公务员期刊网 精选范文 生物力学的研究方法范文

生物力学的研究方法精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的生物力学的研究方法主题范文,仅供参考,欢迎阅读并收藏。

生物力学的研究方法

第1篇:生物力学的研究方法范文

关键词:创新 创新教育 物理教学

随着素质教育的全面推进和教育改革的不断深化,如何培养学生的创新精神,提高创新能力,已成为广大教育工作者关注的问题。我国著名的教育家陶行知先生曾指出:教师要创造性地教,学生要创造性地学。现就物理教学中如何培养学生的创新能力谈几点看法。

一、培养学生的创新意识

随着教学改革的不断深入,教学中培养学生的创新能力越来越重要。培养学生的创新意识,就要改变传统的教学模式,坚持创新教育思想,让学生树立创新观念,对遇到的问题大胆质疑、大胆想象。正如爱因斯坦所说:“想象力比知识更重要,是推动知识进步的源泉”,逐步形成良好的创造性思维习惯,提高创新能力。

二、发挥课堂教学的主渠道作用

创新需要一定的基础知识,一定的创新环境,一定的思维训练,课堂教学是学生掌握基础知识的重要场所,是落实创新能力培养的主渠道。

1.创建良好的创新环境

课堂教学中注意创建和谐、民主的课堂氛围,引导学生积极参与教学的整个过程,敢于提问题,发表不同见解,尊重学生的好奇心和求知欲望,让人人参与创新,并从中得到乐趣和满足。

2.通过问题探讨提高创新能力

教学中突出学生的主体地位,根据教材内容提出问题,展开讨论,增强学生主动探求知识的动力。在老师和学生的共同努力下,从问题中掌握知识,进而发现新问题,有效地培养创新思维能力。对所选择的问题要有启发性、针对性,让学生能努力解决,激发学生创新情感。

3.培养学生创造思维能力

对于知识的学习,注意引导学生开展发散思维和收敛思维训练,先对一个问题从不同方向设想出解决方案,提出许多具有创造性的解决方法,再加以类比、归纳。例如,讲授“改变内能的方法”时,向学生提出:可用哪些方法使一根铁丝的温度升高?学生答出多种方法:用火烧、太阳晒、在石头上磨、用铁锤打、反复扭曲、通电等。在此基础上分析归纳,升温的方法有两类:一是外界传给它热量,一是外界对它做功,有效地培养了学生的综合分析能力。

巧用逆向思维,寻求知识联系,法拉第电磁感应定律的发现就是在奥斯特发现电能产生磁的现象后,展开思考:磁能否产生电?经过努力终于发现了电磁感应定律。提高学生的创新动力。

培养全思维的学习习惯,建立知识、方法、能力相结合的思维模式,开发非智力因素。美国教育心理学家布鲁姆经过多年教学实践后认为:90%以上的学生智力因素相差不大,学习成绩有较大差异是非智力因素。可见,要想取得创新教育的丰硕成果,就要加强对学生思维能力的训练,加强对动机、兴趣、意志、情感等非智力因素的培养。

三、将创新教育贯穿于各个教学环节

1.精心备课

备课是教学实施的基础,在分析教材和学生的基础上,明确教学目的,让学生掌握基础知识的同时开发智力、培养能力,大力倡导启发式教学方法,增加学生探求知识的活动量,让学生自己去探索、去创新,为课堂教学充满创新意识做好必要充分的准备。

2.精练习题

结合教材内容,灵活选择习题,鼓励学生用不同方法来分析,一题多解,一题多问,给予适当的思考时间使其得出结论,并展开广泛联想,进行创新思维训练。通过练习,学生面对新问题会从容不迫,把有效的知识、方法、能力相结合,全面提高创新能力。

3.重视实验和实践

实验是物理教学中的重要组成部分,不仅让学生学会操作,还引导学生提高分析实验能力,培养创新能力。开展丰富多彩的创造活动,有计划地组织学生进行探索性实验,使创新能力长期化,把实验问题与实际问题结合起来。

四、自我创新

教师在教学活动中起主导作用,必须有创新思想,不断学习,充实新知识,研究方法。过去常讲要给学生一杯水,教师要有一桶水,现在要给学生一杯水,教师要成流动的河,才能满足创新教育的需要。树立良好的师德形象,耐心听取学生对问题的见解,决不能打击学生的创造积极性,对学生进行辩证唯物主义和爱国主义教育,阐述我国现代科学研究的新成果,满足学生的求知欲。

创新教育是实施素质教育的关键,课堂教学是创新教育的主渠道,完善各教学环节,以学生为主体,以创新为动力,全面培养创新能力,为学生全面的发展打下坚实的基础。

参考文献:

[1]王至正,张宪魁,王河.物理教育学[M].青岛:青岛海洋大学出版社.

第2篇:生物力学的研究方法范文

摘 要 斜坡跑是提高短跑速度的有效方法之一,被广泛运用到提高短跑成绩的训练中,本文基于生物力学原理对斜坡跑训练方法现有研究成果进行综述和探讨。研究表明:影响速度的因素很多,就斜坡跑训练方法而言,对跑速产生影响的直接因素步长和步频这两个参数的变化上影响效果明显,科学合理的运用斜坡跑训练方法对提高短跑速度具有积极意义。

关键词 斜坡跑 训练方法 步长 步频

一、前言

斜坡跑是提高短跑速度的有效方法之一,被广泛运用到提高短跑成绩的训练中。国内外对斜坡跑进行广泛的研究,有学者认为,斜坡跑对提高短跑速度有比较明显的作用;斜坡跑除了能提高速度耐力、力量和心肌功能外,还能让运动员体验超过自己速度能力的动作感受,改善运动员的加速疾跑能力,从而增大步幅和缩短支撑阶段时间,帮助运动员掌握加速跑的技术。

二、斜坡跑训练方法的运动生物力学原理

斜坡跑包括上坡跑和下坡跑,上坡跑是一种抗阻力性速度力量练习,在阻力增加的情况下增加训练强度,获得无氧练习的效果,从而改善心血管的机能。上坡跑加强了股四头肌、臀大肌等下肢肌群的力量,有利于提高步长。下坡跑是一种神经系统适应性训练,下坡跑是人们有意识地利用自然的或人工的斜坡,根据势能与动能转换的原理进行训练,有利于提高步频。

影响步长的因素主要有:一是腿部的肌力,腿部的肌力越大,产生的后蹬反作用力相对越大,跑的步幅则越大;二是腿长和髋关节的灵活性与柔韧性,下肢越长、髋关节的灵活性与柔韧性越好,跑的步幅则越大;三是后瞪的角度与摆动腿摆动的方向,从理论上讲,摆动腿与后蹬腿的角度与方向直接影响步幅越大小。对于跑的步频而言,其影响因素有两个:一是肌肉中快肌纤维百分比和肥大程度。二是神经过程的灵活性,大脑皮层运动中枢兴奋与拟制的转换速度是影响位移速度的重要因素。另外,跑动时两腿摆动情况和腾空时与支撑时的相对时间(比值)对步长和步频也有影响。

三、成果研究现状

近年来大量文献资料和研究报道表明,有关短跑技术和速度训练方法的研究选题,多集中在短跑运动员步长、步频训练方法与运动员的中枢神经系统机能的改善及其专项肌肉力量的训练手段方面。对于斜坡跑的原理和训练方法虽然,前人曾做过一些表述和研究,但大多文献报道仅限于对斜坡跑手段应用方式的定性分析与斜坡跑的坡度问题。尽管国内外大多学者均十分肯定斜坡跑训练对提高绝对速度的作用,且认为斜坡跑对改进运动员的步频与步长技术具有积极效果。其相关的论述与见解多散见于各类短跑和速度方面的文献资料和研究报道之中。

(一)关于斜坡跑与步长步频的训练问题

闫春华在《百米速度结构分析及有关技术训练手段研究》(博士论文,2004)一文中提出:斜坡跑作为一种超速训练的方法被广泛使用,超速训练的目的是通过强迫运动员完成超出自身能力水平的练习,来增加步频和步长。在经过4-8周的超速训练后,被试者的步频和步长都得到了提高。这说明斜坡跑作为一种训练方法对步频、步长和短跑跑速的提高具有积极的作用。

下坡跑时,当运动员动作速率发挥到最高值时,控制并稳定速度是很困难的。这是由于下坡重力所产生的惯量。这种惯量随距离的延长而增大,这种逼迫速率的加快运动现象,也正是下坡跑能提高频率的所在。如果在练习中不对运动员的跑动动作提出任何技术要求,或让运动员在一定距离范围内坚持正确的动作要求,斜坡跑的练习效果会受到影响[2-4]。还有研究表明,下坡跑步频没有任何增加,只有步幅加大。步幅的增长意味着展髋的幅度加大和髋部转动角速度加快,同时对髋部的伸髋速度和力量起积极作用;上坡跑对改善或提高运动员的快速力量、速度耐力和增大步长是非常有效的训练手段(昆兹、考夫曼1997)。

(二)关于斜坡跑与神经―肌肉控制机理的研究

美国学者弗拉基米尔M・扎齐奥尔斯基在其主编的《运动生物力学》(2004)一书中指出:步长和步频的可变性表明,中枢神经系统的灵活性(CNS)在控制这些参数方面起到了重要的作用。最高速度跑是人体调动各种能力,并使其充分发挥的集中体现,他对人体能量的消耗以及神经系统的兴奋和拟制的转换频率的要求是很高的。因此,在最高速度之后,肌体实现第二次调节其重要性和必要性同第一次调节具有同等的意义[5]。有作者还提出,构成跑速的两个主要因素――步长、步频是互为影响和相互制约的。对于步长和步频两个变量的作用来说,提高或改进其中任何一个变量都可提高跑速,同时这两个变量之间又呈现一定函数关系[6]。步长和步频的可变性表明,中枢神经系统(CNS)在灵活控制这些参数方面必然起到了一定的作用[7]。伊托等人的研究(1983)表明,助力训练能进一步发展神经肌肉系统对肌肉拉长――收缩周期运动的控制能力,提高短跑运动员支撑阶段的动作效果,从而提高跑速。

有作者在《现代100米跑技术的生物力学分析及放松技术再探析》一文中认为,步频的发展取决于大脑皮质运动中枢神经系统的支配,斜坡跑获得的助力作用可以使运动员感受放松速跑的肌肉用力情况、体验“放松快跑”的方法和好处。上坡跑要求运动员着力体会以髋为轴的大腿前摆和髋关节的积极前送与踝关节及脚的快速趴地,不要刻意后蹬,这种跑法既符合现今短跑技术的要求,又有利于下肢肌肉用力的放松与控制。通过上坡跑还能切实有效地实现短跑所需的“快速力量”训练。就是说上坡跑不仅可以改进、掌握正确的跑的技术,还可以同时发展短跑所需的专门力量。由于步长和步频相对独立,表明步长和步频受两种不同的神经系统控制方式调节――步频的频数调节和步长的幅度调节(罗新建2003)。Bonnard和Pailhous(1993)认为,神经系统对步长和步频控制的方式不同。步频的改变与摆动阶段下肢的整体刚性有关,与支撑阶段无关。这表明改变摆动期间下肢肌肉的紧张性可以改变频率。大部分或整个腿部肌肉紧张性的改变,都将改变下肢绕髋关节摆动的相对频率。Bonnard和Pailhous进一步指出,步长的短暂变化与腿部肌肉的相位活动有关。Patla等(1989)研究表明,步长的短暂增加,实际上是一些肌肉的活动相位增加,而另一些肌肉的活动相位减少造成的。在无约束的走路或跑步时,虽然步长和步频可相对固定,但如果需要的话,中枢神经系统有能力分离步长和步频。Hogan(1984)提出了这种分离的生理机制。当关节周围对抗肌同时活动时,净关节力矩与对抗肌的肌力之间差异有关,关节的刚性则与所有肌力的总和有关。如果中枢神经系统积极调节对抗肌的协同作用,那么步长和步频能在有限的范围内各自独立变化。

在各种提高跑速的训练手段中,斜坡跑以其独特的方法和显著效用,引起了专业和非专业运动队的普遍重视,斜坡跑正在被广泛运用到提高短跑成绩的训练中。有学者对斜坡跑对短跑速度的影响进行广泛的研究,这些作者共同认为:斜坡跑对提高短跑速度有比较明显的作用;斜坡跑除了能提高速度耐力、力量和心肌功能外,还能帮助运动员掌握加速跑的技术动作,改善运动员的加速疾跑能力;斜坡跑能让运动员体验超过自己能力的速度,可以是步幅增大和缩短支撑阶段时间[6-7]。斜坡跑包括上坡跑和下坡跑,上坡跑是一种抗阻力性速度力量练习,是跑动阻力增加的情况下获得无氧效果,从而改善心血管的机能,增强下肢股四头肌、臀大肌这两块重要的肌群,同时提高步长;下坡跑是一种神经系统适应性的训练,就是有意识地设置自然的或人工的斜坡,根据势能与动能转换的原理进行训练,同时提高步频。

四、结论

(一)对于步长和步频两个变量的作用来说,步长和步频的可变性表明,中枢神经系统(CNS)在灵活控制这些参数方面必然起到了一定的作用[7]。助力训练能进一步发展神经肌肉系统对肌肉拉长――收缩周期运动的控制能力,提高短跑运动员支撑阶段的动作效果,从而提高跑速。

(二)斜坡跑道的坡型对练习进行组合,以控制斜坡跑的练习强度和负荷,从而改善跑的步长和步频。

基金项目:年陕西省教育厅专项科研计划项目(编号:11JK0464)。

参考文献:

[1] 罗尼・利多尔,约夫・麦克尔.王学锋编译.100M跑的生理学、技能发展和运动知识分析[J].田径.2004.8:54-56.

[2] [美]弗拉基米尔,扎齐奥尔斯基.运动生物力学――运动成绩的提高与运动损伤的预防[M].人民体育出版社.2004.

[3] 周志雄,黄德春.透析100米跑步长和步频研究的误区[J].田径.2002:24-27.

[4] 张沛林.现代100米跑技术的发展特征及其技术分派[J].体育科学.1995(1):27-29.

[5] 李佩清.坡度跑训练对步频、步长的影响[J].田径科技信息.1995(50):1-4.

第3篇:生物力学的研究方法范文

摘 要 运动生物力学的测试方法在竞技体育研究领域主要应用于技术研究以及发力原理分析等方面,对于拳击项目相关研究进行梳理,有助于辨析测试方法的应用范围,对今后的相关研究开展起到有意义的参考作用。

关键词 生物力学 方法 拳击

生物力学研究,尤其是运动学、动力学、表面肌电等实验技术逐步应用于拳击科学研究中。运动学方法应用在技术改进和规范程度判断等方面,起到很好的辅导作用。动力学研究对对抗性项目对抗时,力的大小、方向的变化及力作用的效果等进行定量分析,揭示发力原理及规律。表面肌电研究应用于判断动作过程中,哪些肌肉参与收缩,收缩过程中肌纤维发力长短、顺序等,这对科学合理化技术动作和确定不同力量训练方法手段的科学性非常有意义。

李凌云[1]采用生物力学的测试仪器、方法,试图寻找运动生物力学的一些原理和方法在武术领域中应用规律,从生物力学的原理应用在武术中的情况。我们可以将这些方法同样应用于其他同场格斗类项目中,为其他同项群项目的生物力学研究提供理论参考和实践指导。

运动学研究和表面肌电技术在拳击生物力学研究中应用较为广泛。郭峰,张日辉[2]探讨拳击运动员后手直拳动作内部神经肌肉系统协同变化,研究认为后手直拳击打,上肢拮抗肌发挥着重要作用。从肌肉激活顺序判断,动作符合鞭打动作原理,建议加强上肢拮抗肌训练。刘海瑞[3]的实验也得出了相似的结果,分析了拳击出拳击打拳速突然减速的成因。二者在突然降速的研究结果是一致的。拮抗肌放电信号较强也能够在一定意义上解释这一现象的出现,但二者结论中应该加强拮抗肌训练值得商榷,拮抗肌与主动肌、协同肌的协调配合时准确、高效完成技术动作的基础,应该从协调性训练的角度分析更为准确。

王新坤[4]运用爱捷运动录像测试分析系统,对参加2004年全国拳击冠军赛决赛的部分冠军前手直拳作进行运动学特征的研究分析。结果显示:运动员打击瞬间拳速在击中目标之前会突然增加,其研究结果前手直拳打击瞬间是加速的,与刘海瑞,郭峰、张日辉等研究后手直拳击打前速度突降结果相反,其原因有待进一步探讨。岳东升、张翠[5]利用高速摄像与测力台(Kistler)同步测试的方法,对拳击运动员直拳技术动作进行测试,该研究是典型的以运动学研究技术路线,对运动员技术改进有一定意义。

有关动力学研究在拳击中较为少见,相关理论研究中,谷晓红[6]从击打过程中的生物力学原理问题、打击力与作用时间、快速移动与稳定性、鞭打技术与多环节协调运动四个方面对拳击运动中的有关生物力学问题进行了探讨,指出了现存的误区及不足。苏彦炬[7]对不同击打技术的下肢发力特征进行了实验研究,对拳击下肢发力原理,影响击打效果的因素等做了宏观分析,对相关理论研究具有指导意义。

等速肌力测试关节力量从侧面反映肌肉力量,但与动作速度不相符合,存在一定的局限。姜传银[8]等运用等速肌力测试的方法,对拳击、跆拳道散打运动员进行比较研究,发现不同项目,不同肌群在速度力量方面的优势环节。从侧面也反映了不同项目因发力环节不同,不同部位的肌肉力量存在着明显的项目特征。等速测试数据较为精确,但限于单关节测试,动作路线,幅度、速度存在差异,对于专项力量测试存在局限性。

从拳击相关生物力学研究综述可见,以往研究对技术运动学分析较多,主要技术为前、后手直拳,分析其原因,直拳的运动学分析可近似理解为直线运动,相对实验控制和分析容易把握。而对表面肌电的研究可以对发力顺序与肌肉贡献率进行探讨,研究结果显示出的鲜明的个体化特征,从中提取共性及规律较难。表面肌电技术应用广泛,尤其是对专项训练手段和方法的检测,具有很大发展空间,二者有效结合可以弥补简单运动学分析带来的误差。等速肌力测试可以从侧面反映关节力量,但与专项发力方式速度不同。以运动学结合动力学研究在力量训练相关生物力学研究中是比较成熟的研究手段,对于拳击速度耐力相关研究应该是今后研究的方向 。

参考文献:

[1] 李凌云.运动生物力学原理在武术运动中的应用[D].山东师范大学大学.2002:56-58.

[2] 郭峰,张日辉.优秀女子拳击运动员后手直拳技术动作上肢肌肉表面肌电分析[J].沈阳体育学院学报.2009.28(4):65-68.

[3] 刘海瑞.上海市优秀男子拳击运动员后手直拳出拳―击打环节生物力学特征分析[D].上海体育学院.2010.

[4] 王新坤.我国部分优秀男子拳击运动员前手直拳技术的运动学特征分析[J].沈阳体育学院学报.2009.28(4):102-105.

[5] 岳东升,张翠,宋祺鹏等.山东省64公斤级男子拳击运动员直拳技术动作的运动生物力学分析[J].山东体育科技.2011.33(1): 14-17.

[6] 谷晓红,于军.拳击运动中有关生物力学原理应用的若干问题[J].辽宁体育科技.2006.28(2):30-31.

第4篇:生物力学的研究方法范文

广州第一军医大学卫生处 (510515)

关键词 脊椎推拿 手法研究 生物力学 重要性

脊柱推拿是以各种力学,特别是生物力学为其理论和假说依据的。与脊柱源性致病的相关学说有很多,较为认同的有脊柱各节段的固定学说、椎体的偏歪学说和由于脊柱内外的平衡失调所致的神经传导障碍学说等。虽然脊柱推拿可缓解患者脊柱的功能障碍,但脊柱推拿治疗的治疗机理仍不十分清楚。由于无法确定脊柱或椎体的位置异常与脊柱功能改变之间的关系,因此,将与之相关的临床表现(现象)都统称为"半脱位"(Subluxation)。

半脱位包含了"骨错缝",即脊柱的偏歪学说和"骨固定",为脊柱的固定学说的两种。脊柱的固定学说认为脊柱固定或僵硬可导致脊神经的功能障碍。这些半脱位概念是临床上使用脊柱推拿手法的理论依据。脊柱是由骨骼、肌肉、血管和神经组成,具有许多机构力学和生物力学性质,其功能类似于船桁、发动机和液压装置等,许多临床现象都证实有关脊柱关节半脱位的假说是成立的、合理的。这种将脊柱结构简单化的描述对脊柱推拿者来讲是很容易接受的。作为研究探索极度复杂脊柱功能和性质的一种有效方法,机械工程模型在生物体(包括人体)中的应用正在被广泛地接受。这并不是说脊柱的结构和功能完成等同于简单的结构,因为单一的脊柱结构或功能是无法完成脊柱复杂和精确的运动和负重等功能。

在推拿界一些人将脊柱病变只是简单的分为静力下移位和动力下的功能障碍,对此可采用各种脊柱推拿手法来治疗,然而这种看法未免有些肤浅。临床应用的各种脊柱推拿手法,如一些上颈段的推拿手法是根据脊柱移位的方向来设计的。临床医师根据患者颈椎的活动度将颈椎的功能障碍分为颈椎活动度增大或颈椎活动度减少。

根据推拿临床和基础研究所提供的资料,有关研究小组在对此进行深入研究后得出的结论是:"目前,尚无法证明一些脊柱病变,如半脱位的确切病理机制和病变过程。"著名的生物力学专家white和Panjabi在对脊柱推拿的基础研究进行综合分析后于1978年发表了"脊柱推拿疗法的研究状况"一文。文章对脊柱推拿的核心问题如半脱位进行了评价,认为:"目前,不同学科的专家尚无法定量或定性地重复出由推拿医师所介绍的脊柱半脱位的征象,因此,仅就现有的资料无法使人信服推拿的治疗机制。"

脊柱推拿的生物力学致力于研究脊柱推拿理论上不足,它是用科学的观点和方法,客观地研究脊柱内在的生物力学关系、脊柱整体的力学系统和基本的生物力学特性。运用生物力学的方法和观点来阐述脊柱推拿的基本概念和作用机制,如半脱位的确切定义等。如何将脊柱移位的功能障碍的关系有机的结合在一起,将是脊柱基础研究所面临的难题之一。

通过科学的研究方法了解脊柱生物力学的性质,进而改进脊柱推拿手法的技巧,是脊柱推拿研究的目的之一。它是要将脊柱复杂的解剖结构、生物力学性质、功能以及脊柱在正常和异常状态下的功能特点,介绍给脊柱推拿者。运用科学的定义来阐述脊柱关节"半脱位",而不是简单地将脊柱看成是机械装置。

目前尚无法确切地阐述脊柱推拿的作用机制,因而研究脊柱推拿,不仅仅是更准确地描述脊柱关节半脱位、脊柱病变时的神经功能障碍,而且也是为了更确切地阐述脊柱推拿的作用机制,完善和改进脊柱推拿手法。通过研究更进一步了解脊柱解剖结构的特点和生物力学性质。由于在推拿界对脊柱关节半脱位的描述多是基于抽象思维或是由理论上的推测而来,医学界对脊柱推拿普遍存在着一定的偏见或有不同的看法,所以我们要用科学的方法和术语,如解剖学、生物力学和物理学等来定义和描述脊柱关节半脱位。

一般认为脊柱关节脱位多是由于脊柱力学结构的完整性受到破坏所致,所以对半脱位进行准确的定义必将有助于消除目前有关脊柱推拿中的某些模糊概念,对进一步理解和掌握脊柱的解剖结构和生物力学性质,提供可靠的、基本的理论依据。

对脊柱进行科学地研究,在于要运用科学的观点来阐述脊柱关节半脱位,这样可扩大,而不是限制脊柱生物力学的临床运用。应当认识到脊柱并不是象计算机构筑的模型一样,它是处于不断地更新和变化着的,虽然这种变化很慢,但与所有活体一样,脊柱的各个部分并不是一个静止的部件,它是不在断地变化着、更新着、修复着和生长着的,是生物体的一部分。正常脊柱的许多生理参数都不是恒定着的,而是不断地变化着。根据一些理论和假说,有人认为椎体间只是简单的联结,并不复杂,而实际上,维系椎体内稳定的各种机制是相当复杂的。

虽然人体脊柱的整体轮廓和功能基本相同,但没有两个不同的个体间的脊柱会是完全相同的。由于脊柱的退行性改变和各种各样的解剖学变异,使得我们对脊柱不同部位间的关系也不能简单机械地推断。我们所强调的是研究脊柱基本的生物学原理和特点,而不是仅研究脊柱运动节段的"半脱位"、"关节固定"或是仅探讨脊神经的嵌压等问题。

与机械结构不同的是,脊柱的功能是根据反馈机制调节的,主要是由负反馈控制的。一般来讲,影响负反馈调节的单一因素容易被确定。一般认为人体内维持体内平衡的所有控制系统都是受负反馈调节机制调节的,这是人体很重要的生理功能之一。通过机体内相互联系的反馈通道和正负反馈机制,许多因素可影响人体的反馈系统。脊柱的非线和脊柱内外平衡的统一表明,运用脊柱推拿手法来治疗脊柱疾患,其机制是试图将脊柱病变与影响脊柱功能改变的单一因素联系在一起,如脊柱的对线失调、脊柱的僵硬固定等,由于将脊柱结构和功能过于简单化,因而,对此有很大的争议。所以在脊柱推拿的研究中应尽最大可能地了解和发现,影响复杂反馈过程的非正常干扰因素,以避免无效劳动和无谓的争议。

现代医学是根据疾病的病理状况来说明和表达人体异常的解剖结构和功能的。如果将脊柱的各个部分看成是相互之间没有联系的部件,那必将把人体解剖结构和功能的病理性变化情况用纯力学术语来定义和表达。由于机械应力有可能引起脊柱的病变,一些病变可能还会影响到脊柱结构的完整性,所以应当用力学的概念,特别是用生物力学的概念来描述脊柱的疾病状况。

脊柱推拿中的许多内容,如推拿术语和操作是很自然地受到力学概念的影响。如对横突和棘突推搬手法的运用以及对推拿手法的分析也是根据力学概念进行的。由于生物力学概念的应用与现代医学的内涵密不可分,所以对脊柱推拿手法的评价进而转向基本的生物力学,除此,还应包括物理学和工程学等内容,以寻求应用新的理论和方法,重新研究脊柱推拿。通过研究使我们能更进一步地了解脊柱推拿的作用机制、创新脊柱推拿手法、淘汰繁琐和不合理的脊柱推拿手法。

第5篇:生物力学的研究方法范文

1  资料与方法

1.1  一般资料  从国人新鲜尸体中获取20例不成对的膝关节(男10例,女10例),冷冻在-20℃,直到试验日为止。膝关节均在供者死亡后12h内冷冻。冷冻时间1~12个月不等。死者排除以下情况:(1)年龄>50岁;(2)骨骼未发育完全者(女性<16岁,男性<19岁);(3)有膝关节手术史;(4)有膝关节炎病史。在取髌腱标本之前,先将膝关节在室温中解冻。将髌腱连同全部髌骨和胫骨的一部分(包含有胫骨结节)从膝关节中分割出来。胫骨部分修整成楔形,取髌腱的中央部分(平均5mm宽),用手术刀沿着腱束的长轴将腱的内外侧修理成直的平面。小心操作以避免将腱束横行切断。用游标卡尺在不同截面测量髌腱的宽和厚,取其均值,并测量髌腱的长,用以计算髌腱的体积。

1.2  使用仪器  将样本安装在DCS-25T电子万能试验机(日本岛津)上,进行单轴拉伸试验,拉伸速度为30mm/min。以3033型X-Y函数记录仪(四川仪表制造厂)记录载荷―变形曲线,并进行分析,得出最大载荷、衰竭应变及弹性模量。

1.3  计算样本密度  力学测试完毕后将样本的腱性部分从骨的附着点上分离出来,称重。根据前面算出的体积计算出每个样本的密度。

1.4  统计学方法  采集所有数据,应用t检验来比较不同性别来源的髌腱的力学性质,进行相关性分析来判断髌腱密度与生物力学性质间的关系。将样本根据密度排列,再随机选择其中一个密度作为标准,将其上、下两组样本的生物力学指标用t检验分析,重复这个过程,检验是否存在一个密度值,比这个密度值大的样本与比这个密度值小的样本相比,其生物力学强度要高。

2  结果

样本的平均截面积是19.47mm2(SD 8.72),髌腱的平均长度是47.83mm(SD 3.78),男性髌腱平均长49.22mm(SD 3.42),比女性髌腱[平均46.44mm(SD 3.76)]稍长一些(P=0.05)。髌腱组织混合在一起的平均密度是1.61g/cm3(SD 0.47)。男性髌腱的密度(1.68g/cm3)和女性髌腱的密度(1.54g/cm3)之间差异无显着性(P=0.23),所测得密度范围为0.81~2.57g/cm3。

髌腱的力学性质不依赖于供体的年龄和性别。在最大抗张强度(P=0.62,)、最大应变(P=0.61)、弹性模量(P=0.57)方面基于性别上的差异均无显着性。因为性别和年龄对髌腱力学性质没有任何影响,所以将样本混合起来做密度的相关分析。样本的最大抗张强度与其密度相关(r=0.57, P<0.02)。髌腱的弹性模量也与其密度呈正相关,尽管其相关性较弱,但亦有统计学意义(r=0.44,P<0.05)。衰竭应变与其密度无相关性(r=-0.25,P>0.1)。连续采用t检验分析显示密度>1.68g/cm3(n=8)的髌腱的最大抗张强度比质量密度<1.68g/cm3(n=12)者明显要高。

3  讨论

本研究中,组织密度被作为变量进行相关性分析,通过测量其密度,就去除了组织大小对相关性分析的影响。我们发现在髌腱的生物力学性质与密度之间高度相关。较大的组织密度可能意味着较多的胶原堆积在组织中,产生较大的生物力学强度。Woo SL[1]发现经常活动的猪的伸趾肌腱质量和胶原含量增加,其最大抗张强度显着增加。但其未做肌腱生物力学和其质量的相关性研究。我们发现了髌腱组织的一个密度值(1.68g/cm3),大于这个密度的髌腱群体,其生物力学强度显着要高。因为高于或低于这个髌腱密度值的供者的平均年龄非常接近,所以年龄不会导致髌腱的生物力学的差异。这与Flahiff[2]报道的结果一致。

在以前的研究中,诸如样本大小、组织储藏方法、组织的测试条件、样本的截面积和力学测试方法等因素都被认为是很重要的因素,并且各实验间各不相同[3],因此,难以 做具体数据上的比较。文献报道[3],测试过程中对样本进行盐水浴,让液体从腱组织渗出,能产生更大的强度和硬度。一些研究人员观察了髌腱生物力学的差异,猜测可能有某些内在或外在的因素与此差异性有关。例如,Flahiff[2]认为重量、活动量、健康及饮食能影响髌腱的力学性能,虽然Beynnon[4]陈述软组织内在的未知生物学因素能导致肌腱力学性能的差异。基于我们的研究,髌腱的密度似乎是这种差异的一个原因。

第6篇:生物力学的研究方法范文

自1969年Hamdi首次报道L2浆细胞瘤和转移性腺癌行椎体肿瘤切除、假体替代以来,经过近四十年的发展,人工椎体作为一类有效的椎体替代物在临床上得到广泛应用,目前报道的人工椎体模型,经过一系列生物力学测试和临床应用发现,对不同脊柱节段的椎体骨折、不同类型的人工椎体的选择、术中放置人工椎置的差异〔1〕,乃至辅加不同类型的内固定物,均可对脊柱重建术后的稳定性产生不同的影响。因此本文对近年来生物力学应用在人工椎体上的研究进行如下的综述。

1 生物力学在人工椎体置换术评价中的应用

1.1 人工椎体置换术的应用

人工椎体目前运用最广泛的是脊柱转移性肿瘤病灶切除后的重建,童元等认为椎体肿瘤的手术适应证应该综合考虑患者全身的情况、手术能否解决主要问题以及病程发展的快慢等因素。王新伟等〔2〕运用可调式中空人工椎体治疗脊柱严重粉碎性骨折(附9例报告),认为对严重粉碎的椎体骨折,无法行自体骨重建者,人工椎体不失为一种选择,但应严格掌握适应证。近来,王群波等〔3〕运用纳米羟基磷灰石/聚酰胺66复合人工椎体治疗胸腰椎椎体肿瘤14例,结果显示复合人工椎体具有良好的生物相容性,植入融合率高,牢固可靠,是理想的骨移植替代材料。

1.2 人工椎体置换的生物学设计要求

脊柱椎体次全切除术至少破坏2个脊柱功能单元的完整性,起支撑、承载及缓冲功能的前柱连续性中断,同样导致后柱结构不稳,极易造成损伤。因而,行椎体切除术后无一例外的都要进行重建前柱的结构及生物力学的稳定性。故人工椎体的生物学设计是否合理对术后融合有着重要的影响,杨明亮等〔4〕从外科技术角度评价内锁式人工颈椎间体,认为其设计符合颈椎的解剖学特点,生物力学上能有效稳定颈椎。特别适合陈旧的屈曲压缩骨折及颈椎后突畸形矫形。杨瑞甫等〔5〕采用六铝四钒钛合金(Ti6Al4V)为材料,设计一种中空可调式、自固定式的人工椎体,用于治疗脊柱肿瘤和椎体爆裂性骨折,实验证明该人工椎体具有良好的即时稳定性和远期稳定性,且勿需联合使用前路或后路内固定器。综上述,生物力学设计必须考虑以下几个方面:(1)术后即刻稳定性与脊柱生理曲度的恢复程度;(2)与椎体远期融合率;(3)有良好的生物相容性;(4)植入方便。

2 人工椎体生物力学测试的方法

2.1 屈服强度试验

采用轴向压缩荷载或屈曲压缩荷载,加载至失稳,目的在于研究人工椎体在某种载荷下的承载强度,强度试验需要加载直至材料破坏为止,通过荷载-位移曲线获得生物力学参数。

2.2 内置椎体疲劳试验

对内置人工椎体施加周期性的荷载(cyclic loading),观察其疲劳强度,以失败的周期数定义疲劳强度。

2.3 内固定物稳定性试验

与前面两种破坏性试验不同,稳定性试验是非破坏性的。目的在于研究内置物在非破坏性的载荷下的内固定强度与各种生理载荷的相关关系。

3 生物力学测试实验模型的选择

3.1 生物模型

目前常用的生物模型有尸体标本、活体及犬、牛、猪、猴、羊等动物模型,这几种生物模型各有其优缺点。人尸体标本广泛运用于生物力学测试的离体研究,其优点是能直接、精确测量脊柱各节段的运动,缺点在于新鲜的尸体受数量的限制,且其离体标本的测试亦在一定程度上改变了生理状态下脊柱的力学特点;人的活体研究主要运用于临床脊柱功能检测,还需考虑很多社会因素。目前对于在几种动物模型,是否与人类脊柱具有共性尚需进一步探索,Kumar等〔6〕研究发现四足动物脊柱的解剖学和形态学与人相似,他认为从四足动物的标本上得出的结论可运用到人的标本上。Goel等利用有限元模型分析比较肯定了狗作为脊柱腰段生物力学研究模型的可靠性。牛椎体虽偏大,但因其与人椎体具有相同的运动学特征,故其运用较多〔7〕。

3.2 非生物模型

3.2.1 有限元模型

1974年Belytschko首先将有限元分析方法应用于脊柱力学研究,使脊柱有限元模型成为最早建立的脊柱非生物模型。通过对有限元法的生物力学研究与实体的生物力学实验进行比较分析发现,其结果是可靠、有效的。具有能够获得实体实验中无法得到的许多重要参数,能任意改变某一参数以观察其产生的影响,能进行前瞻性研究并直接指导临床实践。随着人们对组织力学特性的认识,有限元分析软件在国内外不断开发与应用,不但促进了有限元技术的发展,而且推动着脊柱生物力学更深入的发展。

3.2.2 数学相关模型

随着Chu等将数学相关方法运用到力学研究中,近年来,数学相关模型已成为未来生物力学发展的一大方向〔8〕。其实质上是采用先进的图像处理技术与设备,通过被测对象的原始图像字灰度进行直接的数字处理,由计算机控制整个系统的工作和一些图像处理运算,再把图像信息转变成电信号,实现物体变形场的测量。对采集对象、测量环境要求较低。具有自动、非接触式的、运用范围广等优点。

4 稳定性实验的设计及其测试方法

4.1 稳定性实验的设计

主要要解决离体脊柱标本测试时的运动必须模拟脊柱的自然运动和任意脊柱结构平面负载的均衡性这两个方面的问题。Panjabi提出的稳定性试验模型是一种非损伤性生理载荷模式,通过加载夹具对试验对象分别施加6对大小相等、方向相反、互为平行的“纯力矩”,产生相应的前屈、后伸,左右侧屈,左右旋转6种运动方式。Niosi等〔9〕在此基础上,测量时加用光电子照相技术,使结果更精确。

4.2 稳定性实验的测试方法

4.2.1 光学测量法

光学测量法包括光干涉效应直接测量法、光学杠杆延伸扩大位移法和光学遥测法〔10〕。立体的光学系统由2个互成角度的平面光学测量系统构成的,利用动作分析系统记录受试者运动时的皮表标记坐标,经过计算机重建三维运动,确定脊柱的空间坐标位置。其优点是立体重建、定位精确、可以非接触多节段测量。Pflugmacher等〔11〕对成人尸体胸腰椎标本用4种可调节与不可调的人工椎体附加内固定后进行生物力学性能测试,利用的是光学系统,分别在T12和L2椎体上安装非线性二极管,通过PCReflex运动分析系统,得出载荷-位移曲线,试验显示:可调节人工椎体与不可调节椎体在体外的力学性能方面没有显著差异,但联合前后路内固定后,其强度和稳定性最大。

激光全息-散斑干涉法是将激光全息干涉与散斑干涉结合在一起的一种三维位移测量技术,对人工椎体和椎间盘均能获得高质量的全息干涉条纹图和散斑条纹图,通过图像可计算出椎体和椎间盘的刚性位移和应变。Vahldiek等〔12〕对新鲜冰冻尸体脊柱(T12~L4)行T2椎体切除后,用碳纤维材料的人工椎体代替,并分别附加前路固定、后路固定及前后路联合固定,加载不同的负荷,用一个带有可发射非线性红外线二极管的光电测量系统,记录载荷-位移曲线,得出结果示椎体替代物植入后仅附加前路内固定与完整的椎体相比移动度较大,特别是轴向扭转。

4.2.2 电应变法

电应变式传感器可通过电子仪器直接转化为位移〔13〕,Lowe等〔15〕运用MTS 809双轴液压随动生物力学测试系统(biaxial servohydraulic biomechanical testing system)测量其可以承受的最大加载载荷大小,研究终板的抗压缩强度。实验表明:终板后外侧抗压缩强度最大,中间部分最小,抗中空植入物临界压缩强度明显高于抗实体植入物的装置。对临床上人工椎体的类型及放置位置的选择具有一定的指导意义。

4.2.3 影像学法

影像学检测手段已经从早期简单的静态平片发展到双平片及三维动态X线检测。静态片因其片子质量、标定不一等因素,误差较大。Lee等〔16〕描述了一种用于腰椎三维运动实时测量旋转式X线照相装置。该系统通过整合获得三维方向的角度率。所获数据和实时展示通过与计算机相连的电子单元加工处理。能提供脊柱位置的实时信息,有利于及时做出临床检测和评价。Wang等〔16〕采用的Zebirs CMS 70P系统是一种运动分析脊柱的三维分析仪,利用了超声反射定位的原理,测定脊柱的三维空间位置,具有无创性、立体性、可靠和可重复性等优点。

5 生物力学评价指标

5.1 载荷-位移曲线

反映了内固定结构的稳定性随载荷变化的趋势。Glazer等以6~8个样本测量值进行统计学处理及相关分析;由载荷-位移曲线可以得到以下指标(参数):

运动范围(range of motion,ROM):指在载荷最大时脊柱运动的节段间的角度变化和节段间的位移量。由于每个标本的生物力学性质不同,为了直接进行定量的比较,把各试验组的运动范围均与同一完整脊柱标本的运动范围作比较,得出相对运动范围(relative range of motion,RROM)。

硬度/稳定性和柔韧度/不稳定性:可用硬度系数/稳定性系数和柔韧系数/不稳定性系数表示,是所施加的载荷除以椎体间所产生的运动大小。

伸展-屈曲中性区(NZ):为中性区到实际加载荷时的位移,伸展中性区用-NZ表示,屈曲中性区用+NZ表示。

伸展-屈曲弹性区:是弹性位移阶段,从0载荷时的位移到最大载荷位移。伸展弹性区用-EZ表示,屈曲弹性区用+EZ表示。

5.2 载荷-圈数疲劳曲线

屈服强度和疲劳强度试验样本量小,常以个体值或中位数加以比较。Huang等〔17〕选择几个大小不同的载荷量重复实验,获得载荷-圈数疲劳曲线。

以上2个指标均适用于离体标本的测量使用。对于在体的人工椎体的生物力学评价指标,可运用运动测量方法,利用光学原理或者影像学方法,立体重建、定位精确,并结合神经功能恢复情况(Frankel分级),综合得到人工椎体移位及重建节段骨融合情况。

6 生物力学评价促进了人工椎体在脊柱重建术中的应用及发展前景

一种新的脊柱内固定装置在运用之前,除了要对器械本身的材料学测试外,大部分的器械还均以非破坏性试验进行生物力学评价,生物力学研究的发展,大大缩短了内固定器械应用于临床的周期,因而在近20年来,脊柱新器械包括人工椎体的发展速度空前提高。有很多学者认为目前的人工椎体置换既应具有术后的即刻稳定性,亦应注重其对脊柱生理曲度的恢复以及兼顾远期的融合功能。王新伟等〔18〕应用万能力学试验机对牛胸腰椎进行力学测试,得出结果显示任何内固定都不能替代人体骨骼本身行使脊柱的力学性能。从远期效果看,人工椎体的作用是融合而不是支撑。因此生物力学的评价已经成为人工椎体置换术适应证及手术后效果评估不可或缺的一部分。

【参考文献】

〔1〕 王新伟,陈德玉,赵定麟,等.人工椎体置换行脊柱重建术[J].中国矫形外科杂志,2004,12(7):488491.

〔2〕 王新伟,赵定麟,陈玉德,等.可调式中空钛合金人工椎体的生物力学评价[J].中华试验外科杂志,2003,20(6):550552.

〔3〕 王群波,蒋电明,李智,等.纳米羟基磷灰石/聚酰胺66复合人工椎体治疗胸腰椎椎体肿瘤的效果[J].第三军医大学学报,2006,28(3):263265.

〔4〕 杨明亮,李建军,王兰.从外科技术及生物力学角度评价内锁式人工颈椎间体系统[J].中国矫形外科杂志,2005,13(9):673676.

〔5〕 杨瑞甫,王臻,李涤尘,等.自固定式人工椎体的设计及生物力学分析[J].中国矫形外科杂志,2003,11(12):817820.

〔6〕 Kumar N,Kukreti S,Ishaque M,et al.Functional anatomy of the deer spine:an appropriate biomechanical model for the human spine[J].Anal Rec,2002,266(2):108117.

〔7〕 Riley LH 3rd,Eck JC,Yoshida H,et al.A biomechanical comparison of calf versus cadaver lumbar spine models[J].Spine,2004,29(11):217220.

〔8〕 Isaksson H,van Donkelaar CC,Huiskes R,et al.Corroboration of mechanomgulatory algorithms for tissue differentiation during fracture healing:comparison with in vive results[J].J Orthop Res,2006,24(5):898907.

〔9〕 Niosi CA,Zhu QA,Wilson DC,et al.Biomechanical characterization of the threedimensional kinematic behaviour of the dynesys dynamic stabilization system:an in vitro study[J].Eur Spine J,2006,15(6):913922.

〔10〕 Sahni IV,Hipp JA,Kirking BC.Use of pemutaneous transpedicular external fixation pins to measure intervertebral motion [J].Spine,1999,24(18):18901893.

〔11〕 Pflugmacher R,Schleicher P,Schaefer J,et al.Biomechanical comparison of expandable cages for vertebral body replacement in the thoracolumbar spine[J].Spine,2004,29(13):14131419.

〔12〕 Vahldiek M,Gosse F,Panjabi MM.Stability of ventral,dorsal and combined spondylodesis in vertebral body prosthesis implantation[J].Orthopade,2002,31(5):508513.

〔13〕 Lu WW,Luk KD,Holmes AD,et al.Pure shear properties of lumbar spinal joints and the effect of tissue sectioning on lead sharing[J].Spine,2005,30(8):204209.

〔14〕 Lowe TG,Hashim S,Wilson LA,et al.A biomechanical study of regional endplate strength and cage morphology as it relates to stuctural interbody support[J].Spine,2004,29(21):23892394.

〔15〕 Lee RY,Laprade J,Fung EH.A realtime gyroscopic system for threedimesional measurement of lumbar spine motion[J].Med Eng Phys,2003,25(10):817824.

〔16〕 Wang SF,Teng CC,Lin KH.Measurement of cervical range of motion pattern during cyclic neck movement by an ultrasoundbased motion system[J].Man Ther,2005,10(1):6872.

第7篇:生物力学的研究方法范文

本文对中医手法教学进行了回顾和探讨,总结出教学质量没有实质性突破的根本原因在于“就手法而学习手法”的传统“经验式”的教学模式。解决这个问题的关键是在教学中引入现代物理学中的力学概念。在手法教学过程中合理恰当地安排和设计好教学内容,这将为手法医学的发展产生重大影响。

【关键词】 手法 力学 教学

手法是推拿和骨伤治疗疾病的主要手段,《推拿手法学》是针灸推拿专业和骨伤专业学生学习的主干课程和必修课程之一,学生对手法学习、理解和掌握程度的好坏,将直接对本学科的临床治疗效果产生决定性的影响,也将直接影响到学生整体专业素质的高低。因此,手法教学是推拿和骨伤人才培养的重要环节之一。长期以来,我们在手法的教学和临床带教过程中,深切地感到传统手法的教学模式只是一种纯粹“继承”式的学习,所培养的学生根本无法将手法医术发扬光大,换言之,传统手法的教学模式所培养的学生不具有创造性和创新性能力,打不开思路,找不到“将手法医术发扬光大”的方法,问题的根本不在于学生思维的愚笨,而是整个教学模式根本就没有培养学生创造性思维的环节,没有给学生必需的启发和提示。我们经过多年来的探索,发现在手法教学过程中全面引入现代物理学中的力学概念,将把手法的教学工作提升到一个新的层次。

1 传统手法教学存在的误区

在我国中医药院校的手法课教学里,内容上都是要求学生学习掌握一指禅推、按、揉、扌衮、扳、拔伸、推等教学计划所要求的传统经典手法,主要是掌握手法的术式结构和临床运用,熟悉这些基本手法所派生的其他手法,辅助学习端、提、接、劈等其他各家各派的手法,教学的方式也都是沿袭老师先讲授手法的动作要领、再进行示范动作表演、同学再在课堂上进行手法练习的教学模式,老师讲完、学生练完,手法也就学完了。这只是一种“就手法而学习手法”的传统“经验式”的手法教学模式,只是一种“动作模仿式”的学习,毫无创造性可言!如果不从根本上改变目前的这种教学状况,流传了几千年的祖国传统手法医学将永远停滞不前,一代复一代的继承,不会也不可能向前发展。虽然有部分老师在教学过程中也深感这种传统教学内容和教学模式的刻板、机械和陈腐,做出过各种努力试图去改变目前这种现状,比如把教学地点放在临床上或手法实验室里,或采用互动式的教学方法等,但其本质并未能跳出传统的教学方式,问题的关键在于教学观念没有质的改变,我们不能够只是教授给学生“经验式”的知识,不能够只是要求学生能够像“工匠”式的操作就行了,我们必须要求学生明白和理解手法的作用原理和作用效应,才能让学生对手法的学习提高到一个深的层次。

手法教学要突破几千年来的教学模式,使手法教学质量有一个质的飞跃,就必须从根本上跳出“就手法而学习手法”的传统“经验式”的手法教学模式,运用现代的思维方式来剖析其作用原理和生物力学效应,运用现代其他学科如物理学、生物力学和解剖学等学科的原理、方法和手段对古老的中医传统手法进行分析和研究,才能够让这门古老的祖国医术焕发出新的生命和活力,并与世界手法医学接轨。

2 对突破传统手法教学模式的思考

要使手法传统医术与现代科学完美结合,就必须在整个手法教学过程中寻找一个最佳切入点。根据近年来医学界对手法医学的最新研究成果,结合西方医学对手法的认识观念,我们认为手法的最大特点在于“手法作用于人体,以力为作用特征[1]”。因此,可以把“力”的概念作为运用现代科学思维方式研究手法医学的桥梁和纽带。力学,横跨于手法医学和现代科学之间,力学概念的全面引入,可能为我们研究手法医学开辟了一条光明之路。

推拿界有一句至理名言,曰“其疗法的独特性在世界医学中独树一帜[2]”,但多年来,我们对其“独树一帜”的理解好像紧紧停留在一种感觉和模糊的认识上,对其“独特之处”并没有十分明确和清醒的认识,几乎所有的手法医学工作者都明显感觉到了其治疗方式的与众不同之处,但都不能明确指出它为什么与众不同,其“独特之处”到底在哪儿?综观整个医学体系,不同学科治疗疾病的手段各不相同,内科医生用药,外科医生用刀,针灸医生用针,心理医生用语言,就是手法医学是以“力”为手段来治疗疾病的,手法的运用过程就是一个“力”的运用过程,手法的治疗原理其实就是力学效应。当然,这种效应不应该仅仅单纯地理解为现代物理学上的力学效应,它还应该包括生物力学效应。

力作用于人体可以产生各种反应或效应,这已是不争的事实,它包括血液循环的改变、各种神经反射的出现、肌肉的运动和变形、骨关节位移、胃肠道的蠕动、内分泌的平衡以及精神心理活动的改变等各个方面。现代力学研究对象是物体,将其研究方法运用于生物体研究,在某些环节可能有不尽合理之处,但这并不妨碍力学概念在手法教学时的引入,因为这毕竟是一条手法医学与现代科学接轨的必由之路,不足之处仅在于现代物理学的研究方法和手段不能够完全诠释手法医学的精妙之处,原因和错误不是现代物理学的笨拙和肤浅,而是各自的研究对象不同,人与物体毕竟是不可完全划等号的两件事物,人有精神和心理,而物体则没有[3]。

3 力在手法量效关系研究中的作用

手法的量效关系历来都是手法医学界争论的焦点话题,至今也没有一个统一的观点。手法量效关系的研究在相当长的一段时间内都将是手法医学界面临的重要课题之一,也是基本性问题,但具有相当的复杂性,因为至今仍有许多基本理论和技术上的问题亟待解决,要了解手法的量效关系,其难度可想而知。但手法的量效关系又是手法医学工作者不能回避的问题,手法医学要现代化,就必须认真对其加以分析和研究。量效关系的研究是现代科学的研究方法和思维方式,长期以来对手法量效关系的研究之所以没有取得实质性突破,其根本原因在于多年来我们没有找到一个好的研究手段来对手法医学进行研究。力学概念的引入,将为手法量效关系的研究提供很多有益的帮助和启示。

手法教学历来都十分注重和强调力、能和信息的渗透性,但多年来对其渗透性并没有明确的衡量标准,绝大多数时候都是依靠医生和病人的一种感觉,这不符合现代中医医学的发展趋势。自古以来,中医自外向内都有皮毛、络脉、筋肉、经脉、骨骼和脏腑之分,手法的作用效应到了人体的什么位置层次,应有一个明确的界限划分和衡量标准,只有如此,我们才有可能对手法的操作规程进行客观量化,是正确运用手法和产生疗效的关键所在。现代物理学中的力学正好可以完美地解决这些问题,不失为解决手法作用层次的突破口。

4 力学概念在教学中的运用

4.1 力学基本概念的学习 手法教学中力学概念的引入,首先应学习一些基本的物理学概念。这些概念包括刚体、力、力矩、张力、变形、平衡、位移、旋转、自由度、笛卡尔坐标系等,还应该介绍力学的一些基本要术,比如力的大小和方向、作用点、时间、长度等,与之相关的还有向量、质量、速度、加速度、频率和固有频率等等。这一章节的内容应在学习具体的手法之前作为基础知识进行学习,只有在掌握了这些基本的力学概念后,才有可能进一步学习生物力学的知识。课时数以两节课左右为宜,可以结合其他的物理学知识进行讲解,以加深学生对这些概念的理解。如果在教学计划中有安排手法的力学分析课,则需要在这一阶段增加学习力学分析图和力学计算公式的内容,为学生掌握手法的力学作用方式、有效力和无效力打下基础,可以使学生更好地掌握手法的动作要领和用力技巧。

生物力学是研究力或能量作用于生物体、生物材料或生物系统时力的运动和形式的一门科学。在物理学概念基础上,结合人体的生理解剖特点,学习一些生物力学的基本概念,比如动力型位移、静力型位移、张力型位移、生理性载荷、病理性载荷、功能性载荷、组织结构力学、剪切力、拉伸力和压缩力等等。而刚体生物力学主要分为静力学和动力学这两个部分,无论哪一个方面都是一门独立的学科,有各自独立的研究内容和评价标准体系。在生物力学中,移位、载荷、阻力和时间这四个要素相互关联、相互作用、相互影响,这四个概念均可以用现代物理学方法对其研究和分析,但学生要了解其中的一项内容,就必须了解其他三项内容,其关系密不可分。这一部分可以结合疾病和临床进行分析和讲解,将增加学生对这一部分知识内容的兴趣。在学习这些概念和关系的时候,最好是将其与人体的生理病理现象结合起来讲解,比如,可以将位移与骨关节、位移与脊柱、变形与肌肉组织等相结合,既可以增加学生学习的兴趣,也为临床课的学习打下基础。这一章节的内容也应在学习手法之前作为基础知识进行学习,其课时数可以考虑安排二至四节为宜。

4.2 运用力学知识对手法进行分析,促进手法教学质的飞跃 物理学概念和生物力学概念的学习,仅仅是为分析手法作用于人体所产生的生物力学效应奠定基础。在学习手法时,应重点讲解手法的生物力学效应、手法的作用原理和实质。例如,各种外力造成的骨关节脱位、半脱位和错位(错缝),肌肉组织形态的变形、神经传导的主阻滞、血液动力学的改变、内分泌平衡和胃肠道蠕动加强等方面。老师在讲解每一个手法时,都应该画出手法的力学分析图谱,对手法的有效力、无效力进行分析,通过力学分析来剖析手法的作用实质,加强有效力的运用,剔除手法中的无效力,并通过这一途径来帮助学生从现代科学的角度来认识中医古老的手法,认识手法的合理性和非合理性,从而更合理、更高效地运用手法来解决临床问题。

在手法教学中引入力学概念来对手法进行分析,并不是力学概念引入手法教学的终极目的。通过运用力学知识对手法进行分析,培养学生从力学角度来对古老手法进行改革,在此基础上培养学生手法的创新能力,创造出新的手法,结合临床培养学生手法的再组合能力,以及运用现代思维从不同角度对古老手法进行全新的认识和思考才是我们的终极目标,这将为培养高素质的手法医学人才打下坚实的基础,是培养创新型人才的关键环节和步骤,也为古老的手法医学走向世界并与现代医学接轨创造了有利条件。这一部分的知识内容应穿插在每一个具体的手法中进行讲解,对每一个手法都应进行生物力学效应、手法的作用原理和实质分析,这将实质性地提高学生对手法的认知和理解能力。掌握手法的操作方法是进一步学习手法的基础和前提,故这一部分的知识内容应在学生掌握手法操作的基础上进行学习。传统的手法教学内容是学习手法的概念、动作要领、注意事项、分类、功效及主治和临床运用等几个方面,根据以上分析,可以考虑增加手法的力学特性和生物力学效应这两方面的内容。

综上所述,我们对传统手法教学模式的认识是:老师是将几千年来积累下来的丰富经验知识原封不动的传授给学生,而学生则只能被动地“继承”前辈们的经验知识,在这种模式下培养出来的学生没有手法创新能力,很难打破常规去产生和创造出具有临床现实意义的新的手法,也不可能根据临床的实际情况去重新设计和组合手法。解决这个问题的关键在于将现代物理学的力学概念引入到手法教学中,只要合理恰当地安排和设计好教学内容,这将对手法医学的发展产生重大的影响。

参考文献

1 严隽陶.推拿学.北京:中国中医药出版社,2003,66.

第8篇:生物力学的研究方法范文

种植义齿是口腔科领域中发展最快,最令人兴奋的一个分支,已成为与高速涡轮牙机、全景X线机、高分子粘固材料并列的20世纪牙科发展的四项重大突破之一。一个成功的人工种植体应该和骨组织直接结合,形成良好的生物力学相容性,将咀嚼压力均匀分布到周围骨组织,应力过大或过小,都无益于种植牙周骨组织的重建,都将导致种植牙的失败。据此,本文特将人工种植牙的生物力学研究进展作一概述。

1应力分布研究方法的发展

在20世纪70年代以前,生物力学研究和应力分布的检测多采用电测法和光弹法,电测法和光弹法属于实验应力分析法。电测法是实验应力分析方法中最基本的方法之一,它的灵敏度与精确度较高,可用于现场测定,用于各种复杂环境下测量多种力学参数,但电测法只能逐点测量物件表面的应变,且仅能获得应变片所在位置的应变平均值,不能直观得出构件应力分布的全貌,在环境条件恶劣时误差较大。光弹应力分析法具有直观性和全场性的优点,可用以分析各种形状的复杂构件和表面应力,也是口腔生物力学常采用的研究方法,但光弹法不能把材料力学和弹性理论联系起来,如不能计算出模型内任意处的应力值和位移值。自从1973年Theresher和Farah几乎同时将有限元法(finiteelementmethod,FEM)应用于口腔医学领域,FEM已成为一种有效的数学工具,在口腔生物力学研究中得到广泛应用。FEM具有以下优点:可以准确地表达复杂的几何形状;可以在同一模型上对不同性质的材料进行力学分析;可以进行复杂载荷条件下的应力分析;模型的转换较为简便;对应力的内部状态及其它力学性能定量测定的代表性好,同时FEM在应用中自身也不断得到完善,其中从二维到三维是FEM发展的一个飞跃。1976年Weinstein等应用二维FEM分析了多孔圆柱种植体界面的应力分布,将FEM引入了口腔种植领域,从此,有关种植义齿生物力学的研究进入了一个新的阶段。Meijer等[1]将二维有限元法和三维有限元法进行了比较,认为后者的模型相似性好,可客观反映被分析受力结构的信息,但是有限元法的单元在大小、形状、数目、载荷情况、假设条件与真实情况差异及边界条件等均影响结果。因此,为使结果更加真实可信,有限元法的研究手段不断完善,目前已从静态研究发展到动态研究,并有向非线性发展的趋势。

2种植体材料对应力分布的影响

人工牙种植体的研究和应用已有30多年的历史,但迄今为止,只有少数几种材料的种植体为人们所接受,其中应用历史最长、也最广泛的是钛质种植体,金属钛具有良好的生物相容性,与骨组织形成紧密、牢固的结合,而且其弹性模量与骨很接近,与骨结合所形成的界面是动态的,在适当负荷的刺激下,种植体与骨的接触程度在一年后会从53%增加到74%[2],所以说钛是一种理想的种植材料。Mailath(1989)等[3]用有限元法对种植体材料进行了研究得出结论,种植体材料的弹性模量至少为110,000N/mm2(1.1×10MPa)。Clelland(1991)等[4]用三维有限元法研究了Screw-vent骨内种植体及支持组织应力分布情况,这种商业纯钛种植体最大应力区是在种植体的颈部,这些应力比商业纯钛的疲劳极限(259,90MPa)低18倍,骨内最大压力值(19.57MPa)是在颈部的舌侧区,而且Screw-vent种植体近远中应力(最大为0.38MPa)比种植体颊、舌侧低得多。这一点和以前放射照片研究的骨吸收发生在种植体的近远中不同。为了更快的形成骨整合,人们还从种植体的表面涂层入手。尤其是羟基磷灰石喷涂(hydroxyapatite,HA)研究最多,但还是有很大争议,生物活性材料的涂层,可以改善与骨的结合方式,从生化角度上看,对种植牙长期成功是有益的,但从生物力学角度是否有明显的改善并不清楚[5]。Rieger(1989)进行了研究认为:骨结合界面与骨适应界面比较,从生物力学上看种植牙周围骨内的应力分布比较并没有明显的改善,这还有待于进一步研究。最近Meijer(1997)等[6,7]使用柔韧高分子生物材料(polyactiv,PL)即聚丁烯对二苯酸盐(酯)聚合物(polyethylene-oxidepolybutylene-terephthalate(PEO:PBT)copolymer)和硬性HA穿龈种植体进行动物(狗)实验研究,从组织学上和临床方面作一比较,PL设有三种(一种密集型,两种多孔型)6个月加载,PL和HA种植体周围骨组织在第6周有骨吸收(高度失去1mm),第12周可见重建,18周后恢复到原来的水平,结果PL比HA引起密度上较少的降低。这个结果显示:柔韧种植材料更有利于应力向周围骨组织传导。临床方面PEO:PBT和陶瓷、生物玻璃、钛、和其他材料相比较,结果:PEO:PBT是一种柔韧材料,能降低穿龈种植体颈部应力峰值,致密型PL功能合适,运动性能与天然牙相近似,表现出最好的临床功能,也能减少种植体周围应力峰值。从组织学观察得出结论:柔韧的骨结合,种植体更能较好地把应力传导到周围骨组织,因此它可能是硬性种植体有前途的替代物。

3种植体形态结构对应力分布的影响

成功的种植体不仅取决于种植体材料的生物学性质及手术技术,种植体的表面形态也十分重要。近年来,国外学者围绕着种植体以什么样的形态结构才具有最佳的生物力学相容性,作了大量的研究。关于口腔种植体宏观形态基本上认为以单个旋转对称为最佳,所以新近出现的或改良的种植体系列极少看到过去传统的锚状或翼状形态。对种植体表面微观形态,自70年代以来也是人们研究的热门,在这个问题上虽然还有不同看法,但有一点是比较一致的,即粗糙的种植体表面更利于新骨生长,形成更广泛骨-种植体结合区。Mailath(1989)使用有限元法研究了骨内种植体形状与应力分布的关系得出结论,圆柱形种植体比圆锥形种植体更可取,因为它降低了应力在骨皮质上的峰值。Rieger(1990)等[8]应用二维有限元法,对6种种植牙(Branemark,Core-Vent,Denar,Miter,Stryker和一种实验用种植牙—RBT411)进行定量分析,结果表明:所有6种种植牙都有根尖冲击应力的存在,Denar种植牙应力最大,Denar、Miter和Stryker种植牙可出现牙槽嵴部病理性骨吸收,Miter和实验用RBT411种植牙应力分布最好。Hurson(1994)[9]对3.25mm和3.8mm螺纹种植体进行了工程力学分析,阐述了螺纹设计原则,材料的强度,力学疲劳分析,提出了螺纹设计的标准。Binon(1996)[10]评价了六角形种植体(hexagonalimplants)力学性质,与基台相连的抗扭强度及适合的装置,建议生产商应该提高种植体的耐受性、精确性、逼真性和坚固性。Arpinar(1996)等[11]用有限元法对两种硬性种植体设计进行研究,结果为:中空螺旋种植体(ITI1)在顶点区域产生高和应力集中,而实心螺旋种植体(ITI2)应力的分散转移要比中空好得多。1996年黄辉等[12]对螺纹顶角角度对柱状螺旋根管内种植体应力分布进行了研究,结果表明:螺纹顶角角度的改变,可以导致种植体在支持组织的应力分布水平的变化,螺纹顶角为60度的种植体应力分布较合理,为种植体设计、应用提供理论依据。

4种植体的长度和直径对应力分布的影响

对于种植体长度和直径与种植体周围骨面应力反应的关系,目前国外研究报告的观点不一致。Mailath(1989)等[3]用有限元法对不同直径的种植体进行生物力学研究,结果发现大直径种植体产生有利的应力分布效果。Block(1990)[13]通过动物试验证明,种植体从骨中拉出力与其长度关系极大,而与其直径关系不大。Lum(1991)[14]发现骨界面应力主要集中于种植体颈部的牙槽嵴顶而非整个种植体周围,并据此推论使用短种植体可能对骨界面应力集中值影响不大。Lum(1992)[15]用工程统计学方法,分析了轴向力和水平力作用下种植体力的传导,结果发现,在轴向力作用下,仅仅长度为10mm,直径为4mm的种植体,能传导平均最大咬合力,支持骨受到张力在正常生理限度内。在水平力作用下长度大于12mm时,再增加长度对力的传导无显著差异。Meijer(1992)等[16]使用短种植体对其周围的应力无太大影响。邹敬才(1996)等[17]应用二维有限方法,对3mm,4mm,5mm三种不同直径的螺旋型种植体进行对比分析,结果表明:螺旋型种植体直径增加,对骨界面的总体应力分布规律影响不大,但随着直径的增加,对骨界面应力降低,种植体与骨界面的相对位移运动也相应减小,有利于骨界面的应力分布。提示临床尽可能选择直径稍粗的一些种植体。Tuncelli(1997)[18]等应用有限元法,比较了ITI中空圆柱两段式种植体不同直径(3.5mm,4.5mm,6mm)应力分布。结果发现:相对较大的直径种植体更有利于下颌后部区域(应力分布好)。张少锋(1997)等[19]用有限元法研究了种植体长度和直径对种植全口义齿应力的影响,得出结论:种植体周围骨界面应力的大小与种植体长度密切相关,呈负相关关系。种植体直径在临床常用范围内变化时,仅引起自身应力集中值的改变,而对种植全口义齿的其它结构和组织应力状况影响不大。

5种植体上部结构的连接装置对应力分布的影响

第9篇:生物力学的研究方法范文

【关键词】人工种植体生物力学研究进展;种植材料;种植体形态结构;植体上连接装置种植体长度和直径;种对应力分布的影响

种植义齿是口腔科领域中最快,最令人兴奋的一个分支,已成为与高速涡轮牙机、全景X线机、高分子粘固材料并列的20世纪牙科发展的四项重大突破之一。一个成功的人工种植体应该和骨组织直接结合,形成良好的生物力学相容性,将咀嚼压力均匀分布到周围骨组织,应力过大或过小,都无益于种植牙周骨组织的重建,都将导致种植牙的失败。

1应力分布研究的发展

在20世纪70年代以前,生物力学研究和应力分布的检测多采用电测法和光弹法,电测法是实验应力方法中最基本的方法之一,它的灵敏度与精确度较高,可用于现场测定,用于各种复杂环境下测量多种力学参数,但电测法只能逐点测量物件表面的应变,且仅能获得应变片所在位置的应变平均值,不能直观得出构件应力分布的全貌,在环境条件恶劣时误差较大。光弹应力分析法具有直观性和全场性的优点,可用以分析各种形状的复杂构件和表面应力,也是口腔生物力学常采用的研究方法,但光弹法不能把材料力学和弹性联系起来,如不能出模型内任意处的应力值和位移植。自从1973年resher和Farah几乎同时将有限元法(finiteelementmethod,FEM)于口腔医学领域,FEM已成为一种有效的数学工具,在口腔生物力学研究中得到广泛应用。FEM具有以下优点:可以准确地表达复杂的几何形状;可以在同一模型上对不同性质的材料进行力学分析;可以进行复杂载荷条件下的应力分析;模型的转换较为简便;对应力的内部状态及其它力学性能定量测定的代表性好,同时FEM在应用中自身也不断得到完善,其中从二维到三维是FEM发展的一个飞跃。1976年Weinstein等应用二维FEM分析了多孔圆柱种植体界面的应力分布,将FEM引入了口腔种植领域,从此,有关种植义齿生物力学的研究进入了一个新的阶段。

2种植体材料对应力分布的影响

人工牙种植体的研究和应用已有30多年的,但迄今为止,只有少数几种材料的种植体为人们所接受,其中应用历史最长、也最广泛的是钛质种植体,金属钛具有良好的生物相容性,与骨组织形成紧密、牢固的结合,而且其弹性模量与骨很接近,与骨结合所形成的界面是动态的,在适当负荷的刺激下,种植体与骨的接触程度在一年后会从53%增加到74%,所以说钛是一种理想的种植材料。用三维有限元法研究了Screw-vent骨内种植体及支持组织应力分布情况,这种商业纯钛种植体最大应力区是在种植体的颈部,这些应力比商业纯钛的疲劳极限(259,90MPa)低18倍,骨内最大压力值(19.57MPa)是在颈部的舌侧区,而且Screw-vent种植体近远中应力(最大为0.38MPa)比种植体颊、舌侧低得多。这一点和以前放射照片研究的骨吸收发生在种植体的近远中不同。为了更快的形成骨整合,人们还从种植体的表面涂层入手。尤其是羟基磷灰石喷涂(hydroxyapatite,HA)研究最多,但还是有很大争议,生物活性材料的涂层,可以改善与骨的结合方式,从生化角度上看,对种植牙长期成功是有益的,但从生物力学角度是否有明显的改善并不清楚。最近Meijer(1997)等,使用柔韧高分子生物材料(polyactiv,PL)即聚丁烯对二苯酸盐(酯)聚合物[polyethylene-oxidepolybutylene-terephthalate(PEO:PBT)copolymer]和硬性HA穿龈种植体进行动物(狗)实验研究,从组织学上和临床方面作一比较,PL设有三种(一种密集型,两种多孔型)6个月加载,PL和HA种植体周围骨组织在第6周有骨吸收(高度失去1mm),第12周可见重建,18周后恢复到原来的水平,结果PL比HA引起密度上较少的降低。这个结果显示:柔韧种植材料更有利于应力向周围骨组织传导。临床方面PEO:PBT和陶瓷、生物玻璃、钛、和其他材料相比较,结果:PEO:PBT是一种柔韧材料,能降低穿龈种植体颈部应力峰值,致密型PL功能合适,运动性能与天然牙相近似,表现出最好的临床功能,也能减少种植体周围应力峰值。从组织学观察得出结论:柔韧的骨结合,种植体更能较好地把应力传导到周围骨组织,因此它可能是硬性种植体有前途的替代物。

3种植体形态结构对应力分布的影响

成功的种植体不仅取决于种植体材料的生物学性质及手术技术,种植体的表面形态也十分重要。近年来,国外学者围绕着种植体以什么样的形态结构才具有最佳的生物力学相容性,作了大量的研究。关于口腔种植体宏观形态基本上认为以单个旋转对称为最佳,所以新近出现的或改良的种植体系列极少看到过去传统的锚状或翼状形态。即粗糙的种植体表面更利于新骨生长,形成更广泛骨-种植体结合区,Mailath(1989)使用有限元法研究了骨内种植体形状与应力分布的关系得出结论,圆柱形种植体比圆锥形种植体更可取,因为它降低了应力在骨皮质上的峰值。Arpinar(1996)等,用有限元法对两种硬性种植体设计进行研究,结果为:中空螺旋种植体(ITI1)在顶点区域产生高和应力集中,而实心螺旋种植体(ITI2)应力的分散转移要比中空好得多。1996年黄辉等,对螺纹顶角角度对柱状螺旋根管内种植体应力分布进行了研究,结果表明:螺纹顶角角度的改变,可以导致种植体在支持组织的应力分布水平的变化,螺纹顶角为60度的种植体应力分布较合理,为种植体设计、应用提供理论依据。

4种植体的长度和直径对应力分布的

对于种植体长度和直径与种植体周围骨面应力反应的关系,国外报告的观点不一致。Mailath(1989)等,用有限元法对不同直径的种植体进行生物力学研究,结果发现大直径种植体产生有利的应力分布效果。Block(1990)通过动物试验证明,种植体从骨中拉出力与其长度关系极大,而与其直径关系不大。Lum(1991)发现骨界面应力主要集中于种植体颈部的牙槽嵴顶而非整个种植体周围,并据此推论使用短种植体可能对骨界面应力集中值影响不大。Lum(1992)用工程统计学,了轴向力和水平力作用下种植体力的传导,结果发现,在轴向力作用下,仅仅长度为10mm,直径为4mm的种植体,能传导平均最大咬合力,支持骨受到张力在正常生理限度内。在水平力作用下长度大于12mm时,再增加长度对力的传导无显著差异。Meijer(1992)等,使用短种植体以其周围的应力无太大影响。邹敬才(1996)等,二维有限方法,对3mm,4mm,5mm三种不同直径的螺旋形种植体进行对比分析,结果表明:螺旋形种植体直径增加,对骨界面的总体应力分布影响不大,但随着直径的增加,对骨界面应力降低,种植体与骨界面的相对位移运动也相应减小,有利于骨界面的应力分布。提示临床尽可能选择直径稍粗的一些种植体。Tuncelli(1997),等应用有限元法,比较了ITI中空圆柱两段式种植体不同直径(3.5mm,4.5mm,6mm)应力分布。结果发现:相对较大的直径种植体更有利于下颌后部区域(应力分布好)。张少锋(1997)等,用有限元法研究了种植体长度和直径对种植全口义齿应力的影响,得出结论:种植体周围骨界面应力的大小与种植体长度密切相关,呈负相关关系。种植体直径在临床常用范围内变化时,仅引起自身应力及种植的改变,而对种植全口义齿的其他结构和组织应力状况影响不大。

5种植体上部结构的连接装置对应力分布的影响

人们为了去模仿天然牙牙周膜的缓冲作用,一些学者用一些具有粘弹性的材料如聚甲醛制成内动部件,连接种植体和附着体。McClumphy(1989)在种植牙上用聚甲醛材料设计了一个具有弹性的内连接体,并用钛制作一相同的内连接体作对照,用光弹应力分析法对两者进行了应力分布的对比研究,结果:在骨界面上应力分布两者差异没有显著性。Vanrossen(1990)等,通过二维有限元法,对不同弹性连接体弹性模量和不同外形的内连接体在单个种植体上进行分析,结果:内弹性连接体弹性模量的改变对周围骨应力分布没有影响。Chapman(1990)等,设计一种内部减震器(shockabsor-ber),把种植体与义齿相连接,用钛制作对比,结果:两者差异有显著性,可减少咬合力。elChkawihG(1990)在种植体上部结构下面使用一层弹性材料,种植体不动,而上部结构可动,结果发现这种改进使应力和位移分布和天然牙相类似。Kraut(1993)等,设计了一种弹性内动连接系统,结果表明这套系统能吸收应力,减少达到种植体和周围骨的应力值。