公务员期刊网 精选范文 生物燃料应用范文

生物燃料应用精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的生物燃料应用主题范文,仅供参考,欢迎阅读并收藏。

生物燃料应用

第1篇:生物燃料应用范文

[关键词] 生物燃料 综合应用技术 新进展

[中图分类号] TK6 [文献标识码] A [文章编号] 1003-1650(2016)10-0206-01

引言

党的十报告中提出了关于提高能源使用效率的问题,即要支持新能源的开发,提高可再生能源的利用率。至此,河南驻马店市农业大区对生物质燃料的综合应用技术得到了高度重视。生物质能作为碳源具有可再生性,可以转化为固态燃料、液态燃料、气态燃料。

1 固体生物质燃料的综合应用技术

制备固体生物质燃料所采用的技术是固化成型技术,即将品位相对较低的生物质转化为品位相对较高的生物质燃料,而且由于燃料已经固化成型的,所以方便与存储和运输,在燃料的利用上也非常便利。固体生物质燃料的资料来源于农业和林业生产中所产生的玉米芯、秸秆等等各种废弃物。

1.1 固体生物质燃料的成型技术

首先,要收集生物原材料,将这些材料经过筛选之后,确保材料干燥,灰分符合要求,污染性低而且热值高、容易燃烧。对于这些材料进行干燥处理后,进行成型处理以方便运输[1]。其次,将所有筛选出来的材料粉碎处理,并将黏结剂和助燃剂加入其中进行压缩,使固体生物质燃料不仅方便存储,而且容易燃烧。

1.2 固体生物质燃料的生产技术

根据不同的生产条件,固体生物质燃料所采用的生产技术也会有所不同。其一,常温湿压成型技术,具体而言,是将纤维素原料进行水解处理而使得原料的纤维经过湿润时候软化,使其皱裂,之后进行压缩处理。这种技术的操作简单,但是会提高部件的磨损度,而且所生产的燃料的燃烧值比较低。所以,成本相对较高。其二、炭化成型技术,即对生物质原料进行炭化处理后成为粉末状,将粘结剂加入其中,压缩成木炭。比如,河南驻马店市农业大区,秸秆多综合利用,利用炭化技术工艺生产出来的秸秆炭粉可制成炭球、活性炭等炭产品。在秸秆炭化的过程中所排放的烟雾收集起来提取可燃气体、木焦油、木醋酸。但目前综合利用率还比较低,所以,还国家对秸秆综合利用予以补贴和政策上的倾斜。

2 液态生物质燃料的综合应用技术

2.1 燃料乙醇

燃料乙醇成本低而且具有可再生性。生产技术上,是对非粮食原料乙醇回收后,经过净化并发酵处理。其中,对脱水处理技术具有很高的要求,主要采用了萃取精馏法、吸附分离法以及共沸精馏法等等[2]。所生产的燃料乙醇中所含有的乙醇可以达到99.7%,比无水乙醇中的乙醇含量要高。

2.2 生物柴油

动植物油脂经过加工处理后,可以生产出与柴油的化学性质比较接近的长链脂肪酸单烷基酯,即为“生物柴油”。这种材料具有良好的性,没有毒,而且生物降解,是用于替代柴油的最好的材料。生产技术上,物理方式进行技术处理即为直接混合法、酯交换法和酶催化法;化学方式进行技术处理即为采用了微乳化法高温热裂解法。由于所使用的材料不同,生产出来的生物柴油存在着有点和不足。目前广泛使用的生物柴油制备方法为酯交换法。这种方法的原料来源广泛,加工工艺简单,所生产出来的生物柴油性能稳定,但是在生产的过程中会有碱性废水产生,而且生产设备会遭到严重的腐蚀。

3 气态生物质燃料的综合应用技术

生物质发酵技术,就是将生物质采用厌氧微生物分解技术,经过代谢处理之后生成了气体,这种气体的主要成分是甲烷,其中还包括二氧化碳、氢气以及硫化氢等等,即为“沼气” [3]。沼气的发酵划分为水解液化、酸化、产甲烷三个阶段。生物技术的快速发展,挖掘高效厌氧微生物并使用的效率也会有所提高,对沼气的利用起到了促进作用。

按照生物质气化原理,生物质气化制氢技术需要将生物质进行气化处理后,可燃性的气体与水蒸汽不断地重整,从中可以提取氢气。研究的介质是催化剂、气化炉,使用白云石制作二氧化碳,吸收蒸汽,经过气化后产生二氧化碳气体。经过试验表明,气体中的氢气产量是非常高的,可以达到66.9%;二氧化碳气体为3.3%;一氧化碳气体为0.3%。

总结

综上所述,中国在近年来环境污染日趋严重。要保护好生态环境,就要加大清洁能源的使用力度,同时还要提高能源的重复使用效率。特别是发展新能源,能够对不可再生能源的利用以缓解,一方面可以对能源使用的安全予以维护,而且还可以推进新农村建设。

参考文献

[1]王永征,姜磊,岳茂振,等.生物质混煤燃烧过程中受热面金属氯腐蚀特性试验研究[J].中国电机工程学报,2013,33(20):88―95.

第2篇:生物燃料应用范文

【摘要】目的:介绍应用材料的腹外疝手术后感染产生的机制和对感染产生的防控措施。方法:查阅有关应用材料进行的腹外疝无张力修补术后感染研究的文献,并进行综合分析。结果:应用材料进行的腹外疝手术后感染产生的机制与多种因素有关,尤其与污染直接相关。结论:应用材料的腹外疝手术后感染产生的机制与直接外源性和间接内源性污染有关,与病人自身状态、手术时伤口的局部环境和术中操作密切相关。

【关键词】术后感染;应用材料;修补;疝

Mechanism and preventative management for the postoperative infection of free-tension repair of abdominal external hernia.Lei Zehua,Yu Shenlin.(The people’s hospital of Leshan,Shicuan 614000,China)

【Abstract】Objective:To introduce the mechanism and preventative management for the postoperative infection of free-tension repair of abdominal external hernia.Methods:A retrospective analysis of the papers of Mechanism and preventative management for the postoperative infection of free-tension repair of abdominal external hernia.Results:It can find out the internal dependability at many factors,especially the pollution and postoperative infection for free-tension repair of hernia.Conclusion:The postoperative infection for free-tension repair of hernia was correlated with exogenous and endogenous pollution,condition of patient,local surrounding of operation and technique of operation.

【Key Words】Postoperative infection;Free-tension;Repair;Hernia

腹外疝修补是普外科最常见术式之一。随着材料学的进步,采刚材料的无张力疝修补术已成为目前美国、加拿大、欧州、日本等主要发达国家的首选术式[17]。我国从1997年开始,经过10余年的应用和发展,无张力疝修补技术迅速地被广泛用于全国各级医院临床。随着此技术的广泛开展,其并发症的产生也不断增加。而作为并发症之一的感染,因其带来的危害大、后果严重,而受到临床越来越多的重视,以下就感染产生的机制和防控措施进行综述。

1 伤口感染的发病机制

1.1 感染产生的原因:疝修补术后切口的感染,在很多情况下都是继发于手术时伤口的细菌污染。临床上伤口污染来源最多见的是直接污染:如术野的皮肤、手术器械、外科医生的手套及通过手术室空气的污染,这种外源性污染是造成腹股沟疝感染的最重要的途径;而术中分离疝囊壁与肠管间粘连时分破肠管后的细菌污染,则是造成腹壁切口疝术后感染的重要内源性污染途径。除此之外,还有间接污染的内源性途径,如急性腹股沟疝嵌顿致肠道细菌移位的污染以及术后网塞与肠管接触所致肠道细菌移位的肠源性污染[16];另外,极少证据支持缝合后可能继发于血源性和淋巴源性的伤口感染[12]。

1.2 感染产生的条件:伤口细菌培养的结果证明任何所谓无菌的疝修补术都存在着细菌的污染[2]。但大多数情况下不会引起临床的伤口感染。在伤口内由于机体免疫成分的调动导致巨噬细胞在常规手术伤口中清除污染;只有当炎症反应超过了清除污染的能力或者因内源性或外源性原因致使这种反应受损时才能出现临床感染。

因此,术后伤口感染是否产生,一般是由4种变量因素的变化来决定:

1.2.1 细菌被接种的数量:很明显细菌污染手术伤口越多则伤口感染的可能性就越大。伤口缝合时定量的活组织检查证明每克组织细菌数目越大,伤口感染的可能性就越大。有研究表明:细菌污染存在一个每克组织中含有105的细菌数的临界阈值,当超过这一阈值时就可能发生感染[3]。术前对手术部位充分的准备及一系列控制手术感染的措施实施后,很少出现超过临界阈值的情况,即便如此,临床上仍存在伤口感染的问题。所以,伤口感染也不能单纯由污染细菌数大小所决定。

1.2.2 接种细菌的毒力大小:临床上,所有的细菌种类并不具有相同的导致伤口感染的能力。有些细菌的毒力很小,要很大的细菌数才会致病。而有些细菌的毒力很大,只要很小的量就能引起感染。因此,细菌毒力在感染上是一个应考虑的因素。

1.2.3 伤口的局部环境:手术形成的局部环境,在伤口的感染中扮演了非常重要的角色。因为有些局部环境因素可以促使污染伤口的某些细菌达到致病能力。

1.2.3.1 死腔的形成:在腹外疝病人中,伤口死腔是一个特别困难的问题。死腔的形成给血浆的聚积创造了条件,这一条件限制了巨噬细胞对细菌进行清除的移动;另外,血浆的聚积通常使调理素释放,因此,伤口的感染必然会增高[1]。

1.2.3.2 坏死组织:伤口内坏死组织的增加使伤口感染的几率增加。组织的大块结扎和过度分离,将使失活的组织成为细菌繁殖的场所。电刀的不恰当使用也可产生坏死组织出现相同的情况。坏死组织,由于它不会引起水肿,也就不会为巨噬细胞提供通道(水管道),水管道是巨噬细胞到达细菌污染的坏死组织内所必需的[5]。

1.2.3.3 异物存留:很明显伤口内异物会增加手术的感染率。伤口内的异物一是缝合材料,它常常是伤口感染的另一原因。有资料已证实编织的缝合材质如材线可以因较少的细菌数就可致伤口感染[6,12]。单丝的材质一般被认为具有较少的协同效果,但单丝线打过多的结也能够产生编织效果,在大部分补片感染中可发现多结的缝线。但不可吸收缝合材料的辅助作用表现为在合成材料表面能够导致人类中性粒细胞对细菌的吞噬效果的降低。因此,提倡伤口缝合时,缝线要尽量减少,线结不宜过多。二是疝修补使用的合成材料,其中做工精细的纺织补片材料(如聚四氟乙烯)、较粗糙的补片(如聚丙烯)引起感染的机会大。这些感染与补片因卷曲而产生的袋状死腔有关。

1.2.3.4 出血后的血红蛋白:血红蛋白中富含三价铁和蛋白质,它是微生物繁殖所需的理想培养基[7]。术中若没有严格的止血,伤口形成的血肿在少量细菌的作用下就可引起伤口脓肿形成。另外,有报道确认微生物血红蛋白代谢的有毒终产物,对机体吞噬细胞有毒性作用,也是伤口感染的影响因素[8]。

1.2.4 机体的免疫状态:病人免疫力的完整性受多种因素的影响,这种完整性是不能被量化的。不同个体间,内在和外在的可变因素是不同的:对标准的炎性前刺激物的反应研究,也显示了志愿者之间人类单核细胞具有多变性[9]。其他研究表明一些选择性因素的内在反应具有潜在的循环变化规律。这提示某一特定病人选择的手术时机感染的可能性明显增大[10]。

2 感染的预防

2.1 感染的术前预防

2.1.1 术前皮肤准备:病人皮肤的清洁,最好用抗菌皂在术前夜间或当天早上洗澡或清净手术部位皮肤;注意尽可能的不用刀刮手术部位,表皮毛发应采用剪的方法而避免局部微型损伤。对于有活动性远处皮肤感染灶,因会使手术区域的感染率升高,对此应避免手术。

2.1.2 术前抗生素的药物准备:疝外科手术最有争议的地方是预防性应用抗生素。最著名的研究者Platt[11,12],对这方面进行了随机抽样、多医疗机构、前瞻性的研究,得出结论是:术前应用抗生素总的感染率有所下降,甚至泌尿系统及肺部感染有所下降,但两组比较无统计学意义。尽管如此,其结论仍被作为在腹股沟疝手术时预防性使用抗生素的主要依据。另外,针对一些研究尽管没有确认补片疝修补可以增加感染率[13,14],但考虑到补片是一种异物,感染的几率会增大的情况,大多数医生还是预防性应用了抗生素。对于腹壁疝,预防性的抗生素应用则不同于腹股沟疝手术中的使用。因为在腹壁疝囊内小肠,有多次腹部手术史,手术中常有肠管损伤的可能潜在危险。故预防性应用抗生素,可以降低腹壁切口疝术后肠道污染引起的伤口感染几率。

2.2 感染的术中防控:手术操作对预防术后感染非常重要。①术中的组织分离、切割、结扎、止血,要求轻柔、细致,尽可能防止电刀的大片不规则切割和电凝止血,防止大块的集束结扎,这样有利于防止因伤口组织表面的坏死而增加的潜在伤口感染的可能性。对于大的静脉应当采用合成可吸收缝线结扎。②修补材料的正确应用。一种成功的补片修补既要舒展又要无张力,多余的补片会皱褶形成间隙,导致血浆积聚而继发细菌感染。因此,补片应剪裁适当避免过多的置入补片材料,同时材料的放置也应避免四周起皱或成卷状,这些均可引起感染几率增加。③缝线的正确使用。由于丝线系多股编织物易导致感染[6],在无张力疝修补中,应尽可能的放弃丝线而采用合成线。但合成线中的不可吸收缝线表面能够导致人类中性粒细胞对细菌的吞噬效果的降低[12],线结过多也会产生纺织效应,使用中要尽量减少线结的个数。④引流。腹外疝修补术中腹壁两边游离后皮下组织自然形成的间隙在临床上是个大问题,同时术中使用的补片自身也容易形成积液,有报告称在置入补片手术后第1天,几乎经超声都可发现液体在补片周围聚集[1]。由于上述情况的存在,在腹壁疝手术后的局部就非常容易形成间隙和大量积液而产生感染,为了避免间隙腔积液感染的发生,最好的办法就是采用引流,临床上最为合理的方法是采用闭合式持续主动吸引解决间隙的局部积液[15],如硅胶封闭式负压球引流是一种非常好的引流方式。但引流管不要经切口引出,而另戳口引出引流。特别要指出的是,开放式被动乳胶引流管容易使细菌逆行进入伤口,感染后易形成窦道,传统的被动式开放引流应禁止使用。在网塞充填式腹股沟疝修补术中,同样存在因网塞自身结构上存在间隙的缺陷,但这种间隙腔是不需要引流的。为了更好的防止网塞内积液及其感染的发生,雷泽华报道[16]在网塞充填固定好后,应将其表面组织缝合关闭来尽可能地避免因浅层组织渗液向深部网塞积聚或感染而波及深层的网塞,从而解决网塞积液造成的感染问题。

3 术后感染的局部处理

3.1 腹壁切口疝感染的处理

3.1.1 早期感染:对于术后几周的感染要即时发现,即时分开伤口,对伤口内补片周围所有的感染间隙要充分冲洗和引流,术中若发现补片四周过多形成的折叠或卷曲要进行剪裁,以消除造成伤口不愈的这一重要原因。另外,对固定补片的过多缝线结,因常常不与增生的肉芽组织融合,术后容易引起经久不愈的窦道,也要进行必要的清除。

3.1.2 迟发感染:腹壁疝修补术后数月或数年出现感染,常以切口窦道经久不愈的形式表现出来,其严重程度可能不同。这些窦道通常源于补片边缘及缝线处,处理可以在局部麻醉下切开,清除坏死组织,去除感染缝线,剪去过多的与组织不融的补片,局部充分敞开冲洗后,采用填塞引流,术后换药等措施。

3.2 充填式腹股沟疝术后感染的处理:充填式腹股沟疝术后感染,可分为浅层感染和深层感染,其两种感染的处理方法有所不同[16]。

3.3 浅层感染:对于单纯切口或修补平片部位的浅层感染,只要感染未波及到深部的网塞,修补材料可不必取出,经过局部冲洗、换药可愈合。

3.4 深层感染:深层的网塞一旦出现感染,整个网塞势必成为一个能容纳大量细菌和污秽物的空间,加之网塞表面覆盖的网片限制,使得局部冲洗、换药均困难,网塞内的积聚物不易被清除。这种情况必须取出网塞和网片,通过换药才能使伤口愈合。

【参考文献】

[1] Schumpelick V,Kingsnorth G.Incisional hernia of the abdominal wall[J].Berlin:Springer-Verlag,1999,70(8):876~887.

[2] Howe CW.Bacterial flora of clean wounds and its subsequent sepsis.Am J Surg,1964:696~700.

[3] Robson MC,Krizek TJ,Heggers JP.Biology of surgical infection.Curr Probl Surg,1973:1~62.

[4] Alexander JW,Korelitz J,Alexander NS.Prevention of wound infection:a case for closed suction drainage to remove wound fluids deficient in opsonic proteins.AM J Surg,1976,132:59~63.

[5] Cruse PJ,Foord R.A five-year prospective study of 23,649 surgical wounds.Arch Surg,1973,107:206~210.

[6] Elek SD,Cohen PE.The virulence of Staphylococcus pyogenes for man:a study of the problem of the wound.Br J Exp Pathol,1957,38:573.

[7] Polk HC Jr,Miles AA.Enhancement of bacterial infection by ferric iron:kinetics,mechanisms,and surgical significance.Surgery,1971,70:71~77.

[8] Pruett TL,Rotstein OA,Fiegel VD,et al.Mechanisms of the adjuvant effect of hemoglobin in experimental peritonitis:VII.A leukotoxin is produced by Escherichia coli metabolism in hemoglobin.Surgery,1984,96:375~383.

[9] Molvig J,Baek L,Christensen P,et al.Endotoxin-stimulated human monocyte secretion of interleukin 1,tumor necrosis factor alpha,and prostaglandin E2 shows stable interindividual differences.Scand J Immunol,1988,27:705~716.

[10] Alexander J,Dionigi R,Meakins JL.Periodic variation in the antibacterial function of human neutrophils and its relationship to sepsis.Ann Surg,1971,173:206~213.

[11] Platt R,Zaleznik DF,Hopkins CC,et al.Perioperative antibiotic prophylaxis for herniorrhaphy and breast surgery.N Engl Med,1990,322:153~160.

[12] 公布章.疝外科学.第5版.北京:人民卫生出版社,2003.259~269.

[13] Gilbert AI,Felton LL.Infection in inguinal hernia repair considering biomaterial and antibiotics.Surg Gynecol Obstet,1993,177:126~130.

[14] Janu PG,Sellers KD,Mangiante EC.Mesh inguinal herniorrhaphy:a ten-year review.Am Surg,1997,63:1065~1069.

[15] 雷泽华,王志刚,俞慎林等.聚丙烯平片鞘后修补皮下悬吊固定法治疗腹壁切口疝25例报告.现代预防医学,2007,34(18):3581~3582.

[16] 雷泽华.充填式无张力疝修补术后网塞感染的探讨及处理.中国修复重建外科杂志,2005,19(9):764~765.

第3篇:生物燃料应用范文

生物燃料主要是指以生物质为原料制取的燃料乙醇和生物柴油。生物燃料的发展动因,一是源于国家石油安全的需求,即作为汽油和柴油的替代能源,以达到缓解石油过度依赖进口的危机;二是源于国家环境保护的需要,利用生物燃料的清洁性降低机动车污染物排放。燃料乙醇是指用玉米、木薯、甘蔗、甜高梁以及农作物秸秆等生物纤维制取的液体燃料;生物柴油是指用废食用油、油料植物(麻疯树、黄连木等)和油料水生植物(藻类)等为原料制取的液体燃料。生物燃料可直接与汽油或柴油按一定比例混合后作为汽车动力燃油使用,起到替代汽油和柴油的作用。而汽车用汽油和柴油在我国交通部门油品消费中占很大比例,因此,生物燃料替代潜力的分析和研究将主要围绕汽车用油展开。

燃料乙醇(俗称酒精),以玉米等农作物或秸秆为原料,经发酵、蒸馏而制成,生产工艺技术成熟。燃料乙醇以10%比例与汽油搀和作为汽车动力燃料(E10),在减少汽油消耗的同时,还能有效改善油品的使用性能和降低汽车尾气污染。国家汽车研究中心的实验结果表明,汽车使用燃料乙醇汽油,其动力性能基本不变。从机理上讲,汽油加入10%燃料乙醇后热值降低3%,但含氧量增加3.5%,可将原汽油不能完全燃烧的部分充分燃烧,从而保证其动力性能,使总体油耗持平。美国的研究结果表明,E85高比例燃料乙醇汽油与传统汽油相比,前者辛烷含量低28%,但能源利用率高于后者;前者每公里耗油量是后者的85%,温室效应排放量只是后者的75%,每升造价也低于后者近0.80美元。

生物柴油的生产方法有化学法、生物酶法和工程微藻法三种。我国生产普遍采用化学法,即利用酯交换反应,通过去掉植物或动物脂肪中的甘油分子制取生物柴油。一旦甘油分子从植物油或动物脂肪中除去后,生物柴油的分子成分与石油柴油相似,可以直接用于任何柴油发动机,而不需要对发动机作任何更改。江苏工业学院精细化工重点实验室研究了生物柴油与O#柴油的调和油性质,结果表明,生物柴油与我国僻柴油的主要性能指标相接近(除闪点外)。美国科学家的大量试验结果显示:生物柴油作为车用替代燃料,其排放指标可满足欧洲Ⅱ和Ⅲ排放标准。英国能源技术支持单位(ETSU)还对生物柴油与柴油进行全生命周期的C02排放研究,结果表明,生物柴油的全生命周期CO2排放仅仅为柴油的1/5左右。燃料乙醇汽油与纯汽油的全生命周期排放比较结果是:燃料乙醇在CO、CO2的排放方面低于汽油,而Nox、CH4排放相当于或略高于汽油。由此可看出生物燃料的清洁性。

二、国内外生物燃料开发利用的现状

生物燃料生产和应用在国际上已呈高速发展趋势,发展燃料乙醇产业已成为各国政府调控农产品供需矛盾、解决石油资源短缺以及保护城市大气环境质量的重要措施。巴西始终处于燃料乙醇发展的领先地位。目前巴西国内有400万辆汽车使用纯燃料乙醇,其他车辆使用25%的乙醇汽油。美国1/3汽油中掺100k的燃料乙醇,美国总统布什希望到2025年用燃料乙醇取代3/4的进口石油,2030年燃料乙醇将占美国运输燃油消费总量的20%。法国自2006年秋季开始使用B30乙醇汽油车辆,2007年E85高级乙醇汽油正式面市,目前生物燃料占所有燃料的比重只有1.25%。法国政府的目标是,2008年使生物燃料比重提高到5.75%,2010年达到7%,2015年达到10%。印度政府规划,2011-2012年间,实现生物柴油替代20%的石油柴油。美国每年销售20亿加仑的生物柴油,占普通柴油消耗量的8%。由于生物柴油更容易与柴油混合,因此随着柴油车的发展,生物柴油将有更大的应用规模。目前德国1/3的新增汽车为柴油车,几乎所有的出租车都是柴油车。奥地利则接近50%。欧洲每两部新增车辆中有一辆柴油车。目前德国大众和奔驰汽车等多家公司,已经在巴西和美国等国家推出多种利用生物燃料的车型,以迎合市场的需求。

我国目前已成为全球第三大燃料乙醇生产国,排名第一和第二的分别是巴西和美国。我国政府批准建设的四家以消化玉米陈化粮为主的燃料乙醇生产企业,2006年生产能力达163万吨。车用燃料乙醇汽油扩大试点工作在9个省的27个地市开展,车用燃料乙醇汽油销量达到1000万吨左右,占全国汽油消费量的20%左右。广东首条以木薯作原料的燃料乙醇生产线也在清远落户,而盛产糖蜜和木薯的广西也正计划在南宁和贵港兴建两个乙醇燃料生产基地。此外河南天冠集团年产3000吨的生物质纤维乙醇生产项目已在镇平县奠基,这是国内首条千吨级利用生物质纤维生产燃料乙醇的产业化试验生产线。但是要实现大规模的工业化生产,还有很长一段路要走。

此外,我国生物柴油也开始进入了准备推广阶段。海南正和公司在河北已开发了11万亩黄连木种植基地,每年可产果实2-3万吨,可获得生物柴油原料8000-12000吨。该公司计划在此基础上建立年产生物柴油5-20万吨的炼油化工厂。海南正和公司在河北邯郸建成年产l万吨的生物柴油工厂。四川古杉集团建成年产3万吨生物柴油工厂。福建源华公司建成年产3万吨的生物柴油工厂。北京等省市也已经建成一定规模的生产线。上述这些生产线目前均是利用垃圾油或植物油脚、餐饮废油等为原料生产生物柴油。2005年我国的生物柴油生产关键技术研究取得重大进展,产品各项指标达到美国ASTM6751标准,使用性能良好,完全能够作为柴油内燃机燃料。在今后5年内,我国将建成年产2-5万吨规模的生物柴油产业化示范工程。

我国政府非常重视替代能源问题,《可再生能源法》中明确指出国家鼓励生产和利用生物质液体燃料。国家发展改革委、财政部关于加强生物燃料的通知中强调:发展生物燃料涉及原料供应、生产、混配、储运、销售以及相关配套政策、标准、法规的制定等各个方面,业务跨多个部门,是一项复杂的系统工程。因此,应按照系统工程的要求统筹规划。根据国情,政府要求积极稳妥地推进生物燃料产业的发展,走“非粮”路线,不与农业争地。生物燃料发展在我国不仅具有石油替代作用,而且对解决粮食深加工转化、稳定粮价和提高农民收入以及减少环境污染、保持生态平衡等诸多方面都具有十分重要的意义,还能创造许多新的就业机会。因此,推广使用生物燃料必将成为中国可持续发展的一项长期战略。

生物燃料作为替代燃油具有节能、环保的优势,但是要积极稳妥地发展生物燃料,许多问题仍值得深入研究和探讨。需要关注最多的问题是:未来我国生物燃料究竟有多大发展潜力,发展生物燃料的资源保障性如何,生产的技术经济性如何,以及汽车利用这种替代燃油的技术适应性和社会需求性如何。针对这些重要问题,本研究利用中国能源环境综合政策评价模型的

技术模型(IPAC-AIM),从我国社会发展、能源需求以及环境制约条件下对生物燃料的需求端,以及从生物燃料生产的资源开发和制取技术的生产供应端,全面分析生物燃料作为车用替代燃油的发展潜力问题。

三、对生物燃料开发利用的评价

1、生物燃料开发的资源保障性评价

我国生物质资源非常丰富,可供生物燃料制取的资源种类将随着今后不同的生产阶段而改变。目前,我国燃料乙醇处于小规模生产阶段,主要利用玉米陈化粮为原料。若按10%乙醇汽油计,我国年燃料乙醇需求量在480万吨左右,根据1吨酒精消耗3.2吨玉米量估算,需用玉米量约1536万吨,可是我国每年大约只有400-600万吨玉米陈粮。由此看来,玉米燃料乙醇的发展因受玉米陈化粮资源的限制而不能持续。当陈化粮用完后,燃料乙醇生产将逐步转向利用其他经济作物,如甜高梁、木薯等作原料,并且作为调节粮食市场供求的一种手段,将燃料乙醇生产纳入到饲料生产中。因为燃料乙醇在生产过程中只消耗粮食中的淀粉,同时对蛋白质等其它营养物质是一个浓缩过程,也就是说,是优质高蛋白饲料(DDGS)的生产过程。国家可以通过宏观调控和市场机制,将部分饲料粮先生产燃料乙醇,然后将其副产品(优质高蛋白饲料)放回饲料市场。

粗略估算,我国每年饲料用玉米大约有8000-10000万吨,其中加工成现代混合饲料的玉米用量占50%(周立三,2000)。如有计划地从饲料粮中拿出15%,先生产500万吨燃料乙醇,同时联产500万吨DDGS饲料投放饲料市场,它的饲养价值(优质蛋白质总量)与1500万吨粮食相比,不但不会减少,反而得以增加。这种将燃料乙醇生产与饲料生产综合利用的协调发展形式,扩大了燃料乙醇的资源潜力。另外,积极种植不与口粮争地、争水的高产、耐旱、耐盐碱的经济作物,如甜高粱、木薯、甘蔗等,也可为生产燃料乙醇开发更多的原料资源。有专家估计,利用易改造的盐碱地种植甜高梁,可以提供年产4000万吨燃料乙醇的原料。在不远的将来,通过生物质纤维(秸秆和薪柴等)生产燃料乙醇技术,可以为大规模燃料乙醇生产提供取之不尽的生物质资源。根据粗略估算,我国每年来自农业废弃物的秸秆可利用量约6亿吨,如果利用其中的50%制取燃料乙醇,按照7-8吨秸秆生产1吨燃料乙醇计,可以提供年产3700万吨燃料乙醇的原料。

从我国生产生物柴油的资源情况看,由于受原材料价格的影响,现阶段较适合作为制取生物柴油的原料主要有酸化油、地沟油和泔水油。有关资料显示,我国每年消耗植物油1200万吨,直接产生油脚酸化油250万吨,大中城市餐饮业产生地沟油200多万吨,这些油品的价格基本在2000-3000元/吨左右,是目前我国生物柴油生产的主要原料。价格高于4500元/吨的原料油如菜籽油、棉籽油、大豆油基本不在现阶段考虑之内。木本油脂植物如麻疯树、黄连木、文冠果等,尚处于试点培育阶段,只能作为未来几年后的生物柴油原料。粗略估计,如果利用非农业和林业规划用地的无林地和退耕还林地(约6700万公顷)种植油脂植物,按种植黄连木或麻疯树计算,以每公顷油料林出油1-5吨计,则可生产生物柴油近亿吨。此外,我国约有5000万亩可开垦的海岸滩涂和大量的内陆水域可以发展工程藻类资源。按照美国可再生能源实验室运用基因工程等现代生物技术开发出含油量超过60%的工程藻类,若按每亩生产2吨以上生物柴油计算,我国未来的工程藻类也可提供制取数千万吨的生物柴油原料。

综上所述,我国未来的资源潜力可提供5000-8000万吨左右的燃料乙醇。燃料乙醇原料的利用路线为:近期利用玉米陈化粮,之后开发经济作物,中远期则利用农林生物质资源。生物柴油原料的利用路线为:近期利用废油,中期开发油料植物,远期则发展工程藻类。总体看,我国生物燃料资源可以满足未来大规模开发利用生物燃料的需求。

2、生物燃料生产的技术经济性评价

从以玉米为原料制取燃料乙醇的技术经济性看,由于玉米原料价格偏高,生产1吨燃料乙醇需3.3吨玉米,仅原料成本就达4620元(1吨玉米价格1400元左右),企业在国家每吨补贴1600元基础上可保本获微利。需要提及的是,国家对燃料乙醇的补贴是一种多赢之举。因为,加入WYO后,我国政府将粮食出口补贴改为对粮食加工生产企业的补贴,因此,对燃料乙醇的补贴不但是国家对燃料乙醇产业的支持,也是国家带动粮食生产和农民增收,同时创造大量就业机会的措施。有专家估算,按我国每年生产400万吨燃料乙醇推算,可拉动160亿元以上的直接消费,创造约50万个就业岗位,在生产、流通、就业等相关环节都可以给国家创造收入。以木薯等代粮作物为原料制取燃料乙醇技术正在研发阶段,其经济性好于玉米燃料乙醇,直接成本可控制在2500元/吨范围内。从长远看,燃料乙醇生产应以农林废弃物纤维质为原料。从上海奉贤2005年的“纤维素废弃物制取燃料乙醇技术”项目看,已完成的年产600吨乙醇中试示范生产线,按每7-8吨秸秆生产1吨燃料乙醇计,每吨燃料乙醇的生产成本在4300-5500元左右。从安徽丰原已经运行的秸秆燃料乙醇项目看,生产规模为5万吨/年,秸秆原料成本2100元/吨(约6吨玉米秸秆生产1吨乙醇,秸秆按350元/吨计);其他成本3800元/吨(包括酶制剂、耗水电和蒸汽及其他加工费等),总生产成本约5900元/吨。虽然目前利用秸秆纤维素制取燃料乙醇的成本高于玉米燃料乙醇,但随着技术的逐步成熟,其生产成本将会降低。另外,由于燃料乙醇具有与MTBE汽油添加剂同样的作用,所以,如果考虑到燃料乙醇的这一作用,对燃料乙醇的定位和定价来说都还有较大空间。

生物柴油的生产方法有化学法、生物酶法和工程微藻法三种,化学法是我国目前的常用方法。据不完全统计,我国万吨以下生物柴油产业化制备技术大部分采用酸碱催化间歇式化学法。由于投资少、上马快,投资回收期短,普遍为我国中小企业所接受。化学法生产中使用碱性催化剂,要求原料必须是毛油,比如未经提炼的菜籽油和豆油,原料成本将占总成本的75%。因此,采用廉价原料降低成本是生物柴油能否市场化的关键。正和公司以食用油废渣为原料制取生物柴油的经济性表明,每1.2吨食用油废渣生产1吨生物柴油,同时获得甘油50-80公斤,按当时的生物柴油售价为2300-2500元/吨估算,每生产1吨生物柴油获利为300-500元,现在,柴油价格涨到4900元/吨,更显现出生物柴油的市场竞争力。贵州省利用麻疯树果实生产的生物柴油,通过自有核心技术建设的首条年产300吨麻疯树生物柴油中试生产线,通过国家质检部门和国外大型汽车公司的指标检测,其关键指标均优于国内零号柴油,达到欧Ⅱ排放标准。

但是,上述的这些利用化学法合成生物柴油技术

还存在能耗高、生产过程产生大量废水和废碱(酸)等污染问题。为解决上述问题,人们开始研究用生物酶合成法制取生物柴油。2005年清华大学用生物酶法制取生物柴油中试成功,生物柴油产率达90%以上。生物酶法的无污染排放优点已日益受到重视,但是如何降低反应成分对酶的毒性是亟待解决的问题。工程微藻法是以富油的工程藻类为原料的生产方法。藻类的高脂肪含量可降低生物柴油的生产成本,生产的生物柴油不含硫,燃烧时不排放有毒害气体,排入环境中也可被微生物降解,不污染环境。专家评价,利用工程微藻生产生物柴油是未来发展技术的一大趋势。

由此可见,在一些具有经济性的生物燃料制取技术得到广泛应用的同时,更多的正在孕育发展的高新技术层出不穷,这种发展势头预示着我国生物燃料生产技术和产业将迎来更好的发展前景。

3、现代汽车技术利用生物燃料的可能性评价

目前,我国汽车利用燃料乙醇多采用混合燃料方式,即在不改动汽车发动机情况下以小比例与汽油混合,如燃料乙醇汽油E10(90%汽油,10%燃料乙醇)。其他利用方式有在线混合方式和双燃料方式,在线混合方式可以根据汽车发动机的工况调节燃料乙醇的比例,但需要改造汽车发动机;双燃料方式具有突出的高替代率、高热效率和高净化碳烟效果,但目前尚有问题需要解决。生物柴油与燃料乙醇一起混入车用柴油的方法,可以形成更理想的高比例含氧燃料,大幅度降低汽车的碳烟和微粒排放。由此可知,生物燃料作为替代燃料应用于汽车的关键问题,还在于混合动力汽车技术和先进柴油汽车技术的发展。

目前,采用生物混合燃料技术、具备较高燃油经济性以及低排放特性的混合动力新车型有若干多种,目前全球使用生物燃料的主要车型有:Ford FocusBioflex型;Ford Focus C-Max Bioflex型;Saab 9/5berline 2.0t Bio-Power型;Saab 9/5 break 2.0t Bio-Power型;Volvo C30 Flexifuel型;Volvo S40 Flexifuel型;Volvo S50 Flexifuel型。主要包括E85燃油混合动力车、燃料乙醇与电力混合动力车、纯燃料乙醇E100的运动概念车、满足欧4排放标准的现代柴油车技术以及在降低排放和降低油耗上有高效率的均质压燃混合动力车发动机技术,等等。虽然这些汽车技术目前在我国以及外国仍处于研发和示范阶段,但在不久的将来都将成为交通行业高效、经济、有益环保、面向未来的新型汽车技术。混合动力汽车和先进柴油车技术与生物燃料结合,是我国未来公路交通满足节能、环保需求的最佳技术选择。

四、生物燃料作为替代燃料的发展情景

1、社会经济发展对生物替代燃料的需求

伴随着国民经济的持续快速发展和居民收入水平的稳步提高,我国已进入汽车大众消费的成长期。在未来较长的成长期阶段,汽车保有量的持续快速增长,使车用燃油消耗成为我国石油消费中增长最快的部分。相比石油消费的快速增长趋势,我国的石油供应,在探明储量没有重大突破的情况下,仅能保持低速增长,无法满足国内需求的状态已成定局,并且依赖国际石油供应的比例将逐步加大,对我国石油供应和石油安全造成极大的挑战。解决这一严峻问题的战略措施是加强节能和发展替代能源,在众多车用替代能源中,生物燃料以其清洁、可再生以及低污染的优势具有很好的发展前景。

影响我国未来公路交通油品需求的主要因素包括人口发展趋势、经济发展趋势、汽车车辆和周转量增长趋势、公路交通的发展模式等等,这些因素之间的相互关系在模型中被一一构建,主要参数的设置简单叙述如下。

GDP和人口是交通运输需求的主要驱动因素。按照目前我国经济发展势头估计,将2010-2020年GDP的增长速度设置为8%。人口数2010年为13.93亿人,2020年为14.72亿人(社科院人口所)。

车辆周转量是反映公路交通需求的重要基础参数。伴随着我国经济的持续快速发展、人均收入水平的提高以及城市化的快速推进,预计在2010-2020年间,我国汽车保有量将以12%-15%的增长速度转向10%的增长速度发展,汽车保有量将比现在增长4倍。其中轿车的发展速度将高于汽车平均发展速度,估计2020年,我国人均轿车保有量约每千人75辆(接近目前世界人均水平)。依据国家交通发展规划和经济建设对公路交通服务量的需求,对公路交通周转量的预测主要考虑了车辆拥有量、车辆负荷率以及每年的运行距离等因素。预计2010年、2020年和2030年的公路交通周转量分别比2005年增长3倍、6倍和9倍。如此大的周转量增长,将导致巨大的交通油品需求量。

未来公路交通发展模式是预测未来交通油品需求量的重要参数。关于未来交通模式的设置,本研究选择了25种汽车技术,除一些正在应用的普通汽柴油客货车外,充分考虑了新型汽车技术如混合动力车、清洁燃料车、先进柴油车、电动车和地铁等技术的广泛推广应用。通过在不同情景中,对未来各种类型车辆在公路交通中所占份额以及这些车辆所消耗油品比例等重要参数的设置,作为预测未来公路交通油品需求量的重要参数。由于篇幅所限,25种公路汽车技术的市场份额设置就不一一列出。其结果是,在常规燃油发展情景中,先进的汽油车,特别是先进柴油车得到大力发展,其保有量比例将由目前的4%提高到17%;在生物燃料替代情景中,除先进的汽油车和柴油车得到大力发展外(保有量比例提高到27%),混合动力车也得到快速发展,在我国汽车保有量比例将由目前的7%增加到52%,其中,生物燃料的混合动力车将占很大比例。

2、展望生物燃料未来的发展情景

为分析我国未来社会发展中汽车对油品的需求,研究中设定了两个发展情景,即常规燃油发展情景和生物燃料替代情景,通过比较两个情景中油品的消费状况,展望未来生物燃料的发展情景。两种发展情景的定义如下。

(1)常规燃油发展情景。在此发展情景中主要考虑目前国家已有的交通节能和环境政策,如发展清洁车辆,施行欧洲汽车排放标准;发展公共交通,2020年公共交通将占公路机动车客运周转量的40%;促进柴油车发展,满足未来交通运输中客运和货运大容量的需求等;执行国家现有的生物液体燃料鼓励政策,参照车用燃料乙醇E10在我国的推广历程以及生物燃油制取技术的常规发展速度,估计生物燃料开发应用的发展趋势。即2010年燃料乙醇汽车仍处于区域化推广应用阶段,从目前的9个省市推广应用到15个省市,即全国有50%的车辆使用E10燃料;生物柴油处于技术准备阶段。2020年,继续推广E10车用燃料,车辆使用E10燃料的比例达到80%。生物柴油进入小规模应用阶段。

(2)生物燃料替代情景。此情景是在常规燃油发展

情景基础上,为满足我国能源供应安全需求、环保和气候变化需求以及可持续社会经济发展需求,在国家采取节能降耗和发展替代燃料的战略举措指导下,达到降低汽车油品需求量的目的。一方面,在发展汽车工业的同时,要降低能耗和保护环境,尽快引进新一代先进汽车;加速推广低能耗汽油汽车、低能耗柴油小汽车、混合动力汽车、清洁燃料汽车;扩大公共交通的承载比例,在轨道交通和公共交通体系完善的情况下,提高车辆运行效率,减少交通需求。另一方面,要强化推行车用生物燃料替代的扶持政策,考虑了国家可再生能源发展规划以及相关政策对车用替代燃料所产生的影响,加大投资力度,大幅度提高生物燃料的开发利用进程。对于燃料乙醇,2010年E10车用燃料在全国范围推广使用,即全国有90%-100%的车辆使用E10燃料。2020年,在使用E10燃料比例达100%基础上,进一步在使用E10燃料条件较好的省市推广使用E25车用燃料,使E25燃料车占汽油车的比例达到30%,在东北三省以及北京、天津、河北、河南、山东、江苏等连接而成的大区域内推广使用。对于生物柴油,2010年按照国家鼓励发展节能型轿车和柴油车的政策,在上海等省市示范推广使用柴油出租车和公共汽车,并要求新增的车辆也使用现代柴油车;2020年在上海、北京、广州等大城市推广使用柴油出租车、公共汽车和小轿车,并且这些车的车用燃料均使用搀和10%-20%的生物柴油的混合燃料。基于我国社会发展预测,特别是公路交通发展预测基础之上,根据对上述情景量化为模型参数的设置,应用IPAC模型对汽车油品需求量得到以下预测结果(见下表)。

在常规燃料发展情景中,未来20年,我国汽车的油品需求总量分别是2010年1.2亿吨,2020年2.2亿吨和2030年2.9亿吨。汽车以汽油和柴油为主要燃料将一直持续下去,到2030年,汽车消耗的汽、柴油占交通油品需求总量的比例仍在95%以上。因此,提高传统汽油和柴油车辆的效率和环保性能,以及提高油品质量是公路交通能源问题的重点。在2010-2020年期间,先进柴油车从早期发展阶段到推广示范阶段,柴油车辆将不断增加,柴油需求量快速增长,柴油占公路交通油品消费的比例将从45%提高到59%,需求量将达到1.7亿吨。另一方面,在国家对生物燃料的鼓励政策支持下,生物燃料在资源丰富地区得到示范和推广应用。从生物燃料总体的替代能力看,2010年至2030年在我国公路交通的油品消耗中,生物燃料的替代能力将从3%提高到5%,替代作用不十分明显。

在生物燃料替代情景中,未来20年,我国汽车的燃油需求总量分别是2010年1.1亿吨,2020年2.1亿吨,2030年2.7亿吨。在国家鼓励发展节能型轿车和柴油车政策支持下,燃油经济性高的先进汽车技术被广泛推广使用,预计2010-2020年的汽车平均百公里油耗将比2000年降低20%-40%,2010年我国乘用车的油耗量将比目前水平降低15%左右,从而使汽车油品需求总量减少。虽然汽车仍以汽油和柴油为主要燃料;但是,汽柴油的比例在逐步减小,由2010年的93%降低到2020年的89%和2030年的85%。特别是低能耗的混合动力车(包括生物燃料)的广泛推广和使用,其车辆的市场份额从2005年的7%提高到2020年的30%和2030年的52%,使石油油品消耗量逐步降低,而生物燃料比重逐步增加。由于国家鼓励开发利用可再生能源液体燃料的政策得以充分实施,2010年在全国范围内100%推广使用E10车用燃料,燃料乙醇的需求量达到670万吨;2020年,使用E25燃料车比例占汽油车的30%,燃料乙醇的需求量达到1670万吨。随着先进柴油车和柴油小轿车的推广使用,这些柴油车的车用燃料均使用搀和10%-20%的生物柴油,届时生物柴油在公路交通中替代柴油的比例将从2010年的2%增加到2020年的6%和2030年的11%。从生物燃料总体的替代能力看,2010年至2030年,在我国公路交通的油品消耗中,生物燃料所占份额将从7%提高到17%,具有相当明显的替代作用。

3、生物燃料具有相当明显的车用燃料替代潜力

综上所述,本研究利用能源研究所构建的中国能源环境综合政策评价模型中的技术模型,重点对我国未来公路交通行业的生物燃料替代问题进行了分析。在今后的10-20年中,我国快速的经济建设,对公路交通汽车拥有量以及客货运周转量有巨大的需求,从而导致成倍增长的汽车油品消耗量,对我国本已薄弱的石油供应问题造成更严重的威胁。因此,节能降耗和发展替代燃料是降低我国公路交通油品消耗量的重要战略选择。生物燃料替代情景的研究结果表明,生物燃料在我国未来公路交通中将逐步展现出很强的燃料替代能力。这种替代能力,一方面来自于完全满足大规模生物燃料生产的资源潜力,以及层出不穷的生物燃料制取的高新技术潜力;另一方面来自于先进的混合动力汽车技术,特别是生物燃料混合动力技术在我国的推广应用前景。除此之外,更重要的是,这种替代能力源于国家能源战略和可持续发展的需要。展望未来,国家鼓励开发和利用生物液体燃料的政策得以充分实施,新型生物燃料混合动力技术逐步成熟,成为高效、经济、有益环保的普遍应用汽车技术。届时,在我国公路交通中,生物燃料将发挥非常显著的燃料替代作用。本研究表明,从生物燃料总体的替代能力看,2010-2030年,在我国公路交通的油品消耗中,生物燃料所占份额将从7%提高到17%,替代车用油品的数量为700万吨(2010年)、2300万吨(2020年)和4000万吨(2030年),具有相当明显的替代能力。

五、我国生物燃料未来发展有明确的政策支持

我国政府十分重视生物替代燃料的发展,针对我国生物燃料初期发展所面临的问题,国家发改委组织相关部门研究和制定专项发展规划和一系列指导性政策,如《生物燃料乙醇产业发展政策》和《生物燃料乙醇及车用乙醇汽油“十一五”发展专项规划》,财政部也在制定生物燃料的财税扶持政策。这些政策对我国生物燃料未来的发展将产生有力的支持。

第4篇:生物燃料应用范文

航空业对替代能源的渴求,从来没有像现在这样强烈过――CEO们每晚被油价意外上升的噩梦惊醒,醒来后又发现自己的飞机已经被纳入全球减少温室气体排放体系中……在越来越大的航空碳排减压力下,包括中国在内的世界各国航空公司都开始积极寻求解决方案。

空客的母公司――欧洲宇航防务集团近日透露,拟在未来5年,在北京――上海之间开辟生物燃料航线,并投入商业运营,以作为其全球生物燃料飞行的商业试点。

在目前波音的试飞中,生物燃料与传统燃料的比例为5:5,未来可提升到9:1,甚至是100%采用生物燃料。资料显示,只要航空业燃料中的1%采用生物燃料,便可以维持生物燃料市场。不过,生物燃料成本非常高昂,通常是传统航空燃料的4倍以上。

航空公司使用生物燃油,整个行业每年可以减少0.7%的碳排放量,在付费排放的大趋势下,这将为航空公司节省一笔费用,而节油将是更大一笔收益,整个行业可能因为生物燃油而产生1000亿美元的价值。

汉莎航空介绍说,2011年4月起,该公司一架往返于法兰克福与汉堡的空客A321型客机将使用生物混合燃料试飞6个月,汉莎航空将为此投入约660万欧元。

据介绍,这种生物混合燃料添加了50%的生物合成物质。与传统煤油燃料相比,其燃烧产生的固体颗粒物和二氧化碳量较低。在6个月试验期间,这架空客A321客机预期总计将减排二氧化碳1500吨。

而在不久的将来,我们也能在国内坐上使用生物燃料的飞机。空客的母公司――欧洲宇航防务集团宣布,拟在未来5年,率先在北京――上海之间开辟生物燃料航线,并投入商业运营,以作为其全球生物燃料飞行的商业试点。

作为全球两大飞机制造巨头之一,波音公司也很早就致力于航空生物燃料的开发。2008年2月,在商业客机的首次生物燃料试飞中,波音公司、英国维珍大西洋航空公司和通用电气航空证明了使用可持续性生物燃料与煤油混合燃料的技术可行性。2009年初,波音公司又分别与美国大陆航空公司、通用电气航空、日本航空公司及普惠举行了一系列进化测试,所有这些试飞都强调可持续性生物燃料可应用于现有机队的减排,无需改造飞机或引擎。波音称,环保可行的可持续性生物燃料将在2015年成功开发。

航油成本是航空公司最大的刚性成本,随着国际原油价格的不断上涨,各大航空公司想尽了各种办法在飞行中尽量节省更多的航油,而新型飞机的研发也在航油问题上大做文章。目前汉莎航空平均每个乘客的耗油量已经减少到每100公里4.3升,燃油效率比1991年提高了30%,而更低耗油量的实现以及在航行中减少废气排量,借助传统的方式已经很难有质的飞跃。

业内专家表示,以低碳带动的产业升级将成为第4次产业革命,而这一革命将决定国家未来的竞争力。“在低碳产业的这轮革命中,其竞争的核心将围绕新能源、新材料进行,因为目前的能源、材料很多都是基于对传统资源、能源的过度开发与利用。” 香港联中资源有限公司董事总经理、资源专家童媛春说。

第5篇:生物燃料应用范文

【关键词】生物质电厂;输送系统;设备选型

前言

勉县凯迪生物质电厂1×30MW机组工程是利用当地林业废弃物、农作物秸秆和稻壳等燃料发电的项目,电厂性质为可再生能源项目。本工程一次建设1×30MW高温超高压供热机组。对于生物质电厂来说,其燃料系统的性能优劣直接影响到机组运行的安全和经济性,本文就其燃料输送系统的设计特点进行介绍和总结。

1 燃料设计资料

1.1 燃料分析资料

本项目燃料分析资料见下表:

检测项目 符号 单位 设计燃料 校核燃料

固定碳 Fcar % 11.2 11.2

收到基水分 Mar % 28.69 40.8

收到基灰分 Aar % 7.3 3.408

收到基挥发分 Var % 52.81 45

可燃硫 St,ar % 0.052 0.048

收到基低位发热量 Qnet,ar MJ/kg 10.69 9.55

1.2 燃料消耗量

燃料消耗量见下表:

燃料 小时耗量(t/h) 日耗量(t/d) 年耗量(104t/a)

设计燃料 30.228 665.016 24.18

校核燃料 33.945 746.79 27.156

注:日运行小时数按22小时计,年运行小时数按8000小时计。

2 燃料系统设计特点

本项目燃料系统设有四个干料棚,干料棚内的燃料通过组合式给料机或螺旋给料机送到皮带机上,然后通过皮带直接输送至锅炉。由于炉前料仓存在堵料、蓬料的风险,为了保证锅炉的运行稳定性,本项目采用的是物料通过皮带直接输送至锅炉的方案。

2.1 卸料系统

燃料全部通过汽车运输进厂,进厂燃料分为两大类,一类为整包料,主要是玉米、小麦秸秆等软质秸秆燃料;另一类燃料为成品料,主要是破碎好的林木废弃物等其它硬质秸秆。

对于软质秸秆,考虑采用整包进厂,大部分物料采用桥式抓斗起重机或移动卸料设备卸至破碎机料斗内经破碎直接输送至锅炉进行燃烧,这样可以减少倒运环节,降低运行成本,超过破碎机破碎能力部分整包料堆放在燃料棚内。

对于硬质秸秆,部分成品料直接由自卸汽车卸到干料棚内,通过给料机、带式输送机直接输送至锅炉进行燃烧。对于不是采用自卸汽车进厂的成品料,可以采用移动机械进行卸料,辅助以人工清扫车厢的残料的卸料方式。

2.2 给料设备

除锅炉燃烧外,生物质发电的另一个设计难点就是给料系统。由于生物质燃料供应的多样性,不同种类燃料的分份、比重、外形都有较大的不同:即使是同种燃料,其物理性质受外界的影响会很大;另外燃料供应的季节性也较强,不同时间段内可能将燃用不同的燃料。因此,给料系统在方案设计时要充分考虑以上因素的影响。

目前,用于生物质电厂给料设备主要包括以下几个方面:板式给料机,活底料仓给料机,无轴螺旋给料机,有轴螺旋给料机。

板式给料机,一般安装在汽车卸车沟中,为满足来料变化的要求,启动平稳,对破碎后的燃料给料能力强,缺点是造价偏高,带负荷启动能力差。

活底料仓给料机,适用于破碎后硬质燃料,对于粒度≤50mm的燃料输送效果较好,但是存在给料不均匀,出力不稳定的问题。

无轴螺旋给料机适用于缠绕性不强、物料粒度大的燃料,由于本项目设计燃料有小麦秸秆类软秸秆,同时螺旋体刚性不够,易断裂损坏。由于此类设备存在问题较多,目前在新建电厂中此类给料设备基本已经不再应用。

有轴螺旋给料机是目前使用最多最普遍的生物质燃料给料设备,应用非常广泛。针对本项目,由于主要燃料为包含树皮、林业丢弃物以及小麦玉米秸秆等,种类各异,软硬质秸秆均有,所以本工程破碎后的燃料采用有轴螺旋给料机。

2.3 破碎设备

目前在国内生物质发电项目中,不同规格不同出力的破碎机产品比较多,使用效果是各不一样,价格差别很大,主要是两类产品。

第一类,小出力的破碎机,这种设备以国产为主,设备性能较好,产品比较成熟,缺点是刀具易钝化,基本每天要求磨刀几次,不适宜长期稳定运行。

第二类,大出力的破碎设备,这类产品国内市场上厂家较少。

在进口破碎机产品上,在中国市场上在生物质发电领域有应用业绩目前有2家,一个是丹麦的M&J破碎机,一个是美国的威猛破碎机,此类产品的特点是价格昂贵,产品性能好,能够长期稳定运行。

针对该项目,根据选定的燃料技术方案,在本工程中,厂内破碎设备使用进口破碎机作主要破碎机型;厂外使用国产破碎机作为补充备用。这样能保证机组的稳定运行,又节约了工程投资。

2.4 输送设备

根据对国内大部分的生物质发电项目进行调研和收资,燃料输送系统一般都能满足使用要求,输送设备主要包括以下几种:普通带式输送机、大倾角带式输送机、挡边带式输送机、链式输送机、管状带式输送机等。

目前国内采用普通带式输送机的生物质电厂用的较多;管带机在节约占地、密封输送等方面有一定的优势,但由于在给料段和卸料段需要一定的展开距离,本项目输送系统距离较短,管带机无优势;链式输送机只能整包上料,不应用于燃用多种燃料的电厂。大倾角带式输送机一般适用于场地受限的情况。针对本项目的具体特点,输送设备采用普通带式输送机,通过加大一级带宽和降低带速,来防止运行过程中撒料现象的发生。

2.5 其它辅助设备的选型

燃料系统其它辅助设备主要包括汽车衡、计量装置、喷雾抑尘设备、除铁器等,都是厂用设备,是比较成熟的产品。由于目前还没有适合生物质电厂的采样设备,目前投产的生物质电厂均采用人工采样,因此本项目也按人工采样考虑。

3 总结

生物质发电工程中燃料输送系统是一个极其重要的环节,由于煤与秸秆在物理特性方面有很大差异;每个生物质电厂受地域影响,导致燃料特性差异较大;受气候的影响,燃料的处理和储存工艺差异较大;受燃料收集影响,导致实际燃料和设计燃料的差异较大,多方面的原因导致燃料输送系统的设计方案多样化。本项目在设计时,考察和调研了国内众多的生物质电厂及燃料设备制造厂家,进行了多次技术交流。在以后进行生物质电厂设计时,根据项目的具体特点和燃料特性来选择合适的相关设备,从而保证燃料输送系统的设计是安全可靠性和经济性。

第6篇:生物燃料应用范文

为了减少能源的对外依赖、提高能源供应安全,欧盟对可再生能源非常重视。明确规定,到2010年,可再生能源要占到能源总消费量的12%、可再生能源发电要占到全部电力消费的23%。因此,欧洲国家都把生物质能作为优先发展的可再生能源予以高度重视。欧洲国家生物质能利用技术成熟,政策落实,生物质能开发利用已成为重要的新兴产业,对保障能源安全等发挥着重要的作用。

各国生物质能应用情况

目前,在欧盟各国支持可再生能源发展的政策推动下,生物质能在能源中比例迅速提高,特别是生物质颗粒成型技术和直燃发电技术应用已非常广泛。目前,仅瑞典就有生物质颗粒加工110多家,单个企业的年生产能力达到了20多万吨。生物质固体颗粒除通过专门运输工具定点供应发电和供热企业外,还通过袋装的方式在市场上销售,成为许多家庭首选生活用燃料。此外,利用农作物秸秆和森林废弃物进行直接燃发电也是目前生物质能利用最成熟的技术。以生物质为燃料的小型热电联产已成为瑞典重要发电和供热方式。如瑞典2002年的能源消费量为7300万吨标准煤,其中可再生能源为2100万吨标准煤,约占能源消费量的28%,而在可再生能源消费中,生物质能占Y55%,主要作为区域供热燃料。如1980年,瑞典区域供热的能源消费90%是油品,而现在主要是依靠生物质燃料。

丹麦在生物质直燃发电方面成绩显著。丹麦的BWE公司率先研究开发了秸秆生物燃烧发电技术,迄今在这一领域仍是世界最高水平的保持者。在BWE公司技术的支持下'1988年丹麦建设了第一座秸秆生物质发电厂,从此生物质燃烧发电技术在丹麦得到了广泛应用。目前,丹麦已建立了130家秸秆发电

吕承友使生物质成为了丹麦重要的能源。2002年。丹麦能源消费量约280071吨标煤,其中可再生能源为3507i吨标准煤,占能源消费的12%。在可再生能源中生物质所占比例为81%。近10年来,丹麦新建设的热电联产项目都是以生物质为燃料,同时,还将过去许多燃煤供热厂改为了燃烧生物质的热电联产项目。

德国和意大利对生物质固体颗粒技术和直燃发电也非常重视,在生物质热电联产应用方面也很普遍。如德国2002年能源消费总量约5亿吨标准煤,其中可再生能源15007/吨标准煤,约占能源消费总量的3%。意大利2002年能源消费总量约为2.5亿吨标准煤,其中可再生能源约1300万吨标准煤,占能源消费总量的5%。在可再生能源消费中生物质能占24%,主要是固体废弃物发电和生物液体燃料。

生物质能利用的第二大领域是利用生物质制取液体或气体燃料代替汽油或柴油。目前,利用粮食产品或油料作物,如大麦或油菜籽生产燃料乙醇或生物柴油的技术已经成熟,在欧洲已比较广泛的代替汽油或柴油使用,面临的问题主要是原料的供应。欧洲地区森林覆盖率高,林木质资源十分丰富,因此,欧洲国家正在开发利用林木质制取燃料乙醇的技术。瑞典的MTBE公司已在10立方米的发酵罐中进行木屑生产乙醇的中间试验,生产的乙醇已以5%~10%的比例添加到当地的汽车用油中;德国的CHOREN公司开发的生物质加压气化合成柴油技术,已完成年产200吨的小型试验,正在建设年产15000吨的中型示范装置。此外,瑞典PURAC公司还将利用动物加工副产品、动物粪便和食物废弃物等生产的沼气净化后,经压缩送到城市加油站供天然气汽车使用。德国还开发了小型沼气燃气发电技术,大大提高了沼气的应用水平,沼气发电站数量成倍增加。

欧盟竞相推出政策 扶持生物质能发展

发达国家把生物质能作为重要的能源予以重视。由于生物质能的可再生性,欧盟把利用生物质能作为可再生能源发展的优先领域。

具体发展目标

欧盟国家能源消费水平比较高。为了减少能源的对外依赖,保证能源安全供应,欧盟对可再生能源的发展高度重视。从1997年开始,欧盟多项政策,提升生物质能的发展目标。1997年了《欧盟战略和行动白皮书》,提出到2010年生物质能的利用量要达到2亿吨标煤。

2001年,了《促进可再生能源电力生产指导政策》,要求到2010年欧盟电力总消费的22%来自可再生能源,并规定出了各成员国要达到的目标,如德国为12.5%、丹麦为29%、瑞典为60%、意大利为25%。2003年,欧盟又了《欧盟交通部门替代汽车燃料使用指导政策》,要求生物液体燃料,包括生物柴油和乙醇,在汽车燃料消费中的比例要达到:2005年为2%,2010年为5.57%,2015年为8%。

具体鼓励政策

由于生物质能的成本比较高,没有强有力的政策支持是难以发展的。除欧盟提出了明确的可再生能源发展目标外,各成员国也结合各国的实际提出了各自的目标和要求,并采取了积极和务实的政策和措施,包括高价收购、投资补贴、减免税费和配额制度等。

高价收购:高价收购是欧盟国家促进可再生能源发展的共同做法,也是最有效的措施,称为“购电法”,就是根据各种可再生能源的技术特点,制定合理的可再生能源上网电价,通过立法的方式要求电网企业按确定的电价全额收购。如瑞典,1997年开始实行固定电价制度,对生物质发电采取市场价格加每千瓦时0.9欧分的补贴;丹麦生物质发电的上网电价为每千瓦时4.1欧分,并给予10年保证期,另外,在全国建立起绿色电力交易市场之前,政府再给予每千瓦时1.3欧分的补贴,将来由绿色证书来替代这一部分,所以实际上的生物质能上网电价是每千瓦时5.4欧分。

投资补贴:投资补贴是欧盟国家促进生物质能开发和利用的重要措施。如瑞典从1975年开始。每年从政府预算中支出3600万欧元,支持生物质燃烧和转换技术,主要是技术研发和商业化前期技术的示范项目补贴。从1997到2002年,对生物质能热电联产项目提供25%的投资补贴,5年总计补贴了486万欧元。另外,从2004~2006年,瑞典政府对户用生物质能采暖系统(使用生物质颗粒燃料),每户提供1350欧元的补贴;丹麦从1981年起,制定了每年给予生物质能生产企业400万欧元的投资补贴计划,这一计划使目前丹麦生物质能发电的上网电价相当于每千瓦时8欧分。

减免税费:减免税费也是欧盟国家促进可再生能源发展的重要措施。欧盟国家对能源消费征收较高的税费,税的种类也比较多,有能源税、二氧化碳税和二氧化硫税,特别是对石油产品消费的征税

额非常高,占到汽油和柴油价格的三分之二。欧盟各国都对可再生能源的利用免征各类能源税。如瑞典是能源税赋比较重的国家,税种包括燃料税、能源税、二氧化碳税、二氧化硫税等。如果全部免征所有能源税收,相当提供每千瓦时2欧元优惠电价,因此,瑞典主要依据税收政策促进生物能的开发利用,即对生物质能开发项目免征所有种类能源税。

欧盟国家对于生物质液体燃料的支持,最重要的政策措施就是免征燃料税。目前,欧盟国家的汽油价格约为每升1欧元,其中三分之二为燃料税,而对于使用生物燃料乙醇的免征燃料税。虽然目前在欧洲乙醇燃料比汽油成本要高近一倍,但通过这种税收政策,较好地促进了生物液体燃料的发展。

配额制度:配额制度是随着电力市场化改革逐步发展起来的一项新的促进可再生能源发展的制度,主要是对电力生产商或电力供应商规定在其电力生产中或电力供应中必须有―定比例的电量来自可再生能源发电,并通过建立“绿色电力证书”和“绿色电力证书交易制度”来实现。所谓“绿色电力证书”,就是可再生能源发电商在向电力市场卖电的同时,还能得到一个销售绿色电力的证明,即“绿色电力证书”;所谓“绿色电力证书交易制度”,就是要建立“绿色电力证书”自由买卖的制度。电力生产商或电力供应商如果自己没有可再生能源发电量,可以通过购买其他可再生能源企业的“绿色电力证书”来实现,同时,可再生能源发电企业通过卖出“绿色电力证书”可以得到额外的收益,这样,就会促进可再生能源发电的发展。

高度重视生物质能技术研发

在生物质能源技术研发方面,欧盟各国都非常重视。不仅欧盟建立了联合研究中心,每个国家都设有国家级生物质技术研发机构,全面系统地对生物质原料生产、转化技术、产品市场进行研究和推广。在生物质能源产品市场方面,欧盟强化了对生物能源产品标准化的研究,从固体颗粒燃料到生物柴油和燃料乙醇都有严格的质量标准;已建立起较完善的生物质能源产品市场服务体系,有力地促进了生物质能源的推广使用。

我国如何开发生物质能

我国生物质能资源非常丰富,具有开发利用的良好条件。在我国石油、天然气等化石能源资源十分短缺的情况下,开发利用生物质能,对于维护我国能源安全、优化能源结构、促进农村和农业发展、实现可持续发展具有十分重要的意义。为了加快我国生物质能的开发利用,借鉴欧洲国家生物质能开发利用的经验,结合我国经济和社会发展的实际,现提出促进我国生物质能开发利用的建议如下:

制定明确的生物质能开发利用目标

从战略的高度、用长远的眼光看待生物质能源。切实提高对开发利用生物质能重要性的认识,制定明确的生物质能开发利用目标和具体要求。根据我们正在研究制订的可再生能源规划思路,提出到2020年生物质能利用的目标为:生物质发电总装机容量20000万千瓦,生物固体颗粒燃料5000万吨,生物质液体燃料1000万吨。

加强生物质能利用技术的试点和示范工作

生物质能利用技术种类很多,技术的成熟程度也不一样。当前,需要结合我国实际,区分不同情况进行推进。

着手建立颗粒成型及颗粒燃烧试点和示范项目。目前,生物质固体颗粒成型技术是成熟的,燃烧生物质颗粒的锅炉技术也是成熟的,面临的问题主是要缺少市场需求,这需要通过政府来培育这个市场。因此,建议选择几个地区,将燃煤锅炉改造为燃烧生物质颗粒的锅炉,并同时设立几个生物质颗粒加工厂,通过签订合同的方式,为生物质颗粒燃料锅炉提供颗粒燃料。

加快推进我国自主生物质颗粒冷成型技术的应用。清华大学通过多年研究.利用生物质的纤维特性研制成了生物质颗粒冷成型技术,不仅成型过程不需要加热,能耗显著降低,而且设备也非常简单,既可以用于工厂的工业化生产,也可用于农村分散和移动生产。如果这种设备能够在农村广泛推广使农村多余的秸秆和林业等废弃物全部转化为生物质固体颗粒,首先用于农民基本生活能源需要,多余的卖给城市或工业锅炉替代燃煤,将会大大增加能源供应能力,也会显著增加农民收入。今后,农民不仅是粮食的生产者,而且也是能源的生产者,使生物质燃料生产成为农村的重要产业,从而促进农村经济和社会的持续发展。因此,建议选择一些地区进行试点和示范,目前,湖南、甘肃等省已做了一些前期准备工作,建议国家给予适当资金支持,促进其尽快见效。

积极支持生物质直燃发电技术发展。生物质直接燃烧发电技术成熟,在欧洲使用的已很普遍,我们面临问题主要是生物质的收集和管理体系。在生物质发电设备研究方面予以大力支持,同时对生物质发电项目也给予必要的资金支持和明确的政策支持。

开展生物质液体燃料试点和示范工作。利用能源作物制取液体燃料的技术在世界上已有许多实践和成功的例子。目前,巴西利用甘蔗、泰国利用木薯、欧洲利用油菜籽等制取液体燃料代替车用燃料已相当成功。建议同时开展以能源作物,如种植甘蔗、甜高粱、木薯和麻疯树等,生产生物液体燃料的试点和示范工作,以逐步解决我国的石油替代问题。

制定明确的政策措施,支持生物质能开发利用

生物质能开发利用在增加能源供应、保护环境的同时,将直接带动农村经济的发展,是解决“三农”问题的有效措施。因此,建议从国家能源发展战略和解决“三农”问题的高度出发,制定明确的促进生物质能开发以利用的政策和措施,目前应重点在设备制造和生物质能利用市场开拓方面予以大力支持。总体来看,生物质能利用技术和设备,如固体颗粒成型技术和设备、生物质燃烧锅炉技术和设备,都已基本成熟,需要在政府支持下推广使用,特别是生物质固体颗粒的推广应用,必须由政府在适当的资金支持的基础上,通过必要的行政手段进行推广,然后才能逐步走向市场。对于生物质发电的支持重点在上网电价方面,建议对于生物质发电上网电价的确定,既要考虑对环境的友好性,也要考虑对农村经济发展和农民增收的作用,不能简单与化石燃料发电成本进行比较。生物质发电的燃料主要由农民供给,给生物质发电一个合理的上网电价政策,给农民一个合理的生物质收购价格,相当于国家对农村经济和农民收入的支持,也体现了“工业反哺农业、城市支持农村”的要求。这样。既可以有效增加农民收入,调动农民的生产积极性,也可以促进生物质能的开发利用,较好地解决“三农”问题,是一举多得的好事情。

此外,为了促进生物质能技术的发展,建议设立生物质能专项资金,用于支持生物质能技术的研究和开发利用。

第7篇:生物燃料应用范文

生物燃料泛指由生物质组成或萃取的固体、液体或气体燃料,可单独使用或与汽油或柴油混合使用。当前各国积极研究和投入的生物燃料主要指生物液体燃料,包括燃料乙醇、生物柴油等。

20世纪70年代的能源危机使得各国纷纷寻求各种手段,通过能源供给多样化,降低对化石燃料的依赖,增强自身能源安全。

进入21世纪以来,国际原油价格经历了一轮以需求拉动的上涨,年平均名义价格由2001年的24美元/桶上涨至2010年的79美元/桶,实际增长1.6倍。2008年7月创每桶148美元的历史高位,受国际金融危机冲击,半年内又暴跌至每桶35美元左右,波动幅度巨大,但油价整体上行趋势未变。

显然,由国际油价走势变动带来的航空煤油价格高企及波动加剧将给航空公司带来极大的运营风险。此外,为应对全球气候变化的挑战,各国在减少温室气体排放方面已达成基本共识,针对不同行业的减排目标和政策也相继出台。在国际油价高企和全球温室气体减排的背景下,生物燃料有望成为替代传统航空煤油的重要新能源。

生物燃料使命

生物燃料的发展大致经历了三个阶段:(1)第一代生物燃料,主要以粮食为原料,其发展日益受到限制;(2)第二代生物燃料,以非粮作物如乙醇、纤维素乙醇、生物柴油等为代表;(3)第三代生物燃料,以微藻等为原料,目前美国、以色列、德国、加拿大、阿根廷、澳大利亚、韩国等正在积极研究。

自2000年以来,全球生物燃料产量增长了近三倍。美国是最大的生物乙醇及生物柴油生产国。从中期来看,美国和巴西可能还将继续保持生物燃料主要生产国的地位。但长期而言,亚洲国家包括中国、印度、印度尼西亚及马来西亚可能将抢夺更多的市场份额。目前,很多国家已出台一系列支持生物燃料研发和产业化的政策,积极支持生物燃料的发展。

我国新能源政策的远期目标为:争取到2020年实现非化石能源占一次能源消费比重的15%左右,生物柴油年产量达到200万吨,燃料乙醇达到 1000万吨。我国发展生物燃料起步较晚,但发展十分迅速,目前已在河南、安徽、黑龙江、吉林、广西等地建立生物乙醇生产厂,并在全国部分城市进行混合10% 燃料乙醇的汽油供应试点,我国生物乙醇产量居世界第三位。

美国提出,到2020年生物燃料将占其能源总消费量的25%,2050年达到50%,2012年,美国约150万吨生物燃料投产,2013-2015年,还将投入650万吨产能。

欧盟提出2020年前可再生能源占能源消费总量的20%,生物燃料占运输燃料10%的目标。以德国为例,德国2007年颁布《生物燃料配额法令》,规定生物燃料在化石燃料中混掺的最小含量,其生物柴油消费量占欧洲生物柴油消费总量的45%,并且已建立1000多个生物柴油加油站。

巴西作为最早实施生物燃料产业化政策的国家之一,2006年已实现40%以上的汽油消费由乙醇汽油取代,成为唯一不供应纯汽油的国家。目前,巴西消耗的所有汽油均掺有20% 及以上的乙醇,同时还出口乙醇,产量居世界第二。巴西《生物柴油法》要求到2013年生物柴油与普通柴油混合比例达到5%。

生物航油实验

如前所述,由于石油资源紧张、油价波动、航空公司运营成本高企及碳排放标准的提高,越来越多的油料公司、航空公司及飞机设备制造商开始将目光投向生物燃料。2008-2012年,全球已有20多个以生物航油为燃料的试验飞行和商业航班,其中95%以上均未出现任何飞行异常或故障。试验表明,混合生物燃料的效率比传统燃料高1.1%,温室气体排放量比传统燃料低60%-80%。

据中国民航局预测,2020年全国航油消费量将超过4000万吨,其中生物航油可能占航油总量的30%,按每吨1万元计算,2020年我国生物航油市场规模将达1200亿元。

国际航空运输协会指出,到2020年全球航空燃料总需求的6%,即每年约800万吨应来自生物燃料,但要实现这一目标,一方面需对航空公司的燃料比例进行管制,另一方面要对生物燃料实施政策性补贴。

2011年10月,中石油、中航油与国航成功进行国内首次航空生物燃料的验证试飞。中石油已建120万亩小桐子种植基地,可提供的原料年产量达16-17万吨,目前其正与霍尼韦尔旗下UOP公司商谈在华合作建立首个年产6万吨的航空生物燃料炼厂,并有望2013-2014年投入商业运营。

2011年12月,中石化向民航局提交了生物航煤及其调和产品的适航审定申请,民航局已受理该申请,并计划今年11月前完成适航审定,年内进行商业飞行。2009年,中石化启动了生物航煤的研发。2011年,将其杭州石化炼厂装置改造成一套2万吨/年生物航煤装置,该装置从2011年年底开工以来已生产70吨生物航煤。中石化计划采用的原料主要为餐饮废弃油脂。

此外,中国商飞和波音公司开始合作研发生物航油,并在北京启动了“中国商飞-波音航空节能减排技术中心”,该中心首个研究项目是将废弃食用油提炼成生物航油。空客公司已与清华大学签署协议,双方将以地沟油等为原料合作研究生物航油,预计下半年公布首批研究结果。

未来挑战

在我国石油对外依存度日益上升、环保成本和压力日趋严峻的形势下,积极发展包括生物航油在内的生物燃料产业,是应对能源短缺和节能减排的重要手段。生物航油的发展存在很多机遇,但同时也面临几大挑战。

一是生物航油的成本。目前生物航油的成本是传统航油的2-3倍,要想大幅降低成本必须实现规模化生产,而我国尚未建立起成熟的生物航油研发、生产及供应体系。航油是航空公司最大的成本支出,以国内三大航空公司为例,航油成本占其运营成本均已超40%,因此高昂的价格将使生物航油的推广和应用受阻。

二是生物航油的生产技术。例如,通过纤维素生产乙醇及海藻提炼等技术尚不成熟,而地沟油混杂了动物油、植物油等成分,提炼技术难度大,尚不能实现大规模应用。

三是生物航油的原料供应。生物燃料的原料包括动植物油脂、废弃食用油和微生物油脂等,各种原料的产能和收率存在很大差异,如何保证可持续的原料供应仍是当前需关注和解决的问题。

第8篇:生物燃料应用范文

美国弗若斯特沙利文(Frost&Sullivan)公司近期发表的研究报告认为,欧洲生物燃料产业的发展目前已进入了成熟阶段,在2020年前,市场一直将保持活力。2009年欧洲生物柴油和生物乙醇消耗量各为710万吨和700万吨,而2020年有望达到2270万吨和1800万吨,分别增长220%和157%。价格仍将是客户选用生物燃料时要考虑的关键问题,生物燃料生产商们正在将副产品逐步应用至商业领域以降低成本。

市场逐步成熟

欧洲生物燃料市场由生物乙醇市场和生物柴油市场组成,从作物种植、收购到生物燃料生产、存储、运输和油料混合、销售等环节都已经逐步走向成熟。弗若斯特沙利文认为,虽然拉美地区有大量的生物乙醇出口到欧洲市场。但得益于汽油销量的增长,欧洲生物乙醇市场将呈线性增长态势。预计2014年底之前,小麦将是生物乙醇的主要原料。而随着第二代生物乙醇技术的发展。会有更多的稻草、木屑等非粮作物被用于制造生物乙醇。

欧洲目前出现了新型的生物化工精炼模式,就是在制备生物柴油的过程中利用副产品甘油生产相关的化工产品。另外,欧洲生物乙醇公司也正积极探索通过副产品生产乳酸和丁二酸等产品的方法,以期实现更多价值,提高欧洲产生物乙醇的竞争力。

原料不断创新

研究报告指出。按原料用量排名,欧洲生产生物柴油的主要原料是油菜籽、大豆、棕榈油和葵花籽等油料作物,其他原料如餐饮用油、动植物板油也都已经开始应用,从麻风树籽中提取的生物柴油已被用于新西兰航空和大陆航空的航班上。由于欧盟各国并不是主要的作物生产国,生产生物柴油所需原料大部分依靠进口。

欧洲生物乙醇原料正处于由第一代向第二代过渡的过程中。现阶段生物乙醇的主要原料仍是谷物、糖类作物和木质纤维素。据统计,2008年欧盟用于制造生物乙醇的谷物主要是390万吨小麦、680万吨甘蔗和9万吨甜蜜素。2008年欧盟各国用于生物燃料的木质纤维素分别占全球及欧洲油料作物消耗的6%~125%。其中,芬兰、瑞典、德国、法国、意大利和奥地利在木质纤维素利用方面居领先地位。

前景值得期待

推动欧洲生物燃料市场发展的主要动力源于欧盟推动生物燃料应用的努力和哥本哈根联合国环境大会的要求。欧盟最新指令要求,至2020年生物燃料要占全欧洲的运输能源的10%。同时,作为哥本哈根大会的签字方,欧洲各成员国政府也有义务实现大会提出的新目标。既2020年实现减排10%。

生物燃料市场的发展也面临阻力。对生物柴油市场来说。持续走低的矿物柴油价格和高企的生物柴油原料价格压缩了生物柴油厂商的生存空间。虽然欧盟已开始对美国进口的生物柴油征收反倾销税来保护本地的生物柴油产业,但这一措施的效果也打了折扣,因为美国生物柴油仍能通过加拿大等国进入欧洲。另一方面,来自阿根廷等地区的廉价生物柴油出口有望在2010年大幅提高。

生物乙醇产能的快速增长也将进一步降低生产商的利润。2009年欧洲生物乙醇产能为560万吨,开工率仅为50%。预计2010至2011年,由于大型生物乙醇项目相继上马,产能会有大幅提升。至2012年,大部分欧洲地区新增产能都将是第二代生物乙醇的试点项目。至2014年。欧洲生物乙醇产能有望达到2100万吨。

弗若斯特沙利文指出,未来一段时期。实现规模化生产、控制原料供应商、与客户签订长期供应合同、保障可持续和低价的原料供应等将成为欧洲生物燃料供应商制胜的法宝。

(来源:中国化工报)

农业部关于天津静海县陈官屯镇西钓台村秸秆沼气集中供气等31个大中型秸秆沼气项目可行性研究报告获得批复

为解决规模养殖业对农村环境和重点水域造成的污染,改善养殖场周边人民群众的生产生活质量,发展现代农业和推进社会主义新农村建设,根据《全国农村沼气工程建设规划(2006~2010年)》,农业部关于天津静海县陈官屯镇西钓台村秸秆沼气集中供气等31个大中型秸秆沼气项目可行性研究报告,获得批复。

一、项目主要建设大中型沼气原料预处理、沼气生产、沼气净化与储存、沼气利用、沼渣沼液综合利用等设施。配套建设供配电、控制、给排水、道路、绿化、围墙、业务用房等设施。政府投资重点支持建设厌氧发酵、沼气输送以及沼渣沼液利用系统。

二、项目建设要与现代农业发展和新农村建设有机结合,所产沼气主要用于解决周边居民生活用能,沼渣、沼液主要用于还田。应督促项目单位与农户签订供气协议或合同,开展沼渣沼液综合利用,严禁沼气、沼渣沼液直排排空或排放。应积极创新秸秆收领教储机制,通过行政、市场内部约束等多种形式,实现秸秆原料长效有效供给和总体稳定,确保项目可持续运行。

三、要按照《沼气工程技术规范》(NY/T220.1~5-2006)、《规模化畜禽养殖场沼气工程设计规范》(NY/T222-2006)等初步设计文件编制要求开展初步设计,并报厅(委、局)审批。

四、政府投资规模达到《农业基本建设项目招标投标管理规定》规定的公开招标条件的(施工单项合同估算价在200万元人民币以上或仪器、设备、材料采购单项合同估算价在100万元人民币以上),必须公开招投标。

第9篇:生物燃料应用范文

关键词: 燃料乙醇 新能源 经济效益

目前,全球气候逐渐变暖,煤、石油、天然气等化石能源日渐消耗,从而引发了世界对可再生并对环境污染少的新型能源的深刻思考。诸如中国、巴西、美国、加拿大等国正在积极开发和利用生物质燃料乙醇。但如果一直采用大量粮食生产燃料乙醇,必然会造成人类缺粮、缺地等生活隐患,所以走“非粮”路线必然是正确道路。再者地球纤维素的贮量丰富,其能量来自太阳,取之不尽,用之不竭。

一、国内外燃料乙醇的发展现状

目前,随着石油价格的飞涨,环境污染与能源短缺问题日渐突出,化石能源日益枯竭,燃料乙醇便应运而生,并逐渐形成了一个产业,一些农产品丰富的国家正大力发展燃料乙醇的供应市场。巴西早在1981年就颁布法令规定全国销售的汽油必须添加燃料乙醇,成为世界上唯一不用纯汽油作为汽车燃料的国家。经过几十年的发展,巴西用占全国面积1.5%的国土面积,解决了全国超过一半的非柴油车用燃料的供应。美国自1992年起就开始推广燃料乙醇汽油,目前已经成为燃料乙醇年产量最大的国家,年产近4000万吨。加拿大从1981年起在汽油中添加乙醇,到2003年,加联邦政府宣布实施加拿大燃料乙醇的生产和利用,并拨巨款直接用于魁省等4个省的燃料乙醇商业化项目。欧盟每年约生产176万吨酒精。1997年只有5.6%用于燃料。1994年欧盟通过决议,给生物燃料生产工厂予以免税。并在2010年使燃料乙醇的比例达到12%。因此一些后续的国家如荷兰、瑞典和西班牙也出台了生物燃料计划。泰国是亚洲第一个由政府开展全国生物燃料项目的国家。在短短的几年时间内,泰国成功地开展了燃料乙醇项目。这些项目提供了利用过剩的食用农产品的途径,对提高泰国农村几百万农民的生活水平起到了积极作用。印度是仅次于中国的亚洲第二大乙醇生产国,设计的年生产能力约为200万吨,并准备效法巴西推出“乙醇汽油计划”。

我国是继巴西、美国之后全球第三大生物燃料乙醇生产国和消费国。受化石能源枯竭和环境保护双重压力的影响,中国生物质能源产业的发展再一次被提到战略性新兴产业的位置上来,尤其是在我国已经形成了初步规模的燃料乙醇产业,更是受到格外关注。我国燃料乙醇市场格局是2002年形成的,2006年以后的几年时间里,燃料乙醇已经在国内更多地区推广。到2010年底,燃料乙醇消费量占全国汽油消费量的比例,已经由过去不足20%上升到50%以上。同时我国也将采取各种措施来增加燃料乙醇的产量。可见,燃料乙醇行业发展前景光明,具有相当的投资潜力。

二、燃料乙醇的概述

1.燃料乙醇的含义

乙醇俗称酒精,它以玉米、小麦、薯类、甜高粱等为原料,经发酵、蒸馏而制成。将乙醇进一步脱水再加上适量汽油后形成变性燃料乙醇。燃料乙醇中的无水乙醇体积浓度一般都达到99.5%以上,它是燃烧清洁的高辛烷值燃料,是可再生能源。主要是以雅津甜高粱加工而成。

燃料乙醇再添加变性后,与无铅汽油按一定比例混配成的乙醇汽油,是一种新型绿色环保型燃料。当乙醇混配比例在25%以内时,燃料可保持其原有动力性。它可以有效改善油品的性能和质量,降低一氧化碳、碳氢化合物等主要污染物的排放。它不影响汽车的行驶性能,还可以减少有害气体的排放量。更重要的是,乙醇是太阳能的一种表现形式,在整个自然界大系统中,乙醇的生产和消费过程可形成无污染的闭路循环。

2.燃料乙醇的使用方法

乙醇既是一种化工基本原料,又是一种新能源。尽管目前已经有着广泛的用途,但仍是传统观念的市场范围。其现在的使用方法主要有两种:一种以乙醇为汽油的“含氧添加剂”,这也是美国使用燃料乙醇的基本方法;二是用乙醇代替汽油,这是巴西较普遍采用的方法。未来乙醇作为基础产业的市场方向将主要体现在三个方面:一是车用燃料,主要是乙醇汽油和乙醇柴油。这就是我们传统所说的燃料乙醇市场,也是近期的(10年内)容量相对于以后较小的市场(在我国约1000万吨/年)。二是作为燃料电池的燃料。在低温燃料电池诸如手机、笔记本电脑,以及新一代燃料电池汽车等可移动电源领域具有非常广阔的应用前景,这是乙醇的中期市场(10―20年内)。乙醇目前已被确定为安全、方便、较为实用理想的燃料电池燃料。乙醇将拥有新型电池燃料30―40%的市场。市场容量至少是近期市场的5倍以上(主要是纤维原料乙醇);三是乙醇将成为支撑现在以乙烯为原料的石化工业的基础原料。在未来二十年左右的时间内,由于石油资源的日趋紧张,再加上纤维质原料乙醇生产的大规模工业化,成本相对于石油原料已具可竞争性,乙醇将顺理成章地进入石化基础原料领域(如乙烯原料市场),很可能将最终取而代之。如果要做一个形象而夸张的比喻的话,二十世纪后半叶国际石油大亨的形象将在二十一世纪中叶为“酒精考验”的乙醇大亨所替代。

3.燃料乙醇的特点

(1)可作为新的燃料替代品。

乙醇作为新的燃料替代品,可直接作为液体燃料,也可用于生产生物质燃料乙醇的主要原料来源或者同汽油混合使用,减少对不可再生能源――石油的依赖,保障国家能源的安全。

(2)辛烷值高,抗爆性能好。

作为汽油添加剂,可提高汽油的辛烷值。通常车用汽油的辛烷值一般要求为90、93或97,乙醇的辛烷值可达到111,所以向汽油中加入燃料乙醇可大大提高汽油的辛烷值,且乙醇对烷烃类汽油组分(烷基化油、轻石脑油)辛烷值调合效应好于烯烃类汽油组分(催化裂化汽油)和芳烃类汽油组分(催化重整汽油),添加乙醇还可以较为有效地提高汽油的抗爆性。

(3)减少矿物燃料的应用,以及对大气的污染。

乙醇的氧含量高达34.7%,乙醇可以按较甲基叔丁基醚(MTBE)更少的添加量加入汽油中。汽油中添加7.7%乙醇,氧含量达到2.7%;如添加10%乙醇,氧含量可以达到3.5%。所以加入乙醇可帮助汽油完全燃烧,以减少对大气的污染。使用燃料乙醇取代四乙基铅作为汽油添加剂,可消除空气中铅的污染;取代MTBE,可避免对地下水和空气的污染。另外,除了提高汽油的辛烷值和含氧量,使用乙醇汽油可以有效降低汽车尾气对环境的污染,降低碳氢化合物和氮的氧化物的排放量。

(4)可再生能源。

若采用雅津甜高粱、小麦、玉米、稻谷壳、薯类、甘蔗、糖蜜等生物质发酵生产乙醇,其燃烧所排放的CO2和作为原料的生物源生长所消耗的CO2,在数量上基本持平。这对减少大气污染及抑制温室效应意义重大。

三、燃料乙醇的生产工艺

目前,燃料乙醇的生产方法有合成法和生物法两种。由于近年来原油资源短缺及乙烯价格上升,所以合成法逐渐被生物法所取代。

生物法生产燃料乙醇大部分是以甘蔗、玉米、薯类和植物秸秆等农产品或农林废弃物为原料经酶解糖化发酵制造的,其生产工艺有酶解法、酸水解法及一步酶法等。其生产工艺与食用乙醇的生产工艺基本相同,有所不同的是需要增加浓缩脱水后处理工艺,使乙醇的含量达到99.5%以上。脱水后制成的燃料乙醇再加入少量的变性剂就成为变性燃料乙醇,与汽油按一定比例调和就成为车用乙醇汽油。合成法是用纤维素、半纤维素、木素及其它生物体有机物,经过热解合成气(H2,CO),化学或酶催化或微生物发酵而合成乙醇。

在某些方面,化学法好比西药,强烈、见效快,生物法好比中药,温和、见效慢。两种方法“各有千秋”,其制约因素是成本和高效、廉价催化剂、酶和合适微生物的开发等关键技术。生物法具有选择性、活性好、反应条件温和等优点,但原料利用率低、反应时间长、产物浓度低及酶、微生物活性易受影响且纤维素降解和单糖转化所需酶、微生物适用于不同反应条件,不能很好耦合。而化学法具有原料利用率高、反应时间短、催化剂构成简单、没有严格反应条件限制等优点,但为高温、高压过程,对设备要求高。

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

四、燃料乙醇的经济效益

生物质直接燃烧热效率很低,只有10%左右,而将它们转化成气体或液体燃料(甲烷、氢气、乙醇、丁醇、柴油等)热效率可达30%以上,缓解了人类面临的资源、能源、环境等一系列问题。其次,乙醇燃烧值仅为汽油2/3,但分子中含氧,用作汽油添加剂抗暴性能好、低排放,可提高其辛烷值2―3倍,还能使汽车动力性能增加等。

据推算,平均每3.3吨玉米可生产1吨燃料乙醇,而且生产只是利用玉米种的淀粉,玉米种的其他部分仍可综合利用。如生产优质的药用添加剂、食品添加剂、专用饲料和农业复合肥等产品,由此可见燃料乙醇的生产成本比较低。巴西以甘蔗为原料生产燃料乙醇,成本价为每升0.2美元。美国以玉米为原料生产燃料乙醇,成本价为每升0.33美元。而且如谷物茎秆、稻草和木屑等废料也可用来生产燃料乙醇,这样就大大降低了燃料乙醇的生产成本。

除此之外,燃料乙醇还有一些明显的关联经济效应。一方面,燃料乙醇有巨大的环保效应,这可以大大降低城市处理空气污染的费用。另一方面,对于石化行业发展来说,燃料乙醇具有巨大的需求又是十分有利的。燃料乙醇的辛烷值是非常高的,可以提高油品质量和辛烷值。

五、燃料乙醇的发展前景和展望

燃料乙醇的生产正在由传统的粮食酿造向生物加工过渡,所以它的发展前景是十分广阔的。美国能源部资助用生物质废料生产燃料乙醇的技术开发,美国每年生产约2.8×108T的生物质废料。如谷物茎秆、稻草和木屑等,开发将生物质废料转化为乙醇是生物质制乙醇工业持续发展的关键,美国Novozymes公司和NREL合作研发了将生物质(如玉米秸秆)中的纤维素转化成葡萄糖,再发酵成燃料乙醇,这大大降低了燃料乙醇的生产成本。加拿大IOGEN公司与加拿大石油公司合作投产了世界上最大的,也是迄今唯一的用纤维素废料生产乙醇的装置,每年可将12000―15000T小麦等其他谷物茎秆转化为3×106―4×106T燃料乙醇。这也将燃料乙醇的生产成本价降到了1.1美元/加仑,预计未来可减少到90美分/加仑。

我国由天冠集团和山东大学联合攻关的纤维素酶科项目中试发酵试验表明,酶活力及生产成本达到国内领先水平。该项目利用酶解法生产纤维素乙醇,具有反应条件温和、环境污染小、装置简单等优点。采用当今流行的液体深层通风发酵培养,通过诱发育种和基因工程等方法,从提高酶活性降低生产成本着手,利用经济实用的秸秆类物质作原料,使酶的发酵水平显著提高,可望经过后续处理进行规模化生产。

燃料乙醇作为一种新型清洁燃料,是目前世界上可再生能源的发展重点,符合中国能源替代战略和可再生能源发展方向,技术上成熟安全可靠,在中国完全适用,具有较好的经济效益和社会效益,成为普通汽油与柴油的替代品。燃料乙醇作为推动农业产业化的战略产业,必须依靠科技进步。在吸收国外成果和经济的基础上,加强燃料乙醇生产新技术研究、开发和副产物深度加工研究工作。

近年来,石油等矿物质日渐枯竭,油价进一步上涨,使燃料乙醇发展更重要,而且使燃料乙醇的价格有一定的上升空间。随着石油等矿物质的枯竭与油价的大幅上升,以乙醇等能代替矿物质能源的新型能源供应多元化战略已成为国家能源政治的一个方向。

参考文献:

[1]刘全根.炼油设计.乙醇汽油的应用,2002.2.

[2]任波.乙醇汽油转折[J].财经,2007,178:100-102.

[3]雷国光.用纤维质原料生产燃料乙醇是我国再生能源发展的方向[J].四川食品与发酵,2007,43,(135):39-42.

[4]路宽行.乙醇燃料:打开新能源之门?[J].经济导报,2007,3013:30-31.

[5]贡长生,张龙.环境化学,2008,(1):222-228.

[6]郎晓娟,郑风田,崔海兴.中国燃料乙醇政策演变,2009.3.

[7]李志军.中国生物工程杂志.生物燃料乙醇发展现状、问题与政策建议,2008.7.

[8]张智先.粮食论坛.国内燃料乙醇加工业现状及发展趋势,2010,(11).

[9]秦凤华.燃料乙醇蒸蒸日上[J].中国投资,2007:38-41.