公务员期刊网 精选范文 废水处理的基本方法范文

废水处理的基本方法精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的废水处理的基本方法主题范文,仅供参考,欢迎阅读并收藏。

废水处理的基本方法

第1篇:废水处理的基本方法范文

(1.武汉软件工程职业学院,武汉 430205;2.南京农业大学,南京 210095)

摘要:以f/2培养基为对照,采用不同浓度海水养殖废水培养盐藻,研究其对废水的净化作用。结果表明,盐藻在海水养殖废水中能正常生长,利用海水养殖废水培养盐藻是可行的,采用不同体积分数的海水养殖废水处理盐藻,盐藻生长差异显著,生长情况好坏顺序为f/2、100%、10%、25%、50%、75%、90%、0%(纯海水),培养后废水水体中氨态氮基本上检测不到,10%海水养殖废水处理的硝酸盐和磷酸盐去除率均最低,相对较低体积分数的海水养殖废水处理对硝酸盐的去除率较高,而相对较高体积分数的海水养殖废水处理对磷酸盐的去除率较高。

关键词 :盐藻;养殖废水;生长;净化

中图分类号:Q949.21+2;X55 文献标识码:A 文章编号:0439-8114(2015)01-0039-04

DOI:10.14088/j.cnki.issn0439-8114.2015.01.010

Effects of Aquafarm Wastewater on Growth and the Uptake Ratio

of Nutrition in Dunaliella salina

YE Zhi-juan1,LIU Zhao-pu2

(1.Wuhan Vocational College of Software and Engineering, Wuhan 430205, China;

2. Nanjing Agricultural University, Nanjing 210095, China)

Abstract: Using f/2 as medium, Dunaliella salina were cultivated in different concentrations of aquafarm wastewater, the decontamination effect on wastewater was studied. The results showed that Dunaliella salina grew well in the aquafarm wastewater and better than in the seawater. Using different concentrations of aquafarm wastewater to cultivate Dunaliella salina, the growth conditions were in the order of f/2>100%>10%>25%>50%>75%>90%>seawater. After being cultivated, ammonia-N was not detected in the aquafarm wastewater. Removal rate of nitrate-N and phosphate-P in 10% treatment was the lowest in all treatments. Removal rate of nitrate-N was higher in relative low concentration. Removal rate of phosphate-P was higher in relative high concentration.

Key words: Dunaliella salina; aquafarm wastewater; growth; decontamination

收稿日期:2014-04-17

基金项目:武汉市教育局重点教研项目(2011029)

作者简介:叶志娟(1980-),女,安徽安庆人,讲师,硕士,主要从事养殖废水处理研究,(电话)15337104301(电子信箱)zhijuanye@163.com。

近年来,我国的海水养殖业飞速发展,迅速成为养殖产量世界第一的水产大国,养殖业的发展必然带来海水养殖废水的排放问题,但其排放标准尚未颁布,为减少养殖成本,养殖场大多未经处理或处理不到位而直接将废水排入海中。目前,国内外学者已经对海水养殖废水的处理方法进行了很多研究[1,2],如采用常规的物理、化学和生化的废水处理方法[3],也研究了综合养殖废水处理方法,即建立人工湿地生态系统法[4],但尚没有成熟的处理技术能高效地去除海水养殖废水中的氮磷营养盐。在此基础上,研究利用海洋微藻净化海水养殖废水的可行性及其吸收营养盐的效果,可为净化海洋环境、促进水产养殖业健康良性循环提供理论依据及技术支撑。

1 材料与方法

1.1 藻种

盐藻(Dunaliella salina)藻种由南京农业大学海洋生物学实验室提供。

1.2 海水养殖废水水样

海水养殖废水取自某鱼类养殖场,海水取自近海海域。海水养殖废水和海水均经沉淀、膜过滤后使用,设计了海水养殖废水不同体积分数,分别为0%(纯海水)、10%、25%、50%、75%、90%和100%,以基本培养基f/2为对照。培养前海水养殖废水及海水的水样养分特性见表1。

1.3 培养条件

将对数生长期的盐藻藻液接种于300 mL的三角瓶中,以1∶10的比例接种,初始接种量为6.78×106 个/mL,在智能光照培养箱(ZPG-280型)中进行培养,设置培养温度为23 ℃,光照度为3 000 lx,每天定时摇动3次,每次摇动1 min。

1.4 盐藻细胞计数

在光学显微镜下以0.1 mL血球计数板直接计数盐藻细胞的数量,培养后采用722可见分光光度计每天定时测定样品的OD700 nm。

1.5 叶绿素含量的测定

取15 mL盐藻藻液,真空抽滤到硝酸纤维滤膜上,添加5 mL 90%的丙酮在黑暗低温中抽提,20 h后,4 000 r/min离心5 min,上清液在663 nm、645 nm波长下测定出OD663 nm、OD645 nm,采用公式法计算藻液中叶绿素的含量:叶绿素含量=8.02×OD663 nm+20.2×OD645 nm[5]。

1.6 培养中生理指标的测定

总氮采用过硫酸钾氧化-紫外分光光度法测定,氨态氮采用靛酚蓝分光光度法测定,硝态氮采用镉柱还原-盐酸萘乙二胺法测定,亚硝态氮采用盐酸萘乙二胺分光光度法测定,磷酸盐采用磷钼蓝分光光度法测定,溶解氧采用碘量法测定,化学需氧量采用碱性高锰酸钾氧化法测定,pH采用pH计测定,水样中的盐度采用盐度计直接测定[6]。

2 结果与分析

2.1 盐藻细胞数量与OD700 nm的关系及利用海水养殖废水培养盐藻的可行性分析

以f/2培养基培养盐藻,培养到一定时间分别取1、2、3、4、5、6、7、8、9、10 mL盐藻藻液于50 mL容量瓶中定容,以0.1 mL血球计数板分别计数,每个样品计数3次,取平均值,得出盐藻细胞数量,测定OD700 nm,图1表示的是盐藻细胞数与OD700 nm的关系。从图1可以看出, 盐藻细胞数与OD700 nm呈明显的正相关,r2为0.993 9,由此得出结论,在试验中可直接测定OD700 nm来表示盐藻细胞生长情况。

以f/2培养基、海水、海水养殖废水培养盐藻,图2表示的是盐藻在不同培养液中的生长情况,结果表明,盐藻在海水养殖废水中生长正常,与f/2相比,盐藻在海水养殖废水中的生长与之相当,表明利用海水养殖废水培养盐藻是可行的,接下来探讨不同体积分数海水养殖废水培养对盐藻生长的影响及对废水的净化作用。

2.2 不同体积分数海水养殖废水培养处理下盐藻的生长及对海水养殖废水的净化作用

2.2.1 不同体积分数海水养殖废水培养处理对盐藻生长的影响 不同体积分数海水养殖废水培养下盐藻的生长情况如图3。由图3可知, 盐藻在不同体积分数的海水养殖废水中均能生长,具体生长情况为f/2>100%>10%>25%>50%>75%>90%,均高于纯海水处理的生长速率,其中100%、10%、25%海水养殖废水处理之间生长速度无显著差异,但显著高于其他体积分数海水养殖废水处理,而75%、50%、90%海水养殖废水以及纯海水处理之间第3天开始一直呈显著差异。表明不同体积分数海水养殖废水促进了盐藻的生长,因此如果将其直接排放入海中将会导致盐藻的大量繁殖,造成水体严重污染。

2.2.2 不同体积分数养殖废水培养对盐藻叶绿素含量的影响 不同体积分数海水养殖废水处理对盐藻叶绿素含量的影响如图4。由图4可知,与对照f/2相比,100%海水养殖废水处理下盐藻叶绿素的累积量达到最高,50%、75%海水养殖废水处理下叶绿素积累较高。盐藻的叶绿素积累与细胞生长呈一定的相关性,说明叶绿素可以作为衡量盐藻生长的一个指标。海水培养的盐藻叶绿素含量最低,仅为0.290 mg/L,100%海水养殖废水处理叶绿素含量显著高于其他体积分数海水养殖废水处理,也显著高于f/2处理,除50%海水养殖废水处理外,90%、75%、25%、10%4个海水养殖废水处理之间盐藻叶绿素积累无明显差异,100%海水养殖废水处理的叶绿素含量是海水处理的18倍左右,表明了海水养殖废水的直接排放对海洋水质污染的巨大影响。

2.3 不同体积分数海水养殖废水培养盐藻过程中水质的动态变化

2.3.1 pH动态变化 海水养殖废水培养盐藻过程中水体pH变化情况如图5。由图5可知,不同体积分数海水养殖废水处理水样的pH均随着培养时间的延长先增加或稳定而后降低,培养至第九天时各处理的pH趋于一致,维持在8.5左右。除对照f/2处理的pH一直处于最高的水平外,其他处理的pH均随着海水养殖废水水样体积分数的增加而增加,即100%>90%>75%>50%>25%>10%,并且各处理海水养殖废水处理的水样pH均高于纯海水处理。海水养殖废水培养盐藻过程中pH大致呈现先稍增加后降低最后趋于稳定的趋势,生长初期,低体积分数海水养殖废水处理pH较低,高体积分数海水养殖废水处理较高,而随着盐藻的生长,pH最终趋于稳定,说明初始pH并不是影响盐藻生长的主要因子,它可以通过自身的调节机制使最终pH趋于稳定,说明了盐藻可以通过自身的生理调节机制来调节其生长。

2.3.2 溶解氧(DO)的动态变化 盐藻培养过程中水体中溶解氧变化同pH变化趋势一致,同其生长也有一定的相关性(图6),低体积分数海水养殖废水处理下DO较高,培养到第九天时,各处理水样的DO趋于一致,大致呈现出先增加后减小最终趋于一致的趋势,在盐藻生长后期,各处理组DO均趋于一致,可能原因是盐藻的生长阶段已经到了消长平衡期,因此溶解氧呈现趋于稳定的状态。

2.3.3 化学需氧量(COD)的动态变化 盐藻培养过程中COD代谢缓慢(图7),开始时f/2处理较低,体积分数90%的海水养殖废水处理含量较高,培养到第九天,100%、90%和f/2的COD含量维持在一个较高的水平,而低体积分数的海水养殖废水处理则相对较低,特别是海水处理的样品,在整个过程中均处于较低水平,总体代谢缓慢。各体积分数海水养殖废水处理水样COD变化大致呈现先增加后减小的趋势,在一定的程度上可以说明盐藻不易吸收废水中的有机成分。

2.3.4 盐藻培养处理后水体中氮、磷的含量及形态

盐藻培养后培养液经0.45 μm滤膜抽滤后得培养后水样。

培养后水体中的氨态氮基本上检测不到,说明盐藻已经充分利用了废水中氨态氮。这与在水体中同时存在硝态氮和氨态氮时氨态氮被优先吸收有重要的关系,同时,氨态氮也抑制了盐藻细胞对硝态氮的吸收利用。

盐藻培养后硝酸盐和磷酸盐的利用情况见图8。由图8可知,海水处理时N、P养分的利用率均达到100%,10%海水养殖废水处理时硝酸盐和磷酸盐的去除率均最低,低体积分数的海水养殖废水处理时硝酸盐的去除率较高,而高体积分数的海水养殖废水处理时磷酸盐的去除率较高。25%、50%、75%及f/2处理下硝态氮的去除率均达到100%,0%海水养殖废水处理下硝态氮和磷酸盐的去除率也达到100%,对于磷酸盐来说,随着海水养殖废水体积分数的增加,各处理去除率呈现增加的趋势。

3 结论

1)研究结果表明,盐藻在不同体积分数的海水养殖废水中均能生长,生长情况与对照f/2培养基处理相当,说明利用海水养殖废水培养盐藻是可行的。f/2处理及海水养殖废水处理盐藻的生长情况、积累的叶绿素含量均高于纯海水处理;培养过程中水体的pH和DO均为先增加后减小最终趋于稳定,COD没有太大的变化;氨态氮的去除率均达到了100%,硝酸盐、磷酸盐的去除率均为海水处理的达最大,为100%。

2)从培养前各培养液的养分情况看,f/2中的磷含量比较高,而硝态氮和氨态氮低于100%海水养殖废水,而盐藻以f/2处理生长速度较快,说明了盐藻在生长过程中磷制约作用大于氮,这与国内外报道的藻类生长受磷限制基本一致。

参考文献:

[1] SUTHIER N,GRASMICK A,BLANCHETON J P.Biological denitrification applied to a marine closed aquaculture system[J].Wat Res,1998,2(6):1932-1938.

[2] NIJHOF R. Fixed film nitrification characteristics in seawater recirculation fish culture systems[J].Aquaculture,1990,87:133-143.

[3] 中国水产编辑部.生物净化技术在我国水产养殖业中的应用现状与应用前景[J].中国水产,2001(1):86.

[4] REED S C,CRITES,R W,MIDDLEBROOKS E J.Natural Systems for Caste Management and Treatment[M]. New York:Mcgraw-Hill,1995.

[5] 姚南瑜.藻类生理学[M].辽宁大连:大连工学院出版社,1987.

第2篇:废水处理的基本方法范文

关键词:煤化工;水处理工艺;设计优化

随着全世界能源与资源的快速减少,为了人类社会的长远发展,为了煤化工企业提供良好的发展空间,推行清洁能源与替代产品逐渐被社会所广泛关注。随着社会的向前发展,传统式的煤化工废水处理技术已经难以适应现代社会的发展,由于煤化工企业生产发展所带来的污染,给我国自然资源带来巨大威胁,对环境造成较大影响。煤化工企业为谋求发展,优化煤化工企业废水处理工艺,引进更多先进处理技术与处理材料成为重点,为传统煤化工企业向新型煤化工企业转变做贡献。

1项目基本情况

新型煤化工企业主要是指以煤气化为主,生产清洁燃料与一些基础化工产品的产业,具备着保护环境、节约资源等效果。本次项目位于江苏省,项目的占地面积大约有7×105㎡,企业为此项目总投资为34.0×108元,本工程建设于2012年,项目建设期间企业为更好的进行废水处理而引进了国外通用集团的德士古技术,提高了企业在废水处理的效果,提高了水的二次利用率,避免了水资源的浪费,在此项目建成后期,因其本身的优势使得工程项目成为了当地的先进单位,为当地的工业生产发展奠定了良好的基础[1]。

2煤化工废水处理工艺的现状

近年来,随着国家对可持续发展战略的深入,我国煤化工企业的水处理技术获得了长效的发展,相应的,煤化工企业与生产清洁能源的化工企业也获得了较大进步。然而,在煤化工企业的废水处理中,仍然存在着许多问题有待提高,其主要表现在以下几方面:

2.1废水的生化处理方法

在煤化工企业中的废水处理方法中,生化处理法常用的工艺有组合工艺法、活性污泥法等。当企业采用活性污泥法这一废水处理方法时,其具备着降低污染物指标,降低后续工艺的处理负担、保障废水处理的效果等优势。在当前各种煤化工企业中,活性污泥法这一废水处理法被广泛采用,然而,此种方法在流程的选择与实际应用中却缺乏较好的适应性。另外,虽然煤化工企业内部的废水经过有机深化处理,内部却仍然存在着一定的有机难降解的物质,造成了生化废水处理方法的处理结果不达标,只有更深入的处理手段才能更有效的达到国家标准的废水排放需求。

2.2废水的物化处理方法

在煤化工企业废水的物化处理方法中,共包含有三种处理方法,萃取法、化学氧化法与膜分离法等。在废水物化处理法中,萃取法所萃取的主要是废水中含有的高浓度酚类,而化学氧化法则是处理废水中含有的高浓度酚所常用的废水处理方法,氧化法能对氧化后水中含有的活性污泥进行处理,对废水中酚类的处理高达99%,效果极为明显,在化学氧化法中,由国外引进的德士古煤气化废水处理法是较为成熟高效的一种方法,在运用中具有较高优势。而膜分离法则是分离废水常用的重要方法,运用此种方法能有效降低水中的有机化合物,甚至使用此方法后,水资源能够进行二次利用,提高水资源利用率的同时节约了水资源[2]。

3煤化工企业废水处理工艺的方案研究

3.1相关人员应加强对物化处理与生化处理耦合的研究

在煤化工企业的废水处理中,如何消除废水中的有机化合物氨氮以及酚类成为废水处理的重、难点。目前,我国国内正在应用的废水处理技术仍然存在一定的缺陷,对煤化工企业的研究也多停留在小型实验阶段,对废水处理技术的研究过于单一。除此外,废水处理工艺的出水效果与成本投入的不相符,使得国家更加重视废水处理工艺的发展与更新。为降低废水处理问题,降低废水处理的成本投入,提高废水处理质量,我国加强了对废水处理工艺相结合的方案研究,并加强了对物化处理法与生化处理法相耦合的研究,通过两种工艺的互补性,来弥补废水处理工艺的不足之处。

3.2循环冷却水浓缩倍数缩水处理技术

随着人们对资源的需求越加广泛,日益紧张的水资源的可持续发展问题受到广泛关注,水资源的合理利用被提上发展日程。在我国的节水纲要中,曾提出这样一项要求,在开放式循环冷却水系统新型技术中,推行浓缩倍数大于4倍以上的水处理技术,而将浓缩倍数在3倍以下的水处理淘汰,以此开发更有效的水处理技术。在本项目中,该煤化工公司通过各种静态阻垢、动态模拟等试验,最终研发出了效果较好的缓蚀阻垢剂,并被运用在废水处理中。在煤化工企业废水处理中,通过加入缓蚀阻垢剂与浓硫酸,将循环水浓缩倍数提高四倍以上,能够有效的解决废水中的有机物,保障循环水系统的安全可靠性,实现节约水能源的目标。

3.3氨氮甲醇废水处理技术

在废水处理工艺之中的氨氮甲醇处理中,相应人员应着重了解以下两方面,以此提高废水内部含有的有机物处理。(1)废水处理流程。与一般的气化工艺相比,德士古工艺是由国外引进的先进工艺,运用此种工艺使废水处理难度降低,且二次利用的程度也相较其他处理工艺高效。在运用此工艺处理废水的主要过程中,控制废水中的氨氮含量成为重点。在煤化工企业产生的废水中,有机化合物氨氮的含量是相对较高的,面对国家废水排放所规定的较低标准,仅仅利用普通处理工艺很难达到国家对污水规定的排放量标准,因此,具备新科技的排放工艺被研发应用,如SBR。(2)废水回收。对循环水排放与废水处理的二次利用来讲,其目前的规模之大能达到300m3/公顷以上。在飞速处理之后的回收中,回收水常出现如硬度高、碱度大、杂质多等特点。针对此种情况,企业通过对回收水进行的软化、澄清、过滤等处理,可消除回收水中较大的沉淀物与杂质。另外,对回收水的利用前期仍需要进行超过滤,以实现对膜系统的有害杂质的消除[3]。

4总结

社会经济的发展带动着我国能源业的飞速发展,新型煤化工企业也在数字和科技化、现代化的深入,实现资源的可持续发展,并成为企业发展的重点。本文简单叙述了煤化工废水处理技术,望对相关企业与工作者提供帮助。

参考文献:

[1]孟良.探讨新型煤化工企业水处理工艺方案设计优化[J].能源与节能,2016(6):123-124.

[2]刘乐天,蒋敏捷.水处理工艺在新型煤化工企业中的优化[J].商品与质量,2015(42):372-373.

第3篇:废水处理的基本方法范文

关键词:硫化铅锌矿;选矿废水;回用

根据我国当前铅锌资源的分布特点可知,铅锌矿分布较广,而且资源丰富,其中以铅锌矿床与铜锌矿床居多,其中大部分矿藏分布在岩石下方面,同时,各种矿石结构丰富多彩,不断改善当前各种资源分布。2015年统计数据显示,探明的铅锌储量和资源量仅占全国的6.5%和18.9%。因此,为了更好地推动当前各种金属离子与选矿药剂的融合,持续推动各种资源的合理利用。根据我国当前铅锌选矿废水处理与回用水平的差距,不断提高对硫化铅锌矿选矿废水处理水平,减少各种污染的排放量,提高硫化铅锌矿选矿与清洁技术,这对当前各种回收工作有着重要的指导价值。

1 铅锌选矿工艺

浮选是当前我国硫化铅锌选矿的基本要求,不断提高各种工艺水平,其中包括在选矿过程中各种步骤,主要包括碎矿、磨矿、浮铅、锌硫混浮、锌硫分离、精矿浓缩、过滤,产品为铅精矿、锌精矿、硫精矿。在当前开产的过程中,不断融合当前各种资源,其中包括黄药类、黑药类、硫代硫酸钠、硫化钠、氰化钠、硅酸钠、硫酸铜、乙硫氮、石灰、碳酸钠、硫酸锌、亚硫酸钠,提高各种锌矿选择水平。

2 铅锌选矿废水来源与特性

2.1 铅锌选矿用排水概况

根据当前铅锌矿的选择标准,其中包括各种破碎、磨矿、选矿、浓密、过滤和维修等作业。在处理过程中,不断使用恰当的方式推动当前矿藏资源的采掘,在各种尾气排放过程中,不断融合各种工艺水平的改善,其中包括各种重复利用率,其中没有直接处理的废水资源,给当前的环境造成了严重的污染。

2.2 铅锌选矿废水来源

根据当前各种选矿标准,在当前各种废水处理过程中,不断完善洗矿、破碎和选别3个阶段,其中包括以下几类:(1)洗矿废水。在当前选矿的过程中,不断改善当前各种水平,推动当前各种排水技术的改善,在各种铅锌矿的选择过程中,不断融合各种技术手段,在充分推动当前技术改进的过程中,科学回收相应的沉淀物,成功进入当前排入系统。(2)破碎系统的废水。在当前废水处理过程中,不断推动当前各种排除指标,在这个过程中,不断促进各种运转系统的改善,在各种除尘的过程中,不断促进当前车间的筛选过程中,其中包括各种沉淀物的融合,促进各种系统的回收利用。(3)选矿废水。在当前选矿过程中,通过不断融合当前各种尾矿废水的处理,其中包括各种矿藏的基本排水标准,只有不断融合当前的各种资源,最大限度实现各种资源的合理利用,其成分主要包括以下几个水平。

2.3 铅锌选矿废水处理的原则

根据当前我国废水处理标注,不断提升各种选矿标准,通过不断融合当前各种过滤水平,最大限度推动各种矿藏的精细选择。在当前废水处理过程中,通过推动当前矿藏水平,利用各种企业改革制度,不断推动各种尾矿的选择。在尾矿处理过程中,不断促进各种排水系统的创新,尤其在选铅锌尾矿水中,不断融合当前各种选矿药剂,其中包括各类硫化物、石油、重金属等,在当前各类物质排放过程中,不断对其进行澄清、沉积和氧化自净。

2.4 铅锌选矿废水特性

2.4.1 水量大

在当前铅锌选矿生产耗水量、废水产生量大,只有在选矿的过程中,不断节约用水,根据当前相关研究,通过对当前各种矿石的处理,推动浮选法处理方法的发展,其中包括铅锌矿石,一般需用水4-6m3,其中生产规模为1000t/d的中型铅锌选矿厂,每天需要更大量的水,其中废水循环利用率达到65%时,每天需排放废水1000-1500m3/d,根据当前各种技术排量,其中需要排放选矿废水30-45万m3。

2.4.2 成分复杂

根据当前铅锌选矿废的复杂性,不断推动当前金属离子的改进,不断融合各种工艺水平,其中包括各种生物成分,在当前选矿过程中,不断融合当前各类药剂,其中包括黄药类、黑药类;抑制剂,如硫化钠、硫酸锌、亚硫酸钠、硫代硫酸钠、氰化物、水玻璃;起泡剂,如松节油;活化剂,如硫酸铜、重金属盐类;硫化剂,通过对当前各种化学成份的融合,不断提高了当前的选矿水平,其中包括金属离子和S2-经水解、氧化后以各种形式进入废水中,如铜、锌、U、镍、钡、镉以及砷和稀有元素等。

2.4.3 悬浮物、总溶固含量高

在铅锌选矿废水悬浮物含量高。在当前选矿过程中,通过不断净化当前排放的废水,融合各种精细颗粒,在当前各种精矿浓缩水中悬浮物含量高。由于废水中含有各种金属离子与选矿药剂,以及溶解的钠、镁、钙等的硫酸盐、氯化物或氢氧化物等物质,不断推动当前各种废弃物的改进。

2.4.4 毒性

在铅锌选矿废水的选择过程中,不断检验当前的毒性,其中包括各种不同的标注,在各种毒性的改善过程中,不断促进各种感官水平的提升,其中包括嗅觉阀为0.05mg/L,味觉阀为0.1mg/L,在当前废水融合过程中,不断促进各种哺乳动物的生长,其中包括鱼类的生物结构。经过相关研究,在调整剂中氰化物和一些重金属离子过程中,不断改善当前各种结构,促进人体健康。

3 铅锌选矿废水处理技术

3.1 处理工艺方法

根据当前各种金属废物的处理方式,不断促进各种物理方法的采用,其中包括物理法、化学法、生物法,其中物理方法包括沉淀、浮选、过滤、吹脱等;化学方法包括中和、氧化还原、吸附等,在当前生活化学方法中,如各类好氧生物化学处理、厌氧生物化学处理等。

3.2 典型处理工艺过程

根据当前处理的实际情况,在铅锌选矿废水处理过程中,不断降低重金属、悬浮物、总溶固含量高、废水起泡性等指标,采用常见的混凝-氧化处理工艺,在这个过程中,通过恰当的方式进行沟通。

3.3 典型处理设施与建构筑物

3.3.1 浓密机

在当前技术情况下,需要选择尾气较低的方案,这样有利于当前各种设备的更新,其中包括各种制度建设,还有以下具体情况,在高考过程中,不断仄融合各种技能。在这个过程中,在当前发展规划中,不断日高当前各种机器水平,最大限度促进各种回收率缴纳。

3.3.2 尾矿库

尾矿库是铅锌选矿业中处理废水最常见形式。根据以往的研究,就是咱们开展一种可以减少污染的方案,由于当前部分企业有各种现象,包括对当前矿物质的筛选,其中包括地下表层物质的处理,不断促进其五环使用的能力。根据当前物理、化学、生物等标准,最大限度推动各种废弃物的排放。通过采用部分废水优先直接回用、废水适度处理后再回用的废水处理工艺,可以实现铅锌选矿废水有效回用,不仅节约水资源,消除废水对环境的污染,而且还可以减少当前的生产成本。

4 结束语

根据对当前硫化铅锌矿选矿废水的污染治的理解,其中包括当前各种处理方法。还需对当前各种缓环境的适应,在当前情况中,可以考虑推动当前各种技术的融合,不断节约水资源,消除废水对环境的污染,有利于减少生产成本。

参考文献

第4篇:废水处理的基本方法范文

[论文摘要]染色废水属于典型的难生化降解废水,如何低成本、高效率的对其处理,且保证出水的稳定达标,一直是许多环境保护工作者的研究目标。本文首先对国内外染色废水处理的技术和研究方向进行了综合概述,并对各类工艺进行了比较分析,归纳出一般染色废水的主要处理工艺技术路线。

一、研究背景和意义

纺织工业是我国的传统支柱工业之一,也是出口创汇较多的行业之一,目前我国占有15%左右的国际市场份额,是世界上最大的纺织品出口国。经过多年建设,纺织工业基本成为一个门类较齐全、布局较合理、原料和设备基本立足于国内、生产技术达到一定水平的工业部门。产业综合发展能力不断增强,已形成棉、毛、丝、麻、化纤、服装、纺织机械等行业较为完整的系列体系。

纺织工业按加工的原料、产品的品种和产品的加工用途等不同,主要分为上游、中游、下游三类产业,纺织工业的上游产业主要指各类纤维生产和加工,如天然纤维的棉花、羊毛和各类化学纤维等生产领域;中游产业指纺纱、织布、染色等生产领域;下游产业主要指服装加工等生产领域。

染色行业作为纺织工业中的中游行业,在纺织工业中起到承上启下的作用,即将各类纤维加工制造的坯布,通过染色和印花工艺生产出各类带色彩和图案的织物。在染色业中,棉纺染色业是最大的行业。染色行业作为湿法加工行业,其生产过程中用水量较大,据不完全统计。我国染色废水排放量约为每天300万~400万立方米,染色厂每加工100米织物,产生废水量3~5立方米。而且,染色废水成份复杂,含有的多种有机染料难降解,色度深,对环境造成非常严重的威胁。

随着工业化的不断深入,全球性的环境污染日益破坏着地球生物圈几亿年来形成的生态平衡,并对人类自身的生存环境存在威胁。由于逐渐加重的环境压力,世界各国纷纷制定严格的环保法律、法规和各项有力的措施,我国作为世界大国,对环境保护也越来越重视,并向国际社会全球性环境保护公约作出了自己的承诺。

二、废水处理方法分类

根据使用技术措施的作用原理和去除对象,废水处理法可分为物理处理法、化学处理法和生物处理法三类。具体如下:

1.废水的物理处理法

利用物理作用进行废水处理,主要目的是分离去除废水中不溶性的悬浮颗粒物。主要工艺有:

(1)格栅和筛网格栅是一组平行金属栅条制成的有一定间隔的框架。把它竖直或倾斜放置在废水渠道上,用来去除废水里粗大的悬浮物和漂浮物,以免后面装置堵塞。筛网是穿孔滤板或金属网制成的过滤设备,用以去除较细小的悬浮物。

(2)沉淀法利用重力作用,使废水中比水重的固体物质下沉,与废水分离。主要用于(a)在尘砂池中除去无机砂粒(b)在初见沉淀中去除比水重的悬浮状有机物(c)在二次沉淀中去除生物处理出水中的生物污泥(d)在混凝工艺以后去除混凝形成的絮状物(e)在污泥浓缩池中分离污泥中的水分,浓缩污泥。此法简单易行而且效果好。

(3)气浮法在废水中通入空气,产生细小气泡,附着在细微颗粒污染物上,形成密度小于水的浮体,上浮到水面。主要用来分离密度与水接近或比水小,靠重力无法沉淀的细微颗粒污染物。

(4)离心分离利用离心作用,使质量不同的悬浮物和水体分离。分离设备有施流分离器和离心机。

2.废水的化学处理法

(1)酸性废水的中和处理

酸性废水处理可以用投药中和法、天然水体及土壤碱度中和法、碱性废水和废渣中和法等。药剂有石灰乳、苛性钠、石灰石、大理石、白云石等。他的优点是:可处理任何浓度、任何性质的酸性废水。废水中允许有较多的悬浮物,对水质水量的波动适用性强,中和剂利用率高,过程容易调节。缺点:劳动条件差、设备多、投资大、泥渣多且脱水难。天然水体及土壤碱度中和法采用时要慎重,应从长远利益出发,允许排入水体的酸性废水量应根据水体或土体的中和能力来确定。

(2)碱性废水和废渣中和法

投酸中和法可用药剂:硫酸、盐酸、及压缩二氧化碳(用二氧化碳做中和剂,由于PH值低于6,因此不需要PH值控制装置)酸性废水及废气中和法如烟道气中有高达24%的二氧化碳,可用来中和碱性废水。其优点可把废水处理与烟道气除尘结合起来,缺点是处理后的废水中硫化物、色度和耗氧量均有显著增加。清洗由污泥消化获得的沼气(含25%—35%的二氧化碳气体)的水也可用于中和碱废水。

3.生物处理法

利用微生物可以把有机物氧化分解为稳定的无机物的这一功能,经常采用一定人工措施大量繁殖微生物。

(1)好氧生物处理法

应用好氧微生物,在有氧环境下,把废水中的有机物分解成二氧化碳和水的方法,主要处理工艺有:活性污泥法、生物滤池、生物转盘、生物接触氧化等,这种方法处理效率高,应用面广。

(2)厌氧生物处理法

应用兼性厌氧菌和专性厌氧菌在无氧条件下降解有机污染物,最后生成二氧化碳、甲烷等物质的方法。主要用于有机污泥、高浓度有机工业废水的处理。如啤酒厂、屠宰厂。

(3)自然生物处理法

应用在自然条件下生长,繁殖的微生物处理废水的方法。工艺简单,建设费用和运行成本都比较低,但其净化功能受自然条件的限制,处理技术有稳定塘和土地处理法。

三、染色污水处理系统的工艺设计

在染色污水处理系统的工艺设计中往往遇到以下问题:(1)工程设计人员大都是仅仅了解废水水质的情况下,根据自己的工程经验和直觉进行设计,这样往往造成工程缺陷,使建成的处理系统处理废水不能达标排放;(2)在有些设计中,因为对出水的达标要求严格,使设计出的工艺建设费用和运行费用偏高;(3)在许多现有的处理系统中,由于所要处理的水质发生改变,原有工艺不能针对目前的水质进行有效的处理。以上的这些都涉及到污水处理系统的优化改造和优化管理运行问题。

如何优化污水处理工艺,降低污水处理成本,提高污水处理效果,对于污水处理有着极其重要的意义。必须指出的是,染色废水处理系统的优化改造是一个非常错综复杂的问题,从目的上它不仅要基于污水水质分析,按照技术和经济的要求,在条件允许的范围内,利用各种方法,找出最佳的设计工艺方案,并在设计工况条件下,找出最佳的设施组合和最佳工艺参数,而且还要在污水的成份和水量一定幅度变动的情况下,找出相应的优化运行措施和最少运行成本。而在各染色废水水质各异、水量大小不一的实际工况下,要求得到一个能严格意义上普遍性的染色废水优化处理系统是不可能的,某一污水处理系统可能对某企业的废水处理是最优,但它对其他的染色厂可能就并不能做到最优,因此本论文对染色废水处理系统优化研究只是为提出一个系统优化改造和优化运行的概念和思路,并不是要提出一个能对所有染色废水有最优处理效果的处理系统。

四、系统工艺改造的总体思路

污水处理厂废水的水质为含有一定量难生物降解物质和颜色的有机废水,各染色子行业排放的废水所含污染物质不同,其相应的治理工艺流程也不同。对染色废水处理,工程上一般用物化法和生化法或两种方法相结合的处理方法。物化处理有见效快、水力停留时间短的优势,但其处理费用高、污泥产量大、污泥处理困难、存在二次污染的隐患。虽然臭氧氧化、活性碳吸附、电解等方法有较好的脱色效果,但它们较高的运行费用却使厂家无法承受。但前述的几种方法都具有稳定性好的特点。生物处理因具有处理成本较低,并能大幅度去处有机污染物和一定色度的特性使得染色废水治理采用生物治理作为主要治理单元己成为共识。但结合园区污水处理厂目前的运行现状及操作工人素质,为确保污水处理厂处理出水的稳定达标排放,因此改造扩建工艺的设计思想以强化物化处理的原则,以生物处理工艺为重心,尽量提高强化生物处理的作用。鉴于污水处理厂接受的染色废水综合性废水,是典型的难生化降解的有机废水,水质性质有其特殊性,而且各有关企业生产废水排放的水质水量的不稳定性,以及污水处理厂的运行成本及运行负荷。因此必须要有针对性的废水处理工艺,才能达到较好的处理效果。在选择处理工艺前,应在分析废水水质及其组成及对废水所要求的处理程度的基础上,确定各单元处理方法和改造工艺流程,以验证改造工艺的有效性。

五、结论

印染生产废水可生化性差,原污水处理系统又存在着设计、施工不尽合理,管理水平落后等缺陷,从而造成了处理出水污染指标达不到排放标准,运行成本高等后果。染色废水处理系统的优化改造本身就是一个非常错综复杂的问题,而作为集中式染色废水处理厂的优化就更加困难了。从目的上它不仅要在污水水质分析的基础上,按照技术和经济的要求,在条件允许的范围内,利用各种方法,找出最佳的设计工艺方案。并在设计工况条件下,找出最佳的设施组合和最佳工艺参数,而且,还要在污水的成份和水量大幅度变动的情况下,找出相应的优化运行措施和最少的运行成本。但由于客观条件的诸多限制,并且各种印染废水水质各异,水量大小不一的设计情况下,要求得到一个能严格意义上普遍性的染色废水优化方法十分困难,某一污水处理系统可能对某一区域内的废水处理是最优的,但它对其他的企业可能就并不能做到最优。因此,在加强技术创新和知识创新的同时也要为保护我们仅有的水资源提高人类意识,转变观念,为创造一个更好的环境多做努力。

[参考文献]

第5篇:废水处理的基本方法范文

关键词:德士古;煤气化;高氨氮;废水处理

中国在国际上的发展速度都是有目共睹的,但是伴随着对于环境的污染和能源的消耗,因此为了我国能够长期稳定的发展下去,可持续发展成为了我国发展的新模式,对于化石能源中的煤炭资源由于其污染较为严重,经常作为环保批判的对象,主要由于煤炭在开采和使用过程中都会对环境产生污染,现阶段的煤化工废物也需要满足新的环保标准,处理技术有待提高。

1关于煤气化高氨氮废水的概述

煤化工企业是由于石油资源紧缺而发展起来的,其生产过程中产生的废水含有大量有毒物质,其中的氨氮含量较高,包含的有机物也很难被降解处理,因此煤化工企业的废水处理成为了环境保护的重要研究内容。基于煤化工对于经济发展的重要性,如何在坚持可持续发展的道路上正确处理煤气化高氨氮废水成为了一项重要的研究课题。德士古煤气化合成化工产品的技术是当前煤化工企业中的创新型技术,在我国北方使用较为广泛,但是这些区域也恰恰是水资源匮乏的区域,对于水资源的保护尤为重要。煤气化高氨氮废水的主要特点是排放量大,处理难度和处理成本始终无法降低,从经济性考虑很多煤化工企业宁愿选择污染环境接受处罚,也不愿意投入高额资金进行废物处理工作。

2现阶段我国煤化工废水处理工艺方法简介

在我国的煤化工领域废水处理基本按照以下几个步骤进行,即物化预处理后开展生化处理,最后再实施物化深度处理。第一步物化预处理。在这一步骤中,主要为了去除废水中所含的大量油脂,为下一步的生化处理奠定基础。目前最常用的方法是隔油池与气浮法相结合,这种方法还可以将油脂进行回收利用,具有很好的经济性,其余集中如均质调节、通过初沉除去大颗粒固体等形式在处理效果上略差。表1进水指标第二步生化处理。在经历了物化预处理后的废水进入到生化处理环节,常用的方法有缺氧生物法和好氧生物法相结合的处理工艺但是传统的生化处理后有些参数指标处于不稳定状态,经常无法通过检测,说明处理效果不佳,为此有些技术人员开发了新的好氧生物处理方法,其中的典型代表是PACT法、厌氧生物法、流动床生物膜法(CBR)和曝气生物滤池BAF法等。具体来讲PACT法是增加了一些活性炭粉末来帮助微生物提高生存率,增强处理能力。厌氧生物法则主要采用上流式厌氧污泥床(UASB)工艺。最后一步是深度处理。当煤气化后的高氨氮废水经过前面两个步骤的处理后,水中的一部分污染物指标已经极大的降低,但是离环保排放的标准还有距离,仍需要进行最后一步的深度处理。当前的深度处理主要有固定化生物技术、混凝沉淀法、吸附法和超滤以及反渗透等膜处理法。实际上固定化生物技术是一种新兴技术,主要通过选择优势菌种有针对性的处理德士古煤气化的高氨氮废水。混凝沉淀法则是利用混凝剂来实现更好的沉淀,有助于物理过滤效果的提升,混凝剂还能够改变废水的PH值,促进其中的悬浮物沉淀,后期再进行简单的固液分离就能够达到良好的清除效果。

3不同废水处理方法的优劣比较

PACT处理方法效率低,但是其处理效果好,且环保性高,适用于含沉淀物固体颗粒较多的废水。厌氧生物法对设备和环境要求较高,需要满足一定压力和温度,因此适合处理有机物含量较高的废水。曝气生物滤池法目前仍处于推广阶段,处理效果好但相对价格较高。固定化生物技术依赖于菌种选择的水平,且针对性较强。

4结语

通过本文上述分析可以看出,现阶段我国德士古煤气化废水具有高氨氮含量、降解难度大等特点,为了能够降低对环境的污染,现有的废水处理技术能够通过三个步骤来实现废水高效处理,具体的工艺优劣不同,仍有待后续研究来推动行业的发展。

参考文献:

[1]冯峰.德士古煤气化灰水工艺分析.化工管理[J],2015(15):166-166.

[2]张,贾明畅.浅析高氨氮废水处理技术的研究.建材发展导向:下[J],2014(11).

[3]谭心舜,程乐斯,贾小平,毕荣山.德士古煤气化工艺CO_2排放分析.化工进展[J],2015(4):947-951.

[4]侯遵辉,董嘉丽,孟祥龙.浅析德士古煤气化炉耐火砖的使用与损蚀.科技信息[J],2014(15):103-103.

[5]兰晶晶.浅析高氨氮废水的处理技术的一些探析.化工管理[J],2014(9):125-125.

第6篇:废水处理的基本方法范文

关键词:PCB 废水处理 回用工程 实例分析

1 前言

电子信息产业繁荣发展,我国PCB(印刷线路板)产量位居世界第一,成为全球重要生产基地。印刷线路板生产工艺复杂、涉及多种化工原料、流程长、消耗大量生产用水,产生大量工业污物,且生产废水成分性质复杂、处理与回用难度大。随着我国PCB产业的日益壮大,PCB生产废水的环保问题愈发突显,在推动经济发展的同时,对我国环境生态保护造成危害。如何运用科学合理的处理技术及工艺有效控制、减少PCB废水污染,确保PCB产业可持续发展,是当下我国生态环境保护的重点关注问题,也是防治水污染领域的一项重要研究内容。

2 PCB生产废水分类、特点

在印刷线路板生产过程中,运用多种性质不同的化工原料,造就了PCB生产过程中废水及废液具有多样性、复杂性特点。PCB废水通常可分为两大类,废水与废液。

废水可以细分为一般清洗水、磨板清刷水、含镍清洗水、电镀铜清洗水、含氰废水、络合废水、有机废水等,相应水质特点为分别含有铜离子、铜粉、金属镍、硫酸铜、氰、同络合物、有机物。

废液相比起废水,来源与种类更为复杂,分为碱性废液、酸性废液、含金废液、含银废液、含镍废液、含锡废液、高锰酸盐废液、化学铜废液、活化废液、除油废液、蚀刻废液等。其特点均表现为化学需氧量值大,且有机物含量及金属含量高。

不同生产工序及制作工艺于产污环节产生的废水和废液所含污染物性质也均存在差异。PCB废水所含有机物及金属离子形态多样,含量多变,成分不一,增加废水处理及回用难度。其中含大量重金属化合物,如Ag(银)、Au(金)、Cu(铜)、Pb(铅)、Sn(锡)、Ni(镍)等,又含多种有机添加剂和有合成高分子有机物。不理或处理不得当排放到生态环境中会对人类及环境造成巨大影响,危害人类身体健康及生态安全。

3 简述处理工艺、对比优缺点

3.1化学沉淀法

化学沉淀法是目前应用最为广泛的方法,包括重金属捕集剂法、中和沉淀法、硫酸亚铁法和硫化物沉淀法等,主要运用于破除废水中的络合铜。其中,重金属捕集剂法处理效果好但成本高昂;中和沉淀法因价格低廉,易于控制药剂量,成为常用的常规处理方法,但处理效果欠佳,不能满足排放标准;硫酸亚铁法处理速度快但药剂量大,易产生大量污泥;硫化物沉淀法添加Na2S剂量把控难度大,易造成二次污染。

3.2化学氧化法

PCB废水通常采用高级氧化技术进行处理,通过添加氧化剂释放铜,加碱中和沉淀,其中以利用H2O2与Fe2+反应生成Fenton试剂最为常见,此方法能有效使Cu2+沉淀并降低COD,但所需投入氧化剂剂量较大,成本较高。

3.3离子交换法

离子交换法是指无需向PCB废水中添加药剂,运用离子交换剂分离有害物质,应用便捷,极具优势,成为当下PCB生产废水处理与回用的研究热点。但此方法价格高昂,仅适用于处理毒性大、浓度低、具备回用价值的重金属废水。

3.4生物法

生物法作为最基本的去除有机物方法,主要依靠微生物吸附、协同、吸收、转化作用,应用于PCB废水处理中。在厌氧条件下破坏PCB络合废水中COD的来源(柠檬酸、酒石酸等),使厌氧条件下生成的S2-与铜离子结合并沉淀,同时利用微生物外聚合物吸附铜离子。生物法成本低廉、运行可靠、效果稳定、不会造成二次污染,但由于PCB废水可生化性差且微生物受铜离子毒害与抑制作用影响,需要筛选特殊生物菌进行干预与培养。

3.5吸附法

通过在废水中投入吸附剂(活性炭、沸石等),吸附有机物,饱和后废弃吸附剂这一方法成为吸附法。应用于PCB废水处理中,对去除COD和降解有机物有显著效果,但由于吸附值较小,处理络合物浓度较高的废水时,极易饱和,由于再生困难且再生设备昂贵,只能频发更换新吸附剂,增加运费及成本。

4 实例分析

某深圳市PCB企业,从事印刷线路板生产。PCB生产用水量大、废水种类繁多、水质成分复杂。原处理工艺自动化程度较低,分水不合理,废水处理效果欠佳,系统运行缺乏稳定性。而后进行优化调整,施以新处理工艺。根据企业内污染物种类及处理技术需求大致分为综合废水(一般清洗水、电镀清洗水、磨板清洗水)、有机废水、有机废液、络合废水、含镍氰废液、油墨废水等。

废水水质、水量数据见表1,工艺处理技术流程见图1。

严格遵循分类收集、分质处理原则,根据不同废水的特质采取相应处理工艺技术。

4.1综合废水

(1)用泵将废水提升至调节池内,投入NaOH,将综合废水酸碱值控制在9-10间;(2)中和反应发生,生成Cu(OH)2等沉淀物,通过混凝池、反应池、二沉池等,投入聚丙烯酰胺和聚合氯化铝;(3)经由过滤器、阳离子塔等去除有机污染物,最后经由pH再调整池检验,确保达标排放。

4.2络合废水/有机废水

(1)用泵将络合/有机废水提升至调节池内,投入酸将废水酸碱值控制在2-3间;(2)利用铁盐对络合剂的屏蔽作用投入硫酸亚铁,释放游离性Cu2+,针对络合铜含量较高的络合废水,需投入的硫酸亚铁剂量更大;(3)投入NaOH,将酸碱值调整至9-10,生成沉淀物,后续步骤与综合废水处理步骤一致。

4.3有机废液及废酸

(1)用泵将有机废液及废酸提升至调节池内,将废液废酸酸碱值控制在2-3间;(2)当有机废液析出固态物体后投入一定剂量能使其沉渣的特殊药剂;(3)经过混凝沉淀,“渣压滤”,沉渣经过压滤机脱水后打包委托处理,剩余液体送至废水过滤系统。

5 结束语

PCB生产废水即多氯联苯废水,是目前地球上最具代表性,扩散范围最广的持久性有机污染物,不仅对人体健康构成威胁,且对海陆生态系统皆产生影响及危害,是当下全球所重视的重大环境问题之一。

由于PCB生产废水成分不一,种类多样,水质复杂性,可生化性差的特点,致使企业必须在对其进行处理时,应当依据各种PCB生产种类的不同,成分性质的据别,进行分类收集、分质处理。

重视废水处理及回用系统的建设,设计科学合理的处理工艺,及时对系统进行优化、调整,对技术进行更新,灵活运用物理、生物、化学等方法进行废水处理及回用,保护生态环境系统,节约能源,降低消耗,较少成本,提高企业受益,将利润最大化。

参考文献:

[1] 麦建波, 江栋, 范远红,等. PCB废水处理技术研究现状及工程实例[J]. 印制电路信息, 2015, 23(11):62-65.

第7篇:废水处理的基本方法范文

关键词危险废物;填埋场;废水处理;水质分析;处理方法

危险废物安全填埋场的废水当中主要含有铬、铅、钡等重金属离子以及氰化物等剧毒物质,如果直接排入污水排放管道当中,这些重金属离子以及剧毒物质会随着管道流入当地河流当中,并渗透到附近的土壤以及地下水系当中,对环境造成重大污染。因此,必须要采取适当措施,对危险废物安全填埋场的废水进行处理,降低其有害物质的含量,使其控制在排放标准以内。

1工程概况

该废水处理工程计划处理速率为2.6万t/a,由于危险废物安全填埋场前期填埋的危险废物比较少,需要处理的废水量也少,所以根据设计方案,该废水处理工程进行分期建设,初期工程的废水处理速率为1.3万t/a,设计的工程使用年限为8年。该废水处理工程主要负责氰化物、含锌、汞、铅等重金属废物以及焚烧处置残渣的处理。

2废水生成量计算和水质分析

2.1废水

危险废物安全填埋场的废水主要包括渗沥液、冲洗水以及实验室废水。(1)渗沥液。渗沥液的生成量主要参考当地的日均降水量,具体计算公式如下:Q=CIA1000(1)其中,Q表示每年渗沥液的生成总量;I表示年均降水量,A表示危险废物安全填埋场的占地面积,C表示渗出系数,也就是渗入填埋场中的雨水转化为渗沥液的比例。本工程所处地区年均降水量约为1070mm;占地面积为25000m2;渗沥液取0.5计算,通常在0.3到0.7之间。将上述数据代入公式当中,即可得出本废水处理工程当中渗沥液的年均生成量,约为13400m3/a。为了减少渗沥液的产生,降低废水处理的压力,在封场以后,通常都会采取适当的防渗措施,尽量防止雨水渗入填埋场的土层当中。但是由于各方面的原因,依然有部分雨水渗入,所以经过实际测量与计算之后,得到填埋场的实际渗沥液产生量为8040m3/a。(2)冲洗水。冲洗水主要包括车辆冲洗水、地面冲洗水以及设备冲洗水,每天最高用水量为19.4m3,排水量为17.46m3。(3)实验室废水量。在本工程当中,实验室平均每天生成的废水量约为5m3,其中有80%会统一收集处理,还有20%需要进行排放,每年实验室废水排放量约为1000m3。

2.2水质分析

在危险废物安全填埋场的废水当中,主要含有重金属污染物以及氰化物等有毒物质,有机类污染物比较少。如果填埋物的种类固定,那么废水中的污染物类型也比较固定,经过一段时间也不会发生太大的变化。本工程中废水污染物含量、计划排放水质以及国家相关排放标准如表1所示[1]。

3废水处理方法

废水处理工程结合氧化还原、酸碱中和、除凝沉淀、深度处理等多种处理方法对废水进行处理,具体处理流程如下:①将废水投入调节池当中,将水质和水量进行均匀调节,然后在水泵作用下进入气浮池,对废水中的固体悬浮物以及油类进行初步处理。②经过初步处理以后,废水流入到氧化还原池当中,加入硫酸亚铁还原剂,与废水中的高价铬离子发生氧化还原反应,使得高价铬离子变成低价铬离子,便于统一处理。为了保证氧化还原反应的正常进行,要控制好废水的pH值,一般都是通过硫酸进行调节。在加入硫酸亚铁时,理论上需要按照m(Cr6+):m(FeSO4)=1:16的比例。但是在实际氧化还原过程中,废水当中不止含有高价铬离子,还还有其他可供还原的物质,所以无法保证所投入的硫酸亚铁完全高价铬离子发生反应。因此,在投入硫酸亚铁时,要比理论计算出的质量多出一部分,最终确定质量比为1∶20。此外,为了保证硫酸亚铁与高价铬离子充分反应,需要在氧化还原池中增设搅拌设备,边投料边搅拌,直至反应完全。③在经过氧化还原反应以后,废水进入中和反应池当中。中和反应池中主要含有氢氧化钠、氢氧化钙以及硫化钠等成分。其中,氢氧化钠的主要作用有两点,一是调节废水的酸碱度,为反应创造条件,二是与废水当中的重金属离子发生反应,使得废水当中的重金属离子变成氢氧化物沉淀;而氢氧化钙的主要作用是与废水中的氟化物发生反应,生成氟化钙沉淀,达到去除氟化物的目的;而硫化钠的主要作用是与废水中的汞离子发生反应,使得汞离子与硫离子结合,生成硫化汞沉淀,从而去除废水中的汞离子。为了保证中和反应的顺利进行,需要在中和反应池中增设搅拌设备,边投料边搅拌,直至反应完全。④在经过中和反应池以后,废水将进入除凝反应池当中。除凝反应池中主要使用PAC与PAM两种常用的除凝剂,待除凝剂水解以后,会产生一定的除凝吸附作用,使得废水当中的细小颗粒慢慢凝聚成较大的固体颗粒,从而将固体颗粒沉淀、过滤去除。除凝反应池主要用于去除废水当中的SS。⑤在经过除凝反应以后,废水进入到沉淀池当中。沉淀池的结构比较简单,处理起来也比较方便,而且占地面积比较小,主要用于进一步去除废水中经过除凝反应以后残留下来的SS。⑥在经过上述处理以后,废水当中污染比较严重的物质基本已经去除完毕。此时可对废水水质进行检测,如果水质达到了排放标准,则将其送入到集水池当中,如果没有达到排放标准,则需要用过滤装置进行二次处理。⑦对于集水池当中的废水,需要用二氧化氯进行消毒,经过消毒后的废水可用于回收利用,也可直接排放到污水管道当中。⑧对于沉淀池沉淀后残留下来的污泥,将其排入储泥池当中,过滤设备的冲洗水也排入到储泥池当中。储泥池当中的污泥需要静置分层,将上层清液压入调节池当中,下层污泥进入污泥浓缩池当中。污泥浓缩池中的污泥同样进行分层处理,上层清液进入调节池,下层污泥直接进行固化填埋处理[2]。

4废水处理工艺特点

废水处理工程当中,由于废水当中含有多种污染物质,且危害程度较为严重,所以在基本处理工序之外还预留了二次处理单元,比如砂过滤、活性炭过滤等。其中,砂过滤工序主要采用石英砂滤料,在处理悬浮物时,过滤效果较好、去除率高,可以有效降低废水中的有机物以及重金属离子的含量;而活性炭过滤主要是利用活性炭的吸附作用,将废水中的微量溶解物吸附至过滤器当中,从而达到去除污染物质的目的。活性炭吸附法主要用于对含量控制要求较高的重金属离子的处理。将氧化还原法、沉淀法以及活性炭吸附法结合使用,可以有效提高废水处理的效率,去除大部分废水中的重金属离子,使其达到国家相关排放标准[3]。

5工艺参数设置

废水处理工艺主要设备、设置详见表2.6结束语危险废物安全填埋场的废水当中含有多种污染物质,如果不采取适当措施对其进行处理,将对填埋场周围的环境造成巨大的影响。笔者详细分析了危险废物安全填埋场废水的处理方法,明确了相关排放标准及工艺参数,为危险废物填埋场的废水处理提供了一定的参考。

参考文献

1朱化军,涂勇,朱成.江苏省某工业园区危险废物处置中心工艺设计思路分析.污染防治技术,2014,v.27;No.11702

2曹广林,胡迎利,郑丰.连云港市化工危险废物处置对策优化研究.价值工程,2012,v.31;No.28828

第8篇:废水处理的基本方法范文

【Abstract】With the increasingly stringent environmental requirements, most of the domestic thermal power plants to complete the flue gas desulfurization, denitrification equipment installation and transformation, in the removal of flue gas pollutants (SOX, NOX and particulate matter) made a great contribution, but desulfurization and denitrification system will produce waste water or waste liquid. At present, this part of the waste water cannot be completely purified to achieve harmless emissions, based on this, paper began to study the thermal power plant flue gas desulfurization denitrification tail biological treatment technology, hoping to make a little contribution for improving the environment.

【关键词】火电厂;烟气脱硫、脱硝系统;生物处理技术

【Keywords】 thermal power plant; flue gas desulfurization and denitrification system; biological treatment technology

【中图分类号】X78 【文献标志码】A 【文章编号】1673-1069(2017)06-0183-02

1 引言

目前,社会经济的不断发展,人们对电力的需求逐渐增加。以煤炭为燃料的火电厂在进行发电的同时,还会排放出大量的SOX、NOX和颗粒物等污染物,严重污染了环境,影响着人们的生活质量。近年来,随着环保要求日益严苛,国内大部分电厂完成了脱硫、脱硝装置的改造,为减少火电厂烟气污染物排放做出了贡献。

通常情况下,火电厂烟气脱硫、脱硝尾液(简称废水)经过物理方法、化学方法去除废水中的固体悬浮物、重金属和部分有害物质后综合利用或排放至全厂废水处理系统;现有的尾液处理工艺过程,并不能处理掉全部的氮氧化合物和其他酸根离子。这部分废液不经过进一步处理进入水体,就会造成水体污染,从而产生新的环境问题。因此,开展火电厂烟气脱硫、脱硝废水的新的处理技术提上日程。

2 火电厂烟气脱硫脱硝废水处理工艺分析

2.1 废水的物理、化学处理工艺

在对火电厂废水进行物理处理时,主要采用的是过滤、混凝沉淀以及调节pH值等物理和化学相结合的方法完成废水处理过程的[1]。具体的工艺流程包括以下几点:①在废水处理站中建立一座废水调节池,尽量保证水力停留12小时以上,这样能够对废水水质和水量进行更好地调节。②脱硫系统或脱硝系统废水pH值一般偏酸性,要在废水沉淀池前面设置调节pH值的装置,pH值调节添加物质一般为生石灰或Ca(OH)2等碱性物质,可以调节废水pH值的同时去除废水中的重金属离子。③废水中含有大量的悬浮物、固含量和细微粉尘,在进行废水沉淀前要添加混凝剂,才能够保证沉淀的效果。④废水悬浮物沉淀和去除工艺对整个废水处理效果和废水后续处理工艺比较重要,根据目前运行经验,有澄清浓缩器+压滤机工艺和竖流式沉淀池+石英砂滤料2种处理工艺,前者一般用于只需进行物理化学处理的废水处理工,后者一般用于还有后续精处理工艺的流程。具体采取何种工艺需依据项目具体情况和废水水质条件确定。

经过上述物理和化学处理过程,能够基本上去除废水中悬浮物和大部分的重金属离子,但是对于废水中的酸根离子和氨氮没有去除作用。

2.2 废水生物处理工艺

为了更进一步去除废水中的有害物质和氨氮,可采用生物处理技术处理火电厂脱硫、脱硝的废水。

在火电厂烟气脱硫脱硝废水处理过程中,脱硫脱硝废水的进水温度以及初始氨氮的浓度都比较高,但是脱硫脱硝废水内的有机物浓度却相对较低。这种废水环境十分有利于厌氧氨氧化自养菌的生长。因此,一般采用厌氧氧化工艺对火电厂烟气脱硫脱硝废水进行处理。

但是在实际操作过程中,采用厌氧+好氧相结合的生物处理方法比单纯使用厌氧氧化工艺效果更好,各部分主要配置如下:

①厌氧池工艺,主要采用的是封闭钢制圆形反应器,同时在池顶设置了硫化氢收集装置,这个装置可以尽可能地收集硫化氢气体。

②兼氧池工艺。兼氧池工艺主要采用的是封闭钢制圆形反应器,同时在池顶设置一个搅拌器。

③好氧池工艺。好氧池工艺主要采用的也是封闭钢制圆形反应器,但是在池底设置了微孔曝气器,主要借助鼓风机完成供气需求。

通过物理化学处理工艺和生物处理工艺后,废水排放水质可达标排放。

3 工程案例分析

某火电厂的装机容量是1台350MW燃煤发电机组,采用石灰石-石膏法烟气脱硫工艺,脱硝工艺为选择性催化还原(SCR)工艺;该发电厂烟气脱硫、脱硝装置产生的尾液(废水)设计值是240m3/d;经过测量,该发电厂烟气脱硫、脱硝装置产生的废水水质指标如表1所示。

由上表可看出,该废水为酸性环境,废水中含有固体物、悬浮物、酸根离子、COD超标及氨氮超标;为了使得该电厂废水满足达标排放要求,拟采用物理化学处理工艺+生物处理工艺完成废水处理过程。先用物理、化学处理工艺提升pH值,去除固体物、悬浮物和部分酸根离子,使得废水水质满足生物处理工艺的相关要求,然后采用厌氧氧化+好氧相结合处理工艺,降低废水中氨氮和化学耗氧量及部分酸根离子,该发电厂脱硫、脱硝废水处理的具体流程如图1所示。

现场实测数据表明,经过上述处理工艺后,废水处理系统出口的水质指标分别是:pH值7.0左右,TSS的数值指标是100.0 mg・L-1,BOD5数值指标是50.0 mg・L-1,CODCr数值指标是100.0 mg・L-1,SO42- 数值指标是300.0 mg・L-1,T-N数值指标是125.0 mg・L-1,NH3-N数值指标是35 mg・L-1,基本满足工业废水排放标准要求。

4 结语

通过相关的实验和工程实例表明,火电厂烟气脱硫脱硝废水采用物理化学处理工艺+生物处理技术可满足工业废水达标排放要求[2],该组合工艺中最重要的部分就是厌氧工艺的使用,可以最大限度地处理掉废水中氨氮和化学耗氧量,这对于水质的清洁有相对较好的作用。实际运行工程表明,当火电厂脱硫脱硝尾液中的硫酸根含量过多时,通过厌氧工艺的处理无法产生很好的效果,甚至还可能产生制约的影响。因此,对于火电厂烟气脱硫脱硝尾液生物处理技术还要经过不断地研究和探索,以期完善处理方式,使得处理后的水能够达到相对比较干净的状态。

【参考文献】

第9篇:废水处理的基本方法范文

【关键词】含酚废水;处理技术;溶剂萃取;发展趋势

1 前言

酚类物质包括苯酚的取代物、多元酚、氯酚、硝基酚及苯氧基酸等。酚的用途相当广泛,且用量与日俱增,含酚废水污染环境的程度日益严重,对人类造成的危害也日益加深。酚类化合物属于芳香类化合物,是美国国家环保总署(EPA)列出的129种优先控制的污染物之一,含酚废水在我国水污染控制中被列为重点解决的有害废水之一。

酚类物质可以通过生物的外表皮或呼吸系统进入到体内。酚类化合物在生物体内能够使细胞组织失去活,酚类化合物对水中的生物、农作物都有毒害作用,酚类废水的毒性还可以抑制水体中其它生物的自然生长速度,破坏生态平衡。因此,开发出具有符合实际、能够工业化、处理酚类废水效果理想的工艺技术具有非常重大的现实意义。

2国内外含酚废水处理技术的研究动态

目前,国内含酚废水的处理技术有物理法、化学法和生物法。其中物化法包括焚烧法、萃取法、蒸汽法、吸附法等;化学法有化学氧化法、紫外氧化法、光化学氧化法、化学沉淀法、离子交换法、液膜法等;生物法包括活性污泥法、生物滤池法、接触氧化法等。含酚废水处理技术的选择取决于含酚废水中酚浓度、CODcr值及其它因素。为提高含酚废水处理效果,可以将物理、化学和生物的方法结合起来。根据处理方式来划分,含酚废水污染控制技术分为回收技术和消除技术,对于高浓度(>20000mg/L)的含酚废水采用回收技术;对于中等浓度或低浓度(<1000mg/L)的含酚废水,采用一定的技术将其降解、消除是较好的治理办法。

2.1 溶剂萃取法

萃取法工艺流程简单,运行成本低,分离效果较好,同时又可以从废水中回收部分有机物,萃取剂可重复使用等优点,是废水处理常用的工艺技术。萃取法已经实现工业化处理含酚废水。选择经济又高效的酚类回收和可再生萃取剂,是含酚废水溶剂萃取技术的实施关键。溶剂萃取法关键工艺有两个:一是将待分离的酚类废水和萃取溶剂混合,酚类化合物被萃取剂中的络合剂络合而转移到萃取相中;二是反萃取操作,即为了实现有价值酚类化合物回收和萃取剂的循环利用,将萃取剂进行再生处理。萃取剂影响萃取产物的质量、组成、分离程度以及萃取操作的效果。目前使用较多的传统型萃取剂有苯、重苯、N-503煤油、醋酸乙酯、异丙醚、苯乙酮、磷酸三丁酯(TBP)等。国外一些技术专利商在处理生产装置排放含酚废水时,一般采用MIBK、异丙基醚等作为萃取剂,取得很好的效果,但萃取剂的价格较高,而且容易引入外来有机物杂质,造成二次污染。最新的萃取技术是基于可逆络合反应萃取分离原理开发的含酚废水处理技术,分离因数高、操作简单,一般经过2~3级接触即可使残液中酚含量小于0.5mg/L。

2.2 吸附法

吸附法是一种传统的含酚废水处理方法。吸附法的原理是利用吸附剂自身具有的吸附性将废水中有机污染物吸附在吸附剂的孔道表面上。当吸附剂达到饱和状态时,再对吸附剂进行脱附处理,去除吸附在吸附剂表面的有机物。常用的吸附剂有固体活性炭、树脂、沸石、活性碳纤维、磺化煤、膨润土以及吸附树脂等。实验表明,活性炭的单位质量的比表面积最大,其吸附能力较其他吸附剂要强。吸附法处理有机废水的工艺流程相对简单、处理效果稳定、不增加其他的污染物,避免二次污染等特点,但由于吸附剂的孔道众多、孔径微小,容易出现堵塞现象,使再生的运行成本增加,导致总的废水处理工程的运行费用增加等因素是阻碍吸附技术发展的主要原因。

2.3 生化技术

目前,生化处理方法是处理工业废水应用最广泛的处理方法之一,尤其是处理城市生活污水、易降解的有机废水等。国内的绝大多数苯酚丙酮装置的含酚废水处理基本都采用生化法。生化法处理含酚废水具有处理规模大、运行成本相对较低等优势,但由于含酚废水具有的毒害性能够对微生物的生长有抑制作用,处理高浓度的含酚废水时难以达到理性的去除效果。采用厌氧-好氧工艺对含酚废水进行处理,不仅可以去除废水中的酚类物质,出水的COD与NH3-N均可满足国家的排放标准,是对现有活性污泥法处理技术很好的发展。

2.4 高级氧化法

化学氧化法是向含酚废水中加入某些特定性质的化学药剂,使酚类物质氧化降解。化学氧化法一般应用于处理废水中酚的含量在1000mg/L以下。化学氧化法处理含酚废水的优点在于处理流程简单,处理效果好,反应时间短等。Fenton氧化法是应用最多的一类高级氧化法,它由H2O2和Fe2+的溶液混合而成,在Fe2+的作用下,H2O2分解出的・OH具有很强的氧化性。Fenton试剂可以在相对低的温度、压力等反应条件下,氧化分解废水中的绝大多数有毒有害的,难以生物降解的有机污染物。随着科学技术的进步和研究的进一步深入,通过向Fenton试剂中引入光辐射、电化学作用或是加入某种催化剂如草酸类的盐,都能使H2O2分解产生更多的OH,使Fenton试剂的氧化能力有明显的提高。

相关热门标签