公务员期刊网 精选范文 逻辑推理的应用范文

逻辑推理的应用精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的逻辑推理的应用主题范文,仅供参考,欢迎阅读并收藏。

逻辑推理的应用

第1篇:逻辑推理的应用范文

新疆第四师可克达拉市68团中学,新疆    兵团    835301

 

摘要:初中数学是培养学生逻辑推理能力的重要课程。学生通过学习教学要求的数学知识,解决相关的数学题目,逐步地掌握思考分析的方法,拥有具备良好的逻辑推理能力。在初中数学教学中引导学生收获逻辑推理能力,不仅教会学生如何在数学学习和解决数学题目时更加得心应手,也使学生掌握在未来的学习工作中举一反三的重要能力。

关键词:初中数学  数学教学  逻辑推理 

逻辑推理通常来说是根据已经存在的既有事实、已知条件等内容,依据一些客观的规律、规则,通过分析总结等演绎过程得出结论或论点的过程。这个过程贯穿整个初中数学科目,学生掌握逻辑推理的方法可以学好数学科目,在学习数学科目的过程中也逐渐掌握逻辑推理这种方法应用在更多科目和领域的学习中。认识到逻辑推理方法的重要性,作为初中数学教师更应该注重对学生逻辑推理能力的培养,不仅仅是为了让学生学好数学这一科,同时也让学生通过逻辑推理掌握分析问题、解决问题的能力,感受到数学的魅力。

一、创设生动的问题情境,加强学生的逻辑思维

根据逻辑推理的概念,我们可以了解到在数学教学中培养学生的逻辑推理能力,就是要教会学生从一个逻辑原点出发,利用已知条件和数学知识,通过分析、推理、总结从而得到正确的数学答案。通过解决数学题目的过程,学生可以学会灵活变通,通过眼前已知条件甚至是隐藏在已知条件背后的隐藏条件这些表面的现象去深究事物的本质。要想达到这样的教学目标,就需要教师可以引导学生学会“刨根问底”,主动思考,这就离不开结合问题创设的情境。创设问题情境通俗来说就是我们常见的应用题,不过是把应用题里面的情境设置的更加生动、更加贴近学生生活,让学生通过易于理解、生动形象的情境来理解抽象的数学知识,这本身就是一种举一反三的精神,能进一步提起学生思考探究的兴致。

二、利用思维导图工具,深化学生的思维逻辑

在初中数学教学中培养学生逻辑推理能力的关键在于思维逻辑的培养,让学生具备这样的思维是给学生一个可以终身使用的工具,正所谓“授之以鱼不如授之以渔”。在初中阶段,根据初中数学的课程内容,教师会带领学生从单个的知识点入手进行学习,有点带面,最终才把各个知识面串联成为一个完整的知识体系。初中数学课程内容的设置本身就是非常符合逻辑的,因此可以引导学生做好章节总结或者课程的周总结、月总结,通过写小结的过程把知识点逐渐地汇总起来,自然而然的就形成了知识网络。

引导学生进行知识点总结之前教师可以把思维导图的概念传递给学生,让学生首先掌握一种科学的分析、汇总的方法。思维导图就是利用一些图形符号、线条将一个主题下的内容层层分级、设置子母概念形成一个清晰全面的体系,这个非常适合用来总结数学概念、数学公式等内容。如今多媒体上课已经是非常普遍的一种上课方式,教师也可以利用一些软件教会学生思维导图的使用,比较常用的软件例如X-mind就是一款非常好操作的思维导图软件。为了加深同学们对知识点的理解,在利用电子软件教学的同时仍然鼓励学生自己根据电子版的思维导图进行手写的思维导图绘制。

通过在教学中传授给学生利用隐藏条件解题的做题方法,对学生来说益处多多。初中数学老师在教学过程中,往往是将单个知识点和对应题目搭配讲解,这样的做法更有利于学生接受单个的知识点。对于最终的应试和分析复杂问题,这样的方法显得有些单薄。笔者认为老师在讲解基础知识时,可以利用一些综合性题目对其中的隐含条件进行挖掘式讲解,这样可以提前给学生一种思考方法,未来面对有隐含条件的综合性题目时学生思考更加开阔,提升学生解决初中数学习题的思维层面,避免直接套公式等解题方法的出现。

三、小组合作共同探究问题,提高学生的推理能力

前面笔者有提到,逻辑推理能力的培养不是单纯的让学生学会掌握数学知识、会解决数学题目,更重要的是让学生在逻辑能力培养的过程中养成探究式的思考问题的方式。要想达到这个目的,教师就必须明确在教学过程中,学生才是学习的主体,教师在这个过程中更重要的是引导、指导,尤其不能过度地给学生解决问题,要让学生养成自主学习、主动思考的良好学习习惯。不可避免的问题是,学生自己的学习和思考能力有限,常常没有主动学习的乐趣,那么采用学习小组的学习方式就可以很好的解决这个问题。

通过设立学习小组,就把思考的工作交给了学生本身,善于思考的同学可以带动不爱动脑的学生。分成学习小组以后,各个学习小组之间又形成了竞争关系,这样学生为了更好的解决问题,会更加活跃地进行思考。在这个过程中,老师可以适当地给予学生一些指导,知识方面的纠错,思考方式的调整等。通过学习小组这种方式,学生除了渐渐地养成自己解决问题的习惯,也懂得了如何良性竞争,如何有效合作,一举多得。

四、习题训练注重解题过程,发展学生的逻辑推理

在数学教学的过程中,教师们常用的一种策略就是“题海战术”,以量变引起质变。但是经过笔者的观察很多学生会因为题海战术产生思维麻木的现象,在大量的题目中,学生很容易形成思维定式,这对于学生的思考探究能力的培养是非常不利的,也会忽视逻辑推理的重要性。因此,笔者建议教师可以在课堂练习或者作业布置方面有针对性的给学生布置一些综合性强的题目,让学生详细的写出解题过程。通过这样的方法,让学生能够更加清楚自己的思考过程,哪里有问题会更加的明晰,老师可以根据学生的解题过程了解学生逻辑能力的强弱,有针对性地给学生进行指导。

五、结束语

综合上述内容,我们不难发现逻辑思维能力的培养可以从不同角度入手,利用多种形式对学生进行培养。作为初中数学教师,深知逻辑推理的重要性,为了可以让学生更好的掌握这种能力,这个课题值得我们不断地思考探究。

参考文献:

[1]  陈小平.基于逻辑推理培养的初中数学教学策略[J].基础教育,2019(08):242.

[2]  李爱科.基于逻辑推理培养的初中数学教学探究[J].数学信息,2019(19):128.

[3]  虢铁平.基于逻辑推理培养的初中数学教学策略[J].2019全国教育教学创新与发展高端论坛论文集(卷七) ,2019(07).

第2篇:逻辑推理的应用范文

摘要:本文针对河北外国语职业学院2013 级小学数学教育专业学生的综合能力,结合小学数学专业的课程设置,经过对学生进行问卷调查后,总结出学生在逻辑推理能力方面存在的问题。为了培养出专业素质高、专业能力强的师范类小学数学教师后备军,针对存在的问题进行剖析,设计解决问题的方法和策略、完善教学内容、调整教学方法和训练方式等。通过课堂教学改革探索,使理论与实践有机结合在一起,以适应当前培养学生逻辑推理能力发展的要求。

关键词 :数学课堂逻辑推理能力素质培养

1 逻辑思维能力的含义

一般定义下的逻辑推理能力是以敏锐的思考分析、快捷的反应、迅速地掌握问题的核心,在最短时间内作出合理正确的选择。对于逻辑推理来说,通常情况下包括归纳推理、演绎推理和类比推理。其中,归纳推理是根据事物所体现的某种性质,对这类事物的所有对象具有的这种性质进行相应的推理。简言之,归纳推理就是从个别性知识推出一般性结论的推理。所谓演绎推理主要是以一般性为前提,通过推导,在一定程度上得出具体或个别的结论。对于演绎推理来说,其逻辑形式对理性的意义是,在严密性、一贯性方面,对人的思维具有不可替代的作用。对于类比推理来说,通常根据两个或两类对象具有的部分属性,进一步对它们的其他属性进行推理,简称类推、类比。这种推理方式是以两个事物的某些相同属性进行判断为前提,同时对两个事物的其他相同属性进行推理。而数学中的逻辑推理能力是指正确地运用思维规律和形式对数学对象的属性或数学问题进行分析综合,推理证明的能力。在课堂上数学老师通过启发式引导、结合实际,灵活运用板书和多媒体课件展示,激发学生的学习积极性和创造力,让学生亲历归纳推理、演绎推理和类比推理的确切含义。

2 该院数学教育专业学生逻辑思维能力现状分析

本次问卷调查的对象是2013 级预报小学数学专业的48 名学生进行的问卷调查,回收有效问卷40 份。问卷结果反映出该院学生现阶段在逻辑思维推理方面存在如下问题:

①逻辑推理定义的含义不明确,容易混淆。

②概念和定理掌握不牢,综合逻辑推理分析、判断思维能力弱。

③不擅长准确尺规作图,不能规范正确书写。

④学生学习数学的兴趣不浓。

⑤学生没有适合自己的学习方法和策略。

数学这一科目具有逻辑严谨性特点,逻辑推理能力应该是小学数学专业学生必须具有的基本能力之一。数学专业学生的逻辑推理能力培养极为重要,也是将来作为数学教师的核心能力。针对该院学生面临以上的问题,笔者所在团队在讲授专业课程时进行了相应的教学改革,希望在培养学生逻辑推理能力培养方面能发挥大家的智慧和力量。

3 如何在数学课堂中培养学生逻辑推理能力

数学被看作是一门论证科学,逻辑推理的重要性是不言而喻的。著名数学家G.波利亚教授说过:“一个认真想把数学作为他终身事业的学生必须学习论证推理,这是他的专业也是他那门科学的特殊标志。”

数学在提高学生的推理能力和创造力等方面有着独特的作用,数学课堂是培养学生逻辑推理能力的主要阵地。那教学中应如何培养学生数学逻辑推理能力呢?应从以下几方面入手。

3.1 重视基本概念和原理教学

数学知识中的基本概念、基本原理和基本方法是数学教学中的核心内容。基本概念、基本原理一旦为学生所掌握,就成为进一步认识新对象,解决新问题的逻辑思维工具。例如在《线性代数》课程中行列式和矩阵的定义的区别和联系:

①从形式上看行列式是一个数,矩阵是一个数表,二者不能混淆;而且行列式的记号为“|*|”,矩阵记号为“(*)”也是不一样的,不能用错。

②从内容上行列式的行数与列数必须相等,而矩阵的行数与列数未必相等。

③在计算过程中行列式用“=”,而矩阵用“”,书写格式也不同,更不能混用。

④在加法运算时,行列式相加与矩阵相加有本质区别,行列式与矩阵不仅有明显的区别也有内在的联系,当且仅当A=(aij)为n 阶方阵时,才可取行列式D=|A|=|aij|n,对于不是方阵的矩阵是不可以取行列式的。

在实际的授课过程中,没有扎实掌握行列式和矩阵定义的学生在学习《线性代数》第四章特征值和特征向量这一章节的时候就把书写格式写错,更严重者竟然把行列式和矩阵弄混了。为了解决这样的问题只能进行先学知识的综合复习,然后再讲授新课程。由此可见学好基础知识的重要性,如果没有科学的概念和原理,在这种情况下,难以进行综合分析、判断、推理等思维活动。

3.2 有计划、按步骤地进行逻辑推理训练

对于数学推理来说,一方面具有推理的一般性,另一方面具有其特殊性。通常情况下,这种特殊性主要表现为:其一,数学表达式、图形中的元素符号、逻辑符号等抽象事物是数学推理的对象,而不是选择日常生活经验作为推理对象;其二,数学推理过程需要保持连贯性,下一个推理需要以前一个推理的结论为前提,并且推理的依据需要从众多的公理、定理、条件、已证结论中进行提取。在推理论证方面,数学推理的这些特性会增加学生学习的难度。因此,在授课过程中要从学生熟知的知识为出发点,有计划、有步骤地进行归纳推理、类比推理、归纳推理等,这样学生能够逐渐地学习并掌握新知识。在讲授《线性代数》中矩阵和向量时,为了加强学生推理训练,任课教师在课堂中将矩阵与向量的定义、相等和运算律等分别进行类比,学生分组讨论总结。在实际教学中要有目的、有计划、有步骤、潜移默化地进行逻辑推理的训练和引导,学生一定会逐渐理解并掌握这些推理方法,并在学习掌握知识的过程中使他们的推理能力不断得到提高,使自己解决问题的能力有新的突破和创新。

3.3 利用多媒体设备增强学生的空间想象能力

在认识现实世界空间形式方面,空间想象是一种重要的能力因素,同时也是帮助学生发展创造力的基础。因此在数学教学过程中,需要将空间想象能力作为基本的数学能力来培养。在几何数学教学过程中,在制作模型、画图、识图时,让学生进一步对图像进行描述,同时对图形进行分类、整理等,在现实世界中,通过认识、理解几何空间,进而在一定程度上帮助学生形成空间观念,从逻辑的角度进一步帮助学生弄清几何空间的现实意义。

随着科学技术的不断发展,当前社会已进入信息化时代,社会对数学的要求呈现出多元化、深层化的趋势,在这种情况下,数学技术被广泛地应用到社会各层次、各领域。因此,在教学过程中,对于解析几何,需要注重培养学生的代数———几何关系,同时需要在几何和代数之间实现相互转换,进而在一定程度上对学生的数学素质进行培养。当前,教学的功能就是培养学生的创新能力,因此需要不断创新教学教学手段,通过数学软件直观再现解析几何中的复杂图形,进一步体现解析几何的主体性、过程性、合作性等特征。为此,在解析几何教学过程中,引入数学软件具有重要的意义,同时也是实现数学专业基础课程实践教学环节的重要组成部分。

4 总结

综上所述,在数学教学过程中,培养和发展学生的逻辑推理能力,这是组织开展数学教学的一个重要方面。它需要教师长期的付出,深挖教材内涵,要求学生在平时多观察,多思考,借助多种教学手段,不断激发、培养学生的学习兴趣,进而在一定程度上增强学生学习逻辑推理的积极性。同时,由于个体学生学习情况的个体差异,还要根据学生自身特点进行私人定制学习方法。希望在师生共同努力,共同合作的情况下,实现逐步提高学生的分析、综合、归纳、推理等方面的能力。

参考文献:

[1]吴建生,周优军.基于MATLAB 计算机辅助解析几何课程的数学实验[J].柳州师专学报,2010-02-15.

[2]侯卫民.教学中如何培养学生数学逻辑推理能力[J].数学大世界(教师适用),2010-09-15.

第3篇:逻辑推理的应用范文

关键词:能力;逻辑推理能力;定量思维;提炼数学模型;数学解的分析

数学是一门重要的基础课,在大学理、工、文经的许多课程内容都直接或间接地涉及到数学知识。提到数学教学,人们往往把眼光盯在数学概念、公式等数学知识和计算能力方面,其实这是不够的或者是片面的。实际上,数学能力的培养是数学教学的一项重要任务,这也正是现代化社会发展所迫切需要的。正确迅速的运算能力,逻辑思维能力,空间想象能力是学生必须具备的数学能力。本文主要谈谈学生逻辑思维能力的培养。

逻辑思维能力是学生数学能力的一个重要内容,这是由数学的极度抽象性决定的。逻辑思维能力的培养,主要通过学习数学知识本身得到,而且这是最重要的途径,在数学教学中,学生的逻辑思维能力主要表现为:判断能力;逻辑推理能力;定量思维、提炼数学模型的能力和对数学解的分析能力。

一、判断能力

判断是对客观事物情况有所断定的思维。数学判断则主要是对事物的空间形状及数量关系有所肯定或否定的思维,具体说是对命题的判断。恰当的判断能力即指能正确地、恰如其分地反映事物的真实情况。提高判断能力主要是提高分析能力和理解能力。客观世界中事物总是相互联系、相互制约的,这些联系与制约,有的是必然的,有的是或然的,这些不同的情况反映了它们之间的联系程度,因而就产生了不同的判断和利用不同的抽象形式去研究和表述这些关系的数学方法,所以对于某一个具体的问题,要用数学方法去解决它,首先必须能够判断事物与其属性的联系情况,哪些是必然属性,哪些是在某些条件之下可能出现的属性,从而进一步研究这些条件与可能,以便提炼合适的数学模型。对于复杂的命题,必须运用分析与综合相结合的方法,一面分析一面综合,分析与综合互相结合推导,就能比较迅速地找出证题与解题的途径。要保证证题或解题的正确性,还必须遵守逻辑思维规律,即同一律、无矛盾律、排中律和充足理由律。这四条规律反映了人们思维的根本特点:确定性、无矛盾性、一贯性和充分根据性。如果违背了其中任何一条规则,都可能导出证明或解题的错误。所以掌握逻辑思维的规则是具有判断能力的一个重要因素。辩证思维是具有判断能力的又一个重要因素。特别在高等数学中,对一些数学概念的辩证关系的掌握尤为重要。如无限与有限、连续与间断等。掌握了这种辩证思维的方法,就能提高判断一个命题是否正确的能力。判断是贯穿于科学理论数学化的全过程之中的,判断力是解决数学问题的基础能力。判断和推理又是紧密联系在一起的。

二、逻辑推理能力

数学中严谨的推理和一丝不苟的计算,使得每一数学结论不可动摇。这种思想方法不仅培养了数学家,也有助于提高全民族的科学文化素质,它是人类巨大的精神财富。逻辑推理主要有演绎和归纳法。数学按其本性是一门演绎科学。因为在它由现实世界的空间形式和数量关系提炼出概念之后,在一定阶段上就要发展成为有相对独立性的体系,即要用独特的符合语言从初始概念和公理出发进行逻辑推理,以此来建立和证明自己的定理、结论,这实际就是用演绎法建立的体系。演绎法中最有代表性的是公理法,以此法建立起来的数学体系就是公理化体系,象欧氏几何、群论、概率论、数理逻辑等都属此类。实践证明,公理化体系对于培养人们逻辑推理能力是非常有力的。公理方法是在公元前三世纪由希腊数学家欧几里得首创的。他的巨著《几何原本》就是从少数的几个定义和公理出发,推导出整个几何的一个严密的几何学体系。爱因斯坦关于欧氏几何曾说:“世界第一次目睹了一个逻辑体系的奇迹,这个逻辑体系如此精密地一步一步推进,以致它每一个命题都是绝对不容置疑的--我这里说的是欧几里得几何”。推理的这种可赞叹的胜利,使人类的理智获得了为取得以后成就所必需的信心。1899年德国数学家希尔伯特又出版了《几何基础》,在这本书中他设计的几何公理法获得成功。欧氏及希氏公理化体系采用的逻辑推理方法,可以揭示出数学知识的内部联系以及数学的概念与概念之间,命题与命题之间,同一个命题的前提与结论之间的本质的联系,从而能使人们更加深入地认识事物的联系和规律。而且这种逻辑推理条理清楚,简明扼要,可以保证数学中结论的充分确定性,也是判定数学命题真伪的有效方法。所以公理方法不但对于建立科学理论体系,系统传授科学知识以及推广科学理论的应用等方面有至关重要的作用,而且对于培养人们的逻辑推理能力也是一个极有效的方法,在数学的教学中应给以极大的重视。归纳推理是逻辑推理中又一种非常主要的推理方法。归纳法通常就是从观察和实验开始的,例如数学中的猜想:费尔玛猜想、哥德巴赫猜想等等,都是通过具体的数先引出“猜想”,然后通过更多的具体的数增强这个“猜想”,从而归纳出猜想,这里用了不完全归纳法,但是猜想还不是定理,还需经过数学理论的严格说明。就连公理化体系的建立,也是先收集了相当丰富的资料之后,人们需要对这些材料加以概括和整理,只有在这时,人们才能在许许多多的命题中经过分析和综合,经过比较和选择来确定一些命题作为公理,其余命题就作为以公理为依据的逻辑推理的结果。猜想和公理都是对感性材料进行比较、分析、综合、抽象概括等一系列逻辑加工之后归纳出来的,然后再用演绎法去证明。归纳推理能力的培养是一种综合的逻辑思维能力的培养。类比推理也是数学中常用的一种逻辑推理方法。

类比推理是根据两个对象有一部分属性相类似,推出这两个对象的其他属性相类似的一种推理方法。在初等数学、高等教学、集合论中都要用到类比推理。

三、定量思维、提炼数学模型的能力

定量思维是指人们从实际中提炼数学问题,抽象化为数学模型,用数学计算求出此模型的解或近似解,然后回到现实中进行检验,必要时修改模型使之更切合实际,最后编制解题的软件,以便得到更广泛的方便应用。数学模型就是用数学式子表示假定。它是用来揭示客观自然界的本质、规律及解决现实世界中各种问题的最重要的方式。应用数学理论和方法来解决实际问题,本质上就是把这个问题概念化和公式化,即提出数学模型。模型提炼得正确,就等于这个问题解决一大半。提炼数学模型的能力,是数学水平高低的重要标志之一。任何的现象都是复杂的,所以一般说来一个数学模型的建立不可能一次完成。对于一个现象,首先应该进行分析,努力抓住事物现象的特征,然后选择与现象的本质有关的、对于结果有重要影响的因素,建立起一个简单的数学模型,并将这个模型的解与现象进行比较,并考虑进其他的因素,进行多次反复的修正,以逐步逼近现象,达到提炼出该现象的完整的、正确的数学模型。同一个现象,由于研究的角度和见解的不同可表示为不同的数学模型。提炼数学模型的能力是在大量地研究、解决问题的过程中不断培养的。

四、对数学解的分析能力

第4篇:逻辑推理的应用范文

【关键词】类比推理教学;创新逻辑推理科学;应用

生活中,我们要轻松解开一把锁,最简单的方法就是要找到一把合适它的钥匙来打开它,然而要找到这把合适它的钥匙前,首先你必须进行了解这把锁的内部构造。因此,想轻松解开数学的中类比推理题目,就要找解题的“金钥匙”,就必须先进行了解类比推理到底是什么样的“属性结构”和什么样的“表现形式”。

案例一:如下图所示

以上例题中,以关于两个事物的某些“属性结构”或“表现形式”相同为判断的前提,推断出其他同类物的其他属性结构相同的结论的推理,我们归纳为类比推理。例如:我们的具体生活中知道到的“光”的属性结构有:可折射、可反射、可直线传播或可进行光扰等现象,因此科学家根据其属性结构的表现现象发明应用于望远镜,潜望镜、和雷达光照等。以此类比推理又发现“音”的“属性结构”也有可折射、可反射、可直线传播或可进行“音”扰等现象,于是,“音”的发明应用也可应用于远距离控测或超声波雷达等。位于我国西部贵州省的《FAST中国天眼》就是一个很好的光和音的类比推理的科学应用。这就是逻辑推理的科学和应用,也称之为类比推理判断的科学和应用。

在逻辑关系上,类比推理是根据两个或两类不同对象的物体在某些属性上相同,推断出它们在另外的属性上(这一属性已在类比的一个对象所具有,另一个类比的对象尚未发现)也相同的一种推理。而数学教学中的类比推理是要求运用逻辑学中的这种方法,根据给出的一组或多组相关的词,在备选答案中(案例中:备选答案为:已知OE是∠AOB内的一条射线,∠AOB=60o,OC,OD分别是∠AOE,∠BOE的平分线;)找出一组与之在逻辑关系上最为贴近、相似或匹配的词(即:求解:∠COD的度数。)。总之,就是我们首先在两组词或者多组词之间“找关系”,然后在选项中找到符合这种“关系”的词组或者“属性结构”,然后通过逻辑推理把“关系”中的未知找出来(所找到的答案:∠COD=∠COE+∠DOE=∠AOB=

60o=30o)就可以了。在具体的数学题型中,常见的类比推理解题方法一般可以归纳为以下四个:

方法一:类比推理代入论证法

案例二:解题:一元一次方程①与一元一次不等式②

①方程(-1=)中求x的值

去分母,得:2(4+x)-6=3x

去括号,得:8+2x-6=3x

移后,得:2x-3x=6-8

合并同类项,得:-x=-2

系数化为1,得:x=2

②不等式(-1

去分母,得:2(4+x)-6

去括号,得:8+2x-6

移项后,得:2x-3x

合并同类项,得:-x

系数化为1,得:x>2

通过解题后,把计算所得结果代入算式进行论证,最终论证当x=2时一元一次方程①正好是成立,x>2时一元一次不等②正好是成立。这种类比代入论证是用已知事物(或事例)的某些相同或相关联的类同特点进行比较类推,从而得出论点的是正确可行的论证。

方法二:类比推理优选法

简单的说:就是类比排除选优。排除选优在教学中实际上是一种“反其道而行之”的不寻常的方法。就是把不相干的、关系不一致的先排除出外。通常题目的用意是表现为让学生找出或找到与题干关系最接近、最优的一组或一类为优选答案。在难以作出比较判断的时候,运用“类比排除”通过把那些关系不相近,甚至是相悖、相反的先排除在外,然后把其余的认为最优、最接近关系的已知答案,结合“代入论证法”作出最终判定。比如,排除西红柿不是水果而是蔬菜是正确的。原因,一般情况下,水果是生吃的(西红柿)也可以生吃,而一般是炒着吃,而水果不是炒着吃,是生吃,因此通过排除选优得知水果不能炒着吃,而西红柿是多数炒着吃,只有蔬菜是多数炒着吃(即:蔬菜炒着吃>生吃,西红柿也是炒着吃>生吃,而水果≠炒着吃),所以西红柿是可以生吃的蔬菜。

方法三:类比推理造句法

类比造句,实际上就是因为……所以……的固定因果关系。在类比推断过程中,由于有肯定的答案才可以是确定的因果关系,所以,可以通过应用反推的原则来确定两者之间的固定关系。(案例一就是一个很好的例子)

方法四:类比推理细节法

细节决定成败,有时一个细节上的疏忽就很可能导致整个解题的失败,细节从审题开始,需要学生注意到题目中词与词之的细节关系,可能是词性关系、词序关系、词意关系等。

第5篇:逻辑推理的应用范文

关键词:高中数学教学:类比推理:实践;研究

类比推理属于一种逻辑推理思维,其含义是指根据两个对象有某些相同属性,从而推断出它们的其他属性也相同。它以两个对象具有某些相同属性的判断为前提。类比推理法在高中数学中的应用非常广泛。数学中的知识理论需要学生学会思考,拓展思维,认真分析研究问题中隐藏的规律,找出解决问题的新思路。从教学角度出发,类比推理法是数学教师的一大法宝,对教师的教学活动起着重要作用。

一、高中数学教学中的类比推理法实践

1.数学教材中的知识根据其内涵的不同分为不同的章节,比较分散。不同概念之间不存在完全独立,都是彼此联系存在着某些相似性的。教师可利用类比推理法把这些分散的理论理顺成一个知识体系,使学生可以进行系统学习,加深理解并在头脑中形成比较全面的理解。

2.教师在进行教学活动时结合类比推理法,向学生展示一种逻辑推理的解题思路,帮助学生拓展思维,增加学生的学习方法。数学知识多数是由点到线再到面,掌握了基本原理以及学习方法,运用类比推理法便能举一反三。比如,由向量可以推到共线向量、共面向量以及空间向量。

3.对于高中数学而言,学生不仅仅是要学会听课,还要学会自己思考总结,把教师所传授的知识理论能够化为己用。在解决问题时,学生可根据讲过的相似例题的解答方法进行推理。正所谓万变不离其宗。掌握了基本原理,学生便可开拓自身思维或者是在教师的指导下,理清各种知识脉络之间存在的相似性,并从中得出启发解决问题。

二、类比推理法在高中数学教学中的重要作用

随着类比推理法在高中数学教学中的广泛应用,其作用便显得越来越重要了。就教师教学活动而言,类比推理法丰富了教师的教学方法,为教师更好地完成教学目标提供了较好的可能性。

而类比推理法对学生的作用更为重要。它不仅可以促进学生在头脑中逐渐发展成一个完整全面的知识体系,还可以利用这种方法把新旧知识整体联系在一起,从而促进学生取得更好的学习效果。类比推理法还可以帮助学生锻炼分析能力、促进逻辑思维发展,为学生提供更多学习的新思路。

第6篇:逻辑推理的应用范文

关键词:描述逻辑;概念的匹配推理;研究现状;问题

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)14-3379-02

描述逻辑在众多领域中被广泛使用,因此对描述逻辑中概念的匹配推理进行研究也就越加重要。目前描述逻辑被作为知识表示的工具应用在众多领域,像数据库软件工程、信息系统、规划及网络职能访问中等均有使用。描述逻辑有着清晰的理论机制,对于这些应用领域有着重要的作用,同时可以提供众多重要的推理服务,而描述逻辑中概念的匹配推理是描述逻辑运用中的重要环节。

1 描述逻辑及逻辑推理的概念及应用

描述逻辑是把描述对象通过知识表示的一中形式化,依据KL-ONE的主要思想,是一阶谓词逻辑的一个可判定子集。描述逻辑有着极强的表达能力,同时有着明显的可判断信号,因此,在推理验算中总是可以有效终止,并返回到正确结果。目前网络知识在表达中主要接受并使用的语言工具就是描述逻辑,主要是由于描述逻辑有以下几点优势:描述逻辑模型-理论语义清晰,在处理概念分层是有着显著的作用,同时描述逻辑可以提供有效准确的推理机制共使用。因此在人工智能及计算机科学中被作为重点进行研究,通过研究者的深入研究,描述逻辑在服务计算、概念建模、语义web、数据库及软件工程领域取得了巨大的成就。

2 描述逻辑中概念的匹配推理的发展与研究现状

描述逻辑最初是用在静态知识的描述中。这种运用的使用范围较为狭窄,同时存在着一些缺陷,对时间及动作表示较差,为了使表示言语简单,通常利用相对应模态算子来对其进行扩展。Schild和Schmiedel在对认知逻辑及时序描述逻辑进行构造研究时,发现可判断性受到表达能力的限制。Laux和Baader进行了优化,将描述逻辑中的ALC与多态K结合,将模态算子运用到概念及公式中并进行了验证,并证明了结果语言的可判定性。Wolter等研究学者深度调查研究模态算子的描述逻辑后,同时对时序描述逻辑及认知时序逻辑在恒定领域假设条件下进行折中,并将两种命题动态逻辑PDL及描述逻辑进行结合,提出了动态描述逻辑。E.Franconi和A.Artale为了使动作和规划能在统一的框架下进行表示和推理,一种新的知识表示系统,将规划、动作及状态通过时间约束统一,同时与描述逻辑进行整合,使得描述逻辑得到了较大的发展。

描述逻辑推理的核心问题是可满足性问题,逻辑中的很多问题都可以发展为可满足性问题。Smolka和Schmidt-Schaub为了对可满足性问题进行自动判断,建立了Tableau算法,目前已在多种描述逻辑中广泛应用。F.Baader将模态操作引入描述逻辑,实现了描述逻辑处理模态词的功能。目前描述逻辑的主要工作聚集在多维描述及模态公理的问题上,A.Schmiedel第一个提出整合时间方法;Schild则提出了另外简单的时序扩张办法。

4 结束语

描述逻辑的概念匹配推理在不断的发展与研究中,随着现代计算机技术的发展以及各应用领域的需要,对描述逻辑进行不断的研究与深化有助于推动改系统的发展,目前描述逻辑的概念匹配推理已经得到了较大的发展,然而随着新的科学技术的发展及应用中新的问题的出现,现有的描述逻辑的概念匹配推理已经不适应需要,因此,要对描述逻辑进行不断的深入研究,从而促进相关技术的发展与推广。

参考文献:

[1] 王驹,蒋运承,申宇铭.描述逻辑系统VL循环术语集的可满足性及推理机制[J].中国科学F辑,2009,23(2):205-211.

第7篇:逻辑推理的应用范文

关键词:物理专业;高等数学;数学思想;教学

作者简介:唐果(1957-),女,湖南湘潭人,湖南科技大学数学与计算科学学院,副教授。(湖南 湘潭 411201)

基金项目:本文系2011年湖南省教育厅教学改革研究资助项目、湖南省教育厅学位与研究生教育教改重点课题(项目编号:JG2011A019)的研究成果。

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)19-0125-02

“高等数学”是物理专业学生必修的一门重要基础课程,是学生学习物理各专业课程的基础。目前国内外很多学者认为高等数学的任务是为学生学习物理各专业课程以及今后的工作提供必要的高等数学基础知识。[1,2]数学严格的逻辑性、高度的抽象性、语言的简明性,使数学具有培养学生逻辑推理能力、抽象思维能力和空间想象能力的独特功能。[3]因此,高等数学的任务除了为学生学习物理各专业课程以及今后的工作提供必要的高等数学基础知识之外,应该还具有培养学生逻辑推理能力、抽象思维能力和空间想象能力的任务。而物理学中的问题,就是利用数学严密的推理、高度的抽象及空间想象建立模型,最终经过实践检验,求得其理论。[4]因此,培养物理专业学生逻辑推理能力、抽象思维能力和空间想象能力就显得尤为重要,也是物理专业“高等数学”教学责无旁贷的任务。如何在物理专业“高等数学”教学中培养学生逻辑推理能力、抽象思维能力和空间想象能力是每位教师必须思考的问题。

一、数学思想简介

数学思想是数学产生以及数学发展过程中必须依赖的基本思想,是人们在谈论数学时,总要谈及到的独特素质。数学思想是由三种基本思想,即抽象、推理和模型思想组成。抽象思想是把外部世界与数学有关的东西抽象到数学内部,其素质表现为抽象能力强;推理思想是逻辑推理促进数学内部的发展,其素质表现为逻辑能力强;模型思想是沟通数学与外部世界的桥梁,其素质表现为应用能力强。

数学中的抽象主要包括两方面的内容:数量与数量关系的抽象、图形与图形关系的抽象。其中关系是重要的,正如亚里士多德所说:数学家用抽象的方法对事物进行研究,去掉感性的东西剩下的只有数量和关系。对于数学研究而言,线、角,或者其他的量,不是作为存在而是作为关系,通过抽象得到数学的基本概念,从而把现实生活中的与数学有关的东西引入数学的内部。这些基本概念包括数学的研究对象的定义,刻画对象之间关系的术语和符号,还包括刻画对象之间关系的运算方法。这种抽象是一种从感性具体上升到理性具体的思维过程,但这样的抽象只是第一次抽象。在此基础上,还能凭借想象和类比进行第二次抽象,其特点是符号化,得到那些并非直接来源于现实的数学概念和运算方法,比如实数和高维空间的概念,极限和四元数的运算。第二次抽象是此理性具体扩充到彼理性具体的思维过程,在这个意义上,数学并非仅仅研究那些直接来源于现实生活的东西。

数学主要依赖的是逻辑思维,逻辑思维的集中表现是逻辑推理,人们通过推理,能够深刻地理解数学研究对象之间的逻辑关系,并且可以用抽象了的术语和符号清晰地描述这种关系。所谓推理,是指一个命题判断到另一个命题判断的思维过程。所谓推理有逻辑,是指所涉及的命题内涵之间具有某种传递性。在本质上,只存在两种形式的推理,一种是归纳推理,一种是演绎推理。人们通过推理形成各种命题、定理和运算法则。随着数学研究的不断深入,根据研究问题的不同,数学逐渐形成各个分支,而且数学各个分支得到的结果之间却是相互协调的。为此,人们不能不为数学的这种整体一致性感到惊叹:数学似乎蕴含着类似真理那样的合理性。

数学模型是用数学的概念、原理和思想方法描述现实世界中规律性的东西。所以数学模型是指用数学的语言描述现实世界所依赖的思想。数学模型使数学走出数学的世界,是构建数学与现实世界的桥梁,通俗地说,数学模型借用数学的语言讲述现实世界的故事。数学模型的出发点不仅是数学,还包括现实世界中的那些将要讲述的东西。并且,研究手法也不是单向的,需要从数学和现实这两个出发点开始,规划研究路径、构建描述用语、验证研究结果、解释结果含义,从而得到与现实世界相容的、可以描述现实世界的结论。数学模型也必然有其适用范围,这个适用范围通常表现于模型的假设前提、模型的初始值、模型参数的某些限制。

由数学思想的概念可以看到,培养物理专业学生逻辑推理能力、抽象思维能力和空间想象能力就是要在物理专业“高等数学”教学中提高学生的数学思想。

二、提高物理专业学生数学思想的“高等数学”教学途径

对于物理专业的学生,提高了逻辑推理能力、抽象思维能力和空间想象能力,即数学思想,也就增强了他们的创新能力、数学应用能力、可持续发展能力和终身学习能力,才能使培养出来的学生真正做到知识、能力、素质三者并重。下面结合笔者 长期物理专业“高等数学”教学的实践,针对教师在“高等数学”教学的过程中如何提高物理专业学生数学思想谈谈体会和具体做法。

1.教师自身必须具有较高数学思想和数学方法论的素养

由于数学思想蕴含于高等数学的各部分内容之中,只有教师具有了较高的数学思想素质,才能挖掘出高等数学各部分内容之中的数学思想,才能做到在高等数学的讲授中,善于向学生传授这些思想以及寓数学思想于平时的教学中,因此教师自身要加强对数学史和数学方法论的学习与研究。

2.教师必须具有较好的物理素质

由于高等数学中的概念和定理只反映数量关系和空间形式,没有具体的描述对象,而物理中的概念和定理则有具休的描述对象,比如,向量在高等数学中是一个抽象概念,但是在物理中则用来表示力、速度等具体的概念。另外,高等数学中的很多概念和定理是科学家们在研究物理问题时抽象出来的,例如:微积分就是牛顿在研究力学问题时首先提出,并为解决各种力学问题而日益丰富起来的。因此教师具有了较强的物理素质后,一方面与物理专业的学生有更多的“共同语言”,可以使用在实践中看得到的现象解释十分抽象的数学概念和定理,提高学生学习高等数学的积极性;另一方面,可以利用物理实例引入高等数学的概念和定理,培养学生的数学思想。所以,教师自身应加强物理知识的学习。

3.教师要善于将高等数学各部分内容中的数学思想挖掘并系统地分类

教师在备课时要深入研究教材,结合教材的知识点,查阅其发生发展过程,把握住有关概念和定理的来龙去脉,抓住数学知识与数学思想的结合点,挖掘出蕴含于教材每章节中的数学思想,在教学中做到统筹安排,有目的、有计划和有要求地进行数学思想的教学。

4.教师应针对不同的教学内容,通过多种途径设计数学思想教学

由于同一教学内容可以蕴含多种数学思想,而同一数学思想又分布在不同的教学内容中,所以教师应根据不同的教学内容,选择不同的教学手段和方法开展数学思想的教学。选择的原则为有利于学生领悟和掌握数学思想,例如:在遇到反映推理数学思想的教学内容时,可以采用探究式和启发式教学方法进行教学。特别是对于物理专业的学生,教师应充分利用其对物理现象熟悉和物理问题理解的特点,首先提出问题,然后学生在教师的引导和启发下模拟科学家解决问题的过程,或支持学生从多角度以不同方式对问题进行思考,最后让学生自己得出结果。在遇到反映抽象数学思想的教学内容时,可以采用发现式教学方法进行教学,教师可以利用高等数学中的很多概念和定理是科学家们在研究物理问题时抽象出来的特点,结合教学内容,向学生展示该教学内容的形成和演变过程,使学生体验抽象数学思想的作用和巨大价值;或采用案例式教学方法进行教学,由于抽象是从许多不同事物中提取的共同点,因此教师可以从许多领域收集既体现数学的本质,又通俗易懂,引人入胜的例子,然后根据教学内容适当地提炼一些最新的有趣的例子作为应用案例,从这些案例中提取共同点得出结论。在遇到反映模型数学思想的教学内容时,可以采用启发式教学方法进行教学。由于数学建模是对实际问题进行合理抽象和量化,利用数学公式进行模拟和验证的一种处理方法,因此教师可以结合教学内容适当选择一些实际应用问题,然后引导学生加以分析,通过抽象、简化、假设、建立和求解数学模型,从而解决实际问题;或采用实验教学方法进行教学,教师首先设计出注重数学思想的剖析、数学技术的灵活性和数学理论的实用性的实验项目,然后在教师的指导下,学生亲自动手建立和求解数学模型,从而解决问题。当遇到同一教学内容蕴含多种数学思想的情况,可以同时采用多种教学方法进行教学。

5.教师要充分认识到学生掌握数学思想是一个反复认识、训练和运用的过程

由于学生对于蕴含在具体数学知识中的数学思想开始只能形成初步的感性认识,只有经过多次反复后,在较为丰富的感性认识的基础上,才能逐步抽象、概括而形成理性认识,再在实践活动中反复检验和运用,才能加深这种理性认识。因此,学生对每种数学思想的认识都是在反复理解和运用中形成的,其间有一个由低级到高级的螺旋上升过程。所以教师应该将高等数学各个内容中的数学思想形成为具有一定结构的系统,对于某一种数学思想而言,所串连的具体数学知识也必须形成自身的体系。由此明确每一种数学知识的教学中可以进行哪些数学思想的教育,并设计好对每种数学思想进行反复认识、训练和运用的过程。由于绪论课一般都要讲述知识产生的背景,发展简史,研究对象,基本和主要的问题,研究的思想和与其他各章知识的联系等,教师可抓准时机在绪论中直接简述有关数学思想,而在复习课中则可顺势总结概括本章用到的数学思想,这也可以形成学生对数学思想系统的反复认识。

三、结束语

数学思想是数学的精髓和灵魂,是知识转化为能力的桥梁。数学教育的目的不仅要使学生掌握基本的数学知识与技巧,更要重视发展学生的能力,全面提高综合素质。因此本文就如何在“高等数学”教学中提高物理专业学生数学思想,培养学生逻辑推理能力、抽象思维能力和空间想象能力,提高他们的创新意识和创新能力,根据多年的教学实践谈了一些认识、体会和具体做法,希望能起到抛砖引玉的作用。

参考文献:

[1]余天培.提高物理系高等数学教学质量初探[J].西北师范学院学报,1987,(4):86-88.

[2]左东林,滑超伦.高等数学在物理中的应用举例[J].淮阳教育研究,1994,(4):18-21.

第8篇:逻辑推理的应用范文

一、主要内容

本章内容包括电流、产生持续电流的条件、电阻、电压、电动势、内电阻、路端电压、电功、电功率等基本概念,以及电阻串并联的特点、欧姆定律、电阻定律、闭合电路的欧姆定律、焦耳定律、串联电路的分压作用、并联电路的分流作用等规律。

二、基本方法

本章涉及到的基本方法有运用电路分析法画出等效电路图,掌握电路在不同连接方式下结构特点,进而分析能量分配关系是最重要的方法;注意理想化模型与非理想化模型的区别与联系;熟练运用逻辑推理方法,分析局部电路与整体电路的关系

第9篇:逻辑推理的应用范文

教学内容的衔接

刚进入中学时,因教学环境的变化、课程的增加,初中教师对学生的基础不了解,教学起点把握不准,极易造成中小学教学脱节。因此,中学教师对学生的思想状况、知识基础要有充分了解,摸清学生的实际水平,根据具体情况分别对待,鼓励学生克服畏难情绪,尽快适应新的学习环境。

进行“算术数”与“有理数”的过渡 小学到中学,数的概念从“算术数”扩充到“有理数”,这是学生进入中学遇到的第一个难点。小学数学教师应为这次飞跃做好埋伏,注意3个知识点:其一,讲解整数概念时,不能说“整数就是零和自然数的统称”,而应该说“零和自然数都属于整数”,并用集合图表示整数的范围,以示整数除了零和自然数外还有其它的数,为初中学习负整数做好铺垫。其二,渗透具有相反意义的量。小学数学虽不讲负数,但表示相反意义的量较多,如收入和支出、增加和减少、上升和下降等。在教学中有意识地为负数出现做好铺垫,并可出现相应的符号,如+3°表示零上3度,-4°表示零下4度。其三,重视利用数轴上的点表示数。七年级数学一开始就利用数轴学习有理数,因此,小学数学教学要重视画图解题,培养学生识图的能力。

进行“数”与“式”的过渡 小学学习具体的数,初中接触用字母表示数,建立代数概念,这种由“数”到“式”的过渡,是学生认知由具体到抽象、由特殊到一般的飞跃,实现这次飞跃的桥梁则是用字母表示数。教学中,既要引导学生掌握用字母表示数的方法,又要挖掘中小学数学教学内容的内在联系。如整数与整式、分数与分式、有理数与有理式等,引导学生通过比较找出它们之间的联系及区别,在知识间架起衔接的桥梁。

从“算式”到“方程”的过渡 算术方法与代数方法解应用题有着密切的内在联系,虽基本关系不变,但思维方法各异。例如:“比一个数的2倍大5的数是11,求这个数。”算术方法的特点是逆推求解,把所求量放在特殊地位,列出算式(11-5)÷2,求得未知量;而代数方法则是顺向推导,通过等量关系把应用题中“未知”向“已知”转化,设所求数为x,则2x+5=11。由“算式”到“方程”是学生思维方法的一大转折,因此,小学数学在教学时应尽可能用代数方法解答,逐步克服算术解法的思维定势。

从“实验几何”到“论证几何”的过渡 小学的几何初步知识是通过学生动手操作得到几何概念,侧重于计算、演示、初步感知,属于实验几何的范畴,中学平面几何学习需要逻辑推理论证。从“实验几何”发展到“论证几何”,过渡的桥梁是逻辑推理能力,在小学数学教学中,可从以下几方面做好衔接工作:一是充分挖掘小学数学教材潜在的逻辑推理因素,如解方程和利用运算律进行简便计算的题目,要求学生说出每一步的依据;二是应用题教学中,会用语言和数学符号表达数量之间的关系,逐步培养学生严谨的逻辑推理能力;三是在几何初步知识教学中,适当安排具有推理论证因素的练习,图形用字母注明,解题后要求学生养成口头说明逻辑推理过程的习惯。

衔接中的具体方法

兴趣上的衔接与培养 中学学习对初一新生来说具有新鲜感,教师应抓住契机培养学生的学习兴趣,激发其学习热情。开学第一堂课,结合学生所熟知的事例,给学生讲述什么是数学、数学的特点、数学的用途及如何学好数学,让学生感受到数学用途广,与实际生活关系密切,从而产生学好数学的决心。

新旧知识的衔接 心理学研究表明:学习者必须将新知与认知结构中的旧知发生相互作用,使旧知得到更新改造,使新知获得实际意义。因此,教师在传授新知时,应抓住新旧知识间的联系,指导学生进行类比、对照,揭示新知的本质。如有理数乘法法则,与小学的不同在于需要确定积的符号,因而讲解的重点放在符号法则上。

教师教法上的衔接与更新 小学教学进度慢、坡度缓、方法固定,强调直观演示,重感性知识、形象思维;中学教学进度快、坡度大、方法灵活,强调推理论证,重理性知识、抽象思维。解决教学方法上的衔接问题,关键在于培养学生的自学能力。小学倡导学生自主、合作、探究;中学从学生的认知结构和认知规律出发,从实际生活引入概念,注重培养抽象思维和逻辑推理能力。