注意在思维水平上的运用。
3.从思想方法的高度进行数学概念教学
走上工作岗位的人都有这样的体会:在实际工作中真正用到的具体数学分支学科,具体的数学概念、定理、公式和结论,其实并不很多。学校里学过的一大堆数学知识很多似乎都没有派上什么用场,但通过在校学习时所受到的数学训练,那种铭刻于头脑的数学思想和方法,却能长期在他们的生活和工作中发挥着重要的、积极的作用,成为他们取得成功的最重要因素之一。因此,如果仅仅将数学概念作为一般知识来学习,而忽略了概念所渗透的数学思想方法对学生的熏陶作用以及对提高学生数学素质的意义,就失去了开设数学课程的价值。
数学概念是数学思想方法的某一侧面之外的显示形式,是学习数学思想方法的起点。数学概念的发展亦得益于数学思想方法,如无理数概念的出现。同时,数学概念的积累与演变也能促进数学思想方法的发展。因此,数学概念教学的主要目标之一就是使学生通过概念的掌握和运用,最终理解和掌握数学思想方法。只有当学生能在数学思想方法的高度上掌握数学概念、数学知识时,才能较好的形成数学能力,并受益终生。
关键词: 高职数学 函数概念 教学
函数是高职数学的重要内容,函数思想几乎贯穿整个高职数学。在教学中我发现,很多学生对函数概念的理解不够清晰,导致在学习中出现种种问题。有的学生认为函数的概念并不重要,只要会做题就可以了,这种看法显然是错误的。我们必须让学生知道函数概念的重要性,并在教学中加以重视,精心、合理地设计教学方案,力求让学生掌握好函数的概念。下面我就在教学中碰到的一个问题来谈一下我们该怎样进行函数概念的教学。我在教学的过程中发现,很多学生对y=1这个函数的理解存在以下问题:
(1)不知道y=1是一个函数(依据是只有因变量y,没有自变量x)。
(2)经教师点拨后,知道y=1与f(x)=1是同一回事,但新的问题又出现:
①很多学生将函数y=1的图像画成一个点(0,1),而非一条直线。
②很多学生知道f(1)=1,但同时得出f(2)=2这个错误结论。
为什么会出现上面的情况呢?关键在于对函数概念的学习不够透彻,我们有必要对函数的两种定义及函数的本质作一次深刻的理解。
一
初中时函数的定义为:设在一个变化过程中有两个变量x和y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数。
而高职将函数定义为:如果A、B都是非空数集,那么A到B的映射f:AB就叫做A到B的函数,记作y=f(x)。其中x∈A,y∈B。
比较上述两种定义发现,初中函数的定义是用描述性语言给出的,而高职是从映射的概念出发来定义函数概念的,并给出符号y=f(x)。那么函数的概念为什么要重新定义呢?我们知道,初中生学习函数主要是学习一些非常简单的具体函数,如正比例函数、反比例函数、一次函数等,并了解它们的一些简单属性:公式、图像、单调性等,这与初中生的认知水平是相适应的。但到了高职,虽然学生也会继续学习很多具体的函数,如二次函数、指数函数、对数函数等,但学生还要从具体函数出发掌握函数的一般性质:单调性、对称性、周期性、奇偶性等,那么引出函数符号y=f(x)就成了必要。而用映射的思想来定义函数的概念,比初中函数的定义有很多优势:
(1)利用函数符号y=f(x)可明确知道这样一个过程:x通过法则f作用对应到y,并可从y=f(x)中清楚地看到x和y的对应关系。
(2)对判断两个函数是不是同一函数有很大帮助。初中没有涉及同一函数,因此我们很难用初中的定义判断,但(3)有助于学生对于复合函数的理解。复合函数也是学生学习中的一个难点,尤其对于其性质如单调性等,学生不容易弄懂,我们通过映射:xg(x)f(g(x))可以很清楚地展示复合函数f(g(x))动态的一面。
(4)函数的性质:单调性、对称性、周期性、奇偶性等只有通过符号y=f(x)才能得到充分的展示。具体来说,例如对于周期性,我们可以很方便地通过如果对于函数y=f(x)的任何一个x,总有f(x+T)=f(x),来说明其周期为T。
二
从本质上来说,这两个定义是一样的,只是对于学生的不同学习阶段给出比较接近学生知识水平与认知水平的定义。
但是,映射的思想并不是函数的本质。其实,函数的本质在于变量之间的相依性。函数是用来描述客观世界变化规律的重要数学模型。比方说,长方体体积(v)是由长(x)、宽(y)、高(z)决定的,即说明v与x、y、z之间存在着相依性,但很难联系到多个集合与一个集合之间的映射。虽然映射的思想不是函数的本质,但却能最深刻地刻画函数的本质。由此,我们知道学生在学习中之所以会出现上述困难关键在于没有领会映射思想,没有建立概念内部与概念之间的联系,而仅仅记住其表现形式或语言表述,此时他所掌握的概念是孤立的,实际上并没有正确理解概念,不能真正解决具体问题,所以学生会出现以上的问题。
那么面对这种情况,我们该怎么解决问题呢?为了避免这种情况的出现,我们在具体实施“函数概念”课堂教学中,应首先让学生回忆一下初中所学的函数定义,让学生凭记忆口头描述一下,对于不完整的地方进行纠正,然后复习一下映射的定义,并用以旧带新进行比照的方法引入函数的新定义及表示符号y=f(x),引起认知冲突,让学生在已有知识基础上重新构建出新的知识结构,让学生将符号所代表的新知识与学生认知结构中已有的适当知识建立非人为的和实质性的联系,对符号y=f(x)有更深刻的理解,并能灵活运用到具体的情境中去;其次让学生比较两种定义有何不同,引导学生发现初中的定义比较直观,容易理解,而高职的函数定义就较为抽象,初中学生所接触到的都是具体的函数,如二次函数、一次函数、反比例函数等,而在高职学生会碰到一些抽象的函数,也就是用y=f(x)来表示的函数,在后继的教学中要让学生逐渐习惯这种表示方法;再次分别介绍函数的定义域、值域等,并对应到y=f(x)的表达式中去;最后在教学中还要消除学生的思维定势对函数图像法、列表法学习的影响,学生在初中的学习中可能认为用解析式表示函数是最重要的,而忽略图像法、列表法,在这里我们必须强调图像法、列表法与解析式法处于同等的地位,它们只是法则的给出方法不同而已。在此,我认为有4处有必要强调一下。
(1)函数表示的解析式法必须给出一个具体的函数解析式,认为y=f(x)就是函数解析式表示法是错误的。
(2)所有连续图形都可以由或多或少的复杂的解析式给出,所以气象台自动记录器所记录的T与t的关系可用解析式法表示,只不过公式比较复杂而已。采用图像表示法是为了更直观形象地描述函数,以及更清楚地表现其变化规律。
(3)函数概念提及变量x、y,着重点不在于变量x、y的变与不变,而在于变量之间的互动性、相依性。
(4)教学中我们在作函数y=1的图像时常会要求学生作x=1的图像。但必须明确的是x=1不是函数,这也可以用我们的函数概念来加以说明,并可以通过y=1和x=1的比较来更清楚地认识函数的定义。
函数是高职数学的重点和难点。在教学过程中我们要使学生对函数概念有正确的认识,必须对函数有深刻理解,这样才能教给学生对函数的概念的正确认识,让学生认清函数的本质,在碰到具体问题的时候认真分析,得出正确的结论。
参考文献:
[1]五年制高等职业教育.数学.江苏科学技术出版社,2005.8.
[2]孙维刚.孙维刚初中数学.北京大学出版社,2005.1.
[3]孔凡海.函数的两种概念与教学.中学数学,2002.10.
【关键词】初中数学 定义 讲解
中图分类号:G4 文献标识码:A DOI:10.3969/j.issn.1672-0407.2014.03.131
定义,顾名思义就是对概念的内涵或词语的意义所做的简要而准确的描述。数学定义,就是对于一种数学事物的本质特征或一个数学概念的内涵和外延所作的简要说明。数学定义即数学概念,是人脑对现实对象的数量关系和空间形式的本质特征的一种反映形式,即一种数学的思维形式。在数学中,作为一般的思维形式的判断与推理,以定理、法则、公式的方式表现出来,而数学概念则是构成它们的基础。正确理解并灵活运用数学概念,是掌握数学基础知识和运算技能、发展逻辑论证和空间想象能力的前提。作为初中学生,随着青春期的到来,抽象思维即概念思维能力日益提高,对于各种事实、现象、相互联系的解释和说明表现出浓厚的兴趣。这是初中生的显著特点,也是初中生对数学概念学习的优势所在。作为一名初中数学老师,应该利用初中学生这一优势,激发学生的学习求知欲,使其产生强大的内部动力。
一、从实际出发,感性认识到本质
数学源于现实,寓于现实,并用于现实。许多数学定义都可以和实际联系起来。恩格斯说:“数和形的概念不是从其他任何地方,而是从现实世界中得来的。”数学概念离开现实就成为了无本之木,无源之水,成为虚幻主观的事物。数学教师在教学过程中应理论联系实际,把数学概念与日常生活和社会生产实际的事件或者事物紧密联系起来,再以数学的角度对其分析,让学生首先有个感性的认识;再引导学生把其本质特点归纳整理出来,达到有感性认识逐步上升为掌握本质,从而记牢数学概念。如圆的概念的引出前,可让同学们联想生活中见过的年轮、太阳、五环旗、圆状跑道等实物的形状,再让同学用圆规在纸上画圆,也可用准备好的定长的线绳,将一端固定,而另一端带有铅笔并绕固定端旋转一周,从而引导同学们自己发现圆的形成过程,进而总结出圆的特点:圆周上任意一点到圆心的距离相等,从而猜想归纳出圆的概念。从实际中引入数学概念不但能让学生容易理解,还有助于学生体会数学知识的应用价值,为学生主动从数学的角度去分析现实问题、解决现实问题提出了示范。
二、鼓励学生自己进行数学概念的概括
新课程改革明确指出,学生是教学活动的主体,是学习的主人,教师是教学活动的组织者、引导者和策划者。新课程下的学生不是被人塑造和控制、供人驱使和利用的工具,而是有其内在价值的独特存在,学生即目的。每一个学生既是具有独特性、自主性的存在,又是关系中的存在。所以,鼓励学生自主学习、主动学习是教师的重要责任之一。在初中数学概念,尤其是几何概念那一部分要注意学生间接经验与直接经验的综合运用。我国教学内容都是依据学生身心发展规律和知识需求现状进行课程安排的,在几何知识体系中依旧沿袭循序渐进的教学模式,学生学习内容之间具有联系性和启发性,前一阶段的学习是后一阶段学习的基础,后一阶段的学习是对前一阶段的升华,在几何的学习中依然如此。在初中数学中,几何概念是进行判断、推理和建立定理的依据,也是思维的起点,在教学中应当向学生揭示概念之间的相互联系及其本质属性。注意几何概念与几何图形的结合,也要引导学生观察、思考、发现最后用数学用语归纳出其特点及其定义,最终,由教师进行完善。当然,在这之前要肯定学生的结果。例如在《四边形》这一章的概念讲解过程中,不能只能停留在对四边形的书面文字定义上。这对学生来说比较抽象,而且很肤浅。因此,应加深对四边形的认识。我们知道,几何这一板块中,每一章节不是单独存在的,每一章有其特定的内在联系,所以在四边形定义上可以联系《三角形》一章教学,在教学过程中要注意启发学生对图形的观察,探索四边形的组成,以及与三角形的关系。
三、通过不同的方法引出数学概念
初中学生由于处于人生黄金时期―青春期,对各种新奇事物特别感兴趣。特别是教师在数学概念教学过程中,通过不同的方法引出定义,会激起学生极大的学习兴趣,会使原本枯燥的定义学习生动起来,沉重的课堂氛围活跃起来。在此提供两种本人觉得不错的方法,以供参考。
1.关系纽带法,就是通过学生的认知发展水平,联系已学习的知识与即将学习的概念之间的关系,承上启下。比如上一例子中的三角形与四边形的关系,就可以用这种方法来引出四边形的概念。这种方法,不仅帮助学生对新知识、新概念的理解,还对已学知识进行回顾复习,可谓一举两得。
2.数学发展法,随着学生年龄的增长,知识的不断增加和深入,以及日常生活的需求,一些数学概念已经不能满足日常生产和生活中的实际应用了,所以必须增加新概念的学习。例如小学学习的自然数、正数等,在进入初中后已经不能满足我们的需要了。所以,我们引入了负数,有理数,无理数,代数式等等。在教学过程中,教师须循循善诱,根据实际生活引入新的概念,让学生感受到数学确实源于实际,服务于生活,这样很好激发学生对数学学习的兴趣与热情。
四、对数序概念的巩固,强化数学概念
关键词:概念课;教学;有效性;尝试
恩格斯说:“在一定意义上,科学的内容就是概念的体系. ”数学概念是导出全部数学定理、法则的逻辑基础,是建立理论系统的中心环节,同时也是解决问题的前提. 因此,概念教学是数学基础知识和基本技能教学的核心. 那么怎样在高中数学课堂中进行有效的概念教学呢?现结合教学谈谈我的几点尝试与探索.
掌握先进的教学理念――提高概念教学有效性的前提
新课程的基本理念是“以学生发展为本”“倡导积极主动、勇于探索的学习方式”“发展学生的数学应用意识、创新意识”等. 建构主义的观点认为每个人学习知识都是以他自己的方式把新知识纳入原有的知识结构中去. 故在数学概念教学中要注重理论联系实际,即在“探究性”学习中让学生自主活动,亲身体验,通过数学实验去获取数学概念.
如我在讲授《椭圆及其标准方程》时,就椭圆的概念进行实验教学,让学生观察木匠师傅画椭圆时采用的方法――固定绳的两端,用墨笔绕绳勾勒……学生自己动手操作后,总结其内在规律并用数学语言去描述椭圆――到两个定点的距离等于定长的点的轨迹,并且两定点的距离小于定长. 这样,学生对椭圆的概念通过自己的亲身体验得以构建,从而更深刻地理解了椭圆的概念.
建立和谐的师生关系――提高概念教学有效性的保障
古人云:“亲其师,信其道.” 苏霍姆林斯基指出:学习――并不是教师机械地把知识传授给学生,而是教师与学生的关系,学生学习知识的态度. 如果师生间建立良好的情感,形成民主平等的师生关系,就会产生愉快的教学气氛,师生间就会相互感染、互相促进,就会使学生乐学、愿学.
笔者所教班级里有一位同学在刚入学时上课睡觉、不交作业,找他谈话后我了解到,该生由于初中生病曾休学一段时间,此后数学成绩一直不好,没有学习兴趣. 我在任教期间,通过交谈、接触,经常鼓励他,关注他的学习情况. 现在他上课从不睡觉,上课积极回答问题,课后还经常请我给他答疑,这次期中考数学成绩还在班级位居前列. 可见亲其师是多么重要!
创设合理的教学情景――提高概念教学有效性的基础
创设合理的问题情景可以激发学生的学习兴趣和动机,使学生产生“疑而未解,又欲解之”的强烈愿望,进而转化为对知识的渴求,从而调动学生学习的积极性和主动性,达到提高课堂教学效果的目的. 那么,如何创设合理的教学情景呢?
1. 借助故事创设情景?摇
教学的艺术不在于传授,而在于激励、唤醒和鼓舞学生的心灵. 新课程提倡“以人为本”,而增加教材的趣味性,让他们体会到数学的趣味和数学的美,这正是以人为本的切实体现.
如我在讲《排列组合》这一章内容时,设计了一个故事作为整章的引入:“阿凡提的几个穷朋友在一个饭馆里吃饭,经常遭到老板的嘲笑和戏弄,阿凡提帮他们出了个主意. 一天,阿凡提带着他们又来吃饭. 饭毕,阿凡提跟老板说:我们以后就天天在你这里吃了,每天这样付饭钱太麻烦,我们就一段时间结一次账好了. 等我们这十个人又按照今天的位置坐时,再结账,我们付双倍的钱. 由于阿凡提是名人,又绝对不会赖账,且付双倍的钱,老板立即满口答应. 可是许多天过去了,还是不见他们付钱. 同学们算算看,老板什么时候会拿到饭钱呢?”如此引入给学生以新、奇之感,以趣引路,以情导航,自然也就提高了学生学习的兴趣.
2. 借助相关学科创设情景
要创设学生熟悉的情景,就要经常和学生沟通,了解学生的思想和生活状况,当然更可以从学生熟悉的其他学科中寻找与数学知识相关的问题.
例如,我在教授《充要条件》时,首先提出以下问题:如图1,观察在下列电路图①~图④中,研究命题P“闭合开关A”与命题Q“灯泡B亮”的关系,接着引出两命题之间的四种关系与图①~④的对应.
图1
引入以上图形后,学生的兴趣被有效地激活,教学效果也相当好,这真是“他山之石可以攻玉”.
3. 借助现实生活创设情景
数学的概念或式子有些是从生产、生活中的实际问题抽象出来,有些是由数学自身的发展而产生,而有些数学概念源于生活实际. 要想使学生主动进入探究性学习,教师可引导学生对实际生活中的现象多加观察,利用数学与实际问题的联系来创设情景.
如我在上《映射与函数》概念教学时,这样创设情景:同学们,在现代生活中,汽车已经逐渐成为生活中的一部分,汽车给我们带来便利与快乐的同时,也会出现许多问题,如交通肇事、车辆偷盗等. 如何对车辆进行有效的管理?上牌,就是一种简单而有效的方法,给每一辆车上一个牌照,即一辆汽车对应一个号码!像这样的对应我们称为――映射.
遵循科学的认知规律――提高概念教学有效性的关键
数学概念是多结构、多层次的. 理解和掌握数学概念应遵循由具体到抽象,由低级到高级,由简单到复杂的认知规律. 因此,一个数学概念的建立和形成,应该先通过学生的亲身体验、主动构建,再通过分析、比较、归纳等方式,揭示出概念的本质属性,形成完整的概念链.
1. 注重直观体验,初步形成概念
概念课应注意直观教学. 让学生了解研究对象,多采用语言直观、教具直观、情境直观、电化直观等教学手段,引导学生从具体到抽象,经概括和整理之后形成新的概念,或从旧概念的发展中形成新概念.
如在“异面直线”概念的教学中,教师可先展示概念产生的背景,如长方体模型和图形. 当学生找出两条既不平行又不相交的直线时,教师告诉学生像这样的两条直线就叫做异面直线. 接着教师提出“什么是异面直线”的问题,让学生相互讨论,尝试叙述. 经过反复修改补充后,教师给出简明、准确、严谨的定义:我们把不在任何一个平面上的两条直线叫做异面直线. 在此基础上,再让学生找出教室或长方体中的异面直线,最后以平面作衬托画出异面直线的图形.
2. 重视教材分析,理解掌握概念
数学概念的定义是用精练的数学语言概括表达出来的,在教学中,抽象概括出概念后,还要注意分析概念的定义,帮助学生认识概念的含义. 教师应重视教材,提倡“咬文嚼字”,避免“概念不清”,反对死记硬背.
如在学习“函数”的概念时,对定义的内涵要阐明三点. ①x、y的对应变化关系. 使学生明白并非所有的函数都有解析式,由此加深学生对函数的“对应法则”的认识. ②实质:每一个x值,对应唯一的y值. 可列举函数讲解:y=2x,y=x2,y=2都是函数,但x、y的对应关系不同,分别是一对一、二对一、多对一,从而加深对函数本质的认识. ③定义域、值域、对应法则构成函数的三要素,缺一不可,同时要特别强调定义域的重要性.
3. 通过反例辨析、变式教学,及时巩固概念
对概念(定义)的理解必须克服形式主义. 课内应通过大量的正反实例、变式等,反复地让学生进行分析、比较、鉴别、归纳,使之与邻近概念不致混淆,并解决好新旧概念的相互干扰.
如在《函数的单调性》教学中,我给出定义后,再提出问题,组织学生讨论.
(1)定义在R上的函数f(x),满足f(2)> f(1),能否判断函数f(x)在R上是增函数?
(2)定义在R上函数f(x)在区间(-∞,0]上是增函数,在区间(0,+∞)上也是增函数,判断函数f(x)在R上是否为增函数.
(3)观察问题情境中气温变化图,根据图象说出函数的单调区间,以及在每一个单调区间上,它是增函数还是减函数.
强调:①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.
②有的函数在整个定义域内单调(如一次函数),有的函数只在定义域内的某些区间单调(如二次函数),有的函数根本没有单调区间(如常函数).
③函数在定义域内的两个区间A、B上都是增(或减)函数,一般不能认为函数在A∪B上是增(或减)函数.
构建完整的概念体系――提高概念教学有效性的催化剂
因为任何数学概念都不是孤立存在的,概念之间彼此联系密切,所以掌握概念必须在概念体系中把握. 如映射――函数――单调性――奇偶性;数列――等差数列――等比数列;异面直线――夹角――距离等概念体系.
如在《抛物线的定义》教学中,教师引导学生将椭圆、双曲线与抛物线概念的本质属性进行比较,把焦点和相应准线相同的三种曲线在同一个图形中作出,使学生了解到三种曲线之间的逻辑关系,并把抛物线概念与椭圆、双曲线一起纳入圆锥曲线的概念体系中,形成一个整体. 通过建立概念链或概念网络, 使学生深入理解数学概念的本质.
1.函数概念的教学
在中学数学教学中,函数是最重要的概念之一,函数概念深刻反映了客观世界的运动变化与实际事物的量与量之间的依存关系,它告诉人们一切事物都在不断地变化着,而且相互联系、相互制约。因而函数概念是培养学生的辩证唯物主义观点、解决实际问题的有力工具。函数概念不仅与中学数学中的重要内容(如数、式、方程等)有密切联系,而且是近代数学的主要基础。由于函数思想充分体现了集合、对应、映射等基本数学思想,因而就使中学数学能接近数学科学的现代水平,进而使学生获得基本的深刻的有用的高等数学思想方法[1]。
关于函数与函数值函数的传统记号是f(x)或y=f(x)或f(x,y)=0,学生常常搞不清哪个是哪个的函数。如果设函数的集合为A,那么f(x)∈A所表示的是函数值属于A,这种表示就错了。同样y=f(x)∈A或f(x,y)=0∈A也是错的。我们所指的函数是f,记号f∈A才是正确的。函数f是指将f(x)指派给x,如lg是将lgx指派给x。
例1.f(x)=2x+1,求f(x-1),f[f(x)],并说明f(x)与f(x-1)是否为同一函数。
解:f(x-1)=2(x-1)+1=2x-1
f[f(x)]=2f(x)+1=2(2x+1)+1=4x+3
显然f(x)与f(x-1)不是同一函数,这里虽然定义域、值域都相同,但对于x来说,“对应法则”是完全不同的。
例2.已知y=f(x)的定义域为[0,1]的函数,求f(x-1)的定义域。
分析:f(x-1)中自变量应是“x”,而非“x-1”,因此求定义域,即求x的取值范围。
解:由已知0≤x-1≤1有1≤x≤2,
解之得1≤x≤或-≤x≤-1,
f(x-1)定义域为{x|1≤x≤或-≤x≤-1}。
例3.判定函数f(x)=1,f(x)=sinx+cosx二者是否为同一函数。
从形式上讲,无论如何也不能断言这两个函数相等;而从本质上讲,对于任意实数x,sinx+cosx=1又无可非议,因而f(x)=f(x),所以不管对应法则如何千变万化,抓住函数概念的实质便不会产生理解上的歧义。又如函数f(x)=x,f(x)=是不同的两个函数。因此正确理解函数的概念,要从函数的三要素(定义域、值域、对应法则)入手,逐一考查。
2.函数性质的教学
研究函数的性质,不仅可以加深对函数的认识、理解、掌握,更重要的是可以利用函数的性质解决相关的数学问题[3]。对函数是一个刻画某些运动变化数量关系的数学概念,我们已经形成初步认识。在数学研究中,建立一个数学概念的意义就是揭示它的本质特征,即共同属性或不变属性,亦即“变中不变”的性质。作为教学活动的第一环节,课题的提出应该是自然的,学生容易产生共鸣。目前中学对这个内容普遍采用照字面意义讲解定义的方法,以教师讲解为主,虽然也有启发引导,但总体上缺少学生的主动活动,特别是缺少学生自己的思维构造,本质上是缺少一个“建构”的过程。其实,对于如何用探究的方法对“函数单调性”进行建构学习,让学生经历思维构造的过程,一些中学教师很关注,向往解决,并进行了尝试,但不尽人意,感觉较难处理,有待突破。
3.教学案例及分析
课例1:函数的单调性。
授课时间:2008年11月14日。
授课地点:攀枝花某中学高一(3)班。
教学目标:理解函数单调性的概念,把握函数单调性的实质;掌握判断和证明一些简单函数单调性的方法和步骤。
教学过程:
(1)启发引入阶段。
师:请同学们作出下列三个函数的图像:(1)y=-x;(2)y=|x-2|;(3)y=。(教师巡视)
(几分钟后,请两位学生画(1),(2)和(3)的图像,请其他学生与黑板上的核对有什么不同。)
(2)阅读书本阶段。
师:对照书上给出的单调性定义,强调增函数、减函数是在区间上。而区间很重要,是自变量与函数值的关系。这里x,x的任意性是非常重要的。对照书本再看一下概念,单调区间。
(3)解疑、训练阶段。
例题讲解,证明函数f(x)=-x+1是R上的减函数。简析:这个课例比较明显地表现为一个学生学习的发现过程,比较多地表现为概念形成过程。教师呈现了一个观察三个函数的共性的问题情境,通过这个情境,引导学生认识函数单调性的本质。然后在这一理解与认识的基础之上给出书上的形式化定义,完善学生对于单调性的数学理解,并通过证明练习,巩固新知识的获得,整个过程设计得完整、合理,符合学生的认知与思维特点。
案例2:函数的概念。
授课地点:攀枝花某中学高一(3)班。
教学目标:
(1)知识与技能
①了解函数是特殊的数集之间的对应,理解函数的概念,了解构成函数的要素。
②了解“区间”“无穷大”等概念,掌握区间的符号表示。
(2)过程与方法
①进一步体会函数是描述变量之间依赖关系的重要数学模型,能用集合与对应的语言刻画函数概念中的作用。
②通过现实事物本质,进行数学抽象与概括,重视其经历,总结经验,体会由具体逐步过渡到符号化、代数式化的数学思想。
(3)情感态度与价值观
①能对以往学过的知识理性化思考,对事物间的联系有一种数学化的思考。
②函数知识是学好数学后继知识的基础和工具,培养学生的抽象思维能力、渗透静与动的辩证唯物主义观点。
教学过程:
实例1:国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高,表中恩格尔系数随时问(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化。
从图表中的数据可以看出我国城镇居民家庭恩格尔系数在逐年减少。
4.结语
针对教学现状,结合函数历史,我认为中学函数教学应该加强以下几点。
(1)重视函数的概念教学
我国的教学一贯是注重运算推理与解题技能,而对知识的产生过程漠不关心,其结果只能是空中楼阁,所以我们应该重视函数的概念教学。调查结果表明,学生对函数的认识是多样的,历史上不同时期、不同的数学家的观点也是各不相同的,因此概念的教学还应该多样化[4]。例如在解决有关指数函数、对数函数的定义域和值域的问题时,采用“变量”观点给出的定义,这样便于突出y随x的变化情况;在讲述反函数概念时,应采用“解析式”观点给出的定义,以显示原函数和反函数在定义域、值域、对应法则上的联系;在引入一些特殊的函数时(如问题4中的D),使用“映射”观点给出的定义;在处理关于函数的单调性、对称性、周期性等综合性问题时,不妨借助于图形,使用“图像”观点给出的定义[5]。
(2)丰富和修正学生的函数表象
由于函数表象和函数定义的分离学生对函数的认识并不理想。学生在某场合是利用函数表象来处理问题的,而错误和狭隘的表象会给学生造成障碍。在教学中,我们应抛开课本和参考书的局限,尽可能多地让学生接触函数例子和相关问题(Clement,2001),尤其在高中阶段对函数有了一定的认识之后。从历史上看,人们对函数概念的认识是通过一些具体函数来深化的,如柯西根据函数y=x(x≥0)-x(x<0)和函数y=是同一函数而修改了前人的定义;狄里克雷也是由于发现了著名的狄里克雷函数而重新定义了函数。
(3)为学生提供充分的讨论机会
在历史上,函数概念正是在众多数学家的讨论和争辩中发展和完善的,一种定义、一个函数都要经过他人的检验和接受[6]。因此在正常教学的基础上,我们应当多创设机会,让学生对一些典型问题展开讨论,在讨论中明辨是非,巩固概念,全面地认识函数的各个方面。
(4)在教学中应用现代信息技术
教学与信息技术的整合势在必行,我国(至少是教育落后地区)在这方面差得很远,测试中没有一个学生能把函数看成是“加工机”或“程序”等,而国外早就有这方面的案例(Tall 1992;Kieran 1993)。利用图像对问题进行分析,或根据图像设计问题,这样对函数的图像教学及对函数的理解都会有帮助作用[7]。
(5)将函数的历史融入教学
历史对教学的作用己经受到关注,HPM研究方兴未艾。学生的函数定义与历史上的定义具有相似性,学生学习中遇到的疑惑在历史上也存在过,因此在函数的教学中,如果能恰当地融入历史,无疑会改善我们的教学[8]。
参考文献:
[1]中华人民共和国教育部.普通高中数学课程标准(实验)[S].北京:人民教育出版社,2003.
[2]张维忠.文化视野中的数学与数学教育[M].北京:人民教育出版社,2005.
[3]张维忠,汪晓勤等.文化传统与数学教育现代化[M].北京:北京大学出版社,2006.
[4]徐永忠.“阅读材料”教学现状分析与建议[J].数学通报,2004,4.
[5]尚志,孔启平.培养学生的应用意识是数学课程的目标[J].数学教育学报,2002,11(2):43-44.
[6]林全.我国数学课程改革的新发展[J].中学数学研,2000,(5):1-2.
[7]刘晓玫,杨裕前.关于推理能力问题的几点思考[J].数学教育学报,2002,11(2):54-55.
关键词:高中数学;函数定义;改革必要性;建议意义
一、改革函数定义的必要性
现行的高中数学教材[1]中函数的定义是这样的:“给定两个非空数集 和 ,如果按照某个对应关系 ,对于集合 中的任何一个数 ,在集合B中都存在唯一确定的数 与之对应,那么就把对应关系f叫做定义在集合 上的函数,记作 ,或 , .此时, 叫做自变量,集合 叫做函数的定义域,集合 叫做函数的值域.习惯上我们称 是 的函数.”在教学过程中,笔者对函数的这一定义经过仔细地研究之后发现,该定义存在着以下缺陷:第一,该定义中“把对应关系 叫做定义在 上的函数”这句话表达的意思不够准确.首先大家知道,函数应包括集合 和对应关系 这三部分,这三部分是一个统一的整体,它们合起来共同组成从集合 到集合 的函数;其次,这句话与该定义内容中的“记作 ”之间不能做到相互匹配.第二,该定义中函数的值域 与集合 之间有什么关系?在定义内容中没有给与明确的回答.第三,该定义语言叙述过于冗长、抽象不容易理解,经过调查,不少学生在学习了该定义内容之后很难体会到函数定义的实质.第四,该定义是建立在对应概念之上的,函数它是一种特殊的对应,但是在数学理论中,“对应”它是一个未加定义的概念,到底什么叫做对应?它包括哪几种类型?函数与对应相比,具体有何区别?有何联系?对这些问题如何回答,学生在心中始终是一个谜.尽管高中数学教材已经经历了多次改革,而且每一次在新编写高中数学教材时,对函数的定义都进行了不同程度的改进;也尽管函数定义的教学历来都是高中数学教学中公认的重点和难点,但是从教学的效果看,不容乐观.在抱怨学生没有抓住函数定义实质的同时,我们为何不静下心来做一些理性的思考?反思一下函数定义内容本身是否存在着内在的缺陷?所以,积极探索改革现行的高中数学教材中函数定义的内容,在数学理论的研究和实践中都具有重要的意义.
二、对函数定义的改革
(一)笔者结合自己的教学实践,对函数下定义的方式做了深入的研究之后发现,要给函数下一个学生容易接受的定义,就必须创造性的对数学理论中未加定义的“对应”这一概念给出它的定义和分类:
1、元素 与元素 对应的定义:设 是两个集合,从 中取出元素 ,从 中取出元素 ,组成一个有序元素对 ,叫做元素 与元素 对应.
2、从集合 到集合 的对应的定义:若对集合 中的每一个元素,按照某种对应关系 ,在集合 中都有与之对应的元素(一个,多个不限),则称从集合 到集合 的对应,记作对应 .
由对应 的定义可知: 中的元素都必须取到, 中的元素允许有剩余;集合 可以是数集、也可以是点集、或者是其它集合,它们可以相等也可以不等.
3、从集合 到集合 的对应的分类结果为:
(二)在对应分类结果的基础上,再给出函数的定义:
函数的定义:若集合 都是非空的数集,则把从集合 到集合 的对一对应 叫做从集合 到集合 的函数,记作函数 .
(三)在编写高中数学教材函数定义这一节的教学内容时,笔者认为完全可以删掉映射这一部分内容,只给出对应和函数的定义方可;也可以在学习了函数的定义之后,在对应分类结果的基础上给出映射如下的定义:我们把从集合 到集合 的对一对应叫做从集合 到集合 的映射,记作映射 .
(四)由上面新给出的对应、映射、函数的定义可以得到这三个概念之间的关系为:
用集合论的观点看这三个概念之间的关系为: .
三、改革后的函数定义在实践和理论中的重要意义
(一)突破了多年来高中数学函数概念教学的这一难点.本文中经过改革后的函数定义认为:函数实质上它是从非空数集 到非空数集 的对一对应.
(二)体现了“返璞归真”,努力揭示数学本质,数学应该面向全体学生的新课程理念.《普通高中数学课程标准(实验)》[2]指出:“形式化是数学的基本特征之一.在数学教学中,学习形式化的表达是一项基本要求,但是不能只限于形式化的表达,要强调对数学本质的认识,否则会将生动活泼的数学思维活动淹没在形式化的海洋里.”“高中数学课程应该返璞归真,努力揭示数学概念、法则、结论的发展过程和本质.”
总之,笔者认为,高中数学教材中函数的定义可以改革为:“若 都是非空的数集,则把集合 到集合 的对一对应 叫做从集合 到集合 的函数,记作函数 或函数 , , .习惯上我们称 是 的函数.”改进后的函数定义是建立在对一对应概念这块基石之上的,具体而不抽象,更切近于学生的认识水平,便于学生接受,巧妙的突破了多年来困扰高中数学函数概念教学的这一难点;体现了“返璞归真”,努力揭示数学本质,数学应该面向全体学生的新课程理念.这说明函数它和其它知识一样,产生于人类社会实践的需要,是从大量的实践现象中抽象出来的,它为人类的实践而服务;同时它本身也需要在实践中不断发展、完善,以便为人类更好的服务.