公务员期刊网 精选范文 农药在土壤中的降解途径范文

农药在土壤中的降解途径精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的农药在土壤中的降解途径主题范文,仅供参考,欢迎阅读并收藏。

农药在土壤中的降解途径

第1篇:农药在土壤中的降解途径范文

相对于大气环境和水环境而言,土壤环境的污染源更为复杂,作为有机农药、化肥的直接作用对象,并随着社会发展需求,使得土壤污染物的种类极为繁多。目前,全球生产和使用的农药已达1300多种,其中被广泛使用的达250多种。我国每年施用逾80万~100万t的化学农药,其中有机磷杀虫剂占40%,高毒农药达到37.44%,且有的化学性质稳定、在土壤中存留时间长[2-4]。大量的农药流失到土壤中,造成土壤环境受到严重污染,影响了农业的可持续发展。目前,土壤污染物可以分为传统污染物及新型污染物。

1.1传统污染物

传统污染物包括以下三类:一是传统化学污染物。其又可分为无机污染物和有机污染物两大类,其中传统无机污染物包括汞、镉、铅、砷、铬等,过量的氮和磷等植物营养元素以及氧化物和硫化物等。二是物理性污染物。指来自工厂、矿山的各种固体废弃物。三是生物性污染物。指带有各种病菌的城市垃圾和由卫生设施(包括医院、疗养院)排出的废水和废物以及农业废弃物、厩肥等。四是放射性污染物。主要存在于核原料开采、大气层核爆炸地区和核电站的运转,以锶和铯等在土壤环境中半衰期长的放射性元素为主。

1.2新型污染物

近年来,土壤新型污染物开始受到关注,这类污染物的特点是在土壤环境中的浓度一般较低。这些新型土壤污染物目前主要有四大类[6-7]:一是各种兽药和抗生素。随着动物饲养业和畜牧业的发展,畜禽养殖污染中一个重要的问题就是这些兽药通过动物的排泄以及其他方式导致土壤环境的污染。二是大部分溴化阻燃剂在土壤环境中有很高的持久性,能够通过食物链和其他途径累积在人体内,长期接触会妨碍人体大脑和骨骼的发育,并且可能致癌。三是“特富龙”不粘锅中使用的化学物质“全氟辛酸铵”以及芳香族磺酸类污染物对土壤的污染。四是含有过敏源的植物及花粉对土壤的污染,特别是这种花粉由于含有多种潜在的过敏源,能在夏天导致严重的干草热以及哮喘疾病,成为引起人们关注的一种新型土壤污染污物。

2.土壤环境因子对有机污染的影响

土壤中的微生物、温度、水分、气候、土壤机械组成、含水率、植物根际环境、pH值、二氧化碳浓度等因素对土壤中有机物的分解与转化有很大的影响。除了有机污染物本身的难降解性以及生物迁移性会对有机物降解速率和效果产生影响外,土壤环境因子也会对有机污染物的迁移转化造成一定的影响。

2.1土壤微生物

有机污染物在土壤中的降解分为非生物降解与生物降解两大类,在生物酶作用下,农药在动渣物体内或是微生物体内外的降解即生物降解。微生物降解是指利用微生物降解有机污染物的生物降解过程,降解微生物有细菌、真菌和藻类。虽然在厌氧和需氧条件下多氯化合物都可以降解。但是在厌氧条件下降解速率更快。但是在好气的旱田条件下,由于有机氯污染物被土壤吸附,生物活性降低,可以长期残留[8]。微生物降解是消除有机氯农药的最佳途径,通常药剂在土壤中的分解要比在蒸馏水中的分解快得多,将土壤灭菌处理后,药剂在大部分土壤中对有机污染物的分解速率明显受到抑制。

2.2土壤温度

土壤温度影响土壤微生物和酶活性及土壤中溶质的运移,还影响土壤反应的速度和土壤呼吸速率,最终影响土壤中有机污染物的降解转化。在一定温度范围内,温度升高会促进土壤有机污染物的分解,但随着温度的进一步升高,土壤有机污染物对温度的响应程度降低。Miko发现,在平均温度5℃时,温度每升高1℃将会引起全球范围内10%土壤有机污染物的丧失;而在平均温度为30℃时,温度每升高1℃将会使得有机污染物丧失3%[11]。

2.3土壤pH 值

土壤的pH值对有机污染物的吸附有很大的影响。一般来说,pH值越低,土壤对有机污染物的吸附能力越强。土壤酸碱性通过影响组分和污染物的电荷特性、沉淀溶解、吸附解吸和络合平衡来改变污染物的毒性,土壤酸碱性还通过土壤微生物的活性来改变污染物的毒性。

2.4土壤水分

土壤水分是土壤中水溶性成分的运输载体,也是土壤反应得以正常进行的介质。王彦辉认为森林土壤有机污染物的分解速率在很大程度上受控于环境条件,其中含水量起着决定性作用,最佳含水量为被分解物饱和含水量的70%~90%,极度干旱或水分过多都会限制土壤微生物的活动,明显降低土壤中有机污染物的分解速率[12]。在长期的淹水条件下厌氧微生物反复利用腐解发酵的有机物料,会导致较低的净残留碳的矿化[13]。这与淹水、嫌气条件下有机物料的分解速率慢于旱地、分解量低于旱地的传统概念不同。

2.5土壤机械组成

土壤质地的差异形成不同的土壤结构和通透性状.因而对环境污染物的截留、迁移、转化产生不同的效应。由于黏土类富含黏粒,土壤物理性吸附、化学吸附及离子交换作用强,具有较强的保肥、保水性能,同时也把进入土壤中的污染物质的有机、无机分子、离子吸附到土粒表面保存起来,增加了污染物转移的难度。

一般而言,黏性土壤中的空气较砂性土壤少,好气性微生物活性受到抑制,土壤黏粒具有保持碳的能力,其含量影响外源有机物(有机化合物、植物残体)及其转化产物的分解速率。随着土壤黏粒含量的增加,土壤有机碳和土壤微生物量碳也增加,土壤有机碳与黏粒含量呈正相关,随着土壤黏粒含量的增加,碳、氮矿化量减少,但矿化部分的碳氮比并不受土壤质地的影响。利于有机物的积累和富里酸的形成。

3.结语

土壤是生态环境的重要组成部分,是人类赖以生存的主要资源之一,也是物质生物地球化学循环的储存库,对环境变化具有高度的敏感性。土壤的环境因子存在着不稳定性,但是通过研究最适合土壤中有机污染物降解转化的环境,可改变受污染严重的土壤中有机污染物的含量,改善环境质量,实现可持续发展。

参考文献:

[1]郝亚琦,权.土壤污染现状及修复对策[J].水土保持研究,2007,14(3):248-251.

[2]权桂芝.土壤的农药污染及修复技术[J].天津农业科学,2007,13(1):35-38.

第2篇:农药在土壤中的降解途径范文

目前我国由于工业“三废”污染、农用化肥和农药的污染以及废弃塑料和农用地膜的污染,严重的影响了我国的生态环境,使得水污染日益加剧,水资源严重短缺,全国600多个城市中已有一半城市缺水,农村则有8000万人和6000万头牲畜饮水困难;土壤污染严重,耕地面积锐减,近10年来每年流失的土壤总量达50亿t,土地荒漠化日益加剧;森林覆盖面积下降,草场退化,每年减少森林面积达2500万亩;人们的身体健康受到严重威胁,疾病发病率急剧上升。因此,加大环境保护和环境治理力度,加快应用高新技术,如现代生物技术来控制环境污染和保持生态平衡,提高环境质量已成为环保工作者的工作重点。

2现代生物技术与环境保护

现代生物技术是以DNA分子技术为基础,包括微生物工程,细胞工程,酶工程,基因工程等一系列生物高新技术的总称。现代生物技术不仅在农作物改良、医药研究、食品工程方面发挥着重要作用,而且也随着日益突出的环境问题在治理污染、环境生物监测等方面发挥着重要的作用。自20世纪80年代以来生物技术作为一种高新技术,已普遍受到世界各国和民间研究机构的高度重视,发展十分迅猛。与传统方法比较,生物治理方法具有许多优点。

(1)生物技术处理垃圾废弃物是降解破坏污染物的分子结构,降解的产物以及副产物,大都是可以被生物重新利用的,有助于把人类活动产生的环境污染减轻到最小程度,这样既做到一劳永逸,不留下长期污染问题,同时也对垃圾废弃物进行了资源化利用。

(2)利用发酵工程技术处理污染物质,最终转化产物大都是无毒无害的稳定物质,如二氧化碳、水、氮气和甲烷气体等,常常是一步到位,避免污染物的多次转移而造成重复污染,因此生物技术是一种既安全又彻底消除污染的手段。

(3)生物技术是以酶促反应为基础的生物化学过程,而作为生物催化剂的酶是一种活性蛋白质,其反应过程是在常温常压和接近中性的条件下进行的,所以大多数生物治理技术可以就地实施,而且不影响其他作业的正常进行,与常常需要高温高压的化工过程比较,反应条件大大简化,具有设备简单、成本低廉、效果好、过程稳定、操作简便等优点。

所以,当今生物技术已广泛应用于环境监测、工业清洁生产、工业废弃物和城市生活垃圾的处理,有毒有害物质的无害化处理等各个方面。

3现代生物技术在环境保护中的应用

3.1污水的生物净化

污水中的有毒物质的成分十分复杂,包括各种酚类、氰化物、重金属、有机磷、有机汞、有机酸、醛、醇及蛋白质等等。微生物通过自身的生命活动可以解除污水的毒害作用,从而使污水中的有毒物质转化为有益的无毒物质,使污水得到净化。当今固定化酶和固定化细胞技术处理污水就是生物净化污水的方法之一。固定化酶和固定化细胞技术是酶工程技术。固定化酶又称水不溶性酶,是通过物理吸附法或化学键合法使水溶性酶和固态的不溶性载体相结合,将酶变成不溶于水但仍保留催化活性的衍生物,微生物细胞是一个天然的固定化酶反应器,用制备固定化酶的方法直接将微生物细胞固定,即是可催化一系列生化反应的固定化细胞。运用固定化酶和固定化细胞可以高效处理废水中的有机污染物、无机金属毒物等,此方面国内外成功的例子很多,如德国将能降解对硫磷等9种农药的酶,以共介结合法固定于多孔玻璃及硅珠上,制成酶柱,用于处理对硫磷废水,去除率达95%以上;近几年我国在应用固定化细胞技术降解合成洗涤剂中的表面活性剂直链烷基苯磺酸钠(LAS)方面取得较大进展,对于含100mg/L废水,降解率和酶活性保存率均在90%以上;利用固定化酵母细胞降解含酚废水也已实际应用于废水处理。

3.2污染土壤的生物修复

重金属污染是造成土壤污染的主要污染物。重金属污染的生物修复是利用生物(主要是微生物、植物)作用,削减、净化土壤中重金属或降低重金属的毒性。其原理是:通过生物作用(如酶促反应)改变重金属在土壤中的化学形态,使重金属固定或解毒,降低其在土壤环境中的移动性和生物可利用性,通过生物吸收、代谢达到对重金属的削减、净化与固定作用。污染土壤的生物修复过程可以增加土壤有机质的含量,激发微生物的活性,由此可以改善土壤的生态结构,这将有助于土壤的固定,遏制风蚀、水蚀等作用,防止水土流失。

3.3白色污染的消除

废弃塑料和农用地膜经久不化解,估计是形成环境污染的重要成分。据估计我国土壤、沟河中塑料垃圾有百万吨左右。塑料在土壤中残存会引起农作物减产,若再连续使用而不采取措施,十几年后不少耕地将颗粒无收,可见数量巨大的塑料垃圾严重影响着生态和环境,研究和开发生物可降解塑料已迫在眉睫。利用生物工程技术一方面可以广泛地分离筛选能够降解塑料和农膜的优势微生物、构建高效降解菌,另一方面可以分离克隆降解基因并将该基因导入某一土壤微生物(如:根瘤菌)中,使两者同时发挥各自的作用,将塑料和农膜迅速降解。同时,还需大力推行可降解塑料和地膜的研发、生产和应用。

有些微生物能产生与塑料类似的高分子化合物即聚酯,这些聚酯是微生物内源性贮藏物质,可以用发酵方法进行生产,由此形成的塑料和地膜因有可被生物降解、高熔点、高弹性、不含有毒物质等优点而在医学等许多领域有极好的应用前景。为了降低成本、提高产量,人们正在用重组DNA技术对相关的微生物进行改造,此方面目前一个研究热点是采用微生物发酵法生产聚-β羟基烷酸(PHAs),研究人员正设法构建出自溶性PHAs生产菌种,即将PHAs重组菌进行发酵,在积累大量的PHAs后,加入信号物质,使裂解蛋白产生,细胞壁破坏,PHAs析出,以简化胞内产物PHAs的提取过程,降低提取成本。

3.4化学农药污染的消除

一般情况下,使用的化学杀虫剂约80%会残留在土壤中,特别是氯代烃类农药是最难分解的,经生态系统造成滞留毒害作用。因此多年来人们一直在寻找更为安全有效的办法,而利用微生物降解农药已成为消除农药对环境污染的一个重要方面。能降解农药的微生物,有的是通过矿化作用将农药逐渐分解成终产物CO2和H2O,这种降解途径彻底,一般不会带来副作用;有的是通过共代谢作用,将农药转化为可代谢的中间产物,从而从环境中消除残留农药,这种途径的降解结果比较复杂,有正面效应也有负面效应。为了避免负面效应,就需要用基因工程的方法对已知有降解农药作用的微生物进行改造,改变其生化反应途径,以希望获得最佳的降解、除毒效果。要想彻底消除化学农药的污染,最好全面推广生物农药。

所谓生物农药是指由生物体产生的具有防止病虫害和除杂草等功能的一大类物质总称,它们多是生物体的代谢产物,主要包括微生物杀虫剂、农用抗生素制剂和微生物除草剂等。其中微生物杀虫剂得到了最广泛的研究,主要包括病毒杀虫剂、细菌杀虫剂、真菌杀虫剂、放线菌杀虫剂等。长期以来并没有得到广泛的使用。现在人们正在利用重组DNA技术克服其缺点来提高杀虫效果,例如目前病毒杀虫剂的一个研究热点是杆状病毒基因工程的改造,人们正在研究将外源毒蛋白基因如编码神经毒素的基因克隆到杆状病毒中以增强杆状病毒的毒性;将能干扰害虫正常生活周期的基因如编码保幼激素酯酶的基因插入到杆状病毒基因组中,形成重组杆状病毒并使其表达出相关激素,以破坏害虫的激素平衡,干扰其正常的代谢和发育从而达到杀死害虫的目的。

参考文献

1孔繁翔.环境生物学[M].北京:高等教育出版社,2000

2陈坚.环境生物技术[J],生物工程进展,2001(5)

3姜成林,徐丽华.微生物资源的开发与利用[M].北京:中国轻工业出版社,2001

第3篇:农药在土壤中的降解途径范文

关键词 有机磷农药;微生物降解;研究进展

中图分类号 S481+.8 文献标识码 A 文章编号 1007-5739(2015)14-0139-01

有机磷农药是农药重要品种之一,是高毒性农药,属于有机磷酯类化合物,其在防治农业虫害中,具有广谱、经济、方便、高效等优点,在20世纪80年代前一直是国内外广泛生产和应用的最主要的农药品种。随着农林业的快速发展,有机农药的大量使用带来了许多负面效应。它结构稳定,难以被体内酶分解,通过富集和食物链,会加剧浓度集合扩散,污染生态环境和农产品,造成粮食、果蔬、水果等有机磷农药残留严重超标,危害非靶生物,严重威胁人类健康[1-2]。为了维护自然生态平衡,保证农业和生态环境的可持续发展,如何安全、有效地降低和消除环境中的有机磷农药势在必行。有机磷农药的降解方式主要有光化学降解、化学降解和生物降解。生物降解主要是微生物降解,微生物降解与其他方式相比,具有快速、无残留、无毒、有效、无二次污染、成本低、生态恢复性好、代谢繁殖快,净化处理效果显著等优点,显示出较好的应用前景。

1 降解有机磷农药的微生物种类

截至目前,包括细菌、真菌和藻类多种微生物在内的多种降解高效菌已被分离,其中,对细菌的研究较为深入。不同种类有机磷农药其降解微生物种类不同,具体如下:①马拉硫磷。木霉属、曲霉属、假单胞菌属、节细胞菌属、黄杆菌属、极瘤细菌属。②甲胺磷。青霉属、木霉属、曲霉属、酵母属、黑曲霉、假单胞菌属、芽孢杆菌属、蜡样芽孢杆菌属、嗜中温假单胞菌属。③敌百虫:青霉属。④甲拌磷。小球绿藻属、假单胞菌属、硫杆菌属。⑤敌敌畏。木霉属、假单胞菌属。⑥苯硫磷。芽孢杆菌属。⑦地虫磷。青霉属、根霉属[3]。⑧乐果。曲霉属、假单胞菌属、不动菌属、类产碱单胞菌属。⑨对硫磷。小球绿藻属、青霉属、木霉属、曲霉属、假单胞菌属、芽孢杆菌属、固氮极毛杆菌属、短杆菌属、黄单胞杆菌属 、极瘤细菌属。⑩甲基对硫磷。假单胞菌属、芽孢杆菌属、黄杆菌属、短杆菌属。

2 有机磷农药微生物降解酶的种类及其特性

微生物对有机磷农药的降解通常依靠水解酶类、氧化还原酶类、裂解酶类和转移酶类的酶促反应进行。有机磷农药微生物降解酶的种类、特性及其主要作用位点如下:①作用位点。主要包括苯环、-NO2、P-O-烷基、烷基、P-O-芳基、-C-P、C-P、O= P-NH2。②酶的种类。主要包括氧化酶、还原酶、水解酶、氧化酶、水解酶、磷酸变位酶、裂解酶、水解酶。③酶的催化作用。主要包括羟基化(苯环开环)、将硝基还原成氨基、亲核进攻脱烷氧基、甲氧基、乙氧基等、对硫磷降解途径、分子内重排产生磷酸酯和磷酸烯醇式丙酮酸、碳-碳键断裂有机磷矿化的必经途径、甲胺磷水解的主要途径[4-5]。

3 新技术在有机磷农药微生物降解中的应用

目前,基因工程及分子生物学的迅猛发展带动了各种生物学技术的涌现,传统有机磷农药降解研究中的障碍得以克服,从而开辟了新的途径。这些技术包括固定化微生物技术(固定化细胞、固定化酶)、基因工程技术(构建高效降解菌、DNA改组提高酶活性)、多菌株复合系的构建、微生物表面展示技术等。

4 微生物降解有机磷农药的未来发展趋势展望

目前,虽然在有机磷农药微生物降解研究方面已经取得了一定的成就,但仍然有很多问题亟需解决,未来微生物降解有机磷农药的研究重点主要包括以下几个方面:一是建立高效降解菌的种子库,以利于筛选高效有机磷降解菌,提高其降解能力;二是采取基因诱导变异的方法,开发降解酶制剂产品,同时通过克隆与表达降解酶基因,提高其降解能力;三是对有机磷农药微生物降解机理、生物降解代谢途径、中间产物的类型、毒性和积累机理等进行深入研究[6-7]。随着多学科先进技术的综合运用,将推动微生物在有机磷农药降解方面的潜力得到更充分的体现,成本低、无污染、效率高的微生物有机磷农药降解菌的发展前景将更加广阔[8-9]。

5 参考文献

[1] 金潇,颜冬云,秦文秀.有机磷农药的微生物降解技术[J].湖南农业科学,2011(9):93-97.

[2] 王燕,刘建峰,刘振华,等.环境中有机磷农药微生物降解技术的研究进展[J].安徽江农业科学,2013,41(16):7163-7164.

[3] 杨柳,陈少华,赵川,等.新技术在农药微生物降解中的应用[J].生物技术通报,2010(3):81-83.

[4] 吴翔,甘炳成.微生物降解有机磷农药的研究新进展[J].湖南农业科学,2010(19):71-73.

[5] 王永杰,李顺鹏.有机磷农药广谱活性降解菌的分离及其生理特性研究[J].南京农业大学学报,1999(2):42-45.

[6] 石成春,郭养浩,刘用凯.环境微生物降解有机磷农药研究进展[J].上海环境科学,2003(12):863-867.

[7] 柏文琴,何凤琴,邱星辉.有机磷农药生物降解研究进展[J].应用与环境生物学报,2004(5):675-680.

第4篇:农药在土壤中的降解途径范文

关键词:土壤污染;农药残留;积累毒害;治理

中图分类号:X53

文献标识码: A

文章编号:1005-569X(2009)06-0034-02

1 引 言

我国是一个农业大国,土壤生态环境的优劣直接关系到国家财富的组成。目前世界范围内农药对土壤污染严重,不仅影响植物的生长发育,而且可通过食物链影响人体健康,成为农产品和食品安全的一大问题,影响农业可持续发展。江苏省海门市拥有101万人口,人均耕地不到1亩,走高效农业之路,必须以优良的土壤环境为基本保障。因此,探讨土壤中农药污染治理问题具有十分重要的现实意义。

2 农药的基本分类

农药,是指用于预防、消灭或者控制危害农业、林业的病、虫、草和其他有害生物以及有目的地调节植物、昆虫生长的化学合成物或者来源于生物、其他天然物质的物质及其制剂。迄今为止,世界各国所注册的1500 多种农药中,常用的有300多种,按农药化学结构可分为有机磷、氨基甲酸酯、拟除虫菊酯、有机氮化合物、有机硫化合物、醚类、杂环类和有机金属化合物等; 按其主要用途可分为杀虫剂(如溴氰菊醋、甲胺磷)、杀蜗剂(如杀螨特)、杀鼠剂(如磷化锌)、杀软体动物剂、杀菌剂(如波尔多液)、杀线虫剂、除草剂(如除草醚)、植物生长调节剂(如助壮素)等;按农药来源可分为矿物源农药(无机化合物)、生物源农药(天然有机物、抗生素、微生物)及化学合成农药,而生物源农药又可细分为动物源农药、植物源农药和微生物源农药3类。

3 农药在土壤中的残留及其毒害

3.1 影响农药在土壤中残留的因素

(1)农药本身的化学性质。如挥发性、溶解度、化学稳定性、剂型等。而且挥发的速度与农药的浓度、大气的相对湿度、土壤表面上方空气的运动速度及土壤中的温度等因素有关,一般是浓度愈大,湿度大,含水量高,风速大则挥发作用愈强。

(2)土壤性质。农药在质地粘重和有机质含量高的土壤中存留时间较长。

(3)农药在土壤中的残留量。进入土壤中的化学农药,易受各种化学、物理和生物的作用,并以多种途径进行反应或降解,只是不同类型的农药其降解速度和难易程度不同而已。

3.2化学农药在土壤中的残留积累毒害

农药一旦进入土壤生态系统,残留是不可避免的,尽管残留的时间有长有短,数量有大有小,但有残留并不等于有残毒,只有当土壤中的农药残留积累到一定程度,与土壤的自净效应产生脱节、失调,危及农业环境生物,包括农药的靶生物与非靶环境生物的安全,间接危害人畜健康,才称其具有残留积累毒害。一般说来,土壤化学农药的残留积累毒害主要表现在2方面:

(1)残留农药的转移产生的危害。残留农药的转移主要与食物有关,主要有3条路线: 第1条: 土壤陆生植物食草动物; 第2条: 土壤土壤中无脊椎动物脊椎动物食肉动物; 第3条: 土壤水系(浮游生物)鱼和水生生物食鱼动物。一般来说,水溶性农药易构成对水生环境中自、异养型生物的污染危害。脂溶性或内吸传导型农药,易蓄积在当季作物体内甚至对后季作物的二次药害和再污染,引起陆生环境中自、异养型生物及食物链高位次生物的慢性危害。积累于动物体内的农药还会转移至蛋和奶中,由此造成各种禽兽产品的污染。人类以动植物的一定部位为食,由于动植物体受污染,必然引起食物的污染。可见,由于残留农药的转移及生物浓缩的作用,才使得农药污染问题变得更为严重。

(2)残留农药对靶生物的直接毒害。农药残存在土壤中,对土壤中的微生物,原生动物以及其它的节肢动物、环节动物、软体动物的等均产生不同程度的影响。还有试验证明农药污染对土壤动物的新陈代谢以及卵的数量和孵化能力均有影响。另外,土壤中残留农药对植物的生长发育也有显著的影响。农药进入植物体后,可能引起植物生理学变化,导致植物对寄主或捕食者的攻击更加敏感,如使用除草剂已经增加了玉米的病虫害。农药还可以抑制或者促进农作物或其它植物的生长,提早或推迟成熟期。

4 采取综合性防治措施

为达到既高效又经济地把农药对土壤的污染降低到最低范围,目前已有诸多综合性防治措施:

4.1 选育良种,加强病虫害的预报、防治

(1)选用优良品种。利用植物的抗虫性,选育丰产、抗虫并具备其他性状的良种是害虫防治的较为经济简单的方法。

(2)破坏害虫的生存条件。首先,利用植物密度影响田间温湿度、通风透光等小气候条件,影响作物的生育期,从而影响害虫的生活条件。适时排灌也是迅速改变害虫生活环境,抑制其生长有效措施。其次,进行土壤翻耕对某些害虫特别是生活在土面或土中的害虫迅速改变其生活环境,或将害虫埋入深土,或将土内害虫翻至地面,使其暴露在不良的气候条件下或受天敌侵害或直接杀死害虫。最后,通过对害虫生活习性的研究,做好预报、预测,以便及时防治,做到治早、治小。

4.2化学防治

化学防治防治效果稳定、见效快。当害虫猖獗时必须用化学防治才能解决问题,或者为了保证生物防治的有效应用必须先用化学防治方法。不过,由于一方面诸多农药具有严重的污染,另一方面易产生抗药性,因此需不断培养抗病虫害的新品种。目前一种来源于糖脂的杀虫剂即将问世。糖脂作为环保的杀虫剂,几乎所有的螨类和体表柔的昆虫如粉虱、蚜虫、木虱等接触到这种脂类后会立即致死,然后降解为无害的糖类与脂肪酸,这些脂类对捕食性益虫基本无害,对动物和人无毒,有些甚至达到食品安全标准。

4.3生物防治

生物防治具有不污染环境、专一性强、对人畜无害、对植物安全等优点。生物防治害虫是指用寄生真菌、细菌和病毒,或某些生物体的代谢物或同类异性个体分泌的引诱激素等进行防治的方法。主要方法有昆虫天敌法、微生物防治法和害虫不孕化法。

5 结 语

总之,农药这一特殊用途化学物质问世以来,在直接参与土壤生态环境生命过程中,它为人类治理病虫害,促进农作物的生长,提高农作物的抗劣性能,改善和提高农作物的品发挥了积极的作用,而其对环境的污染作用同样不可小觑。保护土壤生态环境,大力提倡使用绿色农药,是新世纪的需要,期待肥沃的土壤生态环境污染在极限以下生长出安全食物也是人们的迫切希望。

参考文献:

[1] 王敬国. 农用化学物质的利用与污染控制[M]. 北京:北京出版社,2001.

第5篇:农药在土壤中的降解途径范文

【关键词】农药;污染;环境保护;对策

我国农作物主要病虫害达1500多种[1],农田杂草超过580种[2],农药作为重要的生产资料每年可挽回粮食产量约7%的损失。与此同时,由于我国长期、大量生产和使用高毒农药,对生态环境已经产生了严重危害,因此,加强农药环境管理,控制农药污染已成为当前环境保护的一项十分迫切的任务[3]。

1.农药对环境的影响

1.1对土壤的污染

土壤是农药的主要集散地,施入农田的农药约有80%以上残留在0-20cm的土壤表层[4-5]。我国每年农药使用量巨大,因此土壤受农药污染的程度比较严重。由于土壤胶粒和腐殖质的吸附作用,降低了农药在土壤中的迁移、挥发、扩散能力,延长了农药在土壤中的残留时间,不但造成土壤生态系统功能失调,减少土壤中微生物、原生动物等的种群、数量,还改变了土壤pH、EH、CEC,使土壤孔隙度发生变化,造成土壤酸化、板结,最终导致土壤结构和功能发生改变。

1.2对水体的污染

向水体直接施用农药,农药生产废水排放、农药包装和施药器材随意清洗已经成为我国农村水污染的主要来源。环境中的农药随着降雨、径流以及灌溉水等途径不断扩散、迁移,使我国大部分水体受到不同程度的污染。2013年王未等对长江、珠江、黄淮海、松辽4大流域水体进行了污染分析,结果表明,农药水污染区域分布与农作物种植分布紧密相关,种类和浓度受到季节、当地水文特征、气候影响较大[6]。农药对河流、湖泊、河口区域底泥污染也比较严重,由于底泥的吸附作用大,其农药含量明显高于表层水中的含量。水体和底泥中的农药及代谢物破坏水生态系统平衡,对水中生物的繁殖和生长产生毒害作用,并通过食物链逐级富集,使处于食物链高端的生物受到更大威胁。

1.3对大气的污染

大气中的农药污染主要来源于生产企业排放的废气,农药喷洒过程中散发的细雾,施药后的植物、土壤、废弃包装挥发的残留农药。空气中农药的浓度与地理位置和气候条件有关,农药厂、施药区域浓度最高,随着空气的流动,农药不断扩散,虽然浓度有所稀释,但是污染范围也随之扩大。农药在空气中的扩散速度和浓度还与施药对象对农药的吸附程度、农药剂型和性质等有关,易挥发性农药污染比较严重;化学性质稳定,脂溶性强的农药在大气中的污染持续时间长,危害性大。

2. 造成我国农药污染的主要原因

2.1产品结构不合理

农业发达国家在农药产品结构上以高效、高选择、低毒、低残留农药为主要,而我国仍然以高毒产品为主,而且品种老化、剂型单一、品质无保障。目前,我国的主要农药剂型仍然以高污染的乳油、粉剂、可湿性粉剂为主,其中50%左右为乳油。在剂型加工过程中,往往从降低成本角度考虑,选择成本低、毒性大的有机物作为溶剂或助剂,致使大量难降解的有机污染物进环境。

2.2农药生产企业污染治理效果差

我国农药生产企业点多面广,企业规模普遍偏小,生产设备落后,环保投入低,“三废”治理效果差。农药生产企业环保责任意识淡漠,偷排、偷放、超标排污、污染治理设施不健全或擅自停运等现象严重,极易造成周边环境污染事故,甚至危害群众身体健康。

2.3施药技术落后

我国大多数农民文化水平不高,缺乏环保意识,施药方式仍停留在粗劣称量简单配置水平,施药过程中超量、超范围、超次数、甚至滥用高毒、剧毒农药现象相当普遍。而且,施药设备落后,“跑、冒、滴、漏”现象严重。与发达国家相比,我国单位面积施药量平均高出2-3倍,某些地区年用药次数多达30余次,用药量高达300kg/hm2 [7]。

2.4管理体系不健全

我国没有出台国家级的农药管理法律,农药管理主要依据《农药登记规定》、《农药管理条例》等行政法规,缺乏权威性。农药管理力量薄弱,执法体系不健全,农业、环保、工商等职能部门责权不清,缺乏沟通与配合,难以形成统一的监管和执法合力。

3.治理对策

3.1建立有效农药环境污染监管体系

完善农药环境污染防治法律体系,出台符合我国国情的“农药管理法”,从法律层面上给农药管理以有力支撑。改革农药污染监管机制,在明确各职能部门责任和权力的基础上,建立农药污染监管机制,细化法律责任,建立农药污染生态损害赔偿和责任追究制度,制定高毒农药限管制度,明确非法生产、销售、使用高毒、禁用农药处罚标准和承担的法律责任。

3.2加强农药生产的环境监管

农药厂严格执行排污申报和排污许可证制度,主要污染物和特征污染物必须达标排放,符合总量控制要求。加强农药厂及周围环境监测,加大污染防治监管力度,对不符合排放标准的设施要坚决予以治理或取缔。推行清洁生产,淘汰落后产能,关停高毒、高污染生产线。推行农药厂信息公开制度,接受公众监督。

3.3加强农药销售和使用管理

规范农药市场准入审查,推行高毒农药定点经营管理,鼓励销售、使用高效、低毒、低污染、低残留农药。建立农药质量监管体系,对销售或使用高毒、假冒伪劣农药的违法行为,依法从严查处。制定农药使用管理标准,加强农产品农药残留监督性监测,减少用药量和施药次数。改进施药技术,建立有效的农药废物回收制度,降低进入环境的农药数量。

3.4研究开发新型农药

尽快调整农药产业发展方向,加快研究开发新型生物农药产品,鼓励大型企业研发新农药、研究新剂型,推广使用生物农药,保障我国农业产业健康持续发展。

参考文献

[1]杨曙辉,宋天庆.关于我国化学农药使用相关问题的理性思考[J].农业科技管理,2007(1):43-47.

[2]梁巧玲,马德英.农田杂草综合防治研究进展[J].杂草科学,2007(1):17-18.

[3]国家环境保护总局.我国农药污染现状、存在问题及建议[J].环境保护,2001(2).23-24.

[4]侯洪刚.关于土壤中农药污染残留及降解途径研究[J].现代农业,2012(5):51-52.

[5]田兴云,冯德华.减少农药污染保护生态环境[J].农村经济与科技,2011(6): 245-246.

[6]王末,黄从建,张满成,周庆,李爱民.我国区域性水体农药污染现状研究[J].环境保护科学,2013(5):5-9.

[7]谭亚军,李少南,孙利.农药对水生态环境的影响[J].农药,2003(2):12-16.

作者简介

第6篇:农药在土壤中的降解途径范文

关键词:重金属;蔬菜; 农药 ;污染

中图分类号: R155.5+4 文献标识码:A

1 前期试验

1.1前期在伊春市南岔区种植大田农作物叶菜类—白菜一亩,瓜果类—黄瓜一亩,根茎类—萝卜、土豆--各一亩。另外在哈尔滨市道里区新发乡进行了小面积的三类蔬菜试验种植。

1.2试剂:含硒化合物,腐殖酸。由东北农业大学腐殖酸课题组提供。

1.3试验方法:(1)每瓶100ml兑水50公斤搅拌均匀后使用。(2)叶类蔬菜生长旺期使用,每隔7天喷雾一次,连喷三次,喷后2小时遇雨应补喷,不得漏喷。(3)根茎类蔬菜果实膨大期使用,每隔5天喷雾一次,连喷三次,喷后2小时遇雨应补喷,不得漏喷。(4)瓜果类,瓜类豆类作物等分期采收,座果结荚期开始,每10天喷雾一次,自采收结束,喷后2小时遇雨应补喷,不得漏喷。

所检2个地区三类蔬菜样品的砷含量在0.145-0.190 mg/kg、汞含量在0.0039-0.0300mg/kg、镉含量在0.044-0.350mg/kg;铅元素在0.047-0.810mg/kg。

2 施用硒肥后样品中重金属含量测定

2.1无机砷测定:准确称取试样2.5g加盐酸定容,置于60℃恒温水浴充分振摇18个小时浸提,经过滤、还原、定容、待测定。

2.2总汞测定:准确称取试样0.5g于消解罐中加硝酸、过氧化氢,用微波消解法消解,转移定容、待测定。

2.3铅测定:准确称取试样5g,炭化、灰化,采用干法灰化法处理,转移定容、待测定。

2.4镉测定:准确称取试样0.5g于消解罐中加硝酸、过氧化氢,用微波消解法消解,转移定容、待测定。

2.5施用硒肥后对样品重金属含量前处理方法的选择

蔬菜样品的前处理对保证检测结果的准确性起着十分关键的作用,目前用于蔬菜样品前处理的方法主要有常规消解、压力消解、微波消解、干法灰化、过硫酸铵灰化等。根据大量的实验对比,我们在测定汞、镉元素含量时,有针对性地采用了微波消解法,充分利用其高压和密闭特点,用硝酸直接分解样品,用微波辅助加热,消解完全、快速,对环境影响小;我们在测定铅元素含量时根据样品中铅限量标准和方法的灵敏度有针对性地增大样品量并选用简单实效的干化灰化法。

2.6施用硒肥后对样品检测结果的分析

所检2个地区三类蔬菜样品的砷含量在0.045-0.110 mg/kg、汞含量在0.0009-0.0100mg/kg、镉含量在0.004-0.150mg/kg均不超国家标准;铅元素在0.007-0.410mg/kg。蔬菜中含有的这些重金属元素主要来自于土壤中的自然本底。砷汞铅镉对蔬菜的污染主要是以含此类元素的肥料、农药、废水灌溉农田造成的。随着环境污染的日益恶化,土壤中的砷汞铅镉的自然本底值升高,蔬菜中的此类元素含量必定升高,所以控制这些区域的环境污染成为日益紧迫的事情。

3 农药残留。农药残留监测体系的建立,对农药残留的监测手段和检测水平提出了更高要求,并促进了农药残留快速检测方法的研究和应用进展,使农药残留检测技术朝着更加快速方便、灵敏可靠的方向发展。蔬菜中残留农药在人体内长期蓄积滞留会引发慢性中毒,比急性中毒更为可怕。这种中毒的途径,主要是通过生物浓缩,蔬菜残留两个方面对人体健康带来威胁,以致诱发许多慢性疾病。如心脑血管病,糖尿病、肝病、癌症等。更让人难以始料和防范的是:农药在人体内的蓄积,还会通过怀孕和哺乳传给下一代,殃及子孙后代的健康。为了防止农药残留的危害,通常应注意以下各点:(1)尽量到有卫生监督的正规市场买果蔬,产品包装上有“质量安全”、“无公害产品”、“绿色食品”、“有机食品”4种标志之一的,相对而言,更加安全可靠。(2)按季节购买果蔬,反季节的常大量施化肥、农药催熟及违反安全间隔期的规定上市。(3)农药残留量跟果蔬品种有关,一般叶茎类、瓜果、豆类农药残留较多,根茎类较少。(4)尽可能了解果蔬产地,避免购买污染严重地区及公路两旁种植的果蔬。(5)果蔬要先冲洗后浸泡,即把果蔬表面彻底清洗后再入清水浸泡10分钟,但别浸泡时间过长,以免表面农药进入水后返回果蔬内部。(6)切口易受残留农药污染,所以蔬菜不要先切后泡;浸泡后的果蔬用水冲洗几次再切。

结语

如果大气和水体受到污染,切断污染源之后通过稀释作用和自净化作用也有可能使污染问题不断逆转,但是积累在污染土壤中的难降解污染物则很难靠稀释作用和自净化作用来消除。土壤污染一旦发生,仅仅依靠切断污染源的方法则往往很难恢复,有时要靠换土、淋洗土壤等方法才能解决问题,其他治理技术可能见效较慢。因此,治理污染土壤通常成本较高、治理周期较长。

目前在蔬菜生产中使用的农药主要有以下三种:一是有机磷农药。它是一种神经毒物,主要抑制体内的胆碱酯酶,使在神经连接点到实现神经传递作用而产生的乙酰胆碱,不能水解成无毒的乙酸胆碱,从而造成乙酰胆碱在体内大量积聚而引起乙酰胆碱中毒,会引起神经功能紊乱、震颤、精神错乱、语言失常等症状。二是拟除虫菊酯类农药。拟除虫菊酯类农药毒性中等,但有蓄积性,中毒表现症状为神经系统症状和皮肤刺激症状。三是六六六、滴滴涕等有机氯农药。有机氯农药随食物等途径进入人体后,主要蓄积于脂肪组织中,其次为肝、肾、脾、脑中,还发现于人乳中。母体中的有机氯农药不仅可以从乳汁中排出,而且可以通过胎盘进入胎儿体内,引起下一生病变。李佳圆等研究表明,有机氯农药残留物可能增加妇女,尤其是绝经前妇女患乳腺癌的风险。另外,有机氯农药超过一定限度后会导致一些慢性疾病,如肌肉麻木、咳嗽等,甚至会透发血管疾病、糖尿病和癌症等。

参考文献

第7篇:农药在土壤中的降解途径范文

关键词:生物技术;农业;应用;前景

中图分类号:DF413文献标识码: A 文章编号:

前言

随着世界人口的增长,农业将经历具有重大意义的革新。毫无疑问,生物技术作为科学和技术在这场变革中将起到关键性的作用。原则上讲,生物技术本身有能力帮助人们提高农业生产力和保护环境,但在实践中,生物技术作为环境保护的人其作用相对来说是微乎其微的。

一、发展农业生物技术的意义

农业生物技术是高新技术研究的重要领域之一,它是整个生物技术及其产业发展的基础,也是生物技术中应用最广、最直接,最具现实意义的领域。生物技术产业是知识密集型产业,它具有投资少、产量高、回报率高等特点;它可以利用自然界的再生能源,实现可持续发展。它的发展对于解决经济和社会发展中所面临的人口、资源、环境等问题具有重大作用。大力发展农业生物技术及其产业,对于改变农业生产现状,大幅度提高农产品的产量和质量,加快高产、优质、高效、可持续农业的发展,提高农业资源利用率,减少环境污染,保护良性生态平衡都具有重要意义。

二、现代生物技术在农业生产中的应用

1良种选育与品质改良

在品质改良上采取的主要方法仍然是杂交育种,但杂交育种周期长,效率低,经多次回交转育很难在短时期内选出优质又高产的新品种。随着生物技术的不断完善,尤其是分子生物学和基因组研究的迅速发展,为品质改良开辟了一条崭新的途径。Calgene公司的科学家分离到一种控制植物纤维素形成的酶的基因,将其转入特定的树种,可培育出纤维素含量高的对造纸业更有利的植物。

2提高植物的抗性

(1)抗虫

全世界粮食产量因虫害所造成的损失占14%左右。长期以来,人们普遍采用化学杀虫剂来控制害虫,全世界每年用于化学杀虫剂的总金额在200亿美元以上。但化学杀虫剂的长期使用造成农药的残留、害虫的耐受性、环境污染等严重的问题,而利用基因工程的手段培育抗虫植物新品种,除可以克服以上缺点外,还具有成本低、特异性强等优点,目前人们已获得多种抗虫基因,其中有蛋白酶抑制剂基因、淀粉酶抑制剂基因、植物凝集素基因、昆虫特异性神经毒素基因、几丁质酶基因等,它们已被导入烟草、棉花、油菜、水稻、玉米、马铃薯等多种农作物,在抗虫方面起到了良好的效果,并得到了广泛的应用,有的已进入了商品化生产。

(2)抗除草剂

目前全世界约有除草剂2000 多个品种,在农药市场上占有最大的份额。然而除草剂的使用有着自身难以克服的局限性,如很多除草剂无法区别庄稼和杂草,有些除草剂必须在野草长起来以前就施用,而且由于抗性草类群落的出现,导致药剂使用量增大,对环境的危害也日益严重。培育抗除草剂的转基因作物是克服这些缺点的理想途径。

(3)抗重金属

由于人类活动、矿山的开采,工业化进程的加速,空气、土壤、水体面临着越来越严重的重金污染,严重影响作物的产量和品质,而且通过食物链危害人类的健康。土壤中的重金属主要有Cd、Cr、Cu、Hg、Ni、Pb、Zn、As等。20世纪80年代,提出植物修复、超富集植物。通过基因工程技术改良植物对重金属的抗性,增加或减少重金属在植物体内的累积量,被认为是进行污染土壤的生态恢复以及减少食物链重金属污染的一条切实可行的有效途径。

3生物防治的应用

微生物农药具有对人畜安全、不破坏生态平衡、害虫不易产生抗性等优点,但也存在着药效速度慢、专一性强、受自然条件影响大的缺点。而利用基因工程改造微生物菌种,创造出自然界不存在的新型菌种就可以克服这些缺点。

生物技术就是利用一种生物对付另外一种生物的方法。它是降低杂草和害虫等有害生物种群密度的一种方法。它利用了生物物种间的相互关系,以一种或一类生物抑制另一种或另一类生物。它的最大优点是不污染环境,是化学农药等非生物防治病虫害方法所不能比的。生物防治,大致可以分为以虫治虫、以鸟治虫和以菌治虫3大类。

4生物技术与环境保护

目前我国农用化肥和农药的污染以及废弃塑料和农用地膜的污染,严重的影响了我国的生态环境,使得水污染日益加剧,全国600多个城市中已有一半城市缺水,农村则有8000万人和6000万头牲畜饮水困难;土壤污染严重,耕地面积锐减,近10a来每年流失的土壤总量达50亿t,土地荒漠化日益加剧;森林覆盖面积下降,草场退化;人们的身体健康受到严重威胁,疾病发病率急剧上升。因此,提高环境质量已成为环保工作者的工作重点。

(1)污水的生物净化

污水中的有毒物质的成分十分复杂,包括各种酚类、氰化物、重金属、有机磷、有机汞、有机酸、醛、醇及蛋白质等等。微生物通过自身的生命活动可以解除污水的毒害作用,从而使污水中的有毒物质转化为有益的无毒物质,使污水得到净化。当今固定化酶和固定化细胞技术处理污水就是生物净化污水的方法之一。固定化酶和固定化细胞技术就是酶工程技术,如德国将能降解对硫磷等9种农药的酶,以共介结合法固定于多孔玻璃及硅珠上,制成酶柱,用于处理对硫磷废水,去除率达95%以上;近几年我国在应用固定化细胞技术降解合成洗涤剂中的表面活性剂直链烷基苯磺酸钠(LAS)方面取得较大进展,对于含100mg/L废水,降解率和酶活性保存率均在90%以上;利用固定化酵母细胞降解含酚废水也已实际应用于废水处理。

(2)重金属的生物防治

重金属是造成土壤污染的主要污染物。重金属污染的生物修复是利用生物(主要是微生物、植物)作用,削减、净化土壤中重金属或降低重金属的毒性。其原理是:通过生物作用(如酶促反应)改变重金属在土壤中的化学形态,使重金属固定或解毒,降低其在土壤环境中的移动性和生物可利用性,通过生物吸收、代谢达到对重金属的削减、净化与固定作用。污染土壤的生物修复过程可以增加土壤有机质的含量,激发微生物的活性,由此可以改善土壤的生态结构,这将有助于土壤的固定,遏制风蚀、水蚀等作用,防止水土流失。

(3)化学农药污染的消除

一般情况下,使用的化学杀虫剂约80%会残留在土壤中,特别是氯代烃类农药是最难分解的,经生态系统造成滞留毒害作用。所谓生物农药是指由生物体产生的具有防治病虫害和除杂草等功能的一大类物质的总称,它们多是生物体的代谢产物,主要包括微生物杀虫剂、农用抗生素制剂和微生物除草剂等。其中微生物杀虫剂得到了最广泛的研究,主要包括病毒杀虫剂、细菌杀虫剂、真菌杀虫剂、放线菌杀虫剂等,但长期以来并没有得到广泛的使用。现在人们正在利用重组DNA技术克服其缺点来提高杀虫效果,例如目前病毒杀虫剂的一个研究热点是杆状病毒基因工程的改造,人们正在研究,将外源毒蛋白基因如编码神经毒素的基因克隆到杆状病毒中,以增强杆状病毒的毒性;将能干扰害虫正常生活周期的基因如编码保幼激素酯酶的基因插入到杆状病毒基因组中,形成重组杆状病毒并使其表达出相关激素,以破坏害虫的激素平衡,干扰其正常的代谢和发育,从而达到杀死害虫的目的。

四 结束语

当今,生物技术被世界各国视为高新技术,它对于提高国力,帮助解决人类所面临的食品短缺、健康、环境及经济问题至关重要,所以许多国家将生物技术确定为增强国力和经济实力的关键性技术之一。近20 年现代生物技术的发展取得了世人瞩目的成就,在农业生产领域展示了广阔的发展前景。

参考文献

[1] 曹军平.现代生物技术在农业中的应用及前景[J]. 安徽农业科学. 2007(03)

[2] 田萍.生物技术在动物营养与饲料研究中的应用[J]. 安徽农业科学. 2007(02)

第8篇:农药在土壤中的降解途径范文

关键词:邻苯二甲酸酯;土壤;生物修复

中图分类号 S154.2 文献标识码 A 文章编号 1007-7731(2016)06-25-03

Bioremediation Techlology of Phthalic Acid Esters in Soil

Lu Liqing et al.

(Patent Examination Cooperation Center of the Patent Office,Sipo,Guangdong,Guangzhou510530,China)

Abstract:Phthalic acid esters(PAEs)are commonly used organic substances,mainly used as plasticizer. Due to their teratogenicity,mutagenicity and carcinogenicity,PAEs have been received considerable attention recently. As the widespread use of agricultural of plastic film,agriculture soil is polluted to different degrees by PAEs.In this paper,the study and progress of bioremediation of PAEs in soil are included,and the main types of bioremediation including bacteria,fungi,plant and combination bioremediation are summarized.

Key words:Phthalic acid esters;Soil;Bioremediation

邻苯二甲酸酯(phthalic aicd esters,PAEs),又称酞酸酯,是广泛应用的塑料增塑剂和软化剂,在终产品中含量可达40%~60%。PAEs是一类环境内分泌干扰物,近年来获得了极大地关注,研究表明PAEs及其代谢产物具有致畸性、致突变、致癌性,并显示出较强的雌激素效应,可通过呼吸、饮食和皮肤接触进入人和动物体内,干扰内分泌从而影响生殖,威胁人类的健康[1],因而成为优先控制的有毒污染物。

土壤中的PAEs通常来自农田塑料薄膜、垃圾渗滤液和污水灌溉。PAEs在各类塑料薄膜制品中呈游离态,主要依靠氢键和范德华力结合而不是共价键,因而不能在塑料中稳定存在,随着时间的推移,PAEs不断从地膜中释放出,经过不断迁移,最终在土壤中形成累积。近年来,国内外对PAEs在土壤中的生物有效性、污染分布特点等方面作了一些研究,表明我国典型城市群土壤、典型农业土壤大多遭受了一定程度的PAEs污染[2]。

一般污染土壤的修复方法可以采用物理化学修复和生物修复两大类。物理化学修复包括客土法、化学固定、电动修复、土壤淋洗等,这些技术不仅费用非常昂贵、难以大规模治理,而且会导致土壤结构破坏和肥力下降等。生物修复技术因其二次污染少、效果好以及费用低等特点成为治理PAEs污染的主要方法。目前,生物治理修复邻苯二甲酸酯污染土壤的技术主要分为几个方面:

1 细菌降解

国内外在好氧和厌氧的条件下对PAEs的生物降解进行了大量的研究。PAEs的生物降解首先在生物体脱脂酶作用下水解形成酞酸单酯,再进一步降解为酞酸和相应的醇。酞酸在好氧或厌氧条件下分别进入不同的代谢循环,最终氧化成CO2和H2O。从现有技术看,能够降解PAEs的细菌是非常广泛的,包括好氧菌和厌氧菌。Chang等[3]从河底沉积物和石化淤泥中分离出DK4和O18这2种菌株,研究了在不同温度(20~40℃),pH(5.0~9.0)下,DK4和O18这2种菌株在7d内分别将DEP、DPrP、DBP、DHP、DEHP、DCP、BBP和DPP(质量浓度分别为5mg/L)完全降解。Chao等[4]研究了紫红红球菌(Rhodococcus rhodochrous)的DEHP降解能力,发现紫红红球菌3d可以降解97%的DEHP。张付海等[5]从巢湖底泥中筛选出皮氏伯克霍尔德氏菌(Burkholderia piekettii),可同时降解DMP、DEP、DBP和DEHP。金雷等[6]从长期受垃圾污染的土壤中分离到一株能以DBP为唯一碳源生长的类芽胞杆菌菌株S-3,结果表明,菌株S-3在5d内对浓度为100mg/L DBP的降解率可达82.7%。王志刚等[7]采用无机盐培养基从长期覆盖农膜的黑土土壤中分离鉴定了一株主要以DMP作为碳源生长的芽抱杆菌属菌株:QD-9-10。QD-9-10菌株具有降解DMP和其它常见PAEs的能力,在降解PAEs污染物和修复土壤PAEs污染方面有一定应用前景。赵海明等[8]从污水处理厂的活性污泥中分离出一株对多种PAEs具有高效降解能力的微杆菌J-1,并研究其在多种PAEs污染土壤中的修复效果,结果表明,该菌可有效降低土壤中的PAEs污染,且其在自然界中分布广泛,适应能力强,是理想的土壤环境污染修复微生物。

2 真菌降解

除细菌外,还有真菌和藻类去除PAEs的研究。Pradeep等[9]从被塑料严重污染的土壤中分离了3株真菌,分别为寄生曲霉(Aspergillus parasiticus)、亚黏团串珠镰孢(Fusariumsubglutinans)和绳状青霉(Penicillium funiculosum),这3株真菌都能彻底降解DEHP。CHai等[10]测试了14种真菌对DEHP的降解能力,其中9种真菌可在液体中将初始浓度为40mg/L的DEHP降解50%以上,镰刀菌属真菌可将DEHP降解98%以上。蔡信德等[11]发现一株能同时降解邻苯二甲酸酷和农药的真菌,名称为地霉属DY4(Geotrichum sp.DY4),用于土壤生物修复,该真菌在纯培养条件下7d内对DMP、DBP、DEHP 3种PAEs的混合体系的总降解率为63.5%~90.9%。

3 植物修复

植物修复是利用植物及其根际微生物的共存体系来吸收、转移、容纳或转化污染物使其对环境无害。通过植物的吸收、挥发、根滤、降解、稳定等作用,可以净化土壤或水体中的污染物,实现部分或完全修复污染环境的原位治理技术。Ma等[12]通过豆荚-麦草农间混作修复PAEs污染土壤,实验结果表明其能够除去土壤中80%以上PAEs,指出植物修复对PAEs污染土壤具有潜在能力。杨彦等[13]提出利用大生物量非超富集蔬菜修复治理Cd、DEHP复合污染土壤的方法,种植富集系数小于1的蔬菜吸收富集复合污染土壤中的Cd、DEHP,并向上转运到地上部,当蔬菜生长到成熟期将蔬菜整体移除并作为日常食用蔬菜使用,从而达到保证蔬菜品种的同时治理污染土壤。蔡全英等[14]通过在PAEs污染土壤种植不同玉米品种,考察了8个玉米品种对邻苯二甲酸酯的吸收积累量,玉米生长快,根系发达,通过玉米根系与根际微生物联合,能够实现土壤中邻苯二甲酸酯去除率达86%,收割的玉米茎叶可作为饲料。不同玉米品种的吸收累积量略有差异,优选的玉米品种为万青品种。

4 联合修复

联合修复是将细菌、真菌、植物或其它修复方式组合起来治理土壤污染的方式,联合修复在针对PAEs的土壤修复研究较少。郭杨等[15]通过3种PAEs复合物梯度驯化,从PAEs污染的农田土壤中筛选出降解真菌FZ为尖孢镰刀菌,F3为棒束梗霉属,采用3种PAEs复合污染土壤接种真菌后种植不同根型植物番茄、大豆、香根草,试验初步对真菌-植物联合修复模式进行了探索,通过实验提出了真菌-植物联合修复模式。郭杨的实验显示真菌与植物在PAEs降解过程中有一定的协同作用。刁晓君等[16]选择C3植物绿豆和C4植物玉米作为修复植物,以DEHP为目标污染物,探索增施CO2对植物修复土壤DEHP污染的影响。结果表明:DEHP对2种植物生长和根际微环境都产生了抑制性影响。增施CO2对促进植物生长、增强植物抗DEHP胁迫能力、改善根际微环境有积极作用,增施CO2还促进了2种植物对DEHP的吸收,特别是植物地下部分。这些共同作用导致增施CO2后的两种植物根际DEHP残留浓度明显下降,土壤污染植物修复效率提高。

5 结语

PAEs是环境中重要的有机污染物之一,它是人类大量、长期使用造成的。目前人们虽然已经认识到PAEs 的危害,但由于其在工农业生产和生活中的不可替代性,暂时还不能停止生产、合成和使用,在实际生产和生活中仍然离不开它。塑料地膜造成的土壤PAEs污染是个长期而复杂的过程,生物修复过程也是个长期的过程,仍须不断探寻最佳、最有效果的PAEs降解方式。

参考文献

[1]Charles A S,Dennis R P,Thomas F P,et al.The environmental fate of phthalate esters:a literature review[J].Chemosphere,1997,35(4):667-749.

[2]杨国义,张天彬,高淑涛,等.广东省典型区域农业土壤中邻苯二甲酸酯含量的分布特征[J].应用生态学报,2007,18(10):2308-2312.

[3]Chang BV,Yang CM,Cheng CH,et al.Biodegradation of phthalate esters by two bacteria strains[J].Chemosphere,2004,55(4):533-538.

[4]CHAO W L,C Y CHENG.Effect of introduced phthalate-degrading bacteria on the diversity of indigenous bacterial communities during di-(2-ethylhexyl)phthalate(DEHP)degradation in a soil microcosm[J].Chemosphere,2007,67(3):482-488.

[5]张付海,岳永德,花日茂,等.一株邻苯二甲酸酯降解菌降解特性研究[J].农业环境科学学报,2007,26(增刊):79-83.

[6]金雷,严忠雍,施慧,等.邻苯二甲酸二丁酯DBP降解菌S-3的分离、鉴定及其代谢途径的初步研究[J].农业生物技术学报,2014,22(1):101-108.

[7]王志刚,等.一株能够高效降解DMP的芽孢杆菌属菌株、培养方法及其在修复土壤PAEs污染中的应用.CN:104928205[P].2015-09-23.

[8]赵海明,等.一株可降解多种邻苯二甲酸醋的微杆菌(Microbacterium sp.):104805033[P].2015-07-29.

[9]PRADEEP S,S BENJAMIN.Mycelial fungi completely remediate di(2-ethylhexyl)phthalate,the hazardous plasticizer in PVC blood storage bag[J].Journal of Hazardous Materials,2012,235-236(0):69-77. (下转42页)

(上接26页)

[10]Chai W,Suzuki M,Handa Y,et al.Biodegradation of Di-(2-ethylhexyl)Phthalate by Fungi[J].Report of National Food Research Institute,2008,72:83-87.

[11]蔡信德,等.一株能同时降解邻苯二甲酸醋和农药的真菌及其应用.CN:104087517[P].2014-10-28.

[12]Ma TingTing,et al.Legume-grass intercropping phytoremediation of phthalic acid esters in soil near an electronic waste recycling site:a field study[J].International Journal of Phytoremediation,2012,15(2):154-167.

[13]杨彦,等.一种利用大生物量非超富集蔬菜修复治理Cd、DEHP复合污染土壤的方法.CN:102989751[P].2013-03-27.

[14]一种邻苯二甲酸酯污染土壤的植物修复方法.CN:103752594[P].2013-03-27.

第9篇:农药在土壤中的降解途径范文

关键词:食品重金属污染危害

一、概述

相对密度在5以上的金属,称作重金属。如铜、铅、锌、锡、镍、钴、锑、汞、镉、铋等。有些重金属如铁、锌、铜是人体所必须的微量元素,但大部分重金属如汞、铅、镉等并非生命活动所必须,而且所有重金属超过一定浓度都会对人体产生一定危害,因为重金属能使人体中的蛋白质变性。进入人体的重金属,尤其是有害的重金属,在人体内积累和浓缩,可造成人体急性中毒、慢性中毒等危害,这类金属元素主要有:汞(Hg)、镉(Cd)、铬(Cr)、铅(Pb)、砷(As)等。砷(As)本属于非金属元素,但根据其化学性质,又鉴于其毒性,一般将其列入有毒重金属元素中。

重金属不能被生物降解,相反却能在食物链的生物放大作用下,成千百倍地富集,最后进入人体。食品中的有毒重金属元素,一部分来自于农作物对重金属元素的富集,一部分来自于水产动物重金属的污染,还有一部分来自于食品生产加工、贮藏运输过程中出现的污染。进入人体的重金属要经过一段时间的积累才显示出毒性,往往不易被人们所察觉,具有很大的潜在危害性。

二、有毒重金属对食品的污染

我国重金属污染比较严重的地方往往集中于矿山和工业密集地区和城镇,特别是矿山和城市周围问题更加突出。在这些地区,采矿、冶炼、制造业和交通等生产和生活过程中会产生含有重金属的废渣、废水、废气,如果不对其进行非常严格的污染控制和无害化处理,所含的污染物则会扩散到周围的环境中,给当地生态环境造成极大的危害。

1、铅和砷

铅在自然界分布甚广。世界上每个角落都有铅存在。土壤中通常含有2-200mg/kg的铅,华南地区为26-47mg/kg。据统计,目前全世界平均每年排放铅500万吨。含铅排放物除小部分可以回收利用外,其余均通过各种途径进入环境,造成污染和危害。目前人为的铅污染十分严重,如开采铅矿、冶炼、蓄电池、含铅物质(汽油)的燃烧等。我国每年从工业废气中排出铅2918吨,废水排出铅2382吨。一辆汽车每年可向环境排出2.5kg的铅,含铅汽油已造成严重的污染。铅在生活中应用也十分广泛,如彩釉陶瓷,印有彩色画面的图书,塑料制品等都含有铅。铅是对人体毒性最强的重金属之一,由于人类的各种活动,特别是随着近代工业的发展,铅向大气圈、水圈以及生物圈不断迁移,再加上食物链的累积作用,人类对铅的吸收急剧增加,吸收值已接近或超出人体的允许浓度。

砷在自然界分布很广,常与硫、氧等元素结合成化合物广泛存在矿物层中,动、植物机体中都含有微量的砷。砷污染的来源主要有:含砷矿石的冶炼和煤的燃烧产生的三废;含砷农药的使用;畜牧业中含砷制剂的使用,如五价砷作为促生长添加剂,苯砷酸造成的兽药残留;水生生物的富集,通过食物链可富集3300倍,龙虾含砷可高达170mg/kg,大虾40mg/kg。

2、汞和镉

汞极易于由环境中的污染物通过各种途径对食品造成污染,直接影响人们的饮食安全,危害人体的健康。土壤的汞污染主要来自于汞冶炼和制剂厂的排放、含汞颜料的应用、含汞农药的施用等。据统计,目前全世界平均每年排放汞约1.5万吨。土壤中汞以无机态与有机态存在,在一定条件下互相转化。在土壤微生物作用下,汞可发生甲基化反应,形成脂溶性的甲基汞,可被微生物吸收、积累,而转入食物链造成对人体的危害。

镉是最常见的污染食品和饮料的重金属元素。镉可通过环境污染、生物浓缩和含镉化肥的使用而致食品污染。我国约有1.3万公顷耕地受到镉污染,每年有数亿千克的“镉米”流向市场。镉主要来源于镉矿、镉冶炼厂。常与锌共生,所以冶炼锌的排放物中必有CdO,以污染源为中心可波及数千米远。镉工业废水灌溉农田也是镉污染的重要来源。土壤中镉的存在形态大致可分为水溶性和非水溶性镉两大类。离子态和络合态的水溶性镉CdCl2等能为作物吸收,对生物危害大,而非水溶性镉CdS、CdCO3等不易迁移,不易被作物吸收,但随环境条件的改变二者可互相转化。被工业“三废”污染的水和土壤种植的植物,含镉就会增加。一般食品都能检出镉,含量在0.004-5mg/kg之间。如贝类,非污染区镉的浓度为0.05mg/kg,污染区为0.75mg/kg,有的高达12mg/kg。污染灌溉的水稻中,镉的水平在0.2-2.0mg/kg,个别地区高达5.43mg/kg。

3、铬

在非污染的低层大气和天然水中均含有微量的铬,如雨水中含铬2-4μg/L,土壤中含铬约在100-500mg/L之间。其中六价铬的毒性比三价铬大,六价铬是一种常见的致癌物质,对人体和农作物均有毒害作用。铬的化合物在工业上应用较多,如电镀、化工、印染等行业都含有三价铬或六价铬的废水排出,使局部地区受到铬的污染。

三、有毒重金属的主要污染来源

食品中有毒重金属污染主要来自三个方面:一是三废排放污染农田、水源和大气,导致有害重金属在农产品中聚积;二是随着农业产品使用量的增加,一些农药和化肥中的有害重金属残留在农产品中;三是食品生产、加工所使用的金属机械、管道、容器,或食品添加剂品质不纯,含有有毒重金属杂质,引起食品污染。

1、三废排放引起的污染。

未经处理的工业废水、废气、废渣的排放,是汞、镉、铅、砷等重金属元素及其化合物对食品造成污染的主要渠道。土壤污染是人类现在和未来都必须面对的最困难的环境课题。土壤一旦被污染,其中的污染物就很难清除。土壤污染过程是不可逆的,如发展成生态灾难,其危害和损失将难以估量。有毒重金属元素由于某些原因未经处理就被排入河流、湖泊、海洋或土壤,使得这些河流、湖泊、海洋或土壤受到污染,它们不能被生物降解。鱼类或贝类如果积累重金属而为人类所食,或者被重金属污染的大米、小麦等农作物被人类食用,重金属就会进入人体使人产生重金属中毒。

2、所施的农药和化肥引起的污染。

农药和化肥的不合理使用是造成污染的另一渠道。磷肥、钾肥和复合肥中含有镉,大量使用这些肥料,土壤和作物吸收了不易被移除的镉而造成污染。又如一些小规模的养殖场,在猪、鸡等饲料中添加含砷制剂,猪、鸡吃了这些饲料后,一方面可以杀死猪体内的寄生虫,促进牲畜生长,另一方面可能“让猪肉的颜色变得更红润”。这些含砷饲料通过猪肉与鸡肉的粪便,作为肥料被堆积入田,富集在土壤下,并随着耕种传递到农作物中。据国家质检部门抽查,蔬菜类农产品的农药残留超标问题相当严重,喷洒农药的方式不合理及使用禁用农药等,使土壤中农药残留量及衍生物含量增加,造成严重污染。土壤中农药被灌溉水、雨水冲刷到江河湖海中,又污染了水源。

3、食品加工环节引入的污染。

加工食品所使用的设备、管道都是金属物质,食品与其长期磨擦接触,总会造成微量金属元素掺入食品中,引起污染。包装和贮藏食品的材料及容器大部分也含有微量重金属元素,在一定条件下也会掺入食品,造成污染。

四、有毒重金属对人体的危害

1、铅

在这几种有毒重金属中,铅对人体的危害最大,其次是砷和汞。铅对人的神经系统、骨髓造血机能、消化系统、生殖系统及人体其他功能都有明显毒害作用,特别对孕妇、婴儿和儿童的健康危害较大。当血铅浓度超过40µg/dl时,会造成肾功能损害;当血铅浓度超过300µg/dl时,人就会出现注意力不集中、易怒、头痛、肌肉发抖、失忆以及产生幻觉,严重的将导致死亡。铅在人体的生物半衰期为4年,骨骼中可达10年。

2、砷

砷在环境中由于受到化学作用和微生物作用,大都以无机砷和烷基砷的形态存在。不同形态的砷,其毒性相差很大。无机砷的毒性大于有机砷,三价砷化合物的毒性大于五价砷化合物,砷化氢和三氧化二砷(俗称砒霜)毒性最大,故卫生标准以无机砷制定。人体一旦食用含砷食品,砷与细胞中含巯基的酶结合,抑制细胞氧化,麻痹血管运动中枢,长期接触砷化合物或饮用含砷物质,会诱发皮肤癌。

3、汞

汞在常温下是一种液体金属,汞对人体的危害主要表现在以甲基汞(有机汞,毒性很强)的形式通过食物链进入人体,并在人的中枢神经系统中富集,造成运动失调、语言及听力障碍、视野缩小,严重者可发生瘫痪、肢体变形、吞咽困难,甚至死亡。汞蓄积于体内最多的部位为骨髓、肾、肝、脑、肺、心等。汞对人体的神经系统、肾、肝脏等可产生不可逆的损害。汞蓄积性很强,在体内的生物半衰期为70天,在脑内可达180-250天。

4、镉

镉进入体内可损害血管,导致组织缺血,引起多系统损伤;镉还可干扰铜、锌等微量元素的代谢,阻碍肠道吸收铁,并能抑制血红蛋白的合成,还能抑制肺泡巨噬细胞的氧化磷酰化的代谢过程,从而引起肺、肾、肝损害。镉在人体的生物半衰期为15-30年,镉中毒是长期低剂量摄入后蓄积造成的,其潜伏期可达2-8年。

5、铬

进入人体的铬被积存在人体组织中,代谢和被清除的速度缓慢。六价铬具有强氧化作用,对人主要是慢性毒害,即以局部损害开始逐渐发展到不可救药。铬在体内主要积聚在肝、肾和内分泌腺中,它能降低生化过程的需氧量,从而发生内窒息。

相关热门标签