前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的光学电子技术主题范文,仅供参考,欢迎阅读并收藏。
关键词:光电子技术;理论教学;实验教学
Study on the teaching method in the optoelectronic technology course of electronic information engineering major
Luo Binbin, Zhao Mingfu, She Li, Zhou Dengyi, Cao Yang, Quan Xiaoli
Chongqing university of technology, Chongqing, 400054, China
Abstract: The importance of the optoelectronic technology course in electronic information engineering major is elaborated in this paper, and then according to author’s teaching experience of many years, the content, method and means of theoretical and experimental teaching of optoelectronic technology course in electronic information engineering major are discussed in details.
Key words: optoelectronic technology; theoretical teaching; experimental teaching
电子信息工程专业是一个包含电子科学技术、信息与通信工程、计算机科学与技术设计、研究、应用与开发,电子设备和信息系统的工程专业。当代信息技术的高速发展离不开电子信息科学技术,但是当今很多高端的信息技术成果融合了微电子学、光电子学、计算机工程及通信工程等多门学科的交叉知识。而且,目前很多具有良好基础的电子信息工程专业的学生在他们的硕士和博士阶段,通常会选择光电子技术的相关研究方向,而具备了良好电子学知识的学生更容易将电子学中的概念移植到光频段中,如果在本科阶段也修习了光电子技术这门基础课程,那么在他们的深造阶段将会更容易进入光电子相关领域的课题研究。因此,电子信息工程专业的学生除了需要掌握本专业的课程知识以外,也应该熟悉现代信息技术的其他相关知识,如光电子技术。然而根据笔者的调研,虽然目前很多重点大学及二本院校的电子信息工程专业都意识到光电子技术的重要性,但很少开设光电子技术这门课程。本文从光电子技术的研究内容、应用及发展等方面说明其在电子信息工程专业教育中的重要性,并研讨电子信息工程专业中的光电子课程的理论和实验教学方法。
1 光电子技术简介
早在19世纪,人们就已经用麦克斯韦(Maxwell)的经典电磁理论对光的本质进行了研究,认为光是波动的电磁场,关于光的吸收和辐射,1917年爱因斯坦(Einstein)建立了系统的光电子学理论,使人们认识了光的波粒二相性。但是直到20世纪60年代之前,光学和电子学仍然是两门独立的学科。1960年世界上第一台激光器研制成功,这标志着光学的发展进入了一个新阶段。随后在对激光器和激光应用的广泛研究中,电子学发挥了重要的作用,光学和电子学的研究有了广泛的交叉领域,形成了激光物理、非线性光学、波导光学等新学科。20世纪70年代以来, 由于半导体激光器和光纤技术的重要突破,推动了以光纤传感、光纤传输、光盘信息存储与显示、光计算以及光信息处理等技术的蓬勃发展,从深度和广度上促进了光学和电子学及其他相应学科(数学、物理、材料等)之间的相互渗透,形成了一个边缘的研究领域。光电子学一经出现就引起了人们的广泛关注,反过来又进一步促进了光电子学及光电子技术的发展。光电子技术包括光的产生、传输、调制、放大、频率转换和检测以及光信息存储和处理等。
因此,可以这么说,现代信息技术的支撑学科是微电子学和光学,光电子学则是由电子学和光学交叉形成的新兴学科,对信息技术的发展起着至关重要的作用。光电子技术是光频段的电子技术,是电子技术与光学技术相结合的产物,光电子技术是光电信息产业的支柱与基础,涉及光电子学、光学、电子学、计算机技术等前沿学科理论,是多学科相互渗透、相互交叉而形成的高新技术学科,其技术广泛应用于光电探测、光通信、光存储、光显示、光处理等高新技术光电信息产业。同时,随着生物医学、生命科学等新兴学科的发展,其中的信息获取手段对光电子技术的依赖程度越来越高,加快了这些学科之间的交叉融合,从而诞生了很多边缘学科,比如生物光子学、光医学等。
综上所述,可见光电子技术在现代信息产业技术中的重要地位,因此,光电子技术这门课程不仅是光学工程专业的基础必修课程,也应该作为电子信息工程专业的专业选修课程来开设。
2 光电子技术课程教学研究
2.1 光电子技术课程的理论教学
桂林电子科技大学坐落在世界山水旅游历史文化名城桂林市,是全国四所电子科技大学之一,是工业和信息化部与广西壮族自治区共建高校,广西壮族自治区重点建设高校。学校始建于1960年,共有金鸡岭、花江、北海3个校区,建校面积近5000亩。中国绕月探测工程总设计师、国家科学技术奖获得者、中国科学院孙家栋院士为学校名誉校长。
学校现设有22个学院(教学部)及研究生院,涵盖工、理、经、管、文、法和艺术7个学科门类)。现有广西重点学科16个(含设计学),其中广西优势特色重点学科5个;拥有信息与通信工程、机械工程、仪器科学与技术3个一级博士学位授权点。11个一级学科硕士学位授权点,3个二级学科硕士学位授权点(不含一级学科覆盖点),有工商管理硕士(MBA)、工程硕士(含11个工程硕士领域)两类专业学位授权点;60个全日制本科专业(含特色专业5个)。学校现有全日制本、硕、博学生及高职生、留学生近30000人,非全日制及独立学院学生近20000人。学校现有教职员工2600余人,其中专任教师1400多人,高级专业技术职务教师近900人,博士学位教师300余人。目前学校教师中有150人次进入和省部级各类高层次人才行列。经过50多年的建设和发展,学校已经成为一所以工为主、电子信息学科和国防军工特色鲜明、优势突出,理、管、经、文、法、艺术等多学科协调发展,在区内外有一定影响力的大学。
学校面向全国招生。于1985年开始招收设计类学生,是全国最早开展设计艺术教育的高等院校之一。艺术与设计学院现有教师近90人,具有高级职称教师38人,特聘教授、兼职教授3人,硕士生导师25人。学院现有自主设置二级学科硕士点2个(工业设计、数字化艺术与设计),本科专业8个:产品设计、视觉传达设计、环境设计、服装与服饰设计、动画、书法学、工业设计(理工类)、数字媒体技术(理工类)。工业设计专业2006年获得广西区首批“优质专业”称号,2009年获得人才培养模式创新实验区立项建设,2011年获得广西区首批特色专业;2009年动画实验室获得广西区省级动画实验教学示范建设中心。2013年艺术与设计学院“设计学”成为广西区省级重点学科,同时获得广西壮族自治区级动漫人才培养基地。目前在校学生1500余人(含硕士研究生、留学生)。教学环境、教学设备完善,拥有数字媒体、人机工程、模型、摄影、表面装饰工艺等专业实验室和教学示范中心,学院近两年先后投入400万元着力建设“综合创新设计与制作实验平台”和“数字艺术设计创作平台”,能满足各专业教学需要。
近几年学院在各级各类学术期刊上近1000篇,学术会议论文160余篇,EI、ISTP检索160余篇,获国家、广西省级项目及奖项10多项,出版专著、编著、教材40余部,获国家专利近50项。学生在工业设计、平面设计、环境艺术设计、动画、服装表演、数字媒体设计等方面共获得各级各类奖项1500余项。
一、2015年招生专业及计划(美术类、表演方向)
1、产品设计70人(文理兼招);(国标代码130504,本科)
2、动画70人(文理兼招);(国标代码130310,本科)
3、视觉传达设计70人(限招文史类);(国标代码130502,本科)
4、环境设计90人(限招文史类);(国标代码130503,本科)
5、服装与服饰设计(服装设计)30人(限招文史类);(国标代码130505,本科)
6、服装与服饰设计(服装设计与表演)30人(限招文史类,报考本专业不得兼报其它专业)。(国标代码130505,本科)
二、招生范围
面向广西、广东、山东、河南、河北、安徽、山西、黑龙江、辽宁、贵州、云南、江苏、浙江、陕西、福建、海南等16个省、自治区招生。
三、报考须知
1、招生对象:高中毕业生、中等艺术学校应届毕业生或同等学历者。
2、报考条件:
(1)热爱祖国、遵纪守法、身体健康,符合国家招生规定,通过本省美术类联考并取得合格证。
(2)报考我校艺术类各专业要求无色盲、色弱。
(3)服装与服饰设计专业(服装设计与表演)报名要求:要求男生身高不低于178cm,女生身高不低于166cm。五官端正、身材匀称,腿型要粗细均匀,中线笔直。
(4)产品设计、动画专业招收文史类和理工类考生,其他专业只招收文史类考生。
3、报名方式:考生一律按“就近报考”原则,按规定在指定考点报名,不接受函报。请严格按各省考点报名要求报名(如:规定不能跨省报名或不接收外省考生报名等)。
4、报名所需材料:
(1)本人18位数字的身份证原件;
(2)户口所在地招生办提供的普通高考准考证或报名号;
(3)考点规定的其他材料。
5、考试成绩查询: 我校将于4月中旬前通过学校本科招生网提供考试成绩查询,专业考试合格者,由学校按相关规定的比例寄发合格证;专业成绩不合格者不另发通知,合格考生须在户口所在地的普通高校招生办公室报名,参加普通高等学校招生全国统一考试。(专业考试时未填写本省高考考生号者,请于3月底前将本人高考考生号电话告之我校0773-2290400)
6、入学复查: 新生入学后三个月内进行全面复查,凡不符合录取规定及弄虚作假者,取消入学资格。
四、考试科目及分值
(1)产品设计、动画、环境设计、视觉传达设计、服装与服饰设计(服装设计、服装设计与表演)等专业考试科目设置:素描(100分)、色彩(100分),两科成绩相加取平均分为专业成绩;使用同一套题目,不按具体专业划线,统一按美术类专业划线。
(2)服装与服饰设计(服装设计与表演)专业考试科目设置为:在素描、色彩专业考试后,增加面试(100分),按3:7权重计算专业成绩(美术专业成绩*0.3 + 面试成绩*0.7 = 专业成绩);单独划线。
(3)考试时间:以各省考点安排为准。如有变动,请考生注意各考点的招生考试广告专栏。
五、录取原则
符合教育部和考生生源所在地省级招生部门关于艺术类专业的投档规定,政治思想品德考核、体检及专业课考试成绩合格、文化成绩达到所在省(市、区)艺术类本科录取控制分数线的情况下,在已投档者中参照其填报专业志按综合分从高到低择优录取【综合分=专业分(按比例折合成百分制)×60%+文化分(按比例折合成百分制)×40%】。
服装与服饰设计(服装设计与表演)录取:高考文化成绩过本省最低录取控制分数线,按我校校考专业成绩从高到低择优录取。
六、联系方法
1、桂林电子科技大学地址:广西桂林市金鸡路1号;邮政编码:541004
2、学校网址:guet.edu.cn
关键字:自动焦度计;16点数学模型;FPGA;面阵CCD
焦度仪主要用于测量眼镜镜片(包括角膜接触镜片和多焦点镜片)的顶焦度、柱镜度、棱镜度、光学中心及确定眼镜镜片的散光轴位方向等,在未切边的眼镜镜片上打印标记,并可检查眼镜镜片是否正确安装在镜架中的精密光学计量仪器。焦度仪又称屈光度计、镜片测度仪,广泛应用于医院眼科、眼镜店和镜片厂家。
目前,国内生产的自动焦度计主要基于两种测量原理:自动调焦原理和投影原理。基于自动调焦原理的焦度计多采用高分辨率、双线阵CCD获取光路信号,通过数字信号处理系统进行信号采集、分析和计算,并驱动步进电机进行自动对焦,从而得到镜片的相关参数。基于投影原理的自动焦度计采用高分辨率面阵CCD获取图像,通过FPGA对图像位置形状进行处理,得到被测镜片的相关参数。与基于自动调焦原理的焦度计相比,投影式自动焦度计具有测量速度快、加工成本低等优点。但是,该焦度计采用四个测量点建立数学模型,光学系统的容错能力较差。光路中一旦存在障碍物,如分划板上落有灰尘,系统会出现错误的测量结果或停止测量。
文中所研究的焦度计是基于投影原理的自动焦度计。但是,与国内同类产品不同的是,本文所研究的自动焦度计采用了一种新的测量图像建立数学模型,其测量精度和稳定性较国内同类产品有了较大的提高。
1全自动焦度计光学算法推导
1.1全自动焦度计的工作原理
图1为自动焦度计的光路原理图。点光源发出的光,经准直镜准直,照射到被测眼镜片上发生偏折,再经过分光光阑和测量透镜投射到CCD上,在CCD上得到含有数学模型的图像。由于被测镜片的屈光状态不一样,在CCD上所成像的大小、位置和形状会发生变化,通过CCD接收和微机对图像位置形状的处理,可得到被测镜片的相关参数。
1.2 16点数学模型
图2 为无测量镜片,即0D时,CCD上的成像分布图。当被测镜片为负球面镜时,十六个光斑相对于初始位置对称地扩张;当被测镜片为正球面镜时,十六个光斑相对于初始位置对称地收缩。将16个光斑按图3虚线所示分成四组。分别求出X方向或者Y方向上两个像点之间的距离,即可得到被测球镜的顶焦度S值。设四组光斑求出的顶焦度值为S1、S2、S3和S4,则S值为
当被测镜片为柱面镜时,CCD上的光斑分布图如3所示。由于柱面镜含有两个主顶焦度,因此,16个光斑成不对称分布。现以其中一组光斑(4个测量点)为例推导柱面镜主顶焦度的计算方法。设A点与C点在X轴方向上的距离为x2,在Y轴方向上的距离为y1;设B点与D点在X轴方向上的距离为x1,在Y轴方向上的距离为y2。假设D1、D2分别为柱面镜的两个主顶焦度,θ为柱面镜的轴角。有以下方程成立
D1+D2=x2+y2(2)
D12+D22=x12+x22+y12+y22(3)
x1=-y1=sinθcosθ(D1-D2)(4)
由方程(1)、(2)、(3)可推出
其余三组光斑的计算方法同上,在这里不再累述。不防设四组光斑计算出的柱面镜顶焦度值为C1、C2、C3和C4,轴角为θ1、θ2、θ3和θ4,则柱面镜的顶焦度C值和轴角为
2 全自动焦度计的图像处理系统
根据自动焦度计的工作原理以及系统所要实现的功能设计出硬件系统。系统由两大部分组成:数据采集系统和数据处理系统。数据采集系统由CCD、A/D、AVR单片机和FIFO存储器组成,主要负责采集数据并将数据存储到FIFO存储器;数据处理系统由FPGA、LCD、FIFO存储器、键盘、和LED光源组成,主要负责对采集的数据进行分析和计算,并将计算结果输出显示或打印。
CCD是面阵敏感元件,在积分的时间内,CCD敏感元件上积累电荷,当积分完毕,将电荷数据依次移出。由于电荷数据是微弱的模拟量,须经信号放大,再经A/D转换得到本系统所需的数字量。为了减小对FPGA的CPU的占用率,在CCD采样板上设置一存储器,将转换完的数据暂存一下,以供FPGA系统读取。当光路中无测量镜片时,FPGA读取CCD的采集数据,计算出光斑的中心位置,并将计算结果作为系统的初始参数。当光路中插入被测镜片时,分划板在CCD上的成像位置将发生变化,位置的变化量与被测镜片的球镜度和柱镜度有相互对应的比例关系。FPGA接收像的位置信息经变换后计算出被测镜片的相关参数。
3 图像的二值化处理
由上述系统可以看出,图像处理的好坏会直接影响测量的精度和稳定性。由于图像采集设备CCD采用PAL制,所以系统要求FPGA处理一帧图像的时间不超过20ms。图像二值化算法的选择标准为简单有效,易于实现。故本系统采用最大类间方差阈值分割算法。最大类间方差法的基本思想是把图像中的像素按灰度值用阈值t分成两类A和B。A由灰度值在0-t之间的像素组成,B由灰度值在t+1―L-1(L为图像灰度级数)之间的像素组成,按下式计算A和B之间的类间方差
δ2(t)=wA(t)[uA(t)-u(t)]2+wB(t)[uB(t)-u(t)]2(11)
式中wA(t)为A中所包含的像素数,wB(t)为B中所包含的像素数。uA(t)为A中所有像素的平均灰度值,uB(t)为B中所有像素的平均灰度值。u(t)为全图的平均灰度值。
从0到L―1依次改变t值,取使δ(t)为最大的t值作为最佳阂值T。
通常一个光斑的中心坐标应为该光斑的圆心。但是,经过FPGA处理后的图像由于离散化,已不是规则排列,故采用质心计算法求出光斑的中心。首先设光斑由n个像素组成,每个像素对应的空间坐标为(xi,yi),灰度值为p(xi,yi),则该光斑的质心坐标为
由于xi和yi是FPGA内存图像的质心坐标,通过一定的当量换算可折算成实际图像中光斑的中心坐标。将各点的中心坐标带入式(7)-(10),即可求出被测镜片的相关参数。
4结束语
文中提出了一种新的全自动焦度计的测量图像,并建立了相应的计算方法。运用该系统测量系列标准镜片,技术指标已达到国家相关检验标准。 与国内同类产品相比较,该测量系统具有以下3个优点:
(1)16个点同时参与测量,可瞬间获取以前三倍的数据量,提高了焦度计的精度等级;
(2)多点测量提高了光学系统的容错能力,即使光学系统中存在一些障碍物,也不容易出现测量误差;
(3)多点测量扩大了镜片的测量范围,特别是在测量多焦点镜片时,更容易找到最高度数的位置。
目前,自动焦度计正朝着全自动、多功能、高精准的方向发展。进一步提高产品的精度等级及智能化水平将成为今后自动焦度计的研究方向。
关键词:教学改革;实践环节;光电子;弱势学科
中图分类号:G642文献标识码:A文章编号:1671―1580(2014)03―0049―02
工科专业直接面向工矿企业研发生产,具有很强的实际应用背景,尤其是包括光电子技术在内的电子科学与技术这样的前沿学科,具有专业知识更新快、理论基础要求高、实践应用范围广等特点,对社会高新技术发展具有深远影响。因而,培养既具备理论基础又掌握实践技能的复合应用型人才成为社会发展的迫切需要。
一、我系光电子专业方向概况
近年来,许多高校先后开设与光电子相关的专业或专业方向,但受客观办学条件和主观重视程度的影响,各个院校的光电子专业(方向)发展参差不齐。中国矿业大学作为以矿业为特色的高等院校,在与煤炭能源相关的领域形成了优势学科,但“电子科学与技术”学科起步较晚且基础薄弱,1998年获批设置本科专业,2011年3月获批硕士学位授权一级学科点,目前有近500在校生。本文以矿业院校背景下光电子专业方向的相关实践教学改革为例,探讨如何更好地解决实践教学环节这个专业发展的软肋。
本系学生在第一、二学年已系统学习通识教育课程、专业大类课程;第三学年通过自主选择由专业类转入具体专业学习,包括微电子和光电子两个专业方向,主要开设的专业核心课程有《激光原理与技术》《半导体物理基础》《光电子技术》等;第四学年则加入了若干专业课程供选修,其中与光电子相关的有《光电检测技术》《半导体光电子器件》《微波技术》《学科讲座》,这些课程全部或部分承接《光电子技术》,主要任务是进一步加深和拓宽专业知识体系。相对于微电子方向的课程内容较固定单一、本科阶段无需配套硬件实验等情况,光电子方向所面临的问题要复杂和困难得多,其研究领域“广”、相关课程“杂”、所需硬件“多”,因而其实践环节的作用就显得格外突出,需要合理规划和大力建设。为此,我们制定了“厚基础、宽口径、重能力、偏应用”的教学原则,特别是“重能力、偏应用”主要靠实践环节来加强。
二、光电子专业方向的实践环节教学改革
针对光电子方向的“广、杂、多”特点,我们从人才培养和学科发展两方面考虑,根据我系目前光电子技术相关专业课程设置做好实践环节改革和建设,以实现既“厚基础、宽口径”又“重能力、偏应用”的教学原则和培养目标。以此为思路,主要从以下三方面入手,做好实践环节教学工作。
1.根据已有专业课程体系,合理配置实验硬件设备
这一方面是硬件条件基础,既需国家和学校的大力支持,更要自己精打细算,在资金有限的情况下合理配置。作为学校的弱势学科,光电子的实验多年来一直是教学方面的软肋,特别是其中的光学、光电仪器一般比较精密和昂贵,添置与使用都要耗费大量经费和人力,因而应当贵精不在多。根据我系光电子技术相关专业课程的实验要求,兼顾专业综合实践、毕业设计等,我们配置了系统类、器件类的多套综合设备,涵盖激光原理、光纤通信、光电信息、光电检测与成像等光电子的主要领域,所购置设备尽量满足模块化、易组合、可替换、可综合等要求,除了保证验证性实验功能,更应让师生自主设计、开发新的实验功能。目前所配置的光电子仪器设备已可满足相关课程的实验教学,其中“光纤信息与光通信综合实验平台”既可提供完整的系统级传输、通信实验,也可提供光纤、无源光器件、有源光器件、波分复用、光纤光栅传感等器件级功能验证、测试实验;“大功率氦氖气体激光器”、“半导体泵浦激光原理与技术综合实验系统”等可提供激光原理相关实验、研究的设备支持;“光电技术综合实验系统”既能提供几何光学、物理光学、光电检测(含光电成像)等基本的器件级实验,也可搭建创新性的系统级实验。
2.引导学生实现教学相长,保证实践环节环环相扣
这一方面是具体实施过程,需要师生合力完成。我系与光电子相关的实践环节中,固定的是《光电子技术》等专业核心课程和《光电检测技术》等专业选修课程的课堂实验和课后设计,可选的是《专业综合实践II(微波与光电子)》、毕业设计。此外,诸如电子技术综合设计等其他课程也会有部分学生选择光电子方面的题目。另外,一些学生还主动将这些知识应用于各类大学生科技竞赛和毕业设计。这样从第5学期至第7学期乃至毕业,从课堂到课后甚至课外,都有光电子的实践内容。在上述各种实践环节中,课堂实验是重中之重,也是师生互动最多的一环。实用性强是光电子方向专业课的显著特点,无论从课堂教学效果还是学生未来就业来看,都需要配套实验。从课堂教学看,光电子技术知识中大部分采用光学微观视角,仅理论阐述而无实验演示,学生难以亲身体会具体的光电物理现象和观察测试指标数据,只能被动地听讲和接受,难有动力思考和交流;相反,若能通过实验展示其中有趣的物理现象和高效的处理手段,则可激发学生的探索兴趣。从多年教学实践看,绝大多数学生喜欢用实验去学习体会知识,也愿意在实验中和老师交流,往往还能提出很好的想法,实现师生间教学相长。从学生就业看,只有平时接触过实物和进行过操作,才能避免眼高手低,防止理论与实践脱节,增加就业竞争力,更快更好地适应实际工作。
3.积极寻求高新企业合作,建设生产实习实践基地
最后这一方面是完善提高途径,需要社会力量的参与。人才的培养是面向社会需求的,我国的光电子产业正处速发展阶段,需要大量的光电子技术人才。因而,与相关企业进行密切合作交流是将人才培养和社会需求接轨的有效手段。从国内光电产业来看,已形成环渤海、长三角、珠三角、中西部等四大区域。我校所在的江苏省徐州市位于环渤海和长三角两大区域之间,可向这些区域中的光电企业寻求合作交流,目前已建立合作关系的企业有天津拓普、天津耀辉、大恒等知名光电企业。同时,还应在本地积极寻求建立实习实践基地,目前已和本市的江煤集团共建“矿大信电学院――江煤集团大学生创新实践基地”,每年暑期可安排全系学生进行生产实习,参与企业研发、生产、管理、企业文化等诸多方面,体验光电传感等设备、安全监控等系统的生产过程。
三、结论
总之,像我系这样的弱势学科,发展光电子专业方向的实践教学环节,需要从硬件条件基础、具体实施过程、完善提高途径多方面着手解决。通过做好实践环节的教学工作,本系本学科的发展获得了极大的推动,正在稳步实现“宽口径、厚基础、重能力、偏应用”的符合社会需要的复合应用型人才的培养目标。
[参考文献]
[1]明海,陈博,章江英.大力加强光学专业学生的素质教育和创新能力培养――促进光学、光电类高等人才的培养[J].光电子技术与信息,2004(04).
[2]赵洪霞,丁志群,王金霞等.光电子技术课程建设与实践[J].实验科学与技术,2010(04).
[3]张准,钟丽云.基于CDIO理念的光电技术实验课程设计与实践[J].实验室研究与探索,2012(08).
[4]郑晓东,闻春敖.世界著名大学光电类实验课成绩评价体系初探[J].实验室研究与探索,2011(07).
[5]牟海维,孙鉴,张勇等.光电子技术创新人才培养模式的研究与实践[J].长春理工大学学报,2010(07).
[6]卢琳,李庆辉.美国亚利桑那大学光学科学学院课程设置探析[J].中国电子教育,2013(02).
[关键词]电子技术 应用领域 发展趋势
中图分类号:TP315 文献标识码:B 文章编号:1009-914X(2016)10-0297-01
一、电子科学与技术概述
电子技术是依据电子学的基本原理,利用电子元器件设计和制造某种特定功能的电路以解决实际问题的科学,它主要概括为:信息电子功能材料和器件、超大规模系统集成芯片设计,纳米电子器件,电子离子光学与带电粒子束物理,信息显示器件与技术,光电子材料与器件,现代信息光子学与技术等。本学科在电子陶瓷与器件、铁电薄膜与器件、纳米电子器件、储能与能量转换材料与器件、电子离子光学现论与系统、信息显示器件、超快速光电子学、超大规模集成物理与电路设计等。目前,电子技术在各行各业都有着非常重要的价值,它所包含的内容逐渐丰富,现如今其技术已经日趋完善,迎来发展的高峰期。
二、电子技术在行业中的应用
1、传统领域中的应用
在传统的工业领域中,应用广泛的主要是交直流电动权,直流电动机具有较强的调速功能,为其供电的可控整流电源或者是直流电源,多数采用的是电力电子装置。伴随着科学技术的不断进步,电力电子变频技术迅速发展并成熟,它使得交流电机的调速性能得到了很大的提升,并且逐步取代直流电机,占据市场的主要地位。在工业生产中,交流电机广泛应用于不同载荷的轧钢机和数控机床上,发挥着重要的作用和良好的性能。为了避免在设备启动中引起电流冲击,一些不需要采用电力电子装置的设备也开始广泛取该装置设备。同时,在电镀装置中也安装使用了整流电源,冶金工业中的高频,中频感应加热电源也广泛使用电力电子技术,电力电子技术的使用范围和规模在日益扩大。
2、通信工程的应用
从工程技术角度来看,电子技术与通信工程相结合,在社会生活的各种应用迅速的发展,它包括:移动通信与个人通信、卫星通信、光通信、宽带通信与宽事通信网、多媒体通信、语音处理及人机交互、图像处理与图像通信、信号处理及其应用技术、集成电路设计与制造,电子设计自动化技术及其应用,通信与测量系统的电路技术,微波技术及其应用,微波传输。辐射及散射,微波电路,微波元器件,微波工程,光电子学与光纤通信工程,信息光电子工程,电子束,离子柬及显示工程,真空电子工程,电子与光电子器件,微电子系统设计与制备,纳米材料与技术等。
3、在交通领域中的应用
电子技术在交通领域中的应用主要为交通系统应用,电力机车目前正在由传统直流电机传动向交流电机传统转变。主要采用GTO控制器件,整流和逆变用PWM控制,所以可使输入电流为正弦波。目前,很多国家在研制采用直线同步电机驱动的磁悬浮列车,一旦该技术成熟并成功应用的话,将会为交通带来一次变革,不仅有利于缩短时间还对节能减排做出重要贡献,电机技术还可以用于汽车的发动机。在现代汽车上,机械式机电混合式燃油喷射系统已趋于淘汰,电控的燃油喷射装置因其性能卓越而被广泛应用。通过电子喷油装置可以自动地保证发动机始终在最佳工作状态。使其输出功率在一定的条件下最大限度地节油和净化空气,同时通过实验获得最佳的工作条件,并输入存储器中,当发动机开始工作时,根据传感器测得的空气流量、排气管中的含氧量等参数,按照事先编号的运算程序进行,然后控制发动机在最佳工况下。
4、在电力系统中的应用
电力电子技术是电工技术中的一个新兴技术,已经在国民经济和社会建设中发挥着巨大的作用,对于未来输电系统的性能也有显著的影响。目前,电力电子技术在电力系统中的应用已经涉及到诸多方面,例如:发电环节、输配电系统、储能系统等。在配电系统中,电力电子装置可以用于防止电网的瞬间停电、瞬间电压跌落和闪变等情况,便于进行电能的质量控制,改善输供电的质量。电子技术还可以应用于变电所中,在变电所中主要是给操作系统提供可靠稳定的交直流操作电源,给蓄电池充电等都需要电子装置。
5、在医学中的应用
电子技术在医学中的应用主要有电子病历、生物芯片、便携式医疗电子检测仪、远程诊疗系统等。电子病历是电子技术和网络技术的结合。可以为医疗机构提供适时的医疗信息,是系统化的居民健康档案。也可以为医疗责任提供证据;利用传感器的生物芯片,可以对人体进行DNA的检测,快速处理相关信息,亲子鉴定等;电子技术应用于便携式医疗电子检测仪,可以通过微控制器,连接医疗机构网络,实现医生对患者的后期诊疗观察,有利于医疗效果的发挥;同时,利用医学与网络技术、微电子技术等,可以达到医学的远程诊疗,实现医学资源的共享,有利于偏远地共的医学诊疗。
三、电子科学与技术的发展趋势
现在电子科学与技术的发展,以及现代电子技术的不断普及,在不断的改变着人们的日常生活方式和方法。而随着计算机技术、网络技术和材料技术的发展,现代电子技术也在逐步走向学科集成化的发展倾向,将逐步呈现出以下的发展趋势。
微型化
微型化的提出,是以纳米技术作为现代电子科学与技术的发展的基础。并由此延伸出了纳米电子学,其主要则是在纳米的尺度之下,对事物运动的规律和特性进行深入的研究,从而利用纳米级的事物专属特性对其进行开发和利用,主要利用与生物科技以及医疗工程中,纳米检测仪器,纳米电器件等将逐渐被广泛使用,再一次收发电子器件的变革。
智能化
智能化作为现代电子科学与技术发展的必然趋势,在很大的程度上对其进行使用,从而代替了各种不同危险的、枯燥的工作。如现代制造中的智能焊接、智能车载和智能机器人,都是对电子科学与技术的不断应用,而未来电子技术智能化的应用,将使得人们的劳动力由繁重的体力劳动中解放出来,让人们有空闲进行更加轻松、安全的工作,比如智能组装流水线。智能矿脉探测等都是智能化电子技术的应用范畴。
精确化
技术的进步和经济的发展,使得人们开始从原始的劳力劳动中解放,开始转向信息更为流传的精确程度,现代电子科学与技术可以应用于各种观测,传达室输性行业,如气象预测、信息传输、医疗检测等更多方面军。提高观测精确度,做到在最小程度内的信息精确,做到最小的信息传达输损耗。
平民化
截止到目前为止,大部分的电子科学与技术开始被逐步应用在了特定的人员、特定的地点和特定的阶段,如在医疗中不断使用的B超技术,在气象通信中使用的气象预测卫星等。而这些技术已经完备,但是,在很大程度上还属于少数人在开始使用。而为更好的促进全民使用电子设备,小型化、平民化趋势正在成为未来发展的新起点和新方向。如现代的血糖测试仪、洒精测试器等也开始逐步实现平民化,从而可以适当降低精确度,大加幅度缩小体积。降低操作难度,提高产品安全系数,降低材料成本,做到平民化与高科技化两种等级,尽量面向更多人群开放。
5、光电子技术产业化
光电子技术涉内容:光子产生、控制的激光技术及其相关应用技术;光子传输的波导技术;光子探测和分析的光子检测技术;光计算和信息处理技术;光子存储信息的光存储技术;光子显示技术;利用光子加工与物质相互作用的光子加工与光子生物技术。由以上技术形成的光电子行业的五大类产业格局:光电子材料与元件产业、光信息(资讯)产业、传统光学(光学器材)产业、光通信产业、激光器与激光应用(能量、医疗)产业。
结语
随着现代科学技术的飞速发展,人类历史即将进入一个崭新的时代,电子科学技术的发展和更新在随着时间的步伐,在不断的改变。并在逐步的广大化,电子科学技术与其它技术结合有利于促进社会科学技术的进步,无论是生活还是科学研究,电子技术都不必不可少的独立技术,电子科学与技术对于国家经济发展、科技进步和国防建设都具有重要的战略意义。
中国科学院半导体研究所“宽带微波信号产生与传输的光子技术”项目摘得2016年中国光学工程学会科技创新奖一等奖的桂冠。消息一出,人们在关注和热议这项创新成果的同时,对于其背后的科研团队,也是好奇心泛滥。
据了解,完成这项科研成果的牵头单位,是中科院半导体研究所微波光电子团队,由祝宁华研究员组建于1998年,是集成光电子学国家联合重点实验室和中国科学院固态光信息技术实验室的重要组成部分,目前有核心成员16人,在读博士和硕士研究生30余人,主要致力于光电子技术相关领域的研究。
可以说,这是一支硕果累累的研究团队――至今为止,他们研制的高速激光器、高速探测器、窄线宽激光器等系列产品在中国电科集团、航天集团等50余家大型知名企业成功应用,好评连连;他们在高速模拟直调激光器的研究上已经达到了国际领先水平;他们出版了3部专著,发表了200余篇高质量学术论文,仅获得的国家授权发明专利就有近百项。
也可以说,这是一支低调的科研队伍――在有点事儿就要“上热搜”、“上头条”的今天,他们瞄准国家重大任务需求,专注探索前沿基础科学和高新技术。就连这次获奖,除了象征性地发了通稿之外,媒体上就再没见关于他们的过多描述。
这种“犹抱琵琶半遮面”的神秘感,更是增加了人们的好奇和猜测,他们为什么如此低调?他们究竟在研究什么?
瞄准行业缺口
事实上,微波光电子团队的研究对象―微波光电子技术、高速光电子技术―并不像人们想象的那样神秘,严格来说都属于光电子技术的交叉方向,目前在很多领域都有广泛应用。而这种交叉融合的方式,也是近年来光电子技术的发展趋势。
光电子技术,确切地应该称为信息光电子技术,是光子技术和电子技术结合而成的高新技术,涉及光显示、光储存、激光等领域,是未来信息产业的核心技术,也是我国的先导产业,在国防工业、能源、汽车、信息技术等产业的发展中发挥着战略性的作用。
1998年,受中科院“百人计划”感召,祝宁华举家从德国回到中国,并在中科院半导体所组建微波光电子研究团队。此后近20年,这支队伍在祝宁华的带领下,逐渐成为我国光电子技术领域的代表性研究团队之一,并在高速半导体激光器等光电子器件及应用研究领域不断取得创新突破,有效提高了我国光电子器件及应用技术的发展水平。
最为称道的成绩之一,是他们提出了高速光电子器件动态特性精确测试方法。祝宁华表示,芯片高频特性的精确测试,一直是困扰业界的老大难问题之一。“因为光电子芯片的尺寸非常小,长度仅有200~300微米,波导宽度仅有2~6微米,这使得芯片与测试夹具尺度之间相差了数百倍,并且芯片与测试仪器本身还存在严重的阻抗失配(激光器3~8欧,探测器和调制器数百欧),所以在原来的技术水平下,要想实现精确测试难度非常大。”
微波光电子团队在祝宁华带领下,针对这一难题开展研究攻关,有效解决了微波矢量网络分析仪校准中的相位不确定性、校准方程相关性、频率限制等关键问题。这一突破让扣除测试仪器和夹具的影响变为可能,为获得较为准确的高频特性参数奠定了基础。
据悉,光电子器件高频响应测试主要分为两类―采用微波网络分析仪测量器件在某一驱动信号幅度和不同频率下的响应特性,以及采用误码分析仪测量器件在不同驱动信号幅度和某一速率时的响应特性。
据祝宁华介绍,一直以来,业界都没有能适用于不同频率和不同驱动幅度下响应特性的测试方法和分析模型。意识到这一需求缺口,微波光电子团队在前期所获突破的基础上继续展开研究,首次提出了激光器动态P-I特性曲线/曲面的概念,并给出了相应的测试方法。一系列测试证明,采用该方法商用仪器能够获得器件特性的直观描述,从理论上解决了工作参数优选的问题,为获得最佳高频响应特性提供了技术保证。
大胆决策创新
正所谓“蛇无头而不行,鸟无翅而不飞”,每个队伍都有其灵魂人物,并且作为队伍的核心,其实力也极其重要。对于微波光电子团队来说,这个人无疑是祝宁华,他专注科研、淡泊名利的精神一直感染着团队里的每一个人。
在从事高速光电子学理论、器件及系统研究的30多年里,祝宁华修正了光电子器件的模场理论,建立了器件优化设计分析模型,提出了一系列测试和封装设计方法,组织了光电子领域发展战略规划的研究和实施,为我国光电子学的发展作出了重要贡献。
多年来,微波光电子团队之所以能够频频在光电子研究领域取得创新和突破,一定程度上与祝宁华这个带头人多次敢为人先的大胆决策息息相关,封装技术的创新就是一个很好的例子。
封装技术,是一种将集成电路用绝缘的塑料或陶瓷材料打包的技术,也可以是指半导体集成电路芯片用的外壳,发挥着安放、固定、密封、保护芯片和增强导热性能的作用,同时也是沟通芯片内部与外部的桥梁―芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印刷电路板上的导线与其他器件建立连接。因此,对于很多集成电路产品而言,封装技术是非常关键的一环。
TO封装是激光器比较常用的一种成本较低的封装技术,一直以来业界普遍认为,这项技术只适合封装低速率半导体激光器。祝宁华却不这么认为,他向863专家组提出了研制高速TO激光器的大胆建议。
随后,他带领团队展开攻关,提出了一种光电子芯片本征动态特性参数提取方法,可以扣除芯片电极和封装所引入寄生参数的影响。同时,他们还提出了封装设计潜在带宽分析的概念,据此发展了封装寄生参数影响的综合评估技术,为芯片及模块的优化设计提供了有效手段。
这些创新的设计思路后来被微波光电子团队成功应用于激光器、探测器和调制器的封装设计中,研制出10Gb/s和40Gb/s数字通信激光器模块,并与华为、中兴、光迅、海信等公司合作,开发了一系列高速光收发模块,近五年累计创造了近20亿元的新增销售。
与此同时,祝宁华长期从事高速激光器的理论和实验研究,在意识到这一光电子器件的发展前景时,他在我国率先提出了研究高速激光器的建议,并从1998年开始,先后主持研制了2.5GHz、10GHz、18GHz高速激光器相关项目,使我国在该领域的技术水平从起步到跟踪发展再到国际领先,为我国多个重大型号任务中核心元器件的自主可控做出了贡献,相关成果获2013年度国家技术发明二等奖。他将这些研究整理成《光电子器件微波封装和测试》、《光纤光学前沿》等专著并出版,为我国光电子器件产业的发展提供了指导和借鉴。
超前布局规划
多年来,微波光电子团队都能够在激烈竞争中抢占先机,对所处行业未来的发展趋势进行预判,并提早部署研究计划。这已经成为他们的制胜法宝。最具代表性的,就是他们对光电子发展趋势的预判。
众所周知,全球已经步入信息经济时代,信息产业成为了许多国家的支柱产业。而光电子技术的发展在很大程度上决定着信息产业的发展水平。祝宁华介绍说,高速光电子器件在光通信系统的各个层次都有重要应用,如高速光传输、大容量光交换、宽带光接入和微波光子技术等,是实现高速光信息生产、传输、放大、探测、处理等功能的器件,是宽带通信网络的核心,而激光器则是光通信系统的“心脏”。
祝宁华很早之前就曾指出,随着光网络和光通信技术向大容量、低功耗和智能化方向发展,为实现更高速、更宽带光通信传输系统,光电子集成将会成为高速光电子器件的发展趋势之一,同时也是突破速率和能耗两大制约光通信技术未来发展瓶颈的有效途径,而高速激光器的研制也会成为行业焦点。
意识到这一发展方向的重要性,2009年左右,祝宁华组织实施了“信息光电子学”系列研讨会,以及863计划和基金委“十二五”、“十三五”光电子领域发展战略规划研究,促成了多个863主题项目和国家基金委重大项目的立项,积极推动了高速光电子集成芯片的发展。
不仅如此,祝宁华还带领微波光电子团队针对高速光电子集成器件在国内率先开展深入探索研究,取得了突破性进展。他们提出了光电子集成芯片阵列三维封装技术,解决了光电子集成芯片封装过程中面临的微波阻抗严重失配、模场失配和串扰等难题。美国光学学会刊物OPN以《中国光子集成》为题对微波光电子团队的相关研究进展做了大篇幅封面报道,进一步提升了我国在这一前沿领域的国际影响。
成绩证明实力
在过去的近20年,祝宁华带领的这支队伍在高速光电子器件领域的研究中,为我国实现了一个又一个创新突破,但他们却很少对外提及。对他们来说,科研需要沉浸其中,而他们有限的时间只够用来投入研究,再无暇顾及其他。所以这些年,这支队伍证明自己实力的方式“简单”、“粗暴”―不断创新、不断突破,不断刷新成果记录:
他们在光通信和光网络的核心器件高速光波导调制器的研制方面,采用保角变换法和点匹配法,很好地解决了以有限元为代表的常用数值计算法难以精确描述光调制器电极边缘效应的难题,确保了光波和微波传输特性测试分析的精确度,为器件设计和制备提供了有效保证。
他们首次将变分理论用于光波导传输特性分析,有效解决了采用数值分析法进行优化设计时面临的异常困难,建立了光波导基膜和高阶模场分布的解析表达式,并在此基础上获得了导模数目和模式传播常数等参数,在不同结构的光波导分析中成功应用,相关成果荣获中国科学院自然科学三等奖。业内评价称:“该方法表达式简单、参数确定方便、精确度高,为完善光波导理论体系作出了重要贡献。”
他们创新性地提出基于频率分束法的光外差技术,将光谱结构分析从光域转到电域,解决了传统Michelson干涉仪光谱分析法存在的光束发散、透镜振动等限制问题,将光谱分辨率由105提高到了1017。借助这一方法,他们研究了光波列(构成光谱的基本单元)的线宽和长度,以及时间和频率分布规律,建立了半导体激光器超精细光谱结构模型。同时,基于该理论,他们还提出了非对称耦合腔的单片集成激光器机构,能够将线宽压榨到35KHz以下,比常规DFB激光器小了2个量级。航天五院测试后确认其满足航天定标要求,意味着我国在该类核心器件的研发上实现了自主可控。
他们还大胆提出频率相干性概念,完善了波长不同的两束光相干性描述,明确双光束拍频产生微波信号的频谱线宽取决于光束相干性,与光束本身光谱线宽无关,以及两个单片集成激光器的输出光也具有频率相干性,并首次实现了基于微波光子技术的单片集成窄线宽微波源芯片,具有体积小、调谐范围大、不需要微谐振器等特点。
这种可调谐激光器在5微秒内实现了DC~40GHz的快速扫频,与传统电子学微波源技术相比,大大拓宽了频带快读,扫频速率提高了3个量级。这一突出成果一经发表,便立刻获得了UrekAlert和总参某部的高度关注,认为该方法为实现高效电子对抗装置及系统提供了可能。
…………
在科研上,这支队伍的表现其实很高调―提出大胆建议的是他们,提前判断发展趋势的是他们,打破国外禁运限制的也是他们,这些华丽的成果是他们非凡实力的最佳佐证。低调,只是为了屏蔽一切干扰和杂念,心无旁骛地沉浸在科研的世界中。
对于光电子技术的未来,祝宁华表示,光电子技术发展至今,已经对国家的发展产生了重要影响,大到军工、航天、国防等领域,小到家用电器的信号传递、灯光照明等。全球光电子技术产业的市场规模已超1万亿美元,我国的光电子技术产品市场也始终保持着两位数的高速增长,市场可观、潜力巨大。
【关键词】 光电子技术 光医学 光保健 学科现状 发展趋势
一 引言
生物医学光学与光子学是光学或者说光子学现展的一个分支学科。由于光学与光子学是具有极强应用背景的学科,所以“生物医学光子技术”这一多学科交叉的新兴研究领域在20世纪末叶也随之应运而生。
激光技术作为一项重大的科技成就,为研究生命科技和疾病的发生、发展开辟了新的途径,为保健和临床诊疗提供了崭新的手段,推动人类科学技术进入新的发展阶段。
可以把与光的产生、传播、操纵、探测和利用有关的物理现象和技术包括在内的科学及工程笼统地简称为光学。用光学最广的含义来概括各研究领域及其相关交叉分支时必然包括了激光和光电子技术。运用光学及其技术研究光与人体组织的相互作用问题可归之于“组织光学”范畴。它是研究光辐射能量在生物组织体内的传播规律以及有关组织光学特性的测量方法的一门新兴交叉学科,是光医学(光诊断和光治疗)的理论基础。经过40多年的发展,激光与光电子技术在人类的保健、医疗以及生命科学中产生了很大影响。
在医学领域,光电子技术使各种新疗法,包括从激光心脏手术到用光学图像系统的关节内窥镜进行微损膝关节修复等,成为可能或得以实现。目前,科学家们正致力于研究光学技术在非侵入式诊断和检测上的应用,如乳腺癌的早期探查、糖尿病患者葡萄糖的“无针”监控等。激光在医学上的最早应用虽然集中在治疗方面,然而在80年代初期起便开始了光诊断技术的探索。指望无损害地获得诊断信息是这些研究的驱动力之一,其中在物理学中高度发展的光谱技术有望在诊断医学中得到应用。利用光纤把光传输到身体内部的能力,可以完成膀胱、结肠和肺等器官的检查。随着医学诊断方法向无损化方向发展,利用光电子学技术对组织体进行鉴别和诊断,有可能更早期、更精确地诊断各种疾病。近年来,人们开始把这种诊断方法称之为“光活检”。
随着现代医学模式的转变、健康概念的更新以及人民生活水平的提高,从20世纪80年代后期起,“激光美容术”在世界各地包括在我国各大城市逐渐地开展。保健美容是光电子技术应用越来越活跃的领域。激光技术应用于美容外科的起步较早,使得一些在美容整形外科很棘手的疾病,如太田痣、血管瘤等治疗变得简易有效。到20世纪末,人们又开发了一种称为光子嫩肤术的新美容技术。它基于选择性的光热解作用,有效地改善肌肤的质地和弹性,达到美容的效果。之所以用激光或强脉冲光进行非消融性的嫩肤或治疗越来越流行,是因为这类手术具有无损、不必住院、几乎无副作用和无疼痛,从而使受术者容易接受的优点。
国家自然科学基金委员会先后二次在“光子学与光子技术”以及“生物医学光学”优先资助领域战略研究报告中分别指出:近年来生物医学光学与光子学的迅猛兴起,令人瞩目,并因而引发出一门新兴的学科-生物医学光子学(Biomedophotonics)。研究报告选定了近期优先研究领域包括生物光子学、医学光子学基础研究、医学临床的光学诊断和激光医学中的重要课题等诸方面。
福建师范大学在1974年成立了“医用激光及其应用技术”研究组,以激光与光电子技术为基础,围绕激光医学应用的核心技术开展研究与开发。至二十世纪九十年代,跟随该领域的国际走向,转入激光医学技术的基础理论研究工作,在国内率先开展了生物组织光学与光剂量学的研究。伴随研究工作的深入开展,逐步形成了我们有特色的若干前沿研究方向,并于2005年获准立项建设医学光电科学与技术教育部重点实验室。
二 国内外现状
光学在生命科学中的应用,在经历了一个缓慢的发展阶段后,由于激光与新颖的光子技术的介入,进入了一个迅速发展的新阶段。与光学有关的技术冲击着人类健康领域,正在改变着药物疗法和常规手术的实施手段,并为医疗诊断提供了革命性的新方法。特别在近十多年来,与蓬勃的学术研究活动相对应,国际上出现了专门的研究性学术杂志,如:Laurin 出版公司于1991年发行了“Bio-Photonics”新杂志。美国光学学会重要的会刊之一“Applied Optics”也于1996年将其“Optical Technology”栏目扩充为“ Optical Technology and Biomedical Optics”,并定期出版有关生物医学光学的论文专集。SPIE亦于1996年创办了期刊Journal of Biomedical Optics,且声誉日隆。到2004年,该刊的SCI影响因子已达3.541。当前,发达国家普遍对生物医学光子学学科给予了高度重视。例如,在美国国家卫生研究院(NIH)新成立的国家生物医学影像与生物工程研究所(NIBIB)中,生物医学光子学也成为其主要资助的领域。近三年中,美国NIH已经召开过4次研讨会,认为新的在体生物光子学方法可用于癌症和其它疾病的早期检测、诊断和治疗。新一代的在体光学成像技术正处在从实验室转向癌症临床应用的重要时刻。在NIH的支持下,美国国家癌症研究所(NCI)正在计划5年投资1800万美元,招标建立“在体光学成像和/或光谱技术转化研究网络(NTROI)”,其研究内容主要包括:光学成像对比度的产生机理、在体光学成像技术与方法、临床监测、新光学成像方法的验证、系统研制与集成等五个方面。2000年底,在美国NIBIB的首批支持项目中,光学成像方法约占30%。2000年7月,美国NIH投资2000万美元,开展小动物成像方法项目(SAIRPs)研究,受到生命科学界的高度关注,其中光学成像方法是研究重点之一。美国国家科学基金会(NSF)在2000-2002年了4次关于生物医学光子学研究(Biophotonics Partnership Initiative)的招标指南。“9.11”事件后,美国国防部启动了“应激状态下的认知活动”(Cognition under stress)项目,采用的研究方法就是光学成像技术。美国加州大学Davis分校于2002年10月宣布:未来10年内,将投资5200万美元建立生物医学光子学科学技术中心(The Center for Biophotonics Science and Technology),其中4000万美元由NSF支持。在学术交流活动方面,国际光学界规模最大西部光子学会议(Photonics West)上,每年的四个大分会之一即是生物医学光学会议(BiOS),论文均超过大会总数的三分之一,如,2003年关于BiOS的专题为19个,占整个会议的19/52=36.5%;2004年,IBOS会议专题为20个,占整个会议的20/55=36.4%。另外,每年还召开欧洲生物医学光子学会议。除疾病早期诊断、生理参数监测外,在基因表达、蛋白质―蛋白质相互作用、新药研发和药效评价等研究中,特别是近年来的Science, Nature, PNAS等国际权威刊物发表的论文表明,光子学技术也正在发挥至关重要的作用。在某些领域,如眼科,光学和激光技术已成熟地应用于临床实践。激光还使治疗肾结石和皮肤病的新疗法得以实现,并以最小的无损或微损疗法代替外科手术,如膝关节的修复。现在,用激光技术和光激励的药物相结合可治好某些癌症。以光学诊断技术为基础的流动血细胞测量仪可用于监测爱滋病患者体内的病毒携带量。还有一些光学技术正处于无损医学应用的试验阶段,包括控制糖尿病所进行的无损血糖监测和乳腺癌的早期诊断等。光学技术还为生物学研究提供了新的手段,如人体内部造影、测量、分析和处理等。共焦激光扫描显微镜能将详细的生物结构的三维图象展现出来,在亚细胞层次监测化学组成和蛋白质相互作用空间和时间特征。以双光子激发荧光技术为代表的非线性成像方法,不仅可以改善荧光成像方法的探测深度、降低对生物体的损伤,而且还开辟了在细胞内进行高度定位的光化学疗法。近场技术将分辨率提高到衍射极限以上,可以探测细胞膜上生物分子的相互作用、离子通道等等。激光器已成为确定DNA化学结构排序系统的关键组成部分。光学在生物技术方面的其它应用还包括采用“DNA芯片”的高级复杂系统,和采用传输探针的简单系统。激光钳提供了一种在显微镜下方能看见的一种新奇的、前所未有的操作方法,能够在生物环境中实现细胞或微观粒子的操纵与控制,或在10-12m范围内实现力学参数的测量。结合光子学和纳米技术已经可以探测细胞机械活动,揭示细胞水平上隐秘的生命过程,利用纳米器件甚至可以检测和操纵原子和分子,这可以应用在细胞水平的医学领域。高技术的进步,如:微芯片极大地加速了生物光子学的发展进程。集成电路、传感器元件和相连电路的小型化、集成化促使在体和体外测量分子、组织和器官图像成为可能。许多生物医学光子学技术已经在临床上应用于早期疾病监测或生理参量的测量,如血压,血液化学,pH,温度,或测量病理生物体或临床上有重要意义的生化物种的存在与否。描述不同光谱特性(如荧光,散射,反射和光学相干成像)的各种光学概念出现在功能成像的重要领域。从大脑到窦体再到腹部,精确导位和追踪,对于精确定位医疗仪器在三维手术空间的位置具有重要的作用。基于分子探针的光子技术可以识别发生疾病时产生的分子报警,将真正实现令人激动的、个人的、分子水平的医学。
我国的研究基础与条件虽然相对落后,研究投入不足,但生物医学光子学是一门正在兴起和不断发展的学科,在这一新兴交叉学科上国内外处于一个起跑线上。近年来,在国家自然科学基金委、省部委以及其它基金项目的资助下,我国在生物医学光子学的研究中取得了很大的进展,尤其是2000年第152次主题为 “生物医学光子学与医学成像若干前沿问题”、第217次主题为“生物分子光子学”的香山会议后,有许多学校和科研单位开展了生物医学光子学的研究工作,并初步建成了几个具有代表性的、具有自己研究特色和明确科研方向的研究机构或实验室,并在生物医学光学成像(如OCT、光声光谱成像、双光子激发荧光成像、二次谐波成像、光学层析成像等)、组织光学理论及光子医学诊断、分子光子学(包括成像与分析)、生物医学光谱、X射线相衬成像、光学功能成像、认知光学成像、PDT光剂量学、高时空谱探测技术及仪器研究等方面取得了显著的研究成果。发表了许多研究论文,申请了许多发明专利,有些已经获得产业化。国家自然科学基金委员会生命科学部与信息科学部联合发起并承办的全国光子生物学与光子医学学术研讨会已经举办了六届。这对我国生物医学光子学学科的发展起到了积极的推动作用。在我国近年所召开的亚太地区光子学会议中,有关生物医学光子学的内容已大幅增加,成为主要的研讨专题。我国的生物医学光子学研究和学术活动也方兴未艾,呈现与国际同步的态势。在基础研究、应用基础研究以及对新技术的掌握方面跟踪国际先进水平,但国内科研经费的投入相对较小,科研队伍规模不大,原创性的科研成果与国外有较大差距。和国外的发展水平相比,我国的生物医学光子学发展还存在以下问题:
(1)尽管从事生物医学光子学的科研单位很多,但取得突破性、创新性的研究成果很少,主要是由于我们的科研队伍在组织、组成上还不合理,过于分散、开展的内容繁杂,难以将有限的资金投入到一些有利于国计民生的及上水平的研究方向上;另外许多单位的研究重复,缺乏合作,导致水平低下;
(2)和国外相比,研究经费无论在绝对值还是相对值上均投入十分不够;
(3)缺乏研究成果产业化的引导机制。
三 医学光电科学与技术(福建师范大学)教育部重点实验室概况
“医学光电科学与技术”教育部重点实验室设立于福建师范大学物理与光电信息科技学院(激光与光电子技术研究所)内,作为本学科开展科研研究和实施建设与发展的一个基础平台。实验室已有30年发展历史,1973年成立福建师范学院物理系激光实验室,1984年成为福建师范大学激光研究所实验室,1995年为福建省首期211重点学科《应用光子学》学科实验室,2003年5月26日经福建省科技厅批准成立“光子技术福建省重点实验室”,2005年7月28日经教育部批准立项建设教育部重点实验室。实验室座落于福建师范大学长安山校园内。
30年多来,实验室在生物组织光学、医学光谱与光学成像技术、光诊断及光诊疗技术、信息技术光学及其生物医学应用等四个主要方向上努力开拓,承担并完成了数十项国家与省部重点、重大项目课题,取得一批代表我国本领域研究水平的科研成果,其中十五以来获省部级科技进步一等奖1项,二等奖2项,三等奖2项,其它省级以上奖励12项。在国内外重要刊物发表的论文以及被SCI、EI收录的论文均超过100篇。
实验室目前承担着国家与省级重要课题50余项,科研经费超过2000万元。其中国家自然科学基金项目11项,国家教育部、科技部、卫生部项目9项,福建省科技重大专项1项,其它省级重要项目近30项。
中科院半导体研究所原所长王启明院士任重点实验室学术委员会主任,副主任由黄尚廉院士和谢树森教授担任。另有九位国内外著名的激光、光电子与医学学科交叉的院士、专家或资深教授担任委员,其中海外委员两人。他们规划、指导并检查本学科实验室的建设与发展。
重点实验室主要学术带头人、实验室学术委员会常务副主任谢树森教授是中国光学学会副理事长、福建省光学学会理事长、国家有突出贡献的中青年专家、光学工程专业博导、全国劳动模范,是我国医学光电科学与技术领域的学术带头人与开拓者。实验室主任陈荣教授、副主任李晖教授均为国务院特殊津贴专家,实验室常务副主任陈建新教授来自于北京大学的优秀博士后研究员。重点实验室拥有稳定的可持续开展高水平科研的学术梯队,其中的中青年学术带头人或学术骨干包括1位闽江学者特聘教授、1位福建师范大学特聘教授、3位国务院特殊津贴专家、2位全国优秀教师、2位福建省优秀教师和15位博士。
重点实验室与国内外学术界建立了并保持着广泛的联系。重点实验室已设立面向国内外的开放课题基金。已批准并实施来自浙江大学、厦门大学、上海光机所、西安交通大学、华南师范大学、天津医科大学、上海市激光医学研究中心等单位知名学者的开放课题。
重点实验室已具备良好的科研软硬件环境。现有面积近5000平方米,仪器设备原值2500多万元。重点实验室各项管理制度健全。
“医学光电科学与技术”重点实验室,在我国现代科学技术领域特色鲜明,在我国相关学科处于领头地位,有较大影响。重点实验室建设将有力促进福建省科技创新能力建设,促使福建师范大学迅速向高水平、有特色、开放型的综合性大学迈进。同时,重点实验室的建设与发展将有力促进我国医学光电科学与相关学科的发展,为广大民众的身心健康,为海峡西岸的科技、社会与经济发展做出重大贡献。
四 发展趋势和展望
光子学及其技术已广泛应用或渗透到生物科学和医学的诸多方面,被科学界所认同和重视。生物医学光学已经成为国际光学学科重要发展方向之一。生物医学光子学的发展,将为现代医学和生命科学带进崭新的时代。本学科的发展将继续体现了多学科交叉的特点,研究领域涉及到了生物学、医学、和光学,还有化学等不同大学科的方方面面。技术开发与临床应用研究的结合将越来越密切。一般认为,光学领域未来发展的重点是将各种复杂的光学系统和技术更加广泛地应用于保健和医疗。当今世界中,与光子学有关的技术冲击着人类对生命体的认知及人类健康领域。基于现代激光与光电子技术的生物医学光子学技术将为生命科学研究带来具有原始性创新的重要科研成果,并可望形成有重大社会影响和经济效益的产业。
在医学领域,光子学技术正在改变着药物疗法和常规手术的实施手段,并为医疗诊断提供了新方法。在某些领域,如眼科,光学和激光技术已成熟地应用于临床实践。激光还使治疗肾结石和皮肤病的新疗法得以实现,并以无损或微损疗法代替外科手术,如膝关节的修复。现在,用激光技术和光激励的药物相结合可治好某些癌症。以光学诊断技术为基础的流动血细胞测量仪可用于监测爱滋病患者体内的病毒携带量。还有一些光学技术正处于无损医学应用的试验阶段,包括控制糖尿病所进行的无损血糖监测和乳腺癌的早期诊断等。
在基础研究方面,研究重点在于从细胞,甚至是亚细胞尺度层次揭示病变组织与正常组织之间的差异,为新技术开发以及应用提供理论依据。另一方面,研究光与人体组织之间的相互作用以及所产生的光化学、光热和光机械效应。在技术的应用方面,研究重点转向比较各种技术中光源(相干光源/非相干光源、波长、功率密度、偏振性、连续/脉冲光源、脉冲持续时间等)和个体差异(年龄、性别、临床症状、发病史、发病时间等)对诊断或治疗结果的影响,在确定各种技术临床适应症的同时,进一步实用化各种技术。此外,还在不断开发新的实用于不同疾病的诊断、治疗和监测技术。
值得关注的是,国外从事“生物医学光学”领域研究的高校或研究机构中,来自大陆的中国学者的数量越来越多。这有助于使国内外的学术交流更加有效,并可以预期国内与国外在该领域的研究水平差距将不断缩小。
今后若干年内医学光电科技学科需关注的重大科学问题和优先研究领域如下:
(一)医学光子学基础
在组织光学方面,其中最主要的有光在组织体内传播的特殊方式、组织光学性质的描述以及有关实验技术的开发和完善等。组织光学是医学光子技术的理论基础。光在生物组织中的运动学(如光的传播)问题和动力学(如光的探测)问题是研究的主要内容,目的是要研究生物组织的光学性质和确定某靶位单位面积上的光能流率。应优先解决测量技术和实验精度的问题,利用近场光学显微技术、光镊技术测量活体组织的光学参量。在理论建模方面,建立生物组织中光的传输理论和数值模拟方法。具体开展的研究工作应包括:1)光在生物组织中传输理论:要用更复杂的理论来描述生物组织的光学性质以及光在其中的传播行为。建立准确的组织光学模型,使之能反映生物组织空间结构及其尺寸分布情况、组织各个部分的散射与吸收特性以及折射率在一定条件下的变化情况;改造传输方程,使之适应新的条件,并能在某些情况下求出光在生物组织中传输的基本性质。2)光传输的蒙特卡罗模拟:继续开发新的更为有效的算法以适应生物组织的多样性和复杂性的要求。除了了解光在组织中的分布,还在探索从大量数字模拟中得到生物组织中光的宏观分布与其光学性质基本参量之间的经验关系。另外,发展非稳态的光传输的蒙特卡罗模拟方法也是一个重要的研究方向,从中可以获得比稳态条件下更多的信息。
组织光学参数的测量方法和技术方面,尚未获得人体各种组织的可靠实验数据。发展和完善活体的无损检测尤为重要。在这方面,时间分辨率与频率分辨率的测量方法引人注目。
(二)医学光子学光谱诊断技术
医学光子学光谱(非成像)诊断技术实质上是利用从组织体反射、散射、发射出来的光,经过适当的放大、探测以及信号处理,来获取组织内部的病变信息,从而达到诊断疾病的目的。
生物组织的自体荧光与药物荧光光谱技术,内容涉及光敏剂的吸收谱、激发与发射荧光谱以及各种波长激光激发下正常组织与病变组织内源性荧光基团特征光谱等。现在人们所谓的特征荧光峰实际上只是卟啉分子的荧光峰。客观和科学地判断激光荧光光谱对肿瘤的诊断标准是十分必要的。目前,某些癌瘤的药物荧光诊断已进入临床试用,自体荧光的应用尚处于摸索之中。需要开展激光激发生物组织和细胞内物质的机理研究,探讨激光诱发组织自体荧光与癌组织病理类型的相关性以及新型光敏剂的荧光谱、荧光产额和最佳激发波长等方面的研究,以期获得极其稳定、可靠的特征数据,为诊断技术的发展提供科学依据。
近年来,拉曼光谱技术应用于医学中已显示出它在灵敏度、分辨率、无损伤等方面的优势。应开发并完善重要医学物质拉曼光谱数据库,并使基于拉曼光谱分析的小型、高效、适用于体表与体内的医用拉曼光谱仪和诊断仪将在医学临床获得更广泛的应用。
超快时间分辨光谱比稳态光谱在技术上更灵敏、更客观和更具有选择性。因此,将脉宽为ps、fs量级的超短激光脉冲光源用于医学受到广泛重视,其一,应发展超快时间分辨荧光光谱技术,用于测量生物组织及生物分子的荧光衰变时间,分析癌组织分子驰豫动力学性质等,为进一步研究自体荧光法诊断恶性肿瘤提供基础数据;其二,应发展超快时间分辨漫反射(透射)光谱技术。以时域的角度测量组织的漫反射,从而间接确定组织的光学特征。这是一种全新的、适用于活体的、无损和实时的测量方法,为确知光与生物组织的相互作用,解决医学光子学中基础测量问题开辟一条新径。
(三)医学光子学成像诊断技术
发展出具有无辐射损伤、高分辨率、非侵入、实时、安全的光子学成像诊断技术,并具有经济、小型、且能监测活体组织内部处于自然状态化学成分等特点的医疗诊断设备。主要的医学光子学成像诊断技术包括:
超快时间分辨成像技术:以超短脉冲激光作为光源,根据光脉冲在组织内传播时的时间分辨特性,使用门控技术分离出漫反射脉冲中未被散射的所谓早期光,进行成像。正在研究的典型时间门有条纹照相机、克尔门、电子全息等。
散射成像技术:包括光子密度波散射层析成像、组织深度光谱测量以及复合成像等,利用红外光源,光子密度波在生物组织中的穿透深度可达几个毫米,在低散射的人脑组织中甚至可达30mm。
红外热成像:红外热成像是利用红外探测器测量人体和动物的正常与病变组织的温度差异来诊断病变及其位置,现已在医学诊断中得到广泛的应用,如乳腺肿瘤的诊断。
光学相干层析成像技术:一种非侵入式无损成像技术,并且可以与显微镜、手持探针、内窥镜、医用导管、腹腔镜等相结合使用,从而具有广阔的应用领域。而且,OCT能进行众多功能成像,如分光镜OCT、多普勒OCT、偏振OCT:也可以与众多成像技术结合使用,如荧光、双光子、二次谐波成像等技术。
荧光寿命成像:受超短光脉冲激发后,荧光团,包括自体荧光团如NADH、FAD等和外源荧光团,如有机荧光染料、荧光蛋白等,所发出荧光的寿命取决于荧光团的分子种类及其所处的微环境,如pH、离子浓度(如Ca2+、Na+等)、氧压等,因此荧光寿命的测量和成像,有助于提供生物组织的功能信息。和内窥镜结合,可用于胃癌、食道癌等疾病的早期诊断,是一种很有前途的具有高灵敏度、高特异性以及高诊断准确性的早期癌症诊断方法。
光声作用成像:利用超声场在生物组织中的优良传输特性和激光在生物组织中的选择性吸收特性,将超声定位技术和光学高灵敏度检测技术结合,以实现无损伤临床医学的结构和功能层析诊断。预期成像深度远好于目前的光学成像方法,对于较厚生物组织成像及临床应用特别具有吸引力,可为及早发现一些特殊病变提供一种无损、有效、高准确度的方法。
非线性光学成像:双光子激发荧光显微成像、二次谐波等成像技术由于具有三维高空间分辨率,对比度高、对生物组织的损伤小等优点,研究工作重点是扩展成像技术在生物医学领域的应用范围,重点解决研制小型化内窥型诊断设备所面临的相关技术问题。
人体经络的光学表征及其调控功能:已经用不少事实证明了经脉循行路线的现象,也初步显示了人体体表沿十四经脉路线存在的红外辐射轨迹。然而,至今未能用西医的形态学或生理学方法证明它的存在,也不能明晰地阐明“经络”的实质。可以利用已发展的生物医学光子学诸多成像技术为工具,研究这个具有中国特色的中医学中的重大问题。
4.医用激光治疗技术(激光医学)
强激光治疗:是当前激光医学中最成熟和最重要的领域。随着新型医用激光器的不时出现,如:钛激光、铒激光、准分子激光等,强激光治疗技术的临床用途也逐渐增多,提出一些新的问题。关于这些新型激光器及新的工作方式对人体组织的作用特点的认识还相对不足,基本没有适合国人组织特性的治疗参数。为此需加强研究激光与生物组织间的作用关系,特别是在诸多有效疗法中已获得重要应用的激光与生物组织间的作用关系;研究不同激光参数(包括波长、功率密度、能量密度与运转方式等)对不同生物组织、人体器官组织及病变组织的作用关系,取得系统的数据,同时也有必要加强新型激光器及新的工作方式的临床适应证的研究。
低强度激光治疗:非热或低强度激光辐射可作为一种辅助治疗手段,其作用机理尚不清楚。对弱激光治疗机理的认识有待于整个基础医学的提高,如充分认识细胞基因表达与调控、细胞代谢的调控、免疫反应的调控等,同时还需研究不同弱激光剂量对这些调控的影响,这才能提高弱激光治疗的针对性和疗效。针对目前临床上盲目夸大疗效、照射剂量严重混乱的局面,建议重点扶持2-3个弱激光研究中心,集中财力与人力进行弱激光的细胞生物学效应研究;弱激光生物调节作用和细胞生物学现象(基因调控和细胞凋亡)的量效关系、弱激光镇痛的分子生物学机制以及弱激光与细胞免疫(抗菌、抗毒素、抗病毒等)的关系及其机制。寻求弱激光生物刺激效应的可能机制与量效关系;规范临床治疗参数与操作等。
光动力学治疗(PDT)是当前激光医学中最具活力且发展迅速的领域。光动力疗法具备了诊断和治疗肿瘤、心脑血管病等人类重大疾病的潜力。光动力疗法在鲜红斑痣、老年性眼底黄斑病变、某些顽固性皮肤病、类风湿性关节炎等常规手段难以奏效的良性疾病的治疗研究中取得一系列进展,并结合内镜技术的发展等,其应用领域得到很大的延伸和扩展。这些都说明发展光动力疗法具有重要的社会和经济效益。应当重点资助PDT相关产品的国产化,扶持新一代国产光敏剂的开发及相应激光器的产业化,资助新一代光敏剂光动力学治疗的机理研究。作用机理、光动力疗法各要素对光动力学效应的影响、建立数学模型、新型光敏剂光动力学效应的研究,为开拓光动力疗法新的应用领域取得系统的数据。
激光美容与光子嫩肤术:利用激光或强脉冲光照射皮肤后的选择性光热解效应,即靶组织(病灶)和正常组织对光的吸收率的差别,使激光在损伤靶组织的同时避免正常组织的损伤这一原则,达到去皱、去文身、脱毛和治疗各种皮肤病或达到美容的效果。
五 结论
医学光子学及其技术的学科发展,对生命科学有重要且积极的意义。在医学领域,将为解决长期困扰人类的疑难顽疾如心血管疾病和癌症的早期诊治提供可能性,从而提高人类的生存价值和意义,其中的重大突破将起到类似X射线和CT技术在人类文明进步史上的重要推动作用,在知识经济崛起的时代还可能产生和带动一批高新技术产业。
参考文献
〔1〕Michael I. Kulick. Lasers in Aesthetic Surgery. New York: Spring-Verlag,1998.(中译本:激光美容外科,叶青等译,福建科技出版社 2003.).
〔2〕美国国家研究理事会编,上海应用物理研究中心译. 驾驭光:21世纪光科学与工程学, 上海:上海科学技术文献出版社,2001. 78-114.
〔3〕 谢树森,雷仕湛. 光子技术. 北京:科学出版社,2004. 266.
〔4〕国家自然科学基金委. 光子学与光子技术:国家自然科学基金优先资助领域战略研究报告. 北京: 高教出版社/海德堡,施普林格出版社, 1999. 96-114.
〔5〕Raloff, Janet, Optical biopsy hunts would-be cancers, Science news, 2001,159(14):214.
〔6〕 Kathy Kincade, Medicalwatch: Optical biopsy device nears commercial reality, Laser focus world, 2000.
〔7〕 Britton Chance, Mingzhen Chen and Gilwon Yoon, Editors, Optics in Health Care and Biomedical Optics: Diagnosis and Treatment, Proc.SPIE, 2002.
〔8〕R.R. Alfano, Advances in optical biopsy and optical mammography, Published by the New York Academy of Sciences, 1998.
〔9〕R.R. Anderson, J.A. Parrish, Science, 1983, 220:524-527.
〔10〕 谢树森,龚玮,李晖,光电子激光,2004,15(10):1260-1262.
〔11〕 R. Christian, G. Barbel, etal, Lasers Srug Med,2003;, 32:78-87.
〔12〕范滇元 中国激光技术发展回顾与展望 《2000高技术发展报告》 2000.
〔13〕 世界激光医学发展简史 2004.
〔14〕 李兰 我国激光医学现状发展战略――问题与对策《科技日报》2002.07.
〔15〕 Wei Gong, Shusen Xie, Hui Li. Photorejuvenation:still not a fully established clinical tool for cosmetic treatment. ICO20: Biomedical Optics, Proc. of SPIE Vol. 6026, 602604, (2006).
〔16〕 Hongqin Yan, Shusen Xie, Hui Li et al. Optical imaging method.
课题组成员:
1.谢树森:教授、博士导师,中国光学学会副理事长,福建省光学学会理事长
2.李 晖:福建师范大学 医学光电科学与技术教育部重点实验室
3.陈 荣:福建师范大学 医学光电科学与技术教育部重点实验室
1.1专业的创新性、前沿性有待提高
物理电子技术专业是一个与时俱进的专业,其涉及的范围之广、内容之多是我们无法描述的,尤其是该专业的创新性和前沿性方面仍然存在巨大的问题和挑战。由于该专业涉及到的知识有很多仍然处在不断的发展和探索的阶段,而且这些技术都是直接推动社会生产力发展的直接动因,有着很强的应用性和实践性,涉及到科技前沿的方面比较多,我国在物理电子技术专业方面还缺乏相应的创新性、前沿性研究。
1.2高校对该专业发展的重视和引导还不够
我国社会的各个方面都进行了相关的改革,为了发展经济,提高人民的生活水平,党和国家进行了很多努力,其中最重要的原因就是我国实行了社会主义市场经济体制,在这种经济体制的引导下,大家更多的是关注眼前的经济利益。在高校的改革中也存在这样的问题,高校更多的注重自己学校的财政问题,更注重发展那些低成本、高回报的学科,对于物理电子技术专业这样专业性很强的学科,很多高校缺乏资金上政策上的支持和引导,没有发现物理电子技术专业的重要意义。
1.3教学的方式还存在问题
由于物理电子技术专业是一个专业性和学科性很强的专业,其内容复杂而且一直处于知识的革命阶段,因此,我国高校在物理电子技术专业的教学方面还存在很多的问题。首先,教师水平无法适应一直更新的知识体系;其次,教学方法陈旧落后,无法满足学生学习的需要;最后,由于资金等方面的问题,我国物理电子技术专业的实践教学资源和条件严重缺乏,造成学生只能纸上谈兵。
2.物理电子技术专业的发展对策
2.1优化完善物理电子技术专业的专业设置
教育部门要充分的认识目前我国高校中物理电子技术专业在专业设置方面的缺陷和不足,相关部门要引起足够的重视并采取有效的措施对目前我国的物理电子技术专业的专业设置进行有效的重塑,要实现真空物理、薄膜物理与技术、阴极电子学、气体放电与物理、表面物理与科学、电子光学与仪器、微波器件、光电显示器件、声学物理与器件、电光源等技术领域的全面覆盖,而且要实现物理电子技术专业设置的广泛化,应该让更多的学生有机会接受物理电子技术专业学习机会,只有这样我国的物理电子技术专业才能取得长足的发展和进步。
2.2提高物理电子技术专业的创新性、前沿性
改革创新是我国现阶段发展的直接动力,也是我国改革开放30年来总结出来的促进我国发展的基本经验。同样学科或者专业的发展也需要改革创新作为支撑其进步的不懈动力。因此,我们在进行物理电子技术专业的探索中要注重改革的力量,要重视创新思维,我们只有运用创新思维打开禁锢我们思想的绳索,不断的对物理电子技术专业的发展进行探索,不断的去揭示物理电子技术专业的发展前沿,保持一种对于新知识的渴望才能实现我国物理电子技术专业的不断完善。
2.3高校要重视对于物理电子技术专业发展的引导
物理电子技术专业要想实现自身的发展必须依赖高校的引导和重视,相关的高校应该给与一定的政策倾斜和资金支持,以此来促进物理电子技术专业的学科建设,完善物理电子技术专业的学科设置。只有高校对物理电子技术专业有了足够的重视才能制定出更加有效的发展方式来促进物理电子技术专业的不断进步。
2.4改革现有的物理电子技术专业教学现状
物理电子技术专业的发展归根结底需要依赖学校组织的教学活动推动其发展,因此,我们必须改变物理电子技术专业现阶段的教学现状。首先,高校应该充分的重视物理电子技术专业优秀教师队伍的打造,提高其整体素质;其次,高校要不断的改革和创新教学方法,实现教学方式的逐步优化;最后,高校和有关部门要加大资金支持力度,逐步完善物理电子技术专业实践教学的场地和基础设施,以此来满足物理电子技术专业的实践教学。
3.结论
20世纪60年代以来,人们利用电子技术的初步成果来完善机械产品的性能后,刺激了机械产品与电子技术的结合。计算机技术、控制技术、通信技术的发展,为机电一体化的发展更进一步奠定了技术基础。20世纪80年代末期,机电一体化技术和产品得到了极大发展。各国均开始对机电一体化技术和产品给以很大的关注和支持,20世纪90年代后期,开始了机电一体化技术向智能化方向迈进的新阶段,机电一体化进入了深入发展时期。光学、通信技术等进入了机电一体化,微细加工技术也在机电一体化中展露头脚,出现了光机电一体化和微机电一体化等新分支。我国从20世纪80年代开始开展机电一体化研究和应用。取得了一定成果,它的发展和进步依赖并促进相关技术的发展和进步。机电一体化已成为一门有着自身体系的新型学科,随着科学技术的不断发展,还将被赋予新的内容。
二、机电一体化的发展现状
机电一体化的发展大体可以分为3个阶段。20世纪60年代以前为第一阶段,这一阶段称为初级阶段。在这一时期,人们利用电子技术的初步成果来完善机械产品的性能。特别是在第二次世界大战期间,战争刺激了机械产品与电子技术的结合,这些机电结合的军用技术,战后转为民用,对战后经济的恢复起了积极的作用。那时研制和开发从总体上看还处于自发状态。由于当时电子技术的发展尚未达到一定水平,机械技术与电子技术的结合还不可能广泛和深入发展,已经开发的产品也无法大量推广。
20世纪70年代~80年代为第二阶段,可称为蓬勃发展阶段。这一时期,计算机技术、控制技术、通信技术的发展,为机电一体化的发展奠定了技术基础。大规模、超大规模集成电路和微型计算机的迅猛发展,为机电一体化的发展提供了充分的物质基础。
20世纪90年代后期,开始了机电一体化技术向智能化方向迈进的新阶段,机电一体化进入深入发展时期。一方面,光学、通信技术等进入了机电一体化,微细加工技术也在机电一体化中展露头脚,出现了光机电一体化和微机电一体化等新分支;另一方面对机电一体化系统的建模设计、分析和集成方法、机电一体化的学科体系和发展趋势都进行了深入研究。同时,由于人工智能技术、神经网络技术及光纤技术等领域取得的巨大进步,更为机电一体化技术开辟了发展的广阔天地。这些研究,将促使机电一体化进一步建立完整的基础和逐渐形成完整的科学体系。我国是从20世纪80年代初才开始在这方面研究和应用。国务院成立了机电一体化领导小组并将该技术列为“863计划”中。在制定“九五”规划和2010年发展纲要时充分考虑了国际上关于机电一体化技术的发展动向和由此可能带来的影响。许多大专院校、研究机构及一些大中型企业对这一技术的发展及应用也做了大量的工作,虽然取得了一定成果,但与日本等先进国家相比仍有相当差距。
三、机电一体化的发展趋势