前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的逻辑推理的培养主题范文,仅供参考,欢迎阅读并收藏。
【摘要】生动有边从五个方面论述了农村中学如何加强和改进化学实验教学,培养学生创新精神,提高学生的创新能力。
【关键词】初中化学;实验教学;创新精神
逻辑思维是我们教育的重要基础,也是素质教育的重点, 如何加强并培养学生的逻辑思维能力?就成为我们教育工作者苦思冥想的一个难题。推理是逻辑思维中最基本的思维方式。初中理科就是通过逻辑论证来叙述的,应用题、证明题都蕴含逻辑推理的过程,要提高学生的学习成绩,就必须十分注意培养学生的逻辑推理思维能力。“反推正写”以“所求”为中心,寻找“已知条件”满足所求为主线,求什么需什么,需什么找什么,从未知向已知推导,从已知向未知书写的推理方法正好可以让学生明白每一步的来源,达到有根有据,条理清晰的逻辑性,从而加强学生逻辑思维推理能力的培养。关键词: 反推正写、逻辑思维、推理能力 培养 ①逻辑思维是人们在认识过程中借助于概念、判断、推理等能动地反映客观现实的理性认识过程。只有经过逻辑思维,人们才能达到对具体对象本质规定的把握,进而认识客观世界。推理是逻辑思维中最基本的思维方式。初中理科就是通过逻辑论证来叙述的,应用题、证明题都蕴含逻辑推理的过程,要提高学生的学习成绩,就必须十分注意培养学生的逻辑推理思维能力。教学中我们发现很多学生答题时,步骤混乱,随心所欲,尤其是应用题、证明题的书写步骤更是不尽如人意,一道本来能做的题,答下来总是不能达到最好的效果,老师反复地讲,学生反复地练,到最后还是不知道怎样有条不紊的书写答题步骤,这成了学生最苦恼,老师最头疼的一件事情。如果学生按这样的模式发展下去,将来走入社会,做事情也就会变得无根无据。究其原因就是学生的头脑中还没有形成逻辑思维。对于初中的学生,几乎还没有逻辑的概念,虽然少部分学生已开始有这方面的趋向,但还是不强,男生稍好一点,女生就更加的薄弱了,要想让他们在未来的生活中说话、做事达到条理清晰。这就需要我们在教学中加强这方面的培养。由此可见:逻辑思维是我们教育的重要基础,也是素质教育的重点, 如何加强并培养学生的逻辑思维能力?就成为我们教育工作者苦思冥想的一个难题。要想让学生答题做到简明扼要,条理清晰,有根有据,就必须使学生明白每一步的来源,而 “反推正写”以“所求”为中心,寻找“已知条件”满足所求为主线,求什么需什么,需什么找什么,从未知向已知推导,从已知向未知书写的推理方法正好可以让学生明白每一步的来源,达到有根有据,条理清晰的逻辑性,从而加强学生逻辑思维推理能力的培养。
总之:对初中生逻辑思维的培养具有重要的意义,初中的学生正处于从形象思维向抽象思维的过度阶段,是思维成长和形成的最佳时期,如果加强引导,应用一种有效的方法,从初中的学习中以最基本的逻辑现象进行培养,不仅易于接受,还不易出现眼高手低的现象,能使原本朦胧、混乱的思维具有逻辑性。不仅有利于学生成绩的提高,更有利于他们综合素质的改善,也是他们将来步入社会,成为一个理性社会人所必须的条件。
关键词:证券投资;逻辑推理;实践;人才培养
证券分析之父格雷厄姆指出:“我们最关心的主要是概念、方法、标准、原理以及最重要的逻辑推理能力。我们强调理论的重要性并不因为理论本身而在于它在实践中的价值”。证券投资学是一门应用性很强的科学,投资成功的关键不在于你是否能熟记理论本身,而在于运用理论推导出正确的买入或卖出的决策。
在证券投资教学的实践中,多年来我们一直探索将逻辑推理的教学融人证券投资理论教学中,力求提高学生的实际操作能力。我们从人才培养目标定位人手,通过明确本专业的人才需要的知识结构的界定.制定了一套新的证券投资人才培养方案,其核心内容就是提高学生的逻辑推理能力,并通过教学体系的完善与教师队伍的建设来保证其顺利实施。
一、合格的证券投资人才的培养目标
(一)知识结构的界定
我国现有的证券投资专业课程设置一般分为:公共课、专业基础课、专业课,涵盖了经济学、金融学、证券投资学等领域的主要课程,理论知识覆盖面宽.学生在学完该课程后,基本具备了本专业所需要的理论储备。但是这样的课程设置也有它的局限性.它的缺陷在于:课程设置中没有开设逻辑推理课程.学生在掌握知识的过程中,主要是接受知识.而证券投资的复杂性、多变性决定以前的结论与实践中的演绎过程不一定是一致的。因此加强推导过程的教学是必须的,逻辑推理应该包含在证券投资专业的整体知识结构中。
(二)知识结构的扩展
将逻辑推理知识纳入证券投资专业课程的一部分.是扩展学生知识结构的必然。然而现实中,没有一所高校将逻辑推理列为证券专业的必修课程,由于证券分析的复杂性,理论课程中的结论与实际的证券价格运行有一定的差异性.学生普遍对理论感到迷茫,甚至有些学生开始怀疑证券理论的正确性.对自己的专业发展前景充满困惑。为此,课题组成员利用实践课教学、模拟比赛辅导等机会,穿行逻辑推理的教学,并运用推理引导学生进行证券分析.用逻辑推理的方法来解释市场交易行为。在证券投资专业(含金融专业中的证券方向)课程设置中增加逻辑推理课程,扩展学生的知识结构是必要的。
(三)证券专业人才培养的目标
本科与专科阶段本专业学生的培养目标的层次定位应为证券投资专门人才,即为证券公司、证券咨询公司、民间投资机构输送投资分析人员、操作人员、客户服务人员等。
最终培养的人才必须像格雷厄姆教授所说的掌握了证券投资领域主要的概念、方法、标准、原理并且具有较高水平的逻辑推理能力。我们并不强调把每一个学生都培养成巴菲特,但是我们必须按照培养巴菲特的方法一样去培养我们的学生,在高风险的证券投资领域,学生只有自身具备较高的业务水平,才能给客户带来更好的收益,为客户规避风险。高水平的投资人员,不仅仅是指具备专业的知识素养的人,而且是指具备运用知识解析复杂的市场能力的人,所以人才培养的目标必须是知识与能力的结合。而在证券投资领域,逻辑推理能力是实现理论在实践中的运用价值的首要能力。
二、在证券投资专业开展逻辑推理教学的探索
我们在实践课教学与辅导学生参加全国大学生模拟投资大赛中,以证券投资理论为基础,强调逻辑推理与理论的结合,主动调整教学方案,增加逻辑推理基础知识的教学。
(一)逻辑学基础
限于教学时间,将逻辑学课件发给每一个学生.要求学生在学习课件的基础上,完成老师布置的作业.并在课堂以提问的方式检验学习效果。
在逻辑基础教育中,首先强调数理逻辑与概率逻辑的教学,解决学生心中的疑问,理论与实际的偏差是客观的,理论中包含的“概念、方法、标准、原理”是引导我们进入成功投资的依据,从理论出发,我们的成功将成为一个大概率事件。其次,将逻辑推理具体运用到个股的价值投资分析、技术分析中.引导学生追求高概率的成功投资,而不是每次都成功的投资。
(二)价值投资中的逻辑推理
所谓价值投资.是一种寻找被市场低估的公司股票的投资方式。格雷厄姆是价值投资的鼻祖,其学生巴菲特是最成功的价值投资大师。在价值投资的教学中.仅仅传输格雷厄姆的价值评估方法是不够的.动态看待公司的价值,从未来的角度估量公司的价值才是成功的关键。
价值投资理论本身是正确的,巴菲特的成功就是最好的例证。而很多人从静态低估的角度买入,结果失败了.理论的缔造者格雷厄姆也犯了同样的错误.他在1929-1933年的金融危机中用过去的数据计算公司价值,事实证明他错了,价值投资理论也曾经因此受到质疑。我们所说的某某公司的股票价值,是一个微观问题,我们的推理逻辑思路是——先引导学生先看宏观经济、再看行业经济,最后才定格在某一个公司(微观)的股票价格上,这样价格是否低估,就不是一个静态的问题了,具体的结果,需要学生根据具体的公司,结合经济学与逻辑学的知识,作出自己的评判。这种评判如果被事实证明是成熟的,就可以上升为一种方法,如巴菲特提倡的贴现价值模型,实际上就是一种量化的逻辑推理。
(三)技术分析中的逻辑推理
技术分析理论中的流派更多.比较流行的技术分析理论有道氏理论、波浪理论、形态理论等。这些理论也属于格雷厄姆所说的“概念、方法、标准、原理”而不是格雷厄姆说的“最重要的逻辑推理能力”。主流的技术分析理论无疑是正确的,是经过市场无数次检验的。但是,作为老师,我们要求学生从技术分析的三大假设前提人手.自己重新推导技术分析理论的逻辑合理性。学生在推导的过程中会发现:技术分析理论中的主流理论是正确的.是符合逻辑的。但是市场上也有一些新的技术分析方法,逻辑思维是混乱的,没有说服力的。
技术分析理论对交易行为具有指导意义.我们要求学生从三大技术分析的假设前提出发.依据主流的技术分析理论,建立符合逻辑的交易原则.并严格执行。如果我们所有的交易行为都是符合数理逻辑或概率逻辑的.那么交易行为成功就是一个大概率事件。技术分析的三大假设前提的核心是:股票的价格是沿着趋势运动的。道氏理论指出:趋势分为长期趋势、中期趋势、短期趋势。好了,我们的问题出来了——如何判断趋势即将发生变化?目前我们已经结合趋势理论与K线理论有一个初步的,符合逻辑的推断,但是更重要的是引导学生自己作出判断,而不是告诉他判断的结果。趋势变化的转折点的出现,操作(买人或卖出)决策必须及时执行,成功投资主要是体现在趋势转折点的操作行为上的。
三、成功案例分析
在证券专业实践教学中.建立了以世华财经教学软件为主的仿真实验室,这大大激发了学生探究证券奥秘的积极性。在2006年-2008年连续三次组织学生参加“世华财经”杯全国大学生模拟投资大赛,并且三次获得优胜,是全国200多所参赛学校中仅有的两所每次都位于前十名的学校之一。我们的成绩得到了社会的认可.已经毕业的学生有多名现在服务于国内知名的证券机构.他们的专业技能提高主要是通过以下方面获得的。
1.基本技能的巩固。金融学科实践与一般工科实践不完全相同,金融产品的交易涉及盈亏数字较大,不可能冒着较大风险让学生直接参与现实的金融交易。所以基本技能的巩固一般是从模拟交易开始的。
我们充分利用世华软件的模拟交易功能,给每一个学生开立模拟交易帐户。要求学生在实践的过程中,从趋势理论、均线理论、形态理论中找到依据,写好属于自己的操盘日记。强调买人的理由,只有理由充分了,才能做出买入的动作。卖出也是一样。学生在模拟中,加强了对基本理论的理解,知识的根本价值在于使用,活化知识的使用可充分学生所学知识的主旨价值。
发挥年轻学生的学习热情.组织学生参加一年一度的“世华杯”全国大学生金融投资大赛,让学生在比赛中主动运用投资理论与逻辑推理知识,通过比赛成功来激发学生学习专业知识与提升逻辑推理能力的热情。
2.逻辑推理教学的展开。(1)基本推理能力教学的展开。我们为实验班级编写普及型的逻辑推理教案,利用商学院提供的开放式教学环境进行教学,利用学生对证券投资的兴趣,要求学生做笔记,完成课后练习,并进行考核。成绩合格者,将参加后面的全国金融投资大赛的相关辅导.进一步提升学生的实战分析能力;(2)使用与探究。对知识使用效果的检验,是激发学生继续学习的动力所在。鼓励学生在使用知识的过程中大胆探究.培养其自主创新的能力,激发学生的兴趣。
要求学生做好实验记录.即每一个操作指令完成后,必须写出:操作运用的原理,逻辑推理过程,结论等三个主要步骤。并提示学生过一段时间.再来观察结论的合理性。
3.合作与交流。在实践中,要面向全体学生,让学生全员参与,教师适时启发诱导,提示点拨。可将学生分成3—5人一组,自愿组合.选择各组感兴趣的项目。实践性教学过程包括明确任务、协作学习、创设情境等。早期,教师是学习任务的布置者:后期,教师需要转变角色,成为学习方向的引导者。
通过合作,提高学生的团队协作意识.通过学生之间的交流,提高学生对知识的认识.通过学生与老师的交流,取到“解惑”的作用。合作与交流是多方面的,还包括学生与公司客户的直接接触.提高学生的主体意识。
4.展示与评价。通过以上的个别化实践与协作实践,不同层次的学生获得了一定的实践成果。接着让学生充分展示和交流自己的成果.可分阶段,鼓励学生将自己或小组实践成果在课堂上通过电脑、投影等方式介绍给大家,各小组派代表在全班交流实践成果,并启发、诱导学生对别人的实践成果进行讨论、评价、纠正错误,补充正确观点,这样,学生不但在展示中获得了成就感,同时进一步完善了小组的实践成果,提高了实践创新的能力。最后教师要进行点评给分.一般记入平时成绩,如果是单列实践课,则单列成绩。
四、教学体系的完善与教师队伍的构建
(一)建立单项训练与综合实践相结合的实践课教学体系
1.单项训练是根据培养目标所需岗位基本技能在不同课程教学过程中进行某一方面或某项基本技能训练,提倡边教理论边做实践的一种教学方式。
我们提倡将逻辑推理能力的提高融入价值投资与技术分析的教学实践中,在每一个单项学习的过程中,都需要学生自己依据理论与实例相结合,推导属于自己的结论。
并要求学生对理论与实践之间的偏差作出合乎逻辑的解释。
通过对单一的技术分析理论的运用,要求学生从投资决策出发,对现实中的行情变化,推导出买入、卖出或者等待的决策。全面提升学生的决策能力.是每一个单项训练的最终目标。
2.综合实践则是在学习几门相关课程后组织的集中实践教学.它要求学生综合运用相关知识、技能,全面提升金融投资的决策水平。目前,我校金融专业已经建成申银万国证券九江营业部、国盛证券九江营业部等实训基地,学生良好的操作能力得到了企业的认可。我们已经建立起一套由实训计划、实训报告、实习评语等组成较完整的实训质量监控措施。
对于参与综合实训的学生,要求学生做好实习笔记.对实训中遇到的每一个问题的解决方案做好记录。强调综合实训中的问题应该由学生自己解决.由教师最后进行评估。投资中解决问题的正确率.实际上就是最终决策的正确率。是未来学生事业发展的生命线,正确率高是投资决策能力的体现,在证券行业生存、发展,必须提高自己的投资决策能力.只有这样才能更好的服务客户,自己在行业中的发展前景才会一片光明。
(二)建设一支适应改革后证券投资专业实践教学体系的师资队伍
证券投资专业实践性教育对教师有特殊的要求.他们必须是集理论性、示范性、职业性于一身,既有较强的专业理论知识,又有较高的操作技能,既能从事专业理论教学,又能指导技能训练的新型教师。因此,我校一方面要加强对现有教师的培训,加强现有的教师与证券专业人士的交流,增强教师的实践能力和动手操作能力,使教学的针对性得到提升。另一方面,我们请证券投资一线的高素质人才走进校园.通过讲座等形式传授他们的经验,对于学生实践能力的培养具有重要意义。
根据我们对多届学生的分析,我们发现学生在进入高一时,物理学习是比较困难的,究其原因是因为此时的物理学习与初中时相比,无论是在知识上,还是在思维方法上均有较大的区别,因此学生需要一个适应的过程.而此后学生一般会有三种发展可能:一是物理彻底差下去,原因是物理学习始终不得其道;二是不温不火,原因是复杂的物理知识与一般的学习能力之间形成了一种平衡;三是物理成绩好了起来,原因是物理思维能力契合了物理知识的学习.对于第三种可能而言,逻辑思维能力的作用功不可没.掘作即以“动能定理”为例,谈谈逻辑思维能力的培养.
1动能定理知识中的逻辑关系梳理
动能定理上承动能概念以及动力学的相关知识,其中动力学知识(以牛顿第二运动定律为主)构成了逻辑推理的重要基础;而动能及能量概念在初中已有涉猎,但不涉核心,在高中阶段建立的动能概念尤其是能量概念,其已经与“功是能量转化的量度”衔接在了一起,使得在知识体系上第一次明确地将功与能联系在了一起.动能定理则是建立在这一联系之上,将学生对功与能的关系拓展到一个新的高度,使得物体所受的合外力所做的功,与物体的动能变化联系在了一起.同时我们也应当发现,在此前研究得出的功与速度变化的关系,也为动能定理的得出打下了坚实的基础,而推理动能定理所需要的数学知识在学生的数学学习中已经成型,因此可以充当逻辑思维的重要工具.
但同时我们应当注意到,这些关系又不是显性的,换句话说不是学生一眼所能看出来的,而推理动能定理所需要的逻辑推理能力也不是自然出现的,因此在动能定理出现的过程中还需要教师的指导与指引,而指引的重要方式就是问题的设计与适时提出.
2动能定理教学中的逻辑能力培养
在动能定理的形成过程中,我们有这样两个关系需要明确培养.
一是情境创设中的逻辑关系.无论具体的情境如何,其总离不开让学生思考动能与影响因素的关系,比如说有老师设计扔出篮球与铅球让学生去接,通过让学生比较接球的感受来判断影响动能大小的因素.在这一过程中,逻辑关系存在于接球感受(实质上是动能的大小)与影响因素之间,ΔEk与W之间是什么关系成为下一步探究的主题.
二是探究中的逻辑关系.这是逻辑思维能力培养的核心,其中包括两个主要需要探究的问题:第一个问题是动能及其变化如何定量描述?第二个问题是动能的变化与物体受到的力的做功之间是什么定量关系?对于这两个问题的解决,我们可以引导学生进行如下的推理:其一,对于一个质量一定的物体,其动能的变化决定于哪个物理量的变化(答案:速度)?其二,速度的变化用哪个物理量来衡量(答案:加速度)?其三,对于一个质量一定的物体,其加速度决定于什么(答案:合外力)?当顺利解决了这三个问题之后,我们就可以乘热打铁:合外力正是与功相关的一个物理量!――如果注意分析,我们发现这是一个严密的逻辑推理过程!
如果说刚才进行的是从定性角度进行的逻辑推理的话,那更为精确的从定量角度进行的逻辑推进可以顺势进行:
根据牛顿第二运动定律F合=ma,又因为对于匀加速直线运动,有v2t-v20=2as,变形后可得a=v2t-v202s,代入牛顿第二运动定律表达式,即可得F合=m(v2t-v202s),将右边分母上的s移至左边即可得F合s=m(v2t-v202),此时继续引导学生去研究等号左边的F合s,即可发现其即为“功”,那是什么力做的功呢?由下标可知为合外力做的功!
此时遇到的问题在于学生对等号右边认识,首先要将其变形成12mv2t-12mv20,这样有助于学生认识到这是相同形式但不同状态的两个物理量的差!那这是什么物理量呢?一般情况下学生并不能直接反应出来,即使说出动能概念的,也往往说不清理由.这个时候仍然需要教师引导学生进行推理:等号的左边是功,那右边就应当是功或者能(因为功是能量转化的量度),从形式上来看显然不是功,那只可能是能!又可以发现其中每一个因式都与质量和速度有关,因此此能应当是动能!也因此,合外力做功与动能变化的关系就浮出出来!
3教学反思
一、立足现实,从个别到一般培养学生合情推理能力
合情推理是指从个别到一般的推理过程,它要求学生通过类比、归纳、总结和概括现有的直观事物,从而推导出一般性的结论和经验。小学生处于个体成长和发展的最初阶段,依赖直观性的客观表象进行生活和发展的形象思维占据主导地位,对事物的认识往往停留于感性水平上,因此,小学数学教师应当将小学生逻辑推理能力的培养放在归纳推理上面,通过引导学生对既定的数学知识、技能以及生活现象进行观察、作图、比较、假设、归纳和概括,从而使学生从对事物的感性认识上升到理性认识上。例如学生在解答找规律一题:“2、5、11、23、47、 ”时,学生要想在横线上填上正确的答案,就必须结合已经学过的数学知识和经验,并将这些知识经验进行思维加工,在它们之间建立有机的联系,从而推断出正确的结论,因此,这道题考查的是学生的合情推理能力。学生通过观察这些数字会发现,利用加减法并没有发现他们之间有什么特别的规律所在,因此,学生推断它们之间可能存在乘除关系或平方关系,根据学过的找规律的方法,学生先剖析前两个数之间的关系,发现:5=2×2+1,再看第二个数与第三个数之间的关系,他们也存在一样的规律:11=5×2+1,因此,答案便迎刃而解,学生经过一番推理得出了95。
二、统合旧知,从经验到结论培养学生演绎推理能力
虽然小学生的日常行为处事是以形象思维为主,但在小学阶段,特别是中高年级,学生的抽象思维已经觉醒,对事物的感知已经逐步具有理性认识的色彩,而且随着社会的不断发展以及营养水平的提升,个体身心发育的速度在不断提升,同时在年龄上表现出逐渐向前推的趋势,这就为小学生的思维品质发展加了一瓶浓浓的催化剂。另外,当今社会纷繁复杂,信息大爆炸使得小学生年纪轻轻就沉浸在这个大熔炉之中,为了帮助学生学会正确选择和判断自己所需要的信息,更加理性地生活着,我们在着重培养小学生的合情推理能力的同时,应当同步培养学生的演绎推理能力。教师应当具体结合生活案例,引导学生利用已有的数学公理、定义等规律,验证结论假设的正确性,正确处理合情推理与演绎推理的关系。例如在教学苏教版小学数学第九册《三角形面积的计算》时,师生通过利用三角形与平行四边形进行拼接、裁剪、探讨和验证认识到:两个完全一样的三角形可以拼成一个平行四边形,进而得出了三角形面积的求法,即三角形面积=平行四边形面积÷2=底×高÷2。然而,师生所探讨的主要是锐角三角形的面积推导,而三角形又分为直角三角形、钝角三角形、锐角三角形,而锐角三角形又可分为等边三角形、等腰三角形等类别,是不是这些不同类别的三角形面积也符合同样的计算公式和法则呢?这就需要教师引导学生进行依次实验和证明,分别对这些三角形的面积进行演绎,最后得出的结果都符合这个计算公式,因而判定“三角形的面积=底×高÷2”。
三、发散思维,从单向到多向培养学生多维思考习惯
[关键词] 研究生;批判性思维能力;培养模式
[中图分类号] G642 [文献标志码] A [文章编号] 1005-4634(2014)04-0038-03
批判性思维(Critical Thinking)是一种思辨的、反思的和自主的创造性的思维方式[1]。20世纪90年代末期召开的世界高等教育会议发表的《面向二十一世纪高等教育宣言:观念与行动》的第一条就确立了高等教育与培训的使命,即“培养批判性和独立的态度”;第五条又指出高等教育机构必须教育学生,能够批判地思考和分析问题[2]。可见,培养和提高学生批判性思维能力,是高等教育必须完成的一项重要任务。现今对研究生批判性思维能力的研究大多采用描述性方法进行探索[3-5],且研究生培养模式的研究未见报道,因此,有必要借助量性和质性研究方法,探究研究生批判性思维能力的培养模式,以期提高学生批评性思维能力。
1 对象
研究生657人,收回有效问卷641份,有效率97.56%,平均年龄26.7?.96(21~41)岁,其中男性397名,平均年龄27.1?.94(21~41)岁;女性244名,平均年龄26.2?.95(21~39)岁。
2 方法
培养研究生批判性思维能力,既要从内在因素(批判性思维能力的成分)着手,又不能忽略外在因素(批判性思维能力的影响因素)。因此,对研究生批判性思维能力培养模式就需要从研究生批判性思维能力的成分及影响因素出发进行探究。
采用开放式问卷(研究生批判性思维能力包括哪些方面?哪些因素影响研究生批判性思维能力?)调查研究生批判性思维能力的成分和影响因素,将调查结果结合文献资料,获得研究生批判性思维能力的成分95个,影响因素96个;编制成半封闭式问卷,进行调查,取赞成率50%的项目,舍去赞成率< 50%的项目,合并类同项目,获得研究生批判性思维能力59个成分和60个影响因素,共119个条目;将这些条目编制成封闭式问卷,调查研究生,借助SPSSWindow17.0软件包对调查结果进行研究生批判性思维能力培养的主成分分析、回归分析、描述性统计和相关分析,建立了研究生批判性思维能力培养的标准化回归方程和路径模型,由此提出了研究生批判性思维能力培养模式。
3 结果
3.1 主成分分析
取负荷大于0.5和特征质大于1的主成分[6],得到21个条目,共3个主成分,解释了主成分总方差的62.349%(>50%),见表1。KMO抽样适度测定值是0.927(>0.5,说明本数据可用作主成分分析),且从Bartlett's球形检验的x2值为8765.673,呈显著水平(P
第一个主成分有10个条目,与适宜研究生批判性思维能力发展的条件有关,因此命名为“培养条件”;第二个主成分有8个条目,描述的是从事物的本质和规律出发,进行推理判断,由此命名为“逻辑推理”;第三个主成分有3个条目,与对现实保持质疑的态度有关,所以命名为“质疑”。“培养条件”是核心,它解释了主成分总方差的33.968%。
3.2 回归分析
以批判性思维能力培养的主成分总分为因变量,培养条件、逻辑推理和质疑为自变量,进行逐步回归分析(表2),同时建立了标准化回归方程:批评性思维能力培养=0.760着嘌跫?0.372茁呒评?0.172字室伞?
三个预测变量(培养条件、逻辑推理和质疑)预测校标变量(批判性思维能力)时,以“培养条件”层面的预测力最强,其解释量达77.5%,其次依次为“逻辑推理”和“质疑”,其解释量分别为20.5%和2.0%。
3.3 相关分析和描述性统计
对三个主成分(培养条件、逻辑推理和质疑)进行了描述性统计和Pearson相关分析,将相关分析结果中的协方差整理为协方差矩阵(表3)。在协方差矩阵中,对角线的数字为变量本身的方差,对角线以外的数字是两变量的协方差[7]。
以多元回归分析和协方差矩阵为基础,建立了批判性思维能力培养的路径模型(图1)。括号上的数字是两个变量的协方差,自变量右上方的数字为每个自变量的方差(表3),单箭头符号上的数字是自变量(培养条件、逻辑推理和质疑)对因变量(批判性思维能力)的路径系数(标准化回归系数,表2)。
4 讨论
从回归分析和批判性思维能力培养的路径模型看,培养条件、逻辑推理和质疑对批判性思维能力的培养效果均有影响,且彼此之间有交互作用,另外培养条件对批判性思维能力培养效果的预测力最强,有77.5%。可见,要以改善学生的培养条件为核心,提升他们的逻辑推理能力和激发质疑为导向,构建研究生批判性思维能力的培养模式(图2),提高研究生的批判性思维能力。
关键词:法律逻辑学;法律思维能力;培养策略
法律逻辑学是一门与推理和论证相关的法律类工具学科,其主要的任务是让学生能够厘清各种逻辑理论的具体内涵,以及灵活地运用各种逻辑方法于司法实践当中。而法律思维是指按照法律的逻辑来认真地观察和分析各种法律案件的思维方式,其与法律逻辑学的主要任务具有相关性,所以法律逻辑学对于培养学生的法律思维能力也具有非常重要的意义。
一、法律逻辑学可以培养法律思维能力
法律是社会公众的行为规范准则,其承担保障社会正常运作的职能,同时人们还要依靠法律来保证自身的权益不受侵犯,同时惩治社会犯罪行为。所以法律的严谨性和准确性非常重要,否则法律的权威性就会受到质疑,这也就要求法律的各个环节都必须具有严密的逻辑。但是在现实生活中,我们很难完全依据传统的逻辑方法来解决生活中的实际问题。而法律逻辑学就是为了解决这一状况而产生的,其主要的教学内容是法律推理和法律论证,分别是法律逻辑的基本规律、基本概念、逻辑推理、逻辑论证、案例论证和反驳等知识,学生通过学习法律逻辑学能够掌握普通的逻辑分析方法,同时形成较强的法律思维能力。
法律思维能力是指以法律的逻辑来观察、分析、解决法律问题的职业思维方式,主要表现为观察、分析法律事实的能力,搜集和判断法律证据的能力,归纳、概括案件争执焦点的能力,判定案件性质和认定案件事实的能力,正确阐释法理和适用法条的能力,严谨进行法律推理和论证的能力。一般来说,法律思维能力必须要经过长期的司法实践才能形成,但是学生通过学习法律逻辑学,可以初步形成法律思维能力。
二、法律逻辑教学的开展策略
法律逻辑学的主要教学目的就是让学生能够将法律逻辑的知识转化为实际的法律思维能力,所以学生必须要掌握将逻辑理论知识转化为法律思维的技能和方法。但是从当前的法律逻辑学来看,其教学内容普遍以“形式逻辑原理”+“法律实例”的形式展开,但是从实质上来看,这种教学模式并没有脱离形式逻辑的范畴,并没有有效地将法律逻辑理论与司法实践结合在一起。笔者结合多年的工作经验,现重点探究法律逻辑教学的具体开展策略,希望能够切实达到培养学生法律思维能力的目的。
1.将形式逻辑和辩证逻辑方法有效地结合在一起
法律逻辑学包含的教学内容非常丰富,比如法律推理的标准,法律推理的技术准则,演绎、归纳、类比推理的形式推理方法等。其中形式逻辑推理是法律中最基本的、普适性最高的推理方法,但是在实际的案件当中,单纯运用法律形式推理的案件几乎不存在。辩证逻辑推理是对法律形式推理的必要补充,学生通过学习辩证逻辑推理,能够有效地拓展法律职业思维的广度和加深法律职业思维的深度,进而保证法律思维的逻辑严密性。所以教师在教学过程当中,也应当将形式逻辑方法与辩证逻辑方法结合在一起,使得学生能够灵活地运用这两类方法开展法律推理。
2.强化批判性思维训练
批判性思维是指在理性思维基础上产生的一种带有怀疑性质的、创新的思维,其存在的目的就是通过分析和推理已有的认知和事实,而形成一种与别与常理的见解,从而达到探求真理的目的。批判性思维属于创新性思维的核心内容,其既具备强的逻辑分析性,又具有高度的辩证性,所以强化学生的批判性思维训练,就是强化学生对于多种思维方法和思维方式综合运用的熟练程度。
在法律逻辑学的教学当中,教师应当有意识地渗透批判性思维,让学生能够养成自由思考的习惯,通过长期自觉理性的判断,使得学生不会盲目迷信“标准答案”,走出传统的思维定势的局限。在课堂上,教师可以经常出一些存在错误的案例,让学生主动地纠正其中存在的法律逻辑错误,从而让学生形成辩证的法律逻辑思维形式,增强学生法律逻辑思维的准确性和严谨性。另外,教师还要让学生学会提出恰当的问题,学会对所列示的证据材料提出合理的质疑,能够及时地识别其中存在的错误,并且用可靠的证据进行论证,最终得出合理的、具有说服力的结论。
3.培养学生的法律思维能力
法律逻辑学的教学内容主要包括形式逻辑训练和法律思维能力的培养,所以教师在教学过程当中应当重视这两方面内容的讲解。在培养学生的法律思维能力方面,教师首先要开展生活化教学,选择实际生活中出现的真实案例与教材的文字知识结合起来,在课堂上为同学们详细地分析一些现实中发生的事情、社会热点问题及有趣的逻辑典故。这样一方面可以使得书面知识直观化,使得法律逻辑学教学更加灵活、更加具有实用性;另一方面,也便于学生将抽象化的理论知识转化为实际的理性认识,提高学生的知识实践运用能力。其次是采用案例教学法,教师要选择一些案例来开展法律逻辑教学,选择的案例必须具有法律专业性、真实性以及可讨论性,能够引发学生产生不同的观点。只有教师在课堂上引用具有可讨论性的案例,才能使得学生之间产生不同的思维碰撞,以此来对学生进行逻辑思维训练,培养学生的批判性思维和法律实践能力。最后是运用论辩教学法,即引导学生针对某个具体的理论、实际的事例进行辩驳与争论,以此充分锻炼学生的法律职业能力。教师在采用论辩教学法的过程中,必须要给予学生充分的时间独立地思考问题,并且让学生能够在课堂上充分地表达个人的思考和理解。教师要鼓励学生大胆地思考和分析,通过课堂所学的知识去发现其中的规律和方法,最终得出合理的结论。这样的论辩过程,可以很好地考察学生对知识的掌握程度、逻辑分析的能力、语言表达的能力、思维的敏锐程度,能够很好地提高学生运用所学法律知识论证个人论点或反驳他人观点的能力,同时对于培养和提高学生的综合思维能力也具有非常重要的意义。
参考文献:
[1]张静焕.法律思维、法学教育与法律逻辑学教学[J].重庆工学院学报:社会科学版,2017,21(12).
[2]宋玉红.法律逻辑教学的三个注重[J].法律与社会,2011(10):236-237.
[3]缪四平.批判性思维与法律人才培养[J].华东政法大学学报,2010(4):146-147.
关键词:中学;数学教学;推理能力;培养
当今,教育领域正在全面推进,旨在培养学生创新能力的教学改革。但长期以来,中学数学教学十分强调推理的严谨性,过分渲染逻辑推理的重要性而忽视了生动活泼的合情推理,使人们误认为数学就是一门纯粹的演绎科学。事实上,数学发展史中的每一个重要的发现,除演绎推理外,合情推理也起重要作用,合情推理与演绎推理是相辅相成的。在证明一个定理之前,先得猜想、发现一个命题的内容,在完全作出证明之前,先得不断检验、完善、修改所提出的猜想,还得推测证明的思路。你先得把观察到的结果加以综合,然后加以类比,你得一次又一次地进行尝试,在这一系列的过程中,需要充分运用的不是论证推理,而是合情推理。因此在数学学习中,既要强调思维的严密性,结果的正确性,也要重视思维的直觉探索性和发现性,即应重视数学合情推理能力的培养。
一、在“数与代数”中培养合情推理能力
在“数与代数”的教学中。计算要依据一定的“规则”――公式、法则、推理律等。因而计算中有推理,现实世界中的数量关系往往有其自身的规律。对于代数运算不仅要求会运算,而且要求明白算理,能说出运算中每一步依据所涉及的概念运算律和法则,代数不能只重视会熟练地正确地运算和解题,而应充分挖掘其推理的素材,以促进思维的发展和提高。如:有理数加法法则是以学生有实际经验的向东向西问题用不完全归纳推理得到的,教学时不能只重视法则记忆和运用,而对产生法则的思维一带而过,又如,对于加乘法各运算律也都是采用不完全归纳推理形式提出的,重视这样的推理过程(尽管不充分)既能解释算律的合理性,又能加强对算律的感性认识和理解。再如,初中教材是用温度计经过形象类比和推理引入数学数轴知识的。再如:求绝对值
|-5|=? |+5|=? |-2|=? |+2|=? |-3/2|=? |+3/2|=?
从上面的运算中,你发现相反数的绝对值有什么关系?并作出简捷的叙述。通过这个例子,教学可以培养学生的合情推理能力,再结合数轴,可以让学生初步接触数形结合的解题方法,并且让学生了解绝对值的几何意义。
在教学中,教材的每一个知识点在提出之前都进行该知识的合理性或产生必然性的思维准备,要充分展现推理和推理过程,逐步培养学生合情推理能力。
二、在“空间与图形”中培养合情推理能力
在“空间与图形”的教学中。既要重视演绎推理。又要重视合情推理。初中数学新课程标准关于《空间与图形》的教学中指出:“降低空间与图形的知识内在要求,力求遵循学生的心理发展和学习规律,着眼于直观感知与操作确认,多从学生熟悉的实际出发,让学生动手做一做,试一试,想一想,认别图形的主要特征与图形变换的基本性质,学会识别不同图形;同时又辅以适当的教学说明,培养学生一定的合情的推理能力。”并为学生“利用直观进行思考”提供了较多的机会。学生在实际的操作过程中。要不断地观察、比较、分析、推理,才能得到正确的答案。如:在圆的教学中,结合圆的轴对称性,发现垂径定理及其推论;利用圆的旋转对称性,发现圆中弧、弦、圆心角之间的关系;通过观察、度量,发现圆心角与圆周角之间的数量关系;利用直观操作,发现点与圆、直线与圆、圆与圆之间的位置关系;等。在学生通过观察、操作、变换探究出图形的性质后,还要求学生对发现的性质进行证明,使直观操作和逻辑推理有机地整合在一起,使推理论证成为学生观察、实验、探究得出结论的自然延续,这个过程中就发展了学生的合情推理能力。注意突出图形性质的探索过程,重视直观操作和逻辑推理的有机结合,通过多种手段,如观察度量、实验操作、图形变换、逻辑推理等来探索图形的性质。
三、在“统计与概率”中培养合情推理能力
统计中的推理是合情推理,是一种可能性的推理,与其它推理不同的是,由统计推理得到的结论无法用逻辑推理的方法去检验,只有靠实践来证实。因此,“统计与概率”的教学要重视学生经历收集数据、整理数据、分析数据、作出推断和决策的全过程。如:为筹备新年联欢晚会,准备什么样的水果才能最受欢迎?首先应由学生对全班同学喜欢什么样的水果进行调查,然后把调查所得到的结果整理成数据,并进行比较,再根据处理后的数据作出决策,确定应该准备什么水果。这个过程是合情推理,其结果只能使绝大多数同学满意。
概率是研究随机现象规律的学科,在教学中学生将结合具体实例,通过掷硬币、转动转盘、摸球、计算器(机)模拟等大量的实验学习概率的某些基本性质和简单的概率模型,加深对其合理性的理解。
四、在学生熟悉的生活环境中培养合情推理能力
一、在“数与代数”中培养合情推理能力
在“数与代数”的教学中,计算要依据一定的“规则”――公式、法则、推理律等。因而计算中有推理,现实世界中的数量关系往往有其自身的规律。对于代数运算不仅要求会运算,而且要求明白算理,能说出运算中每一步依据所涉及的概念运算律和法则,代数不能只重视会熟练地正确地运算和解题,而应充分挖掘其推理的素材,以促进思维的发展和提高。如:有理数加法法则是以学生有实际经验的向东向西问题用不完全归纳推理得到的,教学时不能只重视法则记忆和运用,而对产生法则的思维一带而过,又如,对于加乘法各运算律也都是采用不完全归纳推理形式提出的,重视这样的推理过程(尽管不充分)既能解释算律的合理性,又能加强对算律的感性认识和理解。再如,初中教材是用温度计经过形象类比和推理引入数学数轴知识的。
教学中,教材的每一个知识点在提出之前都进行该知识的合理性或产生必然性的思维准备,要充分展现推理和推理过程,逐步培养学生合情推理能力。
二、在“空间与图形”中培养合情推理能力
在“空间与图形”的教学中,既要重视演绎推理。又要重视合情推理。中学数学新课程标准关于《空间与图形》的教学中指出:“降低空间与图形的知识内在要求,力求遵循学生的心理发展和学习规律,着眼于直观感知与操作确认,多从学生熟悉的实际出发,让学生动手做一做,试一试,想一想,认别图形的主要特征与图形变换的基本性质,学会识别不同图形;同时又辅以适当的教学说明,培养学生一定的合情的推理能力。”并为学生“利用直观进行思考”提供了较多的机会。学生在实际的操作过程中.要不断地观察、比较、分析、推理,才能得到正确的答案。如:在圆的教学中,结合圆的轴对称性,发现垂径定理及其推论;利用圆的旋转对称性,发现圆中弧、弦、圆心角之间的关系;通过观察、度量,发现圆心角与圆周角之间的数量关系;利用直观操作,发现点与圆、直线与圆、圆与圆之间的位置关系;等等。在学生通过观察、操作、变换探究出图形的性质后,还要求学生对发现的性质进行证明,使直观操作和逻辑推理有机地整合在一起,使推理论证成为学生观察、实验、探究得出结论的自然延续,这个过程中就发展了学生的合情推理能力。注意突出图形性质的探索过程,重视直观操作和逻辑推理的有机结合,通过多种手段,如观察度量、实验操作、图形变换、逻辑推理等来探索图形的性质。同时也有助于学生空间观念的形成,合情推理的方法为学生的探索提供努力的方向。
三、在“统计与概率”中培养合情推理能力
统计中的推理是合情推理,是一种可能性的推理,与其它推理不同的是,由统计推理得到的结论无法用逻辑推理的方法去检验,只有靠实践来证实。因此,“统计与概率”的教学要重视学生经历收集数据、整理数据、分析数据、作出推断和决策的全过程。如:为筹备新年联欢晚会,准备什么样的水果才能最受欢迎?首先应由学生对全班同学喜欢什么样的水果进行调查,然后把调查所得到的结果整理成数据,并进行比较,再根据处理后的数据作出决策,确定应该准备什么水果。这个过程是合情推理,其结果只能使绝大多数同学满意。
概率是研究随机现象规律的学科,在教学中学生将结合具体实例,通过掷硬币、转动转盘、摸球、计算器(机)模拟等大量的实验学习概率的某些基本性质和简单的概率模型,加深对其合理性的理解。
四、在学生熟悉的生活环境中培养合情推理能力
关键词逻辑推理;数学;排除法;列表
中图分类号G623
文献标识码A
文章编号2095-3712201308-0070-05
在一次听课活动中,一位老师执教六年级下册总复习中的例六――《稍复杂逻辑推理》。尽管新课程推出十年了,可这样的课我们还从未听过。网上的资料也非常少,而《数学课程标准》重点解释的十大名词之一便是推理能力,所以,此课当听!
开始上课后,教师首先带领学生们做了一个“猜猜谁是班长”的游戏,让学生初步感知排除法;接着呈现例六,结合表格利用排除法推理;然后让学生独立解决课本练习十八的第七题;最后进行拓展。在这样的课程设计中,学生的思维应该会比较活跃,兴趣很高。可是,在本堂课的教学中,我们感觉学生热情不高,反应平平。他们对用表格进行信息梳理,结合排除法进行推理这一方法并不接受。原因何在?特级教师钱希有校长的点评让我们茅塞顿开。针对一些环节,在钱老师的指导下,我们进行了思考与改进。
一、教材的解读不仅需要全面细致,更需准确把握学生的已有起点,遵循学生的认知规律
三、教学不仅要考虑学生知识能力的培养,更要注重数学活动经验和思想的培养
《数学课程标准》在“双基”的基础上提出了“四基”:即基础知识、基本技能、基本思想和基本活动经验。数学学习对学生的后继发展起作用的不是具体的数学知识、公式、定理等,而是数学的思考方法、数学的思想、数学的能力等。数学思想、能力的培养需要大量数学活动经验,因此,充足的数学活动经验是学生学好数学、提升数学素养的重要基础。纵观本节课,教师自始至终都给学生创设了大量的活动时间。学生经历了从语言描述推理的混乱到列表需求产生的过程。复杂的信息需要整理,整理的目的是为了更好地分析,而如何分析更需要学生自己“做”的过程和“思考”的过程。在对名次的推理中,学生自己介绍如何列表,学生会的教师不教。在同班情况推理中,因为情况复杂,所以教师稍加指导。每次的推理活动不仅是形式上的活动,名次推理使学生感受表格的清晰明了,同班推理使学生感悟不同情况要采用不同方法。推理的过程都使用了“排除法”,这种方法可以逐步缩小范围,快速确定。总之,教学是学生不断经历和体验的过程。
学生推理能力的形成和提高需要一个长期的、循序渐进的过程。这既需要教师全面细致地解读教材,对学生已有的起点心中有数,预设切实可行的教学方案,更需要教师致力于学生的后继发展,帮助学生积累活动经验,提高他们的数学素养。
参考文献: