公务员期刊网 精选范文 量子力学对科技的影响范文

量子力学对科技的影响精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的量子力学对科技的影响主题范文,仅供参考,欢迎阅读并收藏。

量子力学对科技的影响

第1篇:量子力学对科技的影响范文

多年以前,高科技最牛的美国就已不把电子计算机列为高科技产品了。

但巨高性能计算机仍是信息时代的高科技标志物件之一。2012年诺贝尔物理学奖发给了法国人塞尔日·阿罗什和美国人大卫·维恩兰德,这两位科学家的研究成果为新一代超级量子计算机的诞生提供了可能性。

恶搞一下:法国人浪漫,而简称美国人为美人,那么,浪漫人美人=?

文艺范儿的信息

不往滥俗里想,那么,答案就是很文艺化的表达了。其实,“信息”最初是相当文艺范儿的,而不是20世纪中期才开始热门起来的科技词汇。

一般认为,中文的“信息”一词出自南唐诗人李中《暮春怀故人》:“梦断美人沉信息,目穿长路倚楼台。”—— “美眉音信消息全无啊,梦里也梦不到你,我独自上楼倚栏,望眼欲穿望到长路尽头也不见你。”这么拙劣地意译,也让人感觉到深深的思念。

其实,在李中之前一百多年,与李商隐齐名的唐朝大诗人杜牧《寄远》里就有“信息”了:“塞外音书无信息,道旁车马起尘埃。”还有比小杜更早的,唐朝诗人崔备的《清溪路中寄诸公》:“别来无信息,可谓井瓶沉。”

宋朝的婉约派大词人柳永、李清照也用过“信息”这个词。因金兵入侵而流离失所的李清照思念当年安乐的故乡,心理上把信息的价格定成了真正的天价:“不乞隋珠与和璧,只乞乡关新信息。”——千年前的唐宋中国,其高科技虽是世界第一,但信息技术还是跟现在没法比的,要靠驿马、鸿雁甚至人步行来传递信息,速度慢而效率低,信息珍贵啊。

在地球的西方呢?虽然香农1948年就划时代地把信息引为数学研究的对象,赋予其新的科学的涵义;至1956年,“人工智能”术语也出现了。可最早讨论数据、信息、知识与智慧之间关系的,却是得过诺贝尔文学奖的大诗人艾略特(T. S. Eliot;钱钟书故意译为“爱利恶德”)。他在1934年的诗歌“The Rock”中写道:

Where is the Life we have lost in living?

Where is the wisdom we have lost in knowledge?

Where is the knowledge we have lost in information?

Where is the information we have lost in data?

我们迷失于生活中的生命在哪里?

我们迷失于知识中的智慧在哪里?

我们迷失于信息中的知识在哪里?

我们迷失于数据中的信息在哪里?

尽管第四句是好事者后加的,但诗人还是直指本质地提出了信息暴炸时代最困扰人的难题:如何不让我们的生命和智慧都迷失在数据中?

量子计算机和量子信息技术,提供了一种让生命和智慧不要淹没在数据的海洋中的途径、工具和可能。

量子与量子计算机

量子理论是现代物理学的两大基石之一,为从微观理解宏观提供了理论基础。客观世界有物质、能量两种存在形式,物质和能量可以互相转换(见爱因斯坦的质能方程),量子理论就是从研究极度微观领域物质的能量入手而建立起来的。

我们知道,微观世界中有许多不同于宏观世界的现象和规则。经典物理学理论中的能量是连续变化的,可取任意值,但科学家们发现微观世界中的很多物理现象无法解释。1900年12月14日,普朗克在解释“黑体辐射”时提出:像原子是一切物质的构成单元一样,“能量子(量子)”是能量的最小单元,原子吸收或发射能量是一份一份地进行的。这是量子物理理论的诞生。

1905年,爱因斯坦把量子概念引进光的传播过程,提出“光量子(光子)”的概念,并提出光的“波粒二象性”。1920年代,德布罗意提出“物质波”概念,即一切物质粒子均有波粒二象性,海森堡等建立了量子矩阵力学,薛定谔建立了量子波动力学,量子理论进入了量子力学阶段。1928年,狄拉克完成了矩阵力学和波动力学之间的数学转换,对量子力学理论进行了系统的总结,成功地将相对论和量子力学两大理论体系结合起来,使量子理论进入量子场论阶段。

“量子”词源拉丁语quantum,意为“某数量的某事物”。现代物理学中,某些物理量的变化是以最小的单位跳跃式进行的,而不是连续的,这个最小的基本单位叫做量子;或者说,一个物理量如果有不可连续分割的最小的基本单位,则这个物理量(所有的有形性质)是“可量子化的”,或者说其物理量的数值会是特定的数值而非任意值。例如,在(休息状态)的原子中,电子的能量是可量子化的,这能决定原子的稳定和一般问题。

虽然量子理论与我们日常经验感觉的世界大不一样,但量子力学已经在真实世界应用。激光器工作的原理,实际上就是激发一个特定量子散发能量。现代社会要处理大量数据和信息,需要计算的机器(计算机)。量子力学的突破,使瓦格纳等于1930年发现半导体同时有导体和绝缘体的性质,后来才有了用于电子计算机的同时作为电子信号放大器和转换器的晶体管,再有了集成电路芯片,今天的一个尖端芯片可集聚数十亿个微处理器。

随着计算机科技的发展,发现能耗导致发热而影响芯片集成度,限制了计算速度;能耗源于计算过程中的不可逆操作,但计算机都可找到对应的可逆计算机且不影响运算能力。既然都能改为可逆操作,在量子力学中则可用一个幺正变换来表示。1969年,威斯纳提出“基于量子力学的计算设备”,豪勒夫等于1970年代论述了“基于量子力学的信息处理”。1980年代量子计算机的理论变得很热闹。费曼发现模拟量子现象时,数据量大至无法用电子计算机计算,在1982年提出用量子系统实现通用计算以减少运算时间;杜斯于1985年提出量子图灵机模型。1994年,数学家彼得·秀尔提出量子质因子分解算法,因其可破解现行银行和网络应用中的加密,许多人开始研究实际的量子计算机。

在物理上,传统的电子计算机可以被描述为对输入信号串行按一定算法进行变换的机器,其算法由机器内部半导体集成逻辑电路来实现,其输入态和输出态都是传统信号(输入态和输出态都是某一力学量的本征态),存储数据的每个单元(比特bit)要么是“0”要么是“1”,即在某一时间仅能存储4个二进制数(00、01、10、11)中的一个。而量子计算机靠控制原子或小分子的状态,用量子算法运算数据,输入态和输出态为一般的叠加态,其相互之间通常不正交,其中的变换为所有可能的幺正变换;因为量子态有叠加性(重叠)和相干性(牵连、纠缠)两个本质特性,量子比特(量子位qubit)可是“0”或“1”或两个“0”或两个“1”,即可同时存储4个二进制数(00、01、10、11),实现量子并行计算(量子计算机对每一个叠加分量实现的变换相当于一种传统计算,所有传统计算同时完成,并按一定的概率振幅叠加,给出量子计算机的输出结果),从而呈指数级地提高了运算能力——一台未来的量子计算机3分钟就能搞定当今世界上所有电子计算机合起来100万年才能处理完的数据。用量子力学语言说,传统计算机是没有用到量子力学中重叠和牵连特性的一种特殊的量子计算机。从理论上讲,一个250量子比特(由250个原子构成)的存储器,可能存储2的250次方个二进制数,比人类已知宇宙中的全部原子数还多。而且,集成芯片制造业很快将步入16纳米的工艺,而量子效应将严重影响芯片的设计和生产,又因传统技术的物理局限性,硅芯片已到尽头,突破的希望在于量子计算。

量子世界的死猫活猫与粒子控制

喜好科技的文艺青年可能看过美剧《生活大爆炸》,其中有那只著名的“薛定谔猫”:一只被关在黑箱里的猫,箱里有毒药瓶,瓶上有锤子,锤子由电子开关控制,电子开关由一个独立的放射性原子控制;若原子核衰变放出粒子触动开关,锤落砸瓶放毒,则猫死。薛定谔构想的这个实验,被引为解释量子世界的经典。而量子理论认为,单个原子的状态其实不是非此即彼,或说箱里的原子既衰变又没有衰变,表现为一种概率;对应到猫,则是既死又活。若我们不揭开盖子观察,永远也不知道猫的死活,它永远处于非死非活的叠加态。

宏观态的确定性,其实是亿万微观粒子、无数种概率的宏观统计结果。微观粒子通常表现为两种截然不同的状态纠缠一起,一旦用宏观方法观察这种量子态,只要稍一揭开箱盖,叠加态立即就塌缩了(扰破坏掉),薛定谔猫就突然由量子的又死又活叠加态变成宏观的确定态。用实验研究量子,首先要捕获单个的量子。即若不分离出单个粒子,则粒子神秘的量子性质便会消失。科学家们长期以来头疼的是,未找到既不破坏量子态,又能实际观测它的实验方法,他们只能在头脑中进行思想实验,而无法实际验证其预言。

而阿罗什和维恩兰德的研究,发明了在保持个体粒子的量子力学属性的情况下对其进行观测和操控的方法,则可实证地说出薛定谔猫究竟是死猫还是活猫,而且为研制超级量子计算机带来了更大可能,因为量子计算机中最基础的部分——得到1个量子比特已获成功。

光子和原子是量子世界中的两种基本粒子,光子形成可见光或其他电磁波,原子构成物质。他们研究光与物质间的基本相互作用,方法大同小异:维因兰德利用光或光子来捕捉、控制以及测量带电原子或者离子。他平行放置两面极精巧的镜子,镜间是真空空腔,温度接近绝对零度(约-273℃)。一个光子进入空腔后,在两镜面间不断反射。阿罗什则通过发射原子穿过阱,控制并测量了捕获的光子或粒子。他用一系列电极营造出一个电场囚笼,粒子像是被装进碗里的玻璃球;然后用激光冷却粒子,最终有一个最冷的粒子停在了碗底。阿罗什在捕获单个光子后,引入了特殊的里德伯原子,作为观测工具,从而得到光子的数据。维因兰德向碗中发射激光,通过观测光谱线而得到碗底粒子的数据。

2007年以来,加拿大、美国、德国和中国的科学家都说自己研制出了某种级别的量子计算机,但到今天却仍无一个投入实用。光钟更接近现实,因为可操控单个量子,就能按意愿调控量子的振荡(相当于钟摆)频率,越高越精;目前实验的光钟,若从宇宙产生起开始计时,至今只误差5秒。光钟可使卫星定位和计算太空船的位置更精确……

神话般的量子信息技术

科幻作家克莱顿(著有《侏罗纪公园》、《失去的世界》等)在科幻小说《时间线》中,曾文艺化地描述量子计算,用了“量子多宇宙”、“量子泡沫虫洞”、“量子运输”、“量子纠缠态”、“电子的32个量子态”等让常人倍感高深的说法。其中一些如今正在证实或变现。

如果清朝政府的通信密码不被日本破译,那么李鸿章后去日本谈判时就很可能是另外一种结局,今天也不会有的问题了。目前世界的密码系统大都采用单项数学函数的方式,应用了因数分解等数学原理,例如目前网络上常用的密码算法。秀尔提出的量子算法利用量子计算的并行性,能轻松破解以大数因式分解算法为根基的密码体系。量子算法中,量子搜寻算法等也能分分钟攻破现有密码体系。可说量子这种技术在现代军事上的意义不亚于核弹。但同时,量子信息技术也将发展出一种理论上永远无法破译的密码——量子密码。

保密通信分为加密、接收、解密三个过程,密钥的保密和不被破解至为关键。量子密码采用量子态作为密钥,是不可复制的,至少在理论上是无破译的可能。量子通信是用量子态的微观粒子携带的量子信息作为加密和解密用的密钥,其密钥安全性不再由数学计算,而是由微观粒子所遵循的物理规律来保证,窃密者只有突破物理法则才有可能盗取密钥(根据海森堡的测不准原理,任何测量都无法穷尽量子的所有信息)。而且量子通信中,量子纠缠态(有共同来源的两个粒子存在着纠缠关系,似有“心灵感应”,无论距离多远,一个粒子的状态发生变化,另一个粒子也发生变化,速度远远超过光速,一旦受扰即不再纠缠。爱因斯坦称这种发生机理至今未解的量子纠缠为“幽灵般的超距作用”)被用于传输和保证信息安全,使任何窃密行为都会扰乱传送密钥的量子状态,从而留下痕迹。

第2篇:量子力学对科技的影响范文

关键词 量子物理;现代信息技术;关系;原理应用

中图分类号:O41 文献标识码:A 文章编号:1671-7597(2013)15-0001-02

量子物理是人们认识微观世界结构和运动规律的科学,它的建立带来了一系列重大的技术应用,使社会生产和生活发生了巨大的变革。量子世界的奇妙特性在提高运算速度、确保信息安全、增大信息容量等方面发挥重要的作用,基于量子物理基本原理的量子信息技术已成为当前各国研究与发展的重要科学技术领域。

随着世界电子信息技术的迅猛发展,以微电子技术为基础的信息技术即将达到物理极限,同时信息安全、隐私问题等越来越突出。2013年5月美国“棱镜门”事件的爆发,引发了对保护信息安全的高度重视,将成为推动量子物理科学与现代信息技术的交融和相互促进发展的契机。因此,充分认识量子物理学的基本原理在现代信息技术中发展的基础地位与作用,是促进现代信息技术发展的前提,也是丰富和发展量子物理学的需要。

1 量子物理基本原理

1)海森堡测不准原理。在量子力学中,任何两组不可同时测量的物理量是共扼的,满足互补性。在进行测量时,对其中一组量的精确测量必然导致另一组量的完全不确定,只能精确测定两者之一。

2)量子不可克隆定理。在量子力学中,不能实现对各未知量子态的精确复制,因为要复制单个量子就只能先作测量,而测量必然改变量子的状态,无法获得与初始量子态完全相同的复制态。

3)态叠加原理。若量子力学系统可能处于和描述的态中,那么态中的线性叠加态也是系统的一个可能态。如果一个量子事件能够用两个或更多可分离的方式来实现,那么系统的态就是每一可能方式的同时迭加。

4)量子纠缠原理。是指微观世界里,有共同来源的两个微观粒子之间存在着纠缠关系,不管它们距离多远,只要一个粒子状态发生变化,另一个粒子状态随即发生相应变化。换言之,存在纠缠关系的粒子无论何时何地,都能“感应”对方状态的变化。

2 量子物理与现代信息技术的关系

2.1 量子物理是现代信息技术的基础与先导

物理学一直是整个科学技术领域中的带头学科并成为整个自然科学的基础,成为推动整个科学技术发展的最主要的动力和源泉。量子力学是20世纪初期为了解决物理上的一些疑难问题而建立起来的一种理论,它不仅解释了微观世界里的许多现象、经验事实,而且还开拓了一系列新的技术领域,直接导致了原子能、半导体、超导、激光、计算机、光通讯等一系列高新技术产业的产生和发展。可以说,从电话的发明到互联网络的实时通信,从晶体管的发明到高速计算机技术的成熟,量子物理开辟了一种全新的信息技术,使人类进人信息化的新时代,因此,量子物理学是现代信息技术发展的主要源泉,而且随着现代科学技术的飞速发展,量子物理学的先导和基础作用将更加显著和重要。

2.2 量子物理为现代信息技术的持续发展提供新的原理和方法

现代信息技术本质上是应用了量子力学基本原理的经典调控技术,随着世界科学技术的迅猛发展,以经典物理学为基础的信息技术即将达到物理极限。因此,现代信息技术的突破,实现可持续发展必须借助于新的原理和新的方法。量子力学作为原子层次的动力学理论,经过飞速发展,已向其他自然科学的各学科领域以及高新技术全面地延伸,量子信息技术就是量子物理学与信息科学相结合产生的新兴学科,它为信息科学技术的持续发展提供了新的原理和方法,使信息技术获得了活力与新特性,量子信息技术也成为当今世界各国研究发展的热点领域。因此,未来的信息技术将是应用到诸如量子态、相位、强关联等深层次量子特性的量子调控技术,充分利用量子物理的新性质开发新的信息功能,突破现代信息技术的物理极限。

2.3 现代信息技术对量子物理学发展的影响

量子信息技术应用量子力学原理和方法来研究信息科学,从而开发出现经典信息无法做到的新信息功能,反过来,现代信息技术的发展大大地丰富了量子物理学的研究内容,也将不断地影响量子物理学的研究方法,有力地将量子理论推向更深层次的发展阶段,使人类对自然界的认识更深刻、更本质。近年来,随着量子信息技术领域研究的不断深入,量子信息技术的发展也使量子物理学研究取得了不少成果,如量子关联、基于熵的不确定关系、量子开放系统环境的控制等问题研究取得了巨大进展。

3 基于量子物理学原理的量子信息技术

基于量子物理原理和方法的量子信息技术成为21世纪信息技术发展的方向,也是引领未来科技发展的重要领域。当前量子物理学的基本原理已经在量子密码术、量子通信、量子计算机等方面得到充分的理论论证和一定的实践应用。

3.1 量子计算机——量子叠加原理

经典计算机建立在经典物理学基础上,遵循普通物理学电学原理的逻辑计算方式,即用电位高低表示0和1以进行运算,因此,经典计算机只能靠以缩小芯片布线间距,加大其单位面积上的数据处理量来提高运算速度。而量子计算遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息。计算方式是建立在微观量子物理学关于量子具有波粒两重性和双位双旋特性的基础上,量子算法的中心思想是利用量子态的叠加态与纠缠态。在量子效应的作用下,量子比特可以同时处于0和1两种相反的状态(量子叠加),这使量子计算机可以同时进行大量运算,因此,量子计算的并行处理,使量子计算机实现了最快的计算速度。未来,基于量子物理原理的量子计算机,不仅运算速度快,存储量大、功耗低,而且体积会大大缩小。

3.2 量子通信——量子纠缠原理

量子通信是一种利用量子纠缠效应进行信息传递的新型通信方式。量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等。从信息学上理解,量子通信是利用量子力学的量子态隐形传输或者其他基本原理,以量子系统特有属性及量子测量方法,完成两地之间的信息传递;从物理学上讲,量子通信是采用量子通道来传送量子信息,利用量子效应实现的高性能通信方式,突破现代通信物理极限。量子力学中的纠缠性与非定域性可以保障量子通信中的绝对安全的量子通信,保证量子信息的隐形传态,实现远距离信息转输。所以,与现代通信技术相比,量子通信具有巨大的优越性,具有保密性强、大容量、远距离传输等特点,量子通信创建了新的通信原理和方法。

3.3 量子密码——不可克隆定理

经典密码是以数学为基础,通过经典信号实现,在密钥传送过程中有可能被窃听且不被觉察,故经典密码的密钥不安全。量子密码是一种以现代密码学和量子力学为基础,利用量子物理学方法实现密码思想和操作的新型密码体制,通过量子信号实现。量子密码主要基于量子物理中的测不准原理、量子不可克隆定理等,通信双方在进行保密通信之前,首先使用量子光源,依照量子密钥分配协议在通信双方之间建立对称密钥,再使用建立起来的密钥对明文进行加密,通过公开的量子信道,完成安全密钥分发。因此量子密码技术能够保证:

1)绝对的安全性。对输运光子线路的窃听会破坏原通讯线路之间的相互关系,通讯会被中断,且合法的通信双方可觉察潜在的窃听者并采取相应的措施。

2)不可检测性。无论破译者有多么强大的计算能力,都会在对量子的测量过程中改变量子的状态而使得破译者只能得到一些毫无意义的数据。因此,量子不可克隆定理既是量子密码安全性的依靠,也给量子信息的提取设置了不可逾越的界限,即无条件安全性和对窃听者的可检测性成为量子密码的两个基本特征。

4 结论

量子物理是现代信息技术诞生的基础,是现代信息技术突破物理极限,实现持续发展的动力与源泉。基于量子物理学的原理、特性,如量子叠加原理、量子纠缠原理、海森堡测不准原理和不可克隆定理等,使得量子计算机具有巨大的并行计算能力,提供功能更强的新型运算模式;量子通信可以突破现代信息技术的物理极限,开拓出新的信息功能;量子密码绝对的安全性和不可检测性,实现了绝对的保密通信。随着量子物理学理论在信息技术中的深入应用,量子信息技术将开拓出后莫尔时代的新一代的信息技术。

参考文献

[1]陈枫.量子通信:划时代的崭新技术[N].报,2011.

[2]曾谨言.量子物理学百年回顾[J].北京大学物理学科90年专题特约专稿,2003(10).

[3]李应真,吴斌.物理学是当代高新技术的主要源泉[J].学术论坛,2012.

[4]董新平,杨纲.量子信息原理及其进展[J].许昌学院学报,2007.

[5]周正威,陈巍,孙方稳,项国勇,李传锋.量子信息技术纵览[J].中国科学,2012(17).

[6]郭光灿.量子信息技术[J].中国科学院院刊,2002(5).

[7]朱焕东、黄春晖.量子密码技术及其应用[J].国外电子测量技术,2006(12).

第3篇:量子力学对科技的影响范文

【关键词】 量子通信技术 发展现状 趋势 研究

近年来量子通信在各类学术会议或期刊中频频出现,作为一个古老而又新鲜的话题,电视等各种媒体中经常出现各种关于量子通信技术重大突破的报道。在国家技术规划中,“量子调控研究”被列为重大基础科学研究计划之一,在20-30年后预计量子技术将会给人类社会带来巨大影响。量子通信技术的重要性,要求我们必须予以其关注。首先,我们应该对量子通信技术的发展现状有一定了解。

一、量子通信技术的发展现状

在量子通信的概念上,不同的角度对其有不同的表述。总体来说,量子通信是一种新型的通信方式,是量子力学和通信科学的综合产物,它通过对量子纠缠效应的利用来传递信息。量子通信的基本思想主要包括两部分,一为量子密钥分发,二为量子态隐形传输。通过量子密钥分发可以对安全的通信密码加以建立,在一次一次的加密方式下,点对点方式的安全经典通信便得以实现,且这种安全性已经被数学严格证明,是迄今为止经典通信仍然做不到的。百公里量级的量子密钥分发,目前的量子密钥分发技术能够轻松完成的,在光开关等技术辅佐下量子密钥分发技术还可以实现量子密钥分发网络。量子态隐形传输是一种物理载体,能促使量子态(量子信息) 的空间转移的同时又不移动量子态的实现,类似于将从一个信封内将密封信件内容转移到另一个信封内且信息载体自身并不会被移动,这种经典通信中无法想象的事是基于量子纠缠态的分发与量子联合测量完成的。量子中继器这种以量子态隐形传输技术和量子存储技术为基础的技术可以促使任意远距离量子密钥分发及网络的实现。

量子力学诞生于1926年,是人类对微观世界加以认识的理论基础之一。量子力学和相对论之间的不相容性在1935年被爱因斯坦、波多尔基斯和罗森论证后,约翰・贝尔于1964年提出贝尔理论,,阿斯派克等人于1982年证明了超光速响应的存在。1989年第一次演示成功量子密钥传输,1997年量子态隐形传输的原理性实验验证由奥地利蔡林格小组在室内首次完成,2004年,该小组又将量子态隐形传输距离成功提高到600米。2007年开始我国架设了长达16 公里的自由空间量子信道,于2009年成功实现世界上量子隐形传态的最远距离。

二、量子通信技术的发展趋势

量子通信技术的研究方向除了包括量子隐形传态还包括量子安全直接通信等,突破了现有信息技术,引起了学术界和社会的高度重视。与传统通信技术相比,量子通信除具有超强抗干扰能力外且不需对传统信道进行借助;与此同时量子通信的密码被破译的可能性几乎没有,具有较强的保密性;另外,量子通信几乎不存在线路时延,传输速度很快。量子通信发展仅仅经历了20年左右,但其发展却十分迅猛,目前已经被很多国家和军方给予高度关注。

量子通信在国防和军事上具有广阔的应用前景,作为量子技术的最大特征,量子技术的安全性是传统加密通信所无可企及的。量子通信技术的超强保密性,能够有效保证己方军事密件和军事行动不被敌方破译及侦析,在国防和军事领域显示出无与伦比的魅力。另一方面,在破解复杂的加密算法上,也许现有计算机可能需要好几万年的时间,在现实中是完全无法接受且几乎没有实用价值的。但量子计算机却能在几分钟内将加密算法破解,如果未来这种技术被投入实用,传统的数学密码体制将处于危险之中,而量子通信技术则能能够抵御这种破解和威胁。此外,在民间通信领域量子通信技术的应用前景也同样广阔。中国科技大学在2009年对界上首个5 节点的全通型量子通信网络进行组建后,使得实时语音量子保密通信被首次实现,城市范围的安全量子通信网络在这种“城域量子通信网络”基础上成为了现实。

各国正是瞅准了量子通信技术的无限应用前景,纷纷加大对量子通信技术方面的投入力度。在未来的量子通信技术还应注意一些关键性的问题,如单光子源成本的降低、通信传输距离的加大以及检测概率的增强等,都仍需要进一步的研究。

参考文献

[1]新华.量子通信走进人们日常生活[J].军民两用技术与产品,2011,6(06):55-57

[2]池灏,章献民,朱华飞,陈抗生.量子密码的原理、应用和研究进展[J].光电子・激光,2010,1(01):133-134

第4篇:量子力学对科技的影响范文

21世纪,人类已全面进入信息时代,人们生活的方方面面都离不开信息的交换,从农耕时代的相互喊话,到古代的飞鸽传书,接着产生了电报、传真,然后是大哥大,BB机,现在,世界各地都通过互联网联系起来,即便想隔千里,也可用手机通话,发短信,用QQ、MSN与世界另一端的朋友聊天。

网络的速度是非常快的,电子在线缆中的传输速度接近光速,无线电池也是一种电磁波,能以光速传播,大洋之中也铺设有光纤,使信息跨越数万公里如转瞬即逝,按照光速30万公里每秒来计算,围绕地球一圈只需0.13秒,因此,即使我们拨打越洋电话,时间上的延迟可以说是忽略不计的。

随着人类的脚步迈入太空,一个难题已摆在人类面前,那就是宇宙空间的巨大,通讯时间上的延迟已经达到了不可忽略的程度。比如美国六十年代的阿波罗计划,人类登上月球之后,靠电波与地球保持联系,由于月球与地球距离38万公里,所以电磁波一去一回便要消耗两秒多的时间,指挥中心说的话要1秒多那边才听到,那边说的话也要1秒多这边才听到,这给信息的实时交流造成了不小的麻烦。

如果说两秒钟的延迟还可以接受,那么更远距离的通讯就会影响巨大,比如2003年美国发射到火星的勇气号与机遇号探测器,由于火星到地球的距离一直在改变,最近大约为5500万公里,最远的有4亿多公里,也就是说光从地球到火星最少要用3分多钟,最多要20多分钟,所以平均下来,从地球发向火星的指令需要十几分钟的时间,这就对探测器的控制造成了很大的影响,如果要对一个错误指令做出修改,就需要十几分钟才能传到,可能这个错误指令已造成许多严重后果,事实上,机遇号和勇气号也因此重启系统多次;勇气号更是在09年4月由于错误指令被困于沙坑中,待指挥中心发出修正指令已经晚了,直到现在,勇气号仍没有脱困,并且可能永久困在这个沙坑中了。

如果再将距离放大,扩展到太阳系外,各种信息在时间上的延迟已达到了惊人的程度,目前人类飞行最远的航天器是1977年9月发射的旅行者号1号(Voyagor 1)它目前已达到太阳系边缘,距太阳170亿公里,大于111个天文单位,(Astronomical Unit,1天文单位是地球到太阳的平均高,约1.496亿公里),它发射的信号要13小时才能到达地球,如果它发生什么意外,信息传回地球已是13小时之后了,这时再处理,这些事件已无力回天。

所以,人类如果想要成功的进军太空,走出太阳系,我们就必须要解决通讯的时间延迟这一问题,下面,我将介绍一下我自己的一点想法以及对前人已有设想做一个小结。

一、理论基础

在介绍我的想法之前,有必要说一说量子力学这一理论,量子力学(Quantum Mechanics)是研究微观粒子的运动规律的物理学分支学科,主要研究各科基本粒子的结构,性质。它在20世纪初由普朗克,玻尔,海森堡,薜定谔等物理学家共同创立以弥补经典物理在描述微观世界的不足。直到现在量子力学已与相对论成为现代物理的两大基础理论。

随着量子力学的发展越来越多关于微观世界的奇怪性质被人们所了解,它作出了许多对微观世界物理现象的预言,其中大部分都已被证明是确实存在的,这其中也有许多在常人看来难以致信的结论,有海森堡测不准(Uncertainty Principle)原理,思想实验薜定谔的猫等,这些结论都反映了微观世界的不确定性和随机性。在这其中有一个最令人惊讶的结论,也是我的想法的理论基础,那就是微观粒子间的量子纠缠(Quantum entanglement),它是由两个以上的多个粒子组成的复合系统,简单的说,就是两个粒子在特定情况下会产生某种特殊关联性(correlation),最令人吃惊的是如果影响其中一个粒子,另一个粒子就会同时发生一些性质的改变,它们是等时的,没有时间上的延迟,这个结论与相对论的基本设定一切物质能量的速度都不可能超过光速相违背,因此,爱因斯坦与当时多位物理学家联合起来反对量子力学。可是事实胜于雄辩,随着人类技术的发展,1997年,奥地利物理学家首次实现了量子纠缠态的实验,这一研究不断取得可喜成果,到了2009年,中国科大和清华大学在北京架设了厂16公里的信息通道,并成功地进行了量子通讯实验。创造了目前量子通讯最远距离的世界纪录。

二、设想

虽然各种实验的成果是可喜的,但是我们还有很多问题要解决,比如我们目前进行的实验都是有线的传播信息的两地需要光纤连接,并且目前我们只成功实现了光子的量子纠缠。

科技总是在不断进步,这些难题终究会被克服,我们应该思考的时如何应用这些成果,又一海森堡测不准原理,我们不可能同时测出一个粒子在某一时刻的位置和动量,因此我们要获取从另一个粒子传过来的信息,就有了困难,我的想法是,利用超对称粒子来实现量子通讯,所谓超对称(SuPer symmetry)就是一种基本粒子间的关系,目前基本粒子可分为两类,一类叫波色子(Boson),它们的自旋为整数,如光子为1,一类叫费米子(Fermion),它们的自旋为半整数,如电子的自旋为1/2,根据超对称理论,每一种波色子都有一种与它对称的费米子,并且它们之间能够相互转换,如果我们使一对超对称粒子产生量子纠缠,并将它们固定在磁场中,那么改变一个粒子的自旋,另一个粒子的自旋也会一起改变,这样就会方便观察了。

要实现量子通讯就必须随时测量一对粒子的状态,这样做投资就会很巨大,那么能不能有一种能够直接读出信息的方法呢?其实对于这一问题已经有了一些设想的解决方案。科幻小说往往走在技术的前面,引导着技术的发展,在中国当代最具有实力的科幻作家刘慈欣的作品《三体》中就给出了一种解决方案:

第5篇:量子力学对科技的影响范文

关键词:计算工具;图灵模型;量子计算;哥德尔不完备定理;神谕

一、引言与计算的产生

在人类社会的早期时代,加减乘除的概念就被人们所认识到。随着人类文明的发展和技术的进步,对求方程的解,求函数的微分和积分等概念也纳入了计算的范畴。伴随人类生产活动的不断增加,人们对计算的要求也越来越大,计算工具也再不断的改进。

二、远古的计算工具

人们开始产生计算之日,便不断寻求能方便进行和加速计算的工具。因此,计算和计算工具是息息相关的。

早在公元前5世纪,中国人已开始用算筹作为计算工具,并在公元前3世纪得到普遍的采用,一直沿用了二千年。后来,人们发明了算盘,并在15世纪得到普遍采用,取代了算筹。它是在算筹基础上发明的,比算筹更加方便实用,同时还把算法口诀化,从而加快了计算速度。因此源用至今,并流传到海外,成为一种国际性的计算工具。

三、近代计算系统

近代的科学发展促进了计算工具的发展:在1614年,对数被发明以后,乘除运算可以化为加减运算,对数计算尺便是依据这一特点来设计。1620年,冈特最先利用对数计算尺来计算乘除。1850年,曼南在计算尺上装上光标,因此而受到当时科学工作者,特别是工程技术人员所广泛采用。

机械式计算器是与计算尺同时出现的,是计算工具上的一大发明。帕斯卡于1642年发明了帕斯卡加法器。在1671年,莱布尼茨发明了一种能作四则运算的手摇计算器,是长1米的大盒子。自此以后,经过人们在这方面多年的研究,特别是经过托马斯、奥德内尔等人的改良后,出现了多种多样的手摇计算器,并风行全世界。

四、电动计算机

英国的巴贝奇于1834年,设计了一部完全程序控制的分析机,可惜碍于当时的机械技术所限制而没有制成,但已包含了现代计算的基本思想和主要的组成部分了。

此后,由于电力技术有了很大的发展,电动式计算器便慢慢取代以人工为动力的计算器。1941年,德国的楚泽采用了继电器,制成了第一部通用过程控制计算器,实现了100多年前巴贝奇的理想。

五、电子计算机

20世纪初,电子管的出现,使计算器的改革有了新的发展,并由于二次大战的迫切的军事需要,美国宾夕法尼亚大学和有关单位在1946年制成了第一台电子计算器。

电子计算机的出现和发展,让人类进入了一个全新的时代。它极大影响了经济社会发展,并彻底改变了人们的生活。电子计算机是二十世纪最伟大的发明之一,也当之无愧地被认为是迄今为止由科学和技术所创造的最具影响力的现代工具。

在电子计算机和信息技术高速发展过程中,因特尔公司的创始人之一戈登·摩尔(Godon Moore) 对电子计算机产业所依赖的半导体技术的发展作出预言:半导体芯片的集成度将每两年翻一番。事实证明,自二十世纪60 年代以后的数十年内,芯片的集成度和电子计算机的计算速度实际是每十八个月就翻一番,而价格却随之降低一倍。这种奇迹般的发展速率被公认为“摩尔定律”。

六、 “摩尔定律”与“计算的极限”

人类是否可以将电子计算机的运算速度永无止境地提升? 传统计算机计算能力的提高有没有极限? 对此问题,学者们在进行严密论证后给出了否定的答案。

如果电子计算机的计算能力无限提高,最终地球上所有的能量将转换为计算的结果——造成熵的降低,这种向低熵方向无限发展的运动被哲学界认为是禁止的,因此,传统电子计算机的计算能力必有上限。

而以IBM研究中心朗道(R. Landauer) 为代表的理论科学家认为到二十一世纪三十年代,芯片内导线的宽度将窄到纳米尺度(1 纳米= 10-9 米) ,此时,导线内运动的电子将不再遵循经典物理规律——牛顿力学沿导线运行,而是按照量子力学的规律表现出奇特的“电子乱窜”的现象,从而导致芯片无法正常工作;同样,芯片中晶体管的体积小到一定临界尺寸(约5纳米) 后,晶体管也将受到量子效应干扰而呈现出奇特的反常效应。

哲学家和科学家对此问题的看法十分一致:摩尔定律不久将不再适用。也就是说,电子计算机计算能力飞速发展的可喜景象很可能在二十一世纪前三十年内终止。

著名科学家,哈佛大学终身教授威尔逊(Edward O. Wilson) 指出:“科学代表着一个时代最为大胆的猜想(形而上学) 。它纯粹是人为的。但我们相信,通过追寻“梦想—发现—解释—梦想”的不断循环,我们可以开拓一个个新领域,世界最终会变得越来越清晰,我们最终会了解宇宙的奥妙。所有的美妙都是彼此联系和有意义的。”

这段话成为许多科学家的座右铭,给人以启示。科学需要梦想,甚至需要形而上的猜想。科学的预言有时在哲学看来有着形而上学的味道。而在人类面临着计算科学的最大难题——计算的极限到来之时,DNA计算和量子计算为实现人类的这个梦想铺开了宏伟蓝图。

七、DNA计算系统

1994年11月,美国计算机科学家阿德勒曼(L.Adleman)在美国《科学》上公布DNA计算机的理论,并成功运用DNA计算机解决了一个有向哈密顿路径问题[7]。 DNA计算机的提出,产生于这样一个发现,即生物与数学的相似性:(1)生物体异常复杂的结构是对由DNA序列表示的初始信息执行简单操作(复制、剪接)的结果;(2)可计算函数f(ω)的结果可以通过在ω上执行一系列基本的简单函数而获得。

阿德勒曼不仅意识到这两个过程的相似性,而且意识到可以利用生物过程来模拟数学过程。更确切地说是,DNA串可用于表示信息,酶可用于模拟简单的计算。这是因为:首先,DNA是由称作核昔酸的一些单元组成,这些核昔酸随着附在其上的化学组或基的不同而不同。共有四种基:腺嘌呤、鸟嘌呤、胞嘧啶和胸腺嘧啶,分别用A、G、C、T表示。单链DNA可以看作是由符号A、G、C、T组成的字符串。从数学上讲,这意味着可以用一个含有四个字符的字符集∑ =A、G、C、T来为信息编码(电子计算机仅使用0和1这两个数字)。其次,DNA序列上的一些简单操作需要酶的协助,不同的酶发挥不同的作用。起作用的有四种酶:限制性内切酶,主要功能是切开包含限制性位点的双链DNA;DNA连接酶,它主要是把一个DNA链的端点同另一个链连接在一起;DNA聚合酶,它的功能包括DNA的复制与促进DNA的合成;外切酶,它可以有选择地破坏双链或单链DNA分子。正是基于这四种酶的协作实现了DNA计算。

DNA计算与电子计算机完全不同,它的计算单元是装在试管培养液中的DNA长链。通过控制试管的温度和向试管中投放反应物,来进行计算。

八、量子计算系统

量子计算最初思想的提出可以追溯到20世纪80年代。物理学家费曼RichardP.Feynman 曾试图用传统的电子计算机模拟量子力学对象的行为。他遇到一个问题[11]:量子力学系统的行为通常是难以理解同时也是难以求解的。以光的干涉现象为例,在干涉过程中,相互作用的光子每增加一个 ,有可能发生的情况就会多出一倍 ,也就是问题的规模呈指数级增加。模拟这样的实验所需的计算量实在太大了,不过,在费曼眼里 ,这却恰恰提供一个契机。转贴于  因为另一方面,量子力学系统的行为也具有良好的可预测性:在干涉实验中,只要给定初始条件,就可以推测出屏幕上影子的形状。费曼推断认为如果算出干涉实验中发生的现象需要大量的计算,那么搭建这样一个实验,测量其结果,就恰好相当于完成了一个复杂的计算。因此,只要在计算机运行的过程中,允许它在真实的量子力学对象上完成实验,并把实验结果整合到计算中去,就可以获得远远超出传统计算机的运算速度。

在费曼设想的启发下,1985年英国牛津大学教授多伊奇David Deutsch 提出是否可以用物理学定律推导出一种超越传统的计算概念的方法即推导出更强的丘奇——图灵论题[15]。费曼指出使用量子计算机时,不需要考虑计算是如何实现的,即把计算看作由“神谕”来实现的:这类计算在量子计算中被称为“神谕”(Oracle)。

有种种迹象表明:量子计算至少在一些特定的计算领域内确实比传统计算更强,例如,现代信息安全技术的安全性在很大程度上依赖于把一个大整数(如1024 位的十进制数) 分解为两个质数的乘积的难度。这个问题是一个典型的“困难问题”,困难的原因是目前在传统电子计算机上还没有找到一种有效的办法将这种计算快速地进行。目前,就是将全世界的所有大大小小的电子计算机全部利用起来来计算上面的这个1024 位整数的质因子分解问题,大约需要28 万年,这已经远远超过了人类所能够等待的时间。而且,分解的难度随着整数位数的增多指数级增大,也就是说如果要分解2046 位的整数,所需要的时间已经远远超过宇宙现有的年龄。而利用一台量子计算机,我们只需要大约40 分钟的时间就可以分解1024 位的整数了。

更重要的是,量子计算从本质上说是可逆的,朗道证明了可逆计算可以不消耗资源———也就是说,量子计算的运算速度可以不违背熵持续增加原理而无限增加。从这个例子我们可以直觉地认为量子计算在处理大规模计算问题时优越性是十分明显的,但目前还没法用数学证明这一点。

九、计算的本质

在人类文明的早期,人们就认识到“加减”这些计算活动,以及它们的重要性。随着,计算工具的不断改进,人们的“计算”本身的也不断的加深了解。到后来开方、求方程的解、求微分求积分也被纳入进计算的范畴。

“什么是计算?”问题一直到20世纪30年,才由哥德尔(K.Godel,1906-1978),丘奇(A.Church,1903-1995),图灵(A.M.TUI-ing,1912-1954)等数学家 的工作,人们才弄清楚什么是计算的本质,以及什么是可计算的,什么是不可计算的等根本性问题。

抽象地说,所谓计算,就是从一个符号串f变换成另一个符号串g。比如说,从符号串12+3变换成15就是一个加法计算。如果符号串f是x2,而符号串g是2x,从f到g的计算就是微分。定理证明也是如此,令f表示一组公理和推导规则,令g是一个定理,那么从f到g的一系列变换就是定理g的证明。从这个角度看,文字翻译也是计算,如f代表一个英文句子,而g为含意相同的中文句子,那么从f到g就是把英文翻译成中文。这些变换间有什么共同点?为 什么把它们都叫做计算?因为它们都是从己知符号(串)开始,一步一步地改变符号(串),经过有限步骤,最后得到一个满足预先规定的符号(串)的变换过程。

从类型上讲,计算主要有两大类:数值计算和符号推导。数值计算包括实数和函数的加减乘除、幕运算、开方运算、方程的求解等。符号推导包括代数与各种函数的恒等式、不等式的证明,几何命题的证明等。但无论是数值计算还是符号推导,它们在本质上是等价的、一致的,即二者是密切关联的,可以相互转化,具有共同的计算本质。随着数学的不断发展,还可能出现新的计算类型。

随着计算机日益广泛而深刻的运用,计算这个原本专门的数学概念已经泛化到了人类的整个知识领域,并上升为一种极为普适的科学概念和哲学概念,成为人们认识事物、研究问题的一种新视角、新观念和新方法。

十、“计算主义”的兴起

随着计算工具的发展,一些哲学家和科学家开始从计算的视角审视世界,科学家们不仅发现大脑和生命系统可被视作计算系统 ,而且发现整个世界事实上就是一个计算系统。当康韦证明细胞自动机与图灵机等价时 ,就有人开始把整个宇宙看作是计算机。因为特定配置的细胞自动机原则上能模拟任何真实的过程。如果真是这样,那么 ,我们便可以设想一种细胞自动机,它能模拟整个宇宙。实际上,我们完全可以把宇宙看作是一个三维的细胞自动机。基本粒子或其它什么层次的物质实体可以看作是这个细胞自动机格点上的物质状态 ,支配它们运动变化的规律可以看作是它们的行为规则。在这些规则的作用下基本粒子发生各种变化,从而导致宇宙的演化。

总之,计算或算法的观念在当今已经渗透到宇宙学、物理学、生物学乃至经济学和社会科学等诸多领域。计算已不仅成为人们认识自然、生命、思维和社会的一种普适的观念和方法 ,而且成为一种新的世界观。一些学者认为:不仅生命和思维的本质是计算,自然事件的本质也是计算。

十一、量子计算中的神谕

人类的计算工具,从木棍、石头到算盘,经过机械计算器,电器计算机,到现代的电子计算机,再到DNA计算机和量子计算。笔者发现这其中的过程让人思考:首先是人们发现用石头或者棍棒可以帮助人们进行计算,随后,人们发明了算盘,来帮助人们进行计算。当人们发现不仅人手可以搬动“算珠”,机器可以用来搬动“算珠”,而且效率更高,速度更快的时候,人们自然想到利用机器来搬动算珠,诞生了机械计算设备。

随后,人们用继电器替代了纯机械。最后人们用电子代替了继电器。就在人们改进计算工具的同时,数学家们开始对计算的本质展开了研究,图灵机模型告诉了人们答案。

电子计算机后,人们改变了思路,即:到自然界中去发现那些符合图灵模型的现象,例如DNA分子链的自我复制现象。DNA分子提供了AGCT四种碱基,相当于电子计算机中的2进制的0和1。DNA自我复制的机制,非常接近电子计算机的的模型——图灵机模型。

可以说,DNA计算机是基于图灵机的先进计算方式。但是它始终不能突破图灵机的极限。即:在牛顿经典物理学下“确定世界”的计算模型。

量子计算的出现,则彻底打破了这种认识与创新规律。它建立在对量子力学实验的在现实世界的不可计算性。试图利用一个实验来代替一系列复杂的大量运算。可以说。这是一种革命性的思考与解决问题的方式。

应为在此之前,所有计算均是模拟一个快速的“算盘”,即使是最先进电子计算机CPU内部,64位的寄存器(register),也是等价于一个有着64根轴的二进制算盘。在DNA计算中,这种情况稍微复杂一点,可视为ATCG四种碱基所构成的拥有上百万根轴,每根轴上有四个珠的“超级算盘”,尽管它的体积小到可以放在一根试管中。

量子计算则完全不同,对于量子计算的核心部件,类似与古代希腊世界中的“神谕”,没有人弄清楚神谕内部的机理,却对“神谕”内部产生的结果深信不疑。人们可以把它当作一个黑盒子,人们通过输入,可以得到输出,但是对于黑盒子内部发生了什么和为什么这样发生确并不知道。

十二、“神谕”的本质与哥德尔不完备性

量子计算在信息的承载体上与经典计算毫无区别:它同样利用二进制比特——称为量子比特——来进行运算。但是,量子力学的一个十分“反直觉”的奇特现象铸就了量子比特与传统比特的天壤之别。一个量子比特不仅仅可以表示信息“0”和“1”,还出人意料地可以表示一种“0”和“1”的叠加状态。

我们可以清晰地看到量子计算的神奇以及它不同于经典计算之处。那么,为什么量子计算会显示出如此奇怪的性质呢? 这些性质又有什么本质的物理原因呢[12]? 遗憾的是,迄今为止,科学家们还在为这些神奇的量子现象的本质而进行探索,答案不得而知。

人们对量子计算本质的无知来自于人们对量子世界内部的本质的认识还不统一。但这并不妨碍人们把量子计算最为超级计算机的想法。虽然它带有强烈的工具主义倾向。

量子计算的科学研究依然在继续,然而,对量子计算和量子力学本身的哲学研究却已经显示出人类的无奈和无助。也许,世界本身就是一个整体,我们仅仅从细处着眼永远无法看到导致整体变化的内因。

哥德尔不完备性定理告诉我们,任何一个足够强的一致的公理系统的完备性是不可证明的,而它的完备性的不可证明是可以证明的。

一些悲观的科学家和哲学家认为:我们科学研究所依赖的各种公理系统是无法证明完备的,即现实世界的有些现象是无法被已有定律和规律来揭示,人们努力地试图用这些已经发现的公理和规律去解释量子计算、量子力学,去解释自然和宇宙是不可行的。科学家们一直在努力解释量子世界的本质,但也应该清醒,这些努力有可能最终是失败的。而这些失败恰恰证明了哥德尔不完备性定理的正确性。所以他们认为人类是无法认识某些规律的,一些迷题永远是个迷。

十三、“神谕”的挑战与人类自身的回应

笔者的观点与上述不同,人类的思考能力,随着工具的不断进化而不断加强,尽管在远古时期,有些智者的思考能力已经远远超越了他们的时代,但是,在整体上,人类的思维能力和解决问题的能力是随着经济和科技的进步而不断加强。电子计算机和互联网的出现,大大加强了人类整体的科研能力,那么,量子计算系统的产生,会给人类整体带来更加强大的科研能力和思考能力,并最终解决困扰当今时代的量子“神谕”。不仅如此,量子计算系统会更加深刻的揭示计算的本质,把人类对计算本质的认识从牛顿世界中扩充到量子世界中。

哥德尔的不完备性并不能组织人类对未知事物的新发现,如果观察历史,会发现人类文明不断增多的“发现”已经构成了我们理解世界的“公理”,人们的公理系统在不断的增大,随着该系统的不断增大,人们认清并解决了许多问题。人类的认识模式似乎符合下面的规律:

“计算工具不断发展——整体思维能力的不断增强——公理系统的不断扩大——旧的神谕被解决——新的神谕不断产生”不断循环。

也许那时会出现新的“神谕”,而“神谕”的出现对人类来说并不是负面的,而是对人类整体思维能力和认识能力的一次挑战。并将刺激着人类对宇宙和自身的更深刻认识。

无论量子计算的本质是否被发现,也不会妨碍量子计算时代的到来。量子计算是计算科学本身的一次新的革命,也许许多困扰人类的问题,将会随着量子计算机工具的发展而得到解决,它将“计算科学”从牛顿时代引向量子时代,并会给人类文明带来更加深刻的影响。

参考文献

[1]M.A.NielsenandI.L.Chuang,Quantum Computation and Quantum Information. Cambridge University Press, 2000

[2]A.M.Turing,“On computable numbers,with an application to the Entscheidungs problem,”Proc. Lond. Math. Soc. 2 ,vol.42,pp.230-265,1936

[3]“Quantum Information Scienceand Technology QuIST program ver.2.0”Defense Advanced Research Projects Agency DARPA ,Apr.2004

[4] P.W.Shor,“Algorithms for quantum computation:discrete logarithms and factoring” New Mexico: IEEE Computer Society Press,1994,pp.124-134

[5]吴楠 由量子计算看科学与哲学的层次观,自然辨证法通讯,vol.29,no.4,pp90-95,2007

[6]李建会 走向计算主义,自然辨证法通讯,vol.25,no.3,pp31-36,2003

[7]Adleman,L.M.“Molecular Computation of Solutions to Combinatorial Problems.” Science , 266:1020-24,1994

[8] Adleman,L.M. “Computing with DNA.”Scientific American,279 2 :54-61, 1998

[9]D.P.DiVincenzo,“Quantum computation,” Science ,vol.270,pp.255-261,1995.

[10]彭罗斯1998:《皇帝新脑》。许明贤等译。长沙:湖南科技出版社

[11] R.P.Feynman,“Simulatingphysicswithcomputers,”International J. Theor. Phys. , vol. 1, pp. 467-488, 1982.

[12]A.Einstein,B.Podolskey,andN.Rosen,“Can quantum-mechanical description of physical reality be considered complete?”Physical Review, vol.47,pp.777-780,1935.

[13] K.Gdel, “On formally undecidable propositions of Principia Mathematica and relatedsystems” , New York: Dover Publications , INC., 1961 (Translated)

第6篇:量子力学对科技的影响范文

【论文关键词】电子技术;理论与应用;近似计算;静态分析

【论文摘要】本文首先探讨了近似计算在静态分析中的应用问题,其次分析了纳米电子技术急需解决的若干关键问题和交互式电子技术应用手册,最后电子技术在时间与频率标准中的应用进行了相关的研究。因此,本文具有深刻的理论意义和广泛的实际应用价值。

一、近似计算在静态分析中的应用

在电子技术中应运中,近似计算贯穿其始终。然而,没有近似计算是不可想象的。而精确计算在电子技术中往往行不通,也没有其必要。尽管近似计算会引入一定的误差,但这个误差控制得好,不会对分析其它电路产生大的影响。所以关键在于我们如何掌握,特别是如何应用近似计算。

在工作点稳定电路中的应用要进行静态分析,就必须求出三极管的基电压,必须忽略三极管静态基极电流。这样,我们得到三极管的基射电子的相关过程及结论。

二、纳米电子技术急需解决的若干关键问题

由于纳米器件的特征尺寸处于纳米量级,因此,其机理和现有的电子元件截然不同,理论方面有许多量子现象和相关问题需要解决,如电子在势阱中的隧穿过程、非弹性散射效应机理等。尽管如此,纳米电子学中急需解决的关键问题主要还在于纳米电子器件与纳米电子电路相关的纳米电子技术方面,其主要表现在以下几个方面。

(1)纳米Si基量子异质结加工

要继续把现有的硅基电子器件缩小到纳米尺度,最直截了当的方法是采用外延、光刻等技术制造新一代的类似层状蛋糕的纳米半导体结构。其中,不同层通常是由不同势能的半导体材料制成的,构建成纳米尺度的量子势阱,这种结构称作“半导体异质结”。

(2)分子晶体管和导线组装纳米器件即使知道如何制造分子晶体管和分子导线,但把这些元件组装成一个可以运转的逻辑结构仍是一个非常棘手的难题。一种可能的途径是利用扫描隧道显微镜把分子元件排列在一个平面上;另一种组装较大电子器件的可能途径是通过阵列的自组装。尽管,PurdueUniversity等研究机构在这个方向上取得了可喜的进展,但该技术何时能够走出实验室进入实用,仍无法断言。

(3)超高密度量子效应存储器

超高密度存储量子效应的电子“芯片”是未来纳米计算机的主要部件,它可以为具备快速存取能力但没有可动机械部件的计算机信息系统提供海量存储手段。但是,有了制造纳米电子逻辑器件的能力后,如何用这种器件组装成超高密度存储的量子效应存储器阵列或芯片同样给纳米电子学研究者提出了新的挑战。

(4)纳米计算机的“互连问题”

一台由数万亿的纳米电子元件以前所未有的密集度组装成纳米计算机注定需要巧妙的结构及合理整体布局,而整体结构问题中首当其冲需要解决的就是所谓的“互连问题”。换句话说,就是计算结构中信息的输入、输出问题。纳米计算机要把海量信息存储在一个很小的空间内,并极快地使用和产生信息,需要有特殊的结构来控制和协调计算机的诸多元件,而纳米计算元件之间、计算元件与外部环境之间需要有大量的连接。就现有传统计算机设计的微型化而言,由于电线之间要相互隔开以避免过热或“串线”,这样就有一些几何学上的考虑和限制,连接的数量不可能无限制地增加。因此,纳米计算机导线间的量子隧穿效应和导线与纳米电子器件之间的“连接”问题急需解决。

(5)纳米/分子电子器件制备、操纵、设计、性能分析模拟环境

当前,分子力学、量子力学、多尺度计算、计算机并行技术、计算机图形学已取得快速发展,利用这些技术建立一个能够完成纳米电子器件制备、操纵、设计与性能分析的模拟虚拟环境,并使纳米技术研究人员获得虚拟的体验已成为可能。但由于现有计算机的速度、分子力学与量子力学算法的效率等问题,目前建立这种迅速、敏感、精细的量子模拟虚拟环境还存在巨大困难。

三、交互式电子技术手册

交互式电子技术手册经历了5个发展阶段,根据美国国防部的定义:加注索引的扫描页图、滚动文档式电子技术手册、线性结构电子技术手册、基于数据库的电子技术手册和集成电子技术手册。目前真正意义上的集成了人工智能、故障诊断的第5类集成电子技术手册并不存在,大多数电子技术手册基本上位于第4类及其以下的水平。需要声明的是,各类电子技术手册虽然代表不同的发展阶段,但是各有优点,较低级别的电子技术手册目前仍然有着各自的应用价值。由于类以上的电子技术手册在信息的组织、管理、传递、获取方面具有明显的优点。简单的说,电子技术手册就是技术手册的数字化。为了获取信息的方便,数字化后的数据需要一个良好的组织管理和提供给用户的形式,电子技术手册的发展就是围绕这一过程来进行的。

四、电子技术在时间与频率标准中的应用

时间和频率是描述同一周期现象的两个参数,可由时间标准导出频率标准,两者可共用的一个基准。

第7篇:量子力学对科技的影响范文

  物理教学是一门基础教育,它使受教育者获得科学知识,掌握科学方法,培养科学精神。学生怕学物理的状况,已成为一个国际性的问题。怎样面对这一现实,如何迎接这一挑战?“智者见智,仁者见仁”。笔者认为,培养学生的兴趣才是提高教学效果的根本途径。在这里,我们试图从文化的角度和用科学的观点来了解这个社会的现象,从而表达对中学物理教学未来发展的自己的看法。

1 中国与欧洲文化的对比

中国文化是建基于黄河河谷的大农业社会,以“人本”的家族文化为主,人与人的关系比人与自然界的关系更为密切和重要,社会的主要问题和兴趣是在于人而不在于物。家族文化是一个整体文化,个体有义务要支持整体的共同性,而整体亦有义务要照顾个体的特殊性。人是来自现实的祖先,必须对祖先负责。中国文化是强调整体、务实、内向、兼容、义务、约束、合作和相对性,重视对个人天赋欲念的自我克制和自我修养的人为能力,称之为“德”。人的问题只可以靠人自己去了解和处理,发展了人本的“人理(伦理)学”。无论从《易经》、《道家》、《儒家》到《诸子百家》等,都是以人本为基础来发展。

欧洲文化建基于游牧文化。游牧人逐水草而居,多见树木,少见人邻。人与自然界的关系比人与人的关系更为密切和重要。生活的主要问题和兴趣是在于物而不在于人。由于自然界的存在和变化,并非人力可以改变和控制,认为所有自然现象都来自能力最高的主宰。摘食猎鱼的简单生活,各人的功能差别不大,分工制度弱,独立性强,自由性大,平等性高。生活环境的不断改变,只有天,才有永恒的意义,倾向上天单极宗教的信仰。

2 科技的发展

科学是物质世界的了解,是一种思想系统,也是一种顺其自然的思想活动,其探索的目标是“发现”。技术是物质世界的应用,是一种行动系统,也是一种事在人为的行动活动,其运作的目标是“发明”。早期的技术发展主要是靠尝试和经验,与科学的发展并没有一定的姻亲关系。后来的科技就是把科学与技术结合起来,利用科学知识来改进技术的发展,目标是“创新”。物理学是科学的基石。

3 物理学的发展

萌芽时代:物理学的起源是来自古希腊时代的几个重要思想。

(1)自然现象是根据“固定的自然定律”而发生(赛勒斯thales,俗称为科学之父)——定律概念和演绎逻辑。(2)要描述所有自然现象,数字是扮演中心角色(毕达哥拉斯pythag0ras)——数量描述。(3)要改变自然状态,必需有起因(柏拉图plato)——牛顿第二运动定律的广泛含意。(4)物质的原子(德谟克利特democritus)和元素(亚里斯多德aristotle)的概念——物体结构的基本成份概念。古希腊文化是强调个人自由和思想系统的探索,奠定了基本的科学精神、态度、构思、概念、逻辑、原则和言语。希腊化时代:主要的兴趣在解决实用问题,知识分类及技术成就。重要思想发展有:①几何学定理的公理化(欧几里得euclid)——演绎逻辑。②以地球为中心输送圆的均速运动为主,运转圆的均速运动为微扰,可以准确解释包括太阳在内的各行星在天上的运动。③物体“比重”物性的发现(亚基米德archimedes),后来进一步发展到“密度”物性。

黑暗时代:这是物理学发展a冬眠时代。(1)罗马帝国:罗马人是实用民族,他们强势在军事,行政和工程,而不在学术和科学。大量收集和发展希腊哲学思想,而很少有原始的创作。为了要准确解释以地球为中心的行星运动,增加了偏心圆的微扰(托勒密ptolemy)。(2)中世纪:中世纪的欧洲是一个宗教和封建的封闭保守时代。研究希腊哲学和科学的中心便转移到阿拉伯和波斯。(3):二百年运动,动摇了欧洲的封建制度和教会权力。伊斯兰的优秀文化开始对欧洲人开放。

复兴时代:大乱之后必有大治。经历过的浩劫之后,欧洲从一个保守封闭的教条社会转入一个改革开放,实事求是和解放思想的文艺复兴时代,由神本回归到人本。文艺复兴使欧洲恢复对人,人的成就和人的世界的兴趣。文艺复兴把欧洲从一个较为落后的社会在五百年内,先后超过伊斯兰和中国社会。

3.1机动力学(mechan0dynamics)

从希腊时代到黑暗时代这一千六百多年,物理学发展的主要兴趣上行星运动。发展以数学的欧几里得几何学为基础,均速圆周运动为核心。到了复兴时代,以既定的数学基础来了解观测的事实,改变为从事实去寻找事实背后的数学原理。由实是求事改变为实事求是,由以数学为基础改变为以物理为基础。

(1)天上行星的日心椭圆运动的发现(开普勒kepler)和地上物体的重力加速度及抛物线运动的了解(伽利略galileo)。

(2)机动力学的诞生:为了解决重力问题,牛顿认为,天上月球围绕地球的运动与地上物体的抛物线运动是同一根源,及推出它们之间与地球中心距离的关系。他成功发现三个物体的运动定律:惯性定律,动力定律和反作用定律。更由第二和第三个定律推出物体之间的重力定律。

(3)牛顿动力定律理论的普遍化,以位能和动能取代外力和加速度:拉格朗日(lagran—ge)和哈密顿hamilton)。从物理定律推理到物理理论是符合从几何公理推理到几何定理的——演绎逻辑。

(4)牛顿动力学对随机过程的应用:麦克斯韦(maxwell),玻耳兹曼(boltzmann)。19世纪未,机动力学已发展成为宏观物质世界一个完美的理论:完整,合理和前后一致。

3.2电动力学(electrodynamics)电磁现象

(1)电磁相互作用的关系:库仑(coulomb)电荷与电荷和磁极与磁极的相互作用,奥斯特(oersted)磁极与电流的相互作用,安培(ampere)电流与电流的相互作用,法拉第(faraday)电荷与运动磁极的相互作用。

(2)法拉第提倡电磁的“本地作用”来代替“超距作用”,导致“电磁场”物理量的诞生。

(3)电磁学的基本定律:根据电磁相互作用的关系和以电磁场为基础,麦克斯韦完成完整的“电磁场定律”,相当于牛顿机动力学中的物体重力定律。后来洛伦兹(lorentz)更进一步完成电荷在电磁场中运动的“电磁场力定律”。“辐射反作用力定律”也是电磁学一个基本定律,只是直到现在,符合逻辑的定律还未完成。

(4)带电粒子动力学:洛伦兹的电磁场力是一个与速度有关的力。爱因斯坦(einstein)采用牛顿动力推出

转贴于

电磁场力在速度为零的情况,再用洛伦兹惯性变换,把速度为零情况的结果变换到速度不等于零的情况。结果推出带电粒子在电磁场力的洛伦兹动量=v×牛顿动量。v是洛伦兹因子,与速度有关。fl=d(vp)/dt。相当于牛顿机动力学中的物体第二运动重力定律爱因斯坦后来把这方面的理论改称为“狭义相对论”。在狭义相对论的基础上,以微分几何为工具,爱因斯坦用演绎方法建立他的重力场论,称为“广义相对论”。可以说是一种重力场的电磁化。到这个阶段,除了辐射反作用力定律之外,电动力学基础的探索已基本完成。

(5)电功力学定律理论的普遍化:相当于拉格朗日和哈密顿对牛顿动力定律的理论推广和发展。

(6)电动力学对随机过程的应用:无规则电磁场的统计特性的发展。其结果应该符合量子力学和量子动力学的结果。

3.3辐射动力学(radiodynamics):辐射反映了物质世界的微观结构。

(1)量子论的诞生:普朗克(planck)创立“量子”的新物理概念,成功解释黑体辐射的实验结果。后来,爱因斯坦和玻恩(born)分别用量子来成功解释光电效应和氢原子光谱。

(2)量子力学:在数学的基础上,由海森伯(heisenberg),薛定谔(schrodinger)等所发展的量子数学系统(量子力学),不但可以用来了解原子物理现象,也可以用来了解分子物理现象。

(3)基本粒子物理:基本粒子物理实验观察的新结果,促使大量相关理论的发展:量子电动力学,相对性量子力学,杨一(yang-mils)场等,其中杨一米场有更突破性的广泛意义。

20世纪的世界发生了重大变化。(1)物理学发展已由宏观的物质世界转入微观的物质世界。 (2)经过两次世界大战后,影响人类社会的重心已由欧洲社会,转移到没有传统民族文化的美国移民社会。

4 中国文化与未来科学发展

虽然科学的发展是源于古希腊,但亦需要通过欧洲各种不同的文化时代,才可以孵育发展出来。欧洲文化对科学发展的优点可能已经到了饱和状态。科学思想发展的进一步突破,必须要有新的文化来推动。中国文化对人理思想发展虽然是一个有五千多年的旧文化,但对物理思想发展却是一种很新的文化。中国复杂而辩证的人理思想,吸收和结合欧洲简单而演绎的物理思想,必定融合成为一种新力量,把科学发展推到更上一层楼,尤其是生命科学,医理科学和心理科学。中国社会现在正是一个民族文化复兴新时代的开始:改革开放,实事求是,解放思想,自主创新,可以比美欧洲后的文艺复兴。中国是一个非常不均匀的大社会。各地区都有不同的方言、生活环境、生活方式、和风俗习惯,自然形成中国社会的多元多样和多姿多彩。在这种复杂的文化环境,必须要因人制宜,因事制宜,或因地制宜,“一刀切”便会弄巧反拙。相反地,美国是一个非常均匀的大社会,自然形成美国社会的一体化思想。一体化社会并不符合中国社会的实际情况。

5 提高学生物理学习兴趣的方法

了解以上物理学思想发展与文化关系后,我们来看一下在提高学生学习物理兴趣的一些做法。

5.1联系生活和生产实际

在物理教学中,如果注意结合学生熟悉的生活、生产实际,提出与教学有关的问题让学生去思考,往往能激发起学生的学习兴趣。例如:讲授《光的折射》时,可先提出以下一些问题:透过老花镜看紧靠镜子的物体,显得比原来怎么样?透过老花镜看远处物体,物体又会怎样呢?透过圆形金鱼缸看缸里的鱼发现鱼会变大,透过装满水的杯子看插入的筷于发现筷子会在分界处折弯,这又是为什么呢?夏天,我们扎泥鳅时应扎的比观察位置深还是浅些?带着这些问题来学习,学生必然会产生兴趣,从而达到提高课堂效率的作用,而课后又是课堂的延伸。

5.2制造学习上的悬念

在物理教学中,如果我们能够不断地制造悬念,使学生对新知识产生一种急于探求的心情,那么就会引起学生对新知识的兴趣。例如在《超重与失重》一节的教学中,我们可以把一台磅秤放在教室前头,让一个学生称量自己的体重,然后观察该学生突然尊下和站起瞬间磅秤发生的现象,此时,一般学生会感到好奇,基础

转贴于

扎实的学生会感到是人对磅秤的压力变大或变小,但不知原因,因此产生强烈兴趣,同时渴望得到的答案,这样老师讲得轻松,学生学得愉快。

5.3保持刺激的新颖和变化

高中生对新鲜事物总是充满好奇心,教学内容是否有兴趣,兴趣的大小,对教学效果都有直接的影响,在物理教学中若能经常保持刺激和变化,就能不断引起学生的好奇心和新鲜感,从而激发起他们的兴趣,使他们乐于学习、想要学习。

5.4及时给予成功的满足

兴趣是带有情绪色彩的认识倾向,在物理学习中,如果学生获得成功,就会产生愉快的情绪,若反复多次,学习和愉快的情绪则会建立固定的联系,也就会形成越学越有兴趣,越有兴趣就越想学的良性循环。

5.5精心设计教学过程

第8篇:量子力学对科技的影响范文

关键词:物理学;知识经济;经典力学;工业革命;量子力学

在人类文明发展的进程中,物理学的每一次重大突破都带动了科学技术的腾飞和社会经济的变革。以科学技术为主要内容的“知识”改变着社会经济的性质、特征和运行方式,给人类社会带来了全面而深刻的影响。

一、从物理学发展理解经济变革的根源

1、在农业经济时代,土地是经济发展最重要的资源。生产组织形式是自发的家庭生产方式,人类长期维持着经验积累和简单再生产,社会财富的增加相当缓慢。分配的主要依据是土地,拥有土地就拥有了财富和分配权,占有全部的剩余劳动成果。土地终极所有权掌握在皇帝手中,从而形成国家集权中轴支撑着社会。

科学巨匠牛顿,在哥白尼、伽利略、开普勒的基础上,通过对天文学定律和力学实验规律的高度概括总结,把物体的运动规律归结为牛顿运动三定律和万有引力定律。经典力学的成就,使机器发明成为可能,为首次工业革命提供了理论和技术支持。随着蒸汽机的发明和使用,带来了机器制造、交通运输、矿山开采等产业的迅速发展,从而引起了从手工劳动向动力机器生产的飞跃,迎来了人类社会发展史上的新纪元。

2、工业经济时代,机器、设备和原料是经济发展最重要的资源。其主要特征是资本积累和扩大再生产,社会财富得以快速的增加,生产规模得到迅速扩大,然而最终却导致了经济危机。资本成为主要的分配依据,凭借着资本的大小,来瓜分社会财富和剩余劳动成果。机器大工业形成有组织的公司企业,资本被控制在资本家手中,公司企业就成为社会的中轴。

在奥斯特、法拉第的基础上,麦克斯韦把神秘、抽象的电磁规律以数学方程完美地表示出来,从而形成了电磁场理论,同时预言了电磁波的存在。电磁场理论和实验的巨大成就导致了电机、电灯、电报的发明和使用并引发了第二次工业革命。从此,人类全面进入了以机器大工业和社会化大生产为重要标志的工业经济时代。

3、知识经济是建立在知识和信息的生产、分配和使用之上的经济。在知识经济时代,知识将成为经济发展最重要的资源,信息成为重要的商品和竞争要素。具有经济发展可持续化、资产投入无形化、世界经济一体化、经济决策知识化等特点。知识型和科技型的劳动者,在社会生产中的作用日益增强,成为企业和经济发展的关键,直接决定着企业的竞争能力和最终命运。

二、以物理学概念思考知识经济的内涵

1、随着信息技术的不断发展,计算机日趋微型化,因特网使传递信息所需的时间节省了百万倍,空间概念更是几近消失。真可谓:“千里缩银屏,数载化瞬息”。如果把信息视作物质,那么在相对高速地传递信息过程中,爱因斯坦相对论的“尺缩”和“钟慢”效应会有什么体现呢?

知识经济带来了商业、金融、教育和文化娱乐的全球化,企事业单位在空间的分布状态呈“无形化”和“分散性”。产品的开发与经营周期大为缩短,实现了所谓“实时运作经济”。时间的“滞后效应”被引起重视,可持续发展问题变得极为突出。

2、物理学又是一门实验科学,它的每一个原理和定律,都是在系统观察和科学实验的基础上建立起来的,并且随观察和实验水平的提高不断完善和修正甚至被否定。如人们对光的认识就经历了由粒子――波动――波粒二象性的曲折过程。量子理论认为一个电子究竟是粒子还是波?这要取决于选择的实验条件。这种不同寻常的作用对客观实在的影响,在知识经济中会有什么表现呢?

知识经济对决策的基本要求是科学化、民主化、系统化和程序化。科学化就是要在决策中全面地应用知识。程序化就是把决策的过程分为准备谋划、抉择、控制与修正四个阶段,每个阶段又有若干步骤,它们是与观察和实验紧密联系的。如准备阶段中有关信息的收集和处理,谋划时的预测或可行性研究都离不开观察和调查;控制与修正阶段的实施离不开实践和检验。

3、纵观物理学的发展历史,从经典力学、电磁场理论到相对论、量子力学以及宇宙大爆炸、量子信息、统一场论等,展现在我们眼前的是一部充满生机的探索和创新史。面对经济全球化和日趋激烈的国际竞争,我们如何运用物理学的探索和创新精神面对知识经济的挑战?

探索和创新是物理学的灵魂,同样也是知识经济的灵魂。知识经济提出经济创新概念,即5个新:引入一种新产品,采用一种新的生产方法,开辟一个新的市场,获得一种新的原料来源,实行一种新的企业组织形式。

综上所述,物理学作为自然科学的基础学科和带头学科,不仅为自然科学、工程技术提供了理论基础和实验技术,而且在社会经济发展中发挥着极其重要的作用。浏览人类社会由农业经济、工业经济到知识经济发展的历史,不难看到物理学在其中扮演的角色。

作者单位:枣庄学院

参考文献:

第9篇:量子力学对科技的影响范文

论文关键词:大学生;量子物理;物理学史

量子力学是反映微观粒子(分子、原子、原子核、基本粒子等)运动规律的理论。它是20世纪初在大量实验事实和旧量子论基础上建立起来的,是人们认识和理解微观世界的基础。量子物理和相对论的成就使得物理学从经典物理学发展到现代物理学,奠定了现代自然科学的主要基础。量子力学的发现引发了一系列划时代的科学发现与技术发明,对人类社会的进步作出了重要贡献。通过量子物理的教学,有利于培养大学生的科学素质、科学思维方法和科研能力,培养学生的探索精神、创新精神、科学思维能力以及辩证唯物主义的科学观。另外,量子物理是处于发展中的理论,怎样将量子论和广义相对论(引力作用)统一起来仍是困扰人们的问题。“弦理论”的提出使人们看到了希望,通过这部分的教学可以培养学生的横、纵向思维和不断追求科学真理的精神。因此,在大学物理的教学中应适当增加量子物理的教学内容。由于量子物理里好多概念、思想和宏观世界里的完全不同,叫人无法理解,以致量子论的奠基人之一玻尔(Niels Bohr)都要说:“如果谁不为量子论而感到困惑,那他就是没有理解量子论。”那么怎样让学生在轻松愉快的状态下学好量子物理呢?在教学过程中适当引入物理学史有利于学生掌握其核心,既培养了学生的学习兴趣,又有利于实现启发式教学,而非纯粹的概念和公式的教学。下面主要从几个方面阐述物理学史在大学生学习中的重要作用。

一、非物理专业大学生学习量子物理的需要

即使是物理专业的学生,多数人在学习量子物理时一直如在云里雾里,虽然知道微观粒子的波粒二象性,也知道不确定原理,了解原子的轨道理论,但是却不知道为什么这样。这一方面是由于量子物理里好多概念、思想和宏观世界里的完全不同。另一方面,学生没有掌握量子物理的核心,没有从整体上把握量子物理的基石。一些教材对这部分的介绍也较少。如果在教学中能够引入量子物理的发展史,不仅能吸引学生的注意力,调动学生的学习兴趣,还有利于学生理解量子物理的概念和思想,使学生能够身临其境地感受到那场史诗般壮丽的革命,深刻体会量子论的伟大,有利于学生辩证唯物主义观的形成。而非物理专业的学生与物理专业的学生相比,在学习量子物理时难度更大。这是由于物理专业的学生开设了许多物理专业课,如原子分子物理、物理学史等课程,为量子物理的学习奠定了基础。而非物理专业的学生没有前期的知识铺垫,对知识的掌握难度增大。如果能适当加入量子发展史的介绍,不仅降低了学生学习难度,还激发了学生学习兴趣,这就更突显出物理学史在大学物理教学中的重要作用。

从整体上介绍量子物理的发展史可以使学生掌握量子物理的核心,从整体上把握量子物理的基石,即波恩的概率解释、海森堡的不确定性原理和玻尔的互补原理。[2]这三大核心原理中,前两者摧毁了经典世界的因果性理论,互补原理和不确定原理又合力捣毁了世界的客观性和客观实在性理论。一些实验和理论斗争的介绍不仅可以吸引学生的学习兴趣,还可以培养学生的科学思维方法。19世纪末20世纪初,好多物理学家认为物理学大厦已经基本建成,后辈的工作只是做些细枝末节的修补和完善。但当时物理学天空漂浮着两朵小乌云,一朵是“以太的绝对参考系”,另一朵是“黑体辐射的紫外线灾难”。前者导致了相对论的建立,后者导致了量子物理的建立。

对量子物理三大基石的掌握,即波恩的概率解释、海森堡的不确定性和玻尔的“互补原理”是量子物理的三大支柱。大学所学的量子物理学是基于这三个支柱的。这就像数学中的公理一样,对于大学生而言不能去讨论为什么,只能是是什么。

二、大学生素质教育的需要

大学物理的量子部分教学不同于物理专业学生的量子物理教学。大学物理教学的目的主要是增强学生分析问题和解决问题的能力,培养学生科学的思维方法、辩证唯物主义观等素质教育,重在方法而非纯理论教学。因此,大学物理的教学目的与任务是使学生对物理学的基本概念、基本理论和基本方法有比较系统的认识和正确的理解,为进一步学习打下坚实的基础。更为重要的是,在大学物理课程的各个教学环节中,都应在传授知识的同时注重培养学生分析问题和解决问题能力,注重培养学生科研探索精神和辩证唯物主义世界观的形成。量子物理发展史的介绍和讲解有助于培养学生这方面的能力。

1.辩证唯物主义世界观的培养

在大学物理的教学过程中融入物理学史的内容有利于培养学生的辩证唯物主义世界观。如关于光的本性的争论持续了300年,光的波动理论和微粒理论艰苦卓绝地斗争了300年。量子论就是在这种斗争中逐渐建立起来的。托马斯·杨的双缝干涉实验、菲涅尔的圆盘衍射等实验形象的描述可使学生体会到光的波动性;而光电效应实验、康普顿的X射线散射实验等实验的介绍可使学生深刻体会光的粒子性;德布罗意电子波及实物粒子波理论的介绍及戴维逊和革末关于电子的实验,电子通过镍块时展现了X射线衍射图案,证明了电子具有波动性,由此人们认识到了光及实物粒子的波粒二象性。这部分的教学可使学生领悟到看似毫不相干的量实际上存在着深刻的联系,波动性和粒子性原来是不可分割的一个整体。就像漫画中教皇善与恶的两面,虽然在每个确定的时刻只有一面能够体现出来,但它们确实集中在一个人的身上。从中学生们可以深刻体会到任何事物都存在两面性,人们要辩证地看待问题。这部分历史的简单介绍还可以使学生深刻体会到人们对真理的认识是随着科技的发展而不断完善的过程,也是一个艰苦长期的斗争过程。对光的波粒二象性的认识有利于培养学生辩证唯物主义世界观。

2.分析问题和解决问题能力的培养

在大学物理的教学过程中适当引入一些实验的描述或利用多媒体等手段演示实验过程有利于培养学生的分析能力和解决能力。对康普顿实验的讲解分析可以培养学生的分析问题和解决问题的能力,尤其是康普顿的分析过程,而非纯理论上的推导分析。康普顿在研究X射线被自由电子散射的时候发现一个奇怪的现象:散射出来的X射线分成两个部分,一部分和原来的入射射线波长相同,而另一部分却比原来的射线波长要长,具体的大小和散射角存在着函数关系。如果运用通常的波动理论,散射应该不会改变入射光的波长才对。但是怎么解释多出来的那一部分波长变长的射线呢?康普顿苦苦思索,试图从经典理论中寻找答案,却撞得头破血流。终于有一天,他作了一个破釜沉舟的决定,引入光量子的假设,把X射线看作能量为hν的光子束的集合。这个假定马上让他看到了曙光,眼前豁然开朗:那一部分波长变长的射线是因为光子和电子碰撞所引起的。光子像普通的小球那样,不仅带有能量,还具有动量。当它和电子相撞,便将自己的能量交换一部分给电子。这样一来,光子的能量下降,根据公式E=hν,E下降导致ν下降,频率变小,便是波长变大。这样,X射线被自由电子散射的问题得到完美的解决。然后再进行理论推导,根据动量和能量守恒解决该问题,这样不仅使学生印象深刻,还锻炼了物理思维能力。

3.求实精神的培养

通过大学物理量子史部分的教学,介绍科学家严谨的治学态度、勇于追求真理的精神,培养学生追求真理的勇气、严谨求实的科学态度和刻苦钻研的作风。

4.科学观察和思维能力的培养

在教学的过程中适当融入量子发展史的内容有利于培养学生科学观察和思维能力。如玻尔的互补原理的提出过程。当海森堡完成“不确定原理”后向玻尔请教,两人就“不确定原理”是从粒子性而来还是波动性而来展开了论战,从而提出了互补原理:波和粒子在同一时刻是互斥的,但它们却在一个更高的层次上统一在一起,作为电子的两面性被纳入一个整体概念中。这就是玻尔的“互补原理”。它连同波恩的概率解释、海森堡的不确定性共同构成了量子论“哥本哈根解释”的核心,至今仍然深刻地影响人们对于整个宇宙的终极认识。讲解过程中应形象生动地描述海森堡和玻尔的讨论过程及他的思维过程,使学生有种身临其境的感觉,从而培养科学观察和思维的能力。在教学过程中适当介绍思维实验有利于培养学生的思维能力及科学分析能力。如海森堡不确定性原理的提出过程就借助了思维实验及1935年爱因斯坦提出EPR思维实验等。

5.创新意识的培养

通过学学物理学的研究方法、量子物理的发展史以及物理学家的成长经历等,引导学生树立科学的世界观,激发学生的求知热情、探索精神、创新欲望以及敢于向旧观念挑战的精神。如普朗克能量子假设的提出体现了敢于向旧观念、权威学家挑战的精神。而创新意识对一个学生来说是非常重要的,对社会生产力的发展也起着重要作用的。

6.科学美感的培养

以麦克斯韦方程组为例,描述麦氏方程所表现出的深刻、对称、优美,使得每一个科学家都陶醉在其中,玻尔兹曼情不自禁地引用歌德的诗句“难道是上帝写的这些吗?”描述麦克斯韦方程组的美。一直到今天,麦氏方程组仍然被公认为科学美的典范。许多伟大的科学家都为它的魅力折服,并受它深深的影响,有着对于科学美的坚定信仰,甚至认为:对于一个科学理论来说,简洁优美要比实验数据的准确来得更为重要。依此引导学生认识物理学所具有的明快简洁、均衡对称、奇异相对、和谐统一等美学特征,培养学生的科学审美观,使学生学会用美学的观点欣赏和发掘科学的内在规律,逐步增强认识和掌握自然科学规律的能力。

7.科学探索精神的培养

物理学在追求着大统一。许多科学家献身于这项伟大的事业,比如弦理论的提出。讲述其发展过程可激发学生的科学探索精神。

三、科学发展的需要

相关热门标签