公务员期刊网 精选范文 遥感成像原理与遥感图像特征范文

遥感成像原理与遥感图像特征精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的遥感成像原理与遥感图像特征主题范文,仅供参考,欢迎阅读并收藏。

遥感成像原理与遥感图像特征

第1篇:遥感成像原理与遥感图像特征范文

关键词:地理信息系统;遥感数字图像处理;教学改革

作者简介:刘春国(1973-),男,河南上蔡人,河南理工大学测绘与国土信息工程学院,讲师;卢晓峰(1981-),女,河南洛阳人,河南理工大学测绘与国土信息工程学院,讲师。(河南焦作454000)

基金项目:本文系河南理工大学教育教学改革研究项目(项目编号:2008JG035)的研究成果。

中图分类号:G642.0     文献标识码:A     文章编号:1007-0079(2012)10-0081-02

当前,遥感已经或正在走向全面应用阶段。国际遥感应用发展的实用化、业务化、产业化、精细化特征明显,但我国遥感应用水平还不高,根本原因是基础研究薄弱,缺乏多学科人才共同努力。[1]培养一大批经过系统知识培训、熟练掌握遥感科学理论和应用技能的地理信息科学人才,满足社会对地理遥感信息高技术人才的迫切需求,是高等教育的责任所在。

1998年教育部新增地理信息系统本科专业后,我国GIS教育发展形势空前活跃。经过10余年的教学实践和探索,逐步形成了比较稳定的GIS专业课程体系与课程设置方案。[2-5]遥感系列课程(遥感物理与技术、遥感数字图像处理、遥感地学分析与应用)成为GIS专业课程体系中的重要模块,说明GIS学科建设的负责人已认识到培养掌握遥感技术的GIS人才的重要性。遥感数字图像处理是遥感过程的重要一环。充分利用各种图像处理算法从遥感数据中获取各种生物物理参数和土地覆被/利用信息,可以为自然和人文生态系统的空间分布式模型提供输入参数,在遥感技术应用中占有十分重要的地位。近几年河南理工大学(以下简称“我校”)GIS专业开设了“遥感数字图像处理”课程。围绕如何提高“遥感数字图像处理”课程教学质量,笔者从革新课程体系、协同教学、优化教学内容、丰富实践教学手段等方面进行了一系列探索。

一、革新遥感课程体系,突出“遥感数字图像处理”课程地位

随着遥感技术及其应用的迅速发展,很多专业开设了“遥感原理与应用”课程,内容分为三大模块:遥感基础、遥感图像处理及分析方法和遥感专题应用。这种课程设置模式比较适合早期GIS专业遥感课程教学或选修遥感科学技术的某些专业,对于当前GIS专业遥感教学则存在明显缺点。主要问题是对“遥感数字图像处理”教学重视程度不够,对数字图像处理在整个遥感过程中的重要性体现不足,与遥感地理信息系统融合集成的一体化趋势不相适应,与国民经济各部门遥感业务日益普及的态势不相适应,与社会信息化深入发展的状况不相适应。人才培养滞后于社会需要,不能满足对高素质地理遥感科技人才的需求。

我校GIS专业总结多年遥感课程教学实践经验,革新了遥感课程体系,设置了“遥感概论”、“遥感数字图像处理”、“遥感应用分析”、“遥感数字图像处理实验”等遥感相关课程,规划了遥感系列课程的主体教学内容。“遥感概论”要求学生掌握遥感及其应用的基本科学工程背景知识,重点内容是电磁波与地表物质相互作用的基本原理、遥感数据采集、传输和成像机理,从可见光-近红外、热红外、微波(主动方式和被动方式)波谱段介绍遥感信息的获取特点和技术发展,适当涉及大气遥感、海洋遥感等应用领域和典型案例。“遥感数字图像处理”要求学生掌握基于数字图像处理方法获取地球资源有用信息的科学与技术。由于学科交叉融合,数字图像处理方法众多,新理论、新方法不断推出,课程重点主要着眼于图像处理基本知识和遥感图像处理常用算法,对一些探索性、前沿性和跨学科的内容从原理上予以概括介绍,如图像亚像元分类、模糊分类和面向对象图像处理等等。“遥感应用分析”采用理论、方法和实例相结合,选择不同遥感应用领域的典型案例介绍,培养学生遥感专题分析技能,深化学生对于遥感科学技术应用现状和广阔前景的认识。“遥感数字图像处理实验”课程着眼于培养学生图像处理技能,巩固和深化理论课程教学内容,提高动手能力和理论联系实际解决问题的能力。

我校GIS遥感系列课程设置方案把“遥感数字图像处理”与“遥感数字图像处理实验”单独设课,提升课程地位,加大课程学时,强化实践技能训练,对提高“遥感数字图像处理”课程的教学成效很有益处。这种课程设置模式有助于培养GIS专业学生采用图像分析方法解决遥感应用问题的能力,比较契合我国GIS专业本科教育遥感课程设置的发展态势。

二、培育遥感系列课程教学群体,分工协作提高“遥感数字图像处理”课程教学质量

GIS专业遥感系列课程设置要求具备一定规模的师资力量。遥感是多学科的综合,交叉性强,研究方法不断补充和更新,课程教学内容丰富。遥感系列课程的设置决定了课程之间存在密切的内部联系。要提高“遥感数字图像处理”课程教学质量,必须打破教师个人单兵作战的惯常做法,加强与相关课程教师之间的协调和交流。培育组建了承担遥感系列课程教学任务的教学群体。遥感课程教学组围绕课程建设,整合优化课程体系,充实更新教学内容,保证了课程之间教学内容的连贯性和相关性。课程教学组成员互相学习、借鉴、交流,协同规划各课程教学环节的教学要求和学时分布,课程内容更加先进,课程结构更加协调,教学方法更加有效,教学手段更加丰富,实践教学得以充实,教学科研联系更加密切。遥感课程教学组的建立和协作对提高“遥感数字图像处理”课程教学质量起了明显的作用。

三、汇聚国内外优秀教材成果,整合优化教学内容体系

教学内容和课程体系涉及高等教育人才培养的模式,决定了高等学校人才培养的规格,在很大程度决定了人才培养的质量和水平。[6]教学中适度引进世界著名高校的名牌课程教材和教学参考用书,是高等教育国际化的重要举措。[7]遥感课程教学组重视遥感数字图像处理课程教材和教学内容建设,收集了国内近些年出版的如戴昌达、章孝灿、汤国安、韦玉春、朱述龙等编写的遥感数字图像处理教材教参,注意引用吸收国外著名高校的遥感图像处理相关教材教参,参考了John R. Jensen、John A. Richards、Robert A. Schowengerdt、Jay Gao、John R. Schott、Brandt Tso等人的遥感数字图像处理著作,认真研讨不同教材特点及其开课对象,针对遥感数字图像处理理论性强、概念抽象、方法多样、实践性强的特点,根据教学对象和课程学时,按照系统性和前瞻性结合、理论与应用结合的要求,制订了教学主体内容。课程内容分为11个部分:图像基本知识、遥感图像成像过程与数据特征、遥感图像辐射校正、遥感图像几何变换与校正、遥感图像增强、遥感图像变换、遥感图像分割、遥感图像融合、遥感图像分类、数字变化检测、遥感图像应用处理。优化后的课程教学内容注意了与“遥感概论”、“遥感应用分析”等课程内容的有机衔接。对于与“遥感概论”课程有重叠的内容只做简单回顾,如遥感成像过程、机理与数据特征,以少数典型应用案例揭示遥感数字图像处理方法在遥感应用分析中的作用和地位;避免与先开课程内容重复,为后续课程做适度铺垫。数字图像处理方法多样,课程重点介绍常用算法,使学生能掌握数字图像处理原理,夯实基础。对一些发展中的、前沿性的算法着重介绍算法的思想和原理,教导学生注重算法但不应局限于具体算法,培养学生发散思维、学习能力和创新思维。教学中适当区分遥感数字图像系统处理和应用处理的差别。

四、重视实践教学,多手段丰富实践教学内容

实践教学是创新人才培养中的重要环节,对于培养学生专业技能和理论实践结合能力、激发学生的创新思维和探索精神、提升科研能力,有着重要意义。GIS专业“遥感数字图像处理”教学高度重视实践教学环节,从课程体系设置、实验课程内容设计、实验室开放项目、毕业设计、大学生科研训练计划和教师科研课题等几个方面为学生提供多样化的实践途径,丰富了实践教学体系。

从课程设置体系上,“遥感数字图像处理”单独设课,紧密联系课程理论教学内容附设6个单元的基础验证性课堂实验(见表1),增强学生对各种遥感图像处理算法及其效果的感性认识。“遥感数字图像处理”实验课程单独设课,结合“遥感数字图像处理”课程和“遥感应用分析”课程知识,设置综合设计型实验6个模块,培养和提高学生对知识与技能的综合运用、自主学习的能力。

积极利用各种平台,提供实践课题,培养学生创新能力。我校为了培养大学生的创新能力和实践能力,促进实验室开放,设置了实验室开放基金。在实验室开放基金平台支持下,设计了一些探索研究型实验课题,鼓励学生组团选择实验课题、查阅文献、拟定实验方案、实施实验过程、撰写实验论文。大学生科研训练计划和本科毕业设计(论文)也是培养本科生创新能力的平台。在实施学校大学生科研训练计划的年度,遥感课程组每年设计几个遥感应用分析研究小课题,供学生参与大学生科研训练,并从科研课题中提炼一些问题作为大学生毕业设计选题,引导学生参与到教师科研课题中。学生通过参与实验室开放基金课题、大学生科研训练计划项目和教师科研课题,检验了专业知识,培养了探索精神、创造思维和合作能力。

五、结束语

本文总结了我校遥感课程教学组围绕GIS专业“遥感数字图像处理”课程教学实施的一系列教学改革措施。这些措施已经取得较好的成效,有不少GIS学生积极参与校实验室开放基金项目、大学生科研训练计划项目和教师科研项目,每年GIS专业有近1/3的学生选择与遥感图像处理及遥感应用分析有关的毕业设计题目。人才培养是项长期复杂的系统工程,需要从师资、设备、教学等一系列软硬件教学条件上予以保障。

参考文献:

[1]李小文.定量遥感的发展与创新[J].河南大学学报(自然科学版),2005,(4):49-56.

[2]秦其明.中国高校GIS专业核心课程设置问题的探讨[J].地理信息世界,2003,(4):1-7.

[3]钱乐祥.GIS专业课程体系改革思路与实践[J].高等理科教育,2006,(6):95-98.

[4]谈树成,刘恒,夏既胜,等.关于地理信息系统(GIS)本科专业课程设置的思考[J].高等理科教育,2008,(4):47-50.

[5]李天文,王林刚,李庚泽,等.地理信息系统专业课程体系建设研究[J].中国大学教学,2011,(1)3-5.

第2篇:遥感成像原理与遥感图像特征范文

关键词:合成孔径雷达:几何校正;数字高程模型;

Abstract: With the country's economic development, there is a growing demand for the topographic maps . High-resolution remote sensing satellites and SAR have had an unprecedented progress and it becomes an important data source for the topographic mapping. SAR as an positive microwave remote sensing, high geometric resolution of its images are very beneficial to mapping. It can be used for mapping topographic maps, produced orthophoto maps, compilation of various thematic maps. This paper describes the principles of radar remote sensing and image geometric correction method.

Keyword: Synthetic Aperture Radar; Geometric Correction; Digital elevation model

中图分类号:TP7文献标识码:A 文章编号:

一、引言

高分辨率遥感卫星以及影像处理系统的相继出现使得困难地区的地形图测绘和快速更新大比例尺地形图成为可能。合成孔径雷达作为一种特殊的微波遥感器,其影像分辨率在不断提高,且利用SAR测图,具有仅用少量控制点、测图自动化程度高、工作效率高等优势。因此,深刻理解SAR成像原理,探索如何对SAR图像进行几何校正具有很强的理论意义和现实意义。

二、SAR的成像原理

SAR,是用多普勒频移这一物理现象来改善雷达成像的方位向分辨率的,它利用一个小天线作为单个辐射单元,将此单元沿直线不断移动,在移动过程中选择若干位置,在每一个位置上发射一个信号,接收相应发射位置的回波信号存储记录下来,同时保存接收信号的相位和幅度。如图1,假设一个长度为L的真实孔径雷达天线从点a移动到点b再到点c,被成像点D的雷达斜距则由大变小再变大,雷达接收到从地面点D反射回来的雷达脉冲频率也会产生变化,即频率漂移由大变小。通过精确测定接收脉冲的雷达相位延迟并跟踪频率漂移,最后可以合成一个脉冲,使方位向的目标被锐化,即提高了方位向分辨率。

图1 SAR成像几何原理

三、SAR图像的特点

雷达侧视斜距投影受到地形起伏的影响,使得SAR图像存在几何畸变,主要畸变特征有:斜距显示的近距离压缩、雷达图像透视收缩、雷达迭掩、雷达阴影、影像位移等。

(1)斜距显示的近距离压缩。在斜距显示的图像上,地面上等间距的地物目标间距离均被缩短了,但近距端(即雷达波束照射在距雷达近的一端)要比远距端缩短得更多,使图像产生几何畸变,这种现象称为图像沿斜距向的近距离压缩。

(2)SAR图像的透视收缩。SAR图像上斜坡的长度按比例尺换算后总有比实际长度短的现象,称为透视收缩。如图2所示,斜坡AB在SAR图像上的构像A1B1,显著的缩小了,而BC线段的构像BlC缩小的比较少。

(3)雷达叠掩。SAR成像时,地距大的地物目标的斜距小于或等于地距小的地物目标的斜距,在SAR图像上表现为斜距小的地物目标先于倾斜大的地物目标成像(如图3,B点和C点所成的像b和a),或者表现为一个以上的地物目标点成像为一个像点(如图3中所示,A点和C点所成的像a),这种图像变形称为雷达叠掩。

图2 SAR 图像的透视收缩图3 雷达叠掩

(4)雷达阴影。雷达波束在山区除了会造成透视收缩和雷达叠掩以外,还会形成阴影,即雷达阴影。在山的后坡雷达波束不能到达,因而就不可能有回波信号,在图像上的相应位置出现暗区,没有信息。当侧视角与地面坡度α之和大于90º时,在斜坡的背部形成雷达盲区,即有阴影形成。阴影的长度L与地物高度H和侧视角有关。

(5)地形起伏引起的影像位移。由于地形起伏或高大建筑物等具有相对高程,其顶部的雷达回波先于底部被天线接收,故产生影像向底点方向移位的现象,在此称为影像位移。雷达图像上地形起伏引起的像点位移与中心投影产生的像点位移相反。

四、SAR图像的几何校正方法

目前对SAR图像进行几何校正主要有基于地面控制点的校正方法和基于DEM来模拟SAR影像的校正方法。基于地面控制点的校正方法根据校正变换模型的不同又可以分为多项式校正法、共线方程校正法以及基于SAR成像原理的距离多普勒模型校正法。

1、基于地面控制点的多项式校正原理

这类校正方法的主要思路是通过在待校正图像选择地面控制点,并获取其相应的地理坐标,从而在图像空间与地理坐标空间之间建立一种变换关系模型,实现图像坐标空间向地理坐标空间的变换。

(1)多项式校正

多项式校正法的基本思想就是回避成像的空间几何过程,而直接对图像变形的本身进行数学模拟。它认为雷达图像的总体变形可以看作是平移、缩放、旋转、仿射、偏扭、弯曲以及更高次的基本变形的综合作用结果,因而校正前后图像相应点之间的坐标关系可以用一个适当的多项式来表达。

一般多项式校正变换公式可表达为:

(式1)

其中:x,y为某像素的原始图像坐标;

X,Y为同名像素的地理坐标;

(i=0,1…9),(i=0,1…9)为多项式的待定系数。

多项式的待定系数可用最小二乘法原理求解。先根据(式1)确定所需要的最少控制点数目(N,不小于待定系数的一半),再按照最小二乘原理求解系数。

这种方法适合于地形比较平坦的地区,但由于简单,因而利用率最高。

(2)基于地面控制点的共线方程校正原理

传感器的共线方程本身就是共线法的校正公式。1988年的第16届国际摄影测量与遥感学会上,国际摄影测量学者G.Konency利用类似的共线方程式构造SAR图像点与地面点之间的关系,称之为G.Konency公式

(式2)

其中:

为姿态参数 的方向余弦。

第3篇:遥感成像原理与遥感图像特征范文

关键词:遥感信息;水工环;应用

遥感信息技术经过多年的发展与实践,已经集合了传感器技术、计算机技术等先进的技术,这使得遥感信息技术在水工环中的应用更为深化。现如今,遥感信息技术已经成为水工环不可缺少的技术,随着水工环勘察需求的加大,对该技术会更大的依赖。

1 遥感信息在水工环中的应用发展现状

1.1 传统的遥感信息技术需要人工进行解译,但是随着信息技术的融入,可以进行计算机解译,大大提高了解译效率。如线性影像计算机自动判释专家系统及土地利用(分类)计算机判读模型以及机助信息提取与制图系统等。由于影像的多解性及识别系统的不完善性,虽还需要投入一定的人力工作,但已大幅提高解译工作效率。

1.2 从几何形态解译到充分利用光谱信息。过去的多光谱遥感数据波段划分过少,只有几个波段,使地面波谱测试数据与图像光谱数据难以精确比较。因此,图像解译工作很少考虑地物的波谱特征,主要根据影像的色彩、色调、纹理、阴影等所形成的几何形态特征。随着机载成像光谱仪(高光谱)技术的商业运作及2000年前后的高光谱成像卫星的发射,使得用光谱信息对地物的分析更精细、更准确。

1.3 出现地面温度反演技术。地面温度反演是指从热红外图像数据的辐射亮度值获得地表温度信息。反演方法主要有地表温度多通道反演法和多角度数据进行组分温度反演法等。

1.4 从定性分析评价到依靠计算机数字模型模拟的定量分析评价。如遥感技术在地下水流系统应用中,根据遥感数据建立的地形、流域面积、水系密度等数据集结合气象数据建立空间补给模型。

1.5 使用单一遥感信息源到多元信息拟合。目前的遥感应用技术,已不再是单一使用各种遥感数据,而是根据需要结合利用了其他信息源,如地质、地形、水文、土壤、植被、气象、岩土物理力学特征及人类活动等资料。这样,图像数据的预处理尤其重要,如几何较正、多波段数字合成、镶嵌、数据变换等,而地理信息系统(GIS)在多元信息数据管理中起着重要作用。

1.6 从单一手段应用到多手段应用近年来,遥感技术(RS)与地理信息系统(GIS)和全球定位系统(GPS)的综合应用,即“3S”技术,成为遥感技术应用的主流。GIS是数据库管理、数据图形处理、各主题图件叠加、制图的重要工具。

1.7 数字摄影测量技术的发展。数字摄影技术的成熟,推进了制图工作的现代化,改善了基础图件的质量和成图效率,并影响着遥感技术的调查方法。该技术的产品可直接作为GIS的数据源,便于遥感与GIS一体化研究与开发。如我国自己开发的全数字摄影测量软件VIRTUOZO,具有数字化测图、自动生成DEM/DTM和等高线、生成正射影像等功能。

1.8 遥感技术应用成果向着便于保存、复制、携带及传输方向发展。这意味着遥感技术应用成果的数字化。由于是数字成果,可载于多种介质上,如CD-ROM、磁带及计算机硬盘上,使携带处理更加方便。随着1998年“数字地球”计划的提出及我国国土资源部“数字国土”工程的实施,遥感应用成果数字化显得尤其必要。

2 遥感信息在水工中的应用

2.1 在水文地质中的应用

遥感信息技术主要是用来进行测绘,以此提高水文地质勘查的准确性,同时也便于对水文地质工作展开定量或者是定性分析。遥感信息技术能够进行光谱合成,也可能进行图像处理,而这样的功能正是水文地质勘查需要的,如果地域比较特殊,工作人员借助遥感技术能够分辨出水质与植物,依据水质与植物之间的关系,就此推断出该区域水质的具体情况。遥信信息技术在水文地质中的应用,还便于地下水系统分析,这样工作人员就能够随时对地下水水质情况进行了解,一旦发现污染,会立即展开评价,采取措施。红外热感技术也是应用在水文地质勘查中一项非常重要的技术,该技术主要用来进行地下热水勘察,工作人员利用红外成像,能够直接判断出地表温度,而后再进行精确的计算,即可分析出地下热水情况。

2.2 在工程地质中的应用

目前,我国工程选址中基本上都会应用遥感信息技术,尤其是大型工程选址,遥感信息技术更是不可或缺。工程选址过程中运用遥感技术,能够提升地质评价的准确性,以此实现选址区域内的地质情况进行更为科学的分析,利于工程建设进行有效的规划。工程地质中应用遥感信息技术,能够得到最为直观的图像,工作人员可以依据图像内容进行分析,而且由于图像是通过卫星影像传输的,所以观测质量完全能够保证。借助卫星传输数据,能够对光谱数据展开认真的处理以及科学的计算,这对工程选址来说异常重要,通常情况下,工程选址人员都是依据这些数据来完成选址工作。遥感信息技术能够将地表图像显现出来,而工作人员则可以通过地表图像对该区域内的地貌、地质环境等展开分析,这不仅能够保证工程选线具有真实性,还能够保证工程合理。与此同时,遥感信息技术的应用,还能够对地质灾害情况进行判断,通过构建科学的数学模型,对工程区域内可能会出现的灾害情况进行评估,再充分的利用风险评价,两者统一起来,对工程顺利进展奠定了基础。

2.3 在环境地质中的应用

遥感信息技术的应用,有利于环境监测水平的提高。遥感信息技术的应用,有利于工作人员对水资源污染状态展开分析,针对污染严重程度,工作人员可以进行不同程度的测量。比如对于工业废水,通常是利用遥感信息技术中热感图像,通过图像分析,工作人员能够掌握工业废水污染范围,具体分布情况以及污染程度等。现阶段,遥感信息技术在环境监测中应用程度更加深入,专家学者也对此进行了大力的研究,取得了比较好的效果。目前,遥感信息技术能够对水土流失情况进行密切的监测,同时也能够对地质变化情况展开监测,这对我国水资源保护,提高水资源利用率有着积极的作用。

结束语

综上所述,可知遥感信息技术已经在水工环中得到了深入的应用,当然随着遥感技术研究的深入,技术水平的提升,该技术的应用领域会更加的广泛,优势会更加的突出。因为遥感信息技术的应用,使得水工环工作人员不必经常进行外业测量,以此提升了工作效率。当然具体如何应用遥感信息技术,还需要工作任意结合具体的工程实践而定。

参考文献

[1]胡志文,欧阳燕,罗湘.水工h地质勘察及遥感技术在地质工作中的应用[J].江西建材,2012(05).

[2]张灿.谈国内外在水工环领域中遥感技术的应用[J].科技创业家,2012(13).

第4篇:遥感成像原理与遥感图像特征范文

关键词:遥感水质监测遥感数据

1水体遥感监测的基本理论

1.1水体遥感监测原理、特点。影响水质的参数有:水中悬浮物、藻类、化学物质、溶解性有机物、热释放物、病原体和油类物质等。随着遥感技术的革新和对物质光谱特征研究的深入,可以监测的水质参数种类也在逐渐增加,除了热污染和溢油污染等突发性水污染事故的监测外,用遥感监测的水质数据大致可以分为以下四大类:浑浊度、浮游植物、溶解性有机物、化学性水质指标。

利用遥感技术进行水环境质量监测的主要机理是被污染水体具有独特的有别于清洁水体的光谱特征,这些光谱特征体现在其对特定波长的光的吸收或反射,而且这些光谱特征能够为遥感器所捕获并在遥感图象中体现出来。如当水体出现富营养化时,浮游植物中的叶绿素对近红外波段具有明显的“陡坡效应”,故而这类水体兼有水体和植物的光谱特征,即在可见光波段反射率低,在近红外波段反射率却明显升高。

1.2水质参数的遥感监测过程。首先,根据水质参数选择遥感数据,并获得同期内的地面监测的水质分析数据。现今广泛使用的遥感图象波段较宽,所反映的往往是综合信息,加之太阳光、大气等因素的影响,遥感信息表现的不甚明显,要对遥感数据进行一系列校正和转换将原始数字图像格式转换为辐射值或反射率值。然后根据经验选择不同波段或波段组合的数据与同步观测的地面数据进行统计分析,再经检验得到最后满意的模型方程(如图)。

图1:遥感监测水质步骤简图

2水质遥感监测常用的遥感数据

2.1多光谱遥感数据。在水质遥感监测中常用的多光谱遥感数据,包括美国Landsat卫星的MSS、TM、ETM 数据,法国SPOT卫星的HRV数据,气象卫星NOAA的AVHRR数据,印度遥感IRS系统的LISS数据,日本JERS卫星的OPS(光学传感器)接收的多光谱图像数据,中巴地球资源1号卫星(CBERS--1)CCD相机数据等。

Landsat数据是目前应用较广的数据。1972年Landsat1发射后,MSS数据便开始被用于水质研究中。如解亚龙等用MSS数据对滇池悬浮物污染丰度进行了研究,明确了遥感数据与悬浮物浓度的关系;张海林等用MSS和TM数据建立了内陆水体的水质模型;Anne等人用TM和ETM 数据对芬兰的海岸水体进行了研究。

SPOT地球观测卫星系统,较陆地卫星最大的优势是最高空间分辨率达10m。SPOT数据应用于水质研究中,学者们也做了一些研究。如可以利用SPOT数据来估算悬浮物质浓度和估计藻类生物参数。

AVHRR(高级甚高分辨率辐射计)是装载在NOAA列卫星上的传感器,每天都可以提供可见光图像和两幅热红外图像,在水质监测等许多领域广泛应用,如1986年,国家海洋局第二海洋研究所用NOAA数据对杭州湾悬浮固体浓度进行了研究。

2.2高光谱遥感数据

2.2.1成像光谱仪数据。成像光谱仪也称高光谱成像仪,实质上是将二维图像和地物光谱测量结合起来的图谱合一的遥感技术,其光谱分辨率高达纳米数量级。国内外的学者主要利用的有:美国的AVIRIS数据、加拿大的CASI数据、芬兰的AISA数据、中国的PHI数据以及OMIS数据、SEAWIFS数据等进行了水体水质遥感研究,对一些水质参数,如叶绿素浓度、悬浮物浓度、溶解性有机物作了估测。

2.2.2非成像光谱仪数据。非成像光谱仪主要指各种野外工作时用的地面光谱测量仪,地物的光谱反射率不以影像的形式记录,而以图形等非影像形式记录。常见的有ASD野外光谱仪、便携式超光谱仪等。如对我国太湖进行水质监测时,水面光谱测量就用了GRE-1500便携式超光谱仪,光谱的响应范围0.30~1.1um,共512个测量通道,主要将其中0.35~0.90um的316个通道的数据用于水质光谱分析。并且非成像光谱仪与星载高光谱数据的结合,可望研究出具有一定适用性的水质参数反演模型。

2.3新型卫星遥感数据。新的卫星陆续升空为水质遥感监测提供了更高空间、时间和光谱分辨率的遥感数据。如美国的LandsatETM 、EO--1ALI、MODIS,欧空局的EnvlsatMERIS等多光谱数据和美国的EO-1Hyperion高光谱数据。Koponen用AISA数据模拟MERIS数据对芬兰南部的湖泊水质进行分类,结果表明分类精度和利用AISA数据几乎相同;Hanna等利用AISA数据模拟MODIS和MERIS数据来研究这两种数据在水质监测中的可用性时发现;MERIS以705nm为中心的波段9很适合用来估算叶绿素a的浓度,但是利用模拟的MODIS数据得到的算法精度并不高。Sabine等把CASI数据和HyMap数据结合,对德国梅克莱堡州湖区水质进行了监测,为营养参数和叶绿素浓度的定量化建立了算法。

3水质遥感存在的问题与发展趋势

3.1存在的问题:①多数限定于定性研究,或进行已有的航空和卫星遥感数据分析,却很少进行定量分析。②监测精度不高,各种算法以经验、半经验方法为主。③算法具有局部性、地方性和季节性,适用性、可移植性差。④监测的水质参数少,主要集中在悬浮沉积物、叶绿素和透明度、浑浊度等参数。⑤遥感水质监测的波段范围小,多集中于可见光和近红外波段范围,而且光谱分辨率大小不等,尤其是缺乏微波波段表面水质的研究。

3.2发展趋势

3.2.1建立遥感监测技术体系。研究利用新型遥感数据进行水质定量监测的关键技术与方法,形成一个标准化的水安全定量遥感监测技术体系,针对不同类型的内陆水体,建立多种水质参数反演算法,实现实验遥感和定量遥感的跨跃,从中获得原始创新性的成果。

3.2.2加强水质遥感基础研究。加深对遥感机理的认识,特别是水质对表层水体的光学和热量特征的影响机理上,以进一步发展基于物理的模型,把水质参数更好的和遥感器获得的光学测量值联系起来;加深目视解译和数字图象处理的研究,提高遥感影象的解译精度;增强高光谱遥感的研究,完善航空成像光谱仪数据处理技术。

3.2.3开展微波波段对水质的遥感监测。常规水质遥感监测波段范围多数选择在可见光或近红外,尤其是缺乏微波波段表面水质的研究情况。将微波波段与可见光或近红外复合可提高对表面水质参数的反演能力。

3.2.4拓宽遥感水质监测项。现阶段水质遥感局限于某些特定的水质参数,叶绿素、悬浮物及与之相关的水体透明度、浑浊度等参数,对可溶性有机物、COD等参数光谱特征和定量遥感监测研究较少,拓宽遥感监测项是今后的发展趋势之一。应加强其他水质参数的光谱特征研究,以扩大水质参数的定量监测种类,进一步建立不同水质参数的光谱特征数据库。

3.2.5提高水质遥感监测精度。研究表明利用遥感进行水质参数反演,其反演精度、稳定度、空间可扩展性受遥感波段设置影响较大,利用星载高光谱数据进行水质参数反演,对其上百的波段宽度为10nm左右的连续波段与主要水质参数的波谱响应特性进行研究,确定水质参数诊断性波谱及波段组合,形成构造水质参数遥感模型和反演的核心技术,提高水质监测精度。

3.2.6扩展水质遥感监测模型空间。系统深入的研究水质组分的内在光学特性,利用高光谱数据和中、低分辨率多光谱数据进行水质遥感定量监测机理研究,进行水质组分的

定量提取和组分间混合信息的剥离,消除水质组分间的相互干扰,建立不受时间和地域限制的水质参数反演算法,形成利用中内陆水体水质多光谱遥感监测方法和技术研究低分辨率遥感数据进行大范围、动态监测的遥感定量模型。

3.2.7改进统计分析技术。利用光谱分辨率较低的宽波段遥感数据得到的水质参数算法精度都不是很高,可以借鉴已在地质、生态等领域应用的混合光谱分解技术,人工神经网络分类技术等,充分挖掘水质信息,建立不受时间和地域限制的水质参数反演算法,提高遥感定量监测精度。

3.2.8综合利用“3S”技术。利用遥感技术视域广,信息更新快的特点,实时、快速地提取大面积流域及其周边地区的水环境信息及各种变化参数;GPS为所获取的空间目标及属性信息提供实时、快速的空间定位,实现空间与地面实测数据的对应关系;GIS完成庞大的水资源环境信息存储、管理和分析。将“3S”技术在水质遥感监测中综合应用,建立水质遥感监测和评价系统,实现水环境质量信息的准确、动态快速,推动国家水安全预警系统建设。参考文献:

[1]张继贤,乔平林.水资源环境遥感监测与评价[M].北京:测绘出版社,20__.

[2]谢欢,童小华.水质监测与评价中的遥感应用[J].遥感信息,20__.

[3]齐峰,王学军.内陆水体水质监测与评价中的饿遥感应用[J].环境科学进展,1999.

[4]解亚龙,李勃,王星捷等.滇池悬浮物污染丰度的遥感检测分析[J].昆明理工大学学报,20__.

[5]张海林,何报寅.遥感应用于湖泊富营养化评价的研究[J].上海环境科学,20__.

[6]刘灿德,何报寅.水质遥感监测研究进展[J].世界科技研究与发展,20__.

[7]万余庆,张凤丽,闫永忠.高光谱遥感技术在水环境监测中的应用研究[J].国土资源遥感,20__.

[8]周艺,周伟奇,王世新等.遥感技术在内陆水体水质监测中的应用[J].水科学进展,20__.

[9]李嵘.遥感技术在水环境监测中的应用研究[J].江西化工,20__.

[10]顾先冰,司群英.国内外遥感卫星发展现状[J].航天返回与遥感,20__.

作者简介:

第5篇:遥感成像原理与遥感图像特征范文

关键词:地质矿产勘查;3S技术;应用研究

在当前我国经济和社会平稳可持续发展的背景下,地质矿产勘查工作成了非常重要的工作,它为国民经济发展提供了重要能源基础,能够有效保障各行各领域的能源需求。随着我国综合国力的不断增强,科学技术的不断进步,越来越多的先进技术开始在地质矿产勘查领域中应用,其中最为突出的就是3S技术,能够极大的提高勘察工作的效率。

1.3S技术分析

所谓3S技术,即全球定位技术(GPS)、地理信息系统(GIS)、遥感技术(RS)的统称,这三种技术在实践中能够形成同一互补且相互独立的有机整体。其中全球定位技术(GPS)所起到的作用是进行位置坐标标注、地理信息系统(GIS)对数据进行分析和比对并筛选出有效信息、遥感技术(RS)作用是获取样本数据,3S技术的集成应用如图1所示。

1.1全球定位系统技术

目前全球定位系统应用最广泛的是美国开发研制的GPS系统,该系统由24枚离地约20000km的卫星组成,围绕着6个轨道进行运转,使用者通过该系统能够获取到准确的位置,误差仅为1m左右。GPS不仅仅能够提供准确的位置,还能够提供运行轨迹分析。在实践中应用具有以下明显的优势:一是稳定性较好,不受外界天气因素的干扰、不受时间、空间的干扰,能够实时地提供准确的多维定点;二是能够较为快速地进行定时、定点,还能够对运行轨道进行预测和分析;三是应用范围广泛,不仅仅在目前的地质矿产勘查方面能够实现应用,同时在交通、水利等诸多领域也有着广泛的应用;四是服务的范围广泛,如上文所述,GPS系统只需要24颗卫星即可覆盖全球的定位;五是定位法则便捷,使用者不需要在特定位置进行定位,可以检测到运动的物体,随意移动都可以获取到准确的数据。

1.2地理信息系统技术

地理信息系统简而言之,属于一种处理数据的计算机软件系统,能够对地理信息数据进行管理。主要的作用在于能够对数据进行分析、修改、储存、分类、输出等一系列的处理。同时还能够通过数据加工以特定的形式进行转换,标注在地图上,进而实现信息的可视化。除此之外,地理信息系统还能够对数据进行处理和加工,进行动态显示,能够实现数据的实时监控。地理信息系统的数据处理是一个非常复杂的系统,所处理的数据能够为地质矿产提供有效准确的数据。

1.3遥感技术

遥感技术的原理是通过电磁波的发射、吸收这样反复循环的过程,对电磁波信息进行分析,形成数据图像,通过不直接接触物体的情况下,来辨识物体。遥感技术成像的方法有两种,即胶卷成像,利用相机胶卷来进行拍摄,发展至今,胶卷成像已成为过去式,目前普遍采用数字成像的方式,利用计算机来对电波信号进行处理,转换为规则图像。遥感技术能够节省人力物力,简单地获取到有效的信息,尤其是面对一些环境较为复杂的区域,遥感技术能够拍摄出不同角度的信息,通过三维成像的方式来还原物体图像。

2.地质矿产勘查工作中3S技术应用分析

2.1全球定位系统的应用分析

全球定位GPS系统自投入使用之日到如今,已运用了几十年的时间,全球定位GPS系统的应用能够为地质工作者提供地质矿产的时间、空间和地理数据信息,具有非常大的应用价值。全球定位GPS系统操作简单,卫星定位技术作为信息化的重要组成部分,在地质矿产工作的勘查领域已成为非常重要的部分。在矿产资源勘查的实践中,我们主要通过全球定位GPS系统和北斗卫星定位系统。全球定位GPS系统相对于传统的无线电定位系统而言,受天气的影响更小,准确度更高,通过对卫星定位系统的利用,能够有效监测地质情况,能够准确定位出矿产资源的具置,对矿产发展情况进行准确的定位,以便于地质工作者更加高效率的开展工作。全球定位GPS系统在地质矿产勘查领域中进行测量时,需要根据实际的地形进行测绘,主要的目的是为矿区提供不同比例的地形图,以满足实际勘查的需要,针对不同的项目,以往主要采取的是经纬仪和测距仪进行测图,实际运行过程中需要按照设定控制网点、控制次网点并结合加密控制点进行测量,随着科学技术的发展,上述测量的方式烦琐,全球定位GPS系统的应用能够满足实际项目所需要的精度、速度以及费用等方面的要求,操作相对简单,在地质测量中能够广泛使用。在发现矿产藏区后,首先应该建立GPS网,由于不属于不同的地质勘探工程,矿区可以通过地质技术来制作简易的全球定位GPS系统控制网,在此基础之上来实现测设基线的项目,以确保地质勘查项目的顺利运行。针对矿区GPS控制网构建而言,能够完成地质工程的测量工作,这样一来不仅仅能够节省工作时间,还能够极大提升经济效益。在完成基线点测量工作之后,开始沿着基线点布设主要的测量线,沿着基线点零的位置,顺时针将望远镜旋转90°,将勘探线方向作为主要的施测剖面。然后在勘探方向分别通过全球定位GPS系统对不同的地形点进行探勘,并利用全球定位GPS系统对地形点进行测定,并根据坐标数据来外出完成测量作用,对数据进行汇总分析后,可绘制出矿区的剖面图。

2.2地理信息技术的应用分析

地理信息技术是基于信息技术发展而来的地理信息管理系统,信息技术本身就具备了综合信息、动态预测、信息分析和处理的能力,因此地理信息技术优势十分明显。地理信息技术包含了数据的管理、传输、录入和分析等,最后经过处理得出最终的数据,能够直观地展现在地质工作者面前,在减灾防灾方面具有非常大的应用价值。我国各地区的自然资源局就通过地理信息技术,绘制了全国的地质信息图,这对于全国各地的矿产开发、勘查工作提供了良好的基础,同时也避免了数据重复产生的成本。利用地理信息技术还能够对区域的矿洞、山脉等地形图具体成数据信息,产生多维度的信息预报,为地质发展情况提供准确有效的信息数据,同时也为地质矿产勘查和开发提供信息平台,有效提高了工作效率。在开展地质矿产勘查的过程中,地理信息技术应用的地质图像能够发挥出重要的作用,因此在进行勘查的过程中,地质图像的准确性至关重要,是之后工作的重要基础,为确保地质图像的准确性,需要在测绘领域、采矿领域数据工作等方面加强质量控制,在实际勘查的工作中,工作人员可以应用专业的分析模型和地理信息系统,这对确保地质图像的准确性有很大的效果。地质矿产勘查的信息资料对地质矿产勘查有很大的影响,地质工作人员在工作中会引用到前人留下的信息资料,因此为提高地质矿产勘查工作的质量,必须要加强地质探勘的资料管理工作,应用地理信息技术能够实现地质勘探资料的电子化录入,这对于信息资料的安全性保障有了很大的提高,通过地理信息技术还能够实现图形与信息资料的建立,能够为用户提供可靠的依据,因此为确保地理信息系统的高效性,必须要加强矿产勘查资料的完整性和真实性。为进一步提高地质勘查工作的有效性和高效性,还需要加强地质定量分析工作,这是非常关键的内容。在实际工作过程中,地理信息系统能够实现对信息数据的充分利用,同时还可以构建数据模型,提高信息数据的处理效率,这对促进矿产勘查工作的顺利进行意义重大,目前这项信息数据处理技术发展并不全面,在外来需要不断地提高智能化的技术水平,才能够有效发挥出地理信息系统的应用效果。

2.3遥感技术的应用分析

随着科学技术的进步,遥感技术也在不断地改进和完善,在地质矿产勘查领域,遥感技术的应用已不再是纯粹的遥感技术应用,同时还集成了地球物理信息、图像处理技术、数据库技术、三维可视化及虚拟仿真等诸多先进技术,这样综合的技术应用,实现了虚拟矿产资源勘查区,以实现对矿产资源的虚拟勘查,如图2所示。遥感技术作为3S技术中的一种,能够对区域的地壳和地层结构进行综合分析,并具体绘制成像。同时还能够针对该地区的矿产资源,描绘出具体的分布图与分布规律信息。这对于传统采用人工的方式进行勘察,效率提升很大,同时对于环境恶劣、荒漠地区的勘查,遥感技术的应用能够替代人工的方式进行资料收集,为地质矿产勘查提供了极大的便利,提高了矿床的发现概率,为地质矿产的勘查、开发,提供了良好的数据基础。不同地区的地质构造运动,导致了地质矿产的地区分布差异,特定区域中地质矿产存在的条件一般为特定的岩石组合,因此岩石作用十分重要,岩石自身所具有的光谱特点为遥感技术的应用提供了极大的便利,分析遥感图像接触图像的各个参数进行差异化分析,以识别岩石的特性,而地质矿产的分部主要集中在地质结构中的边缘以及特殊变异部位。通过不同遥感技术进行找矿的关键在于从矿物质产生的时间上进行分析,以确定矿产分部的因素,是否展现出带状分部的特征,在特定矿产区域,借助影响提取主要的信息,同时能够对相应的地质影响进行分析,将有效的矿产资源位置信息提取出来,让地质工作者对整个区域的地质情况有一个综合的把握,进而确定找矿的理论依据。遥感技术的应用能够一定程度上解释地质信息,地质构造运动会导致地壳内部活动,同时矿作用、热事件、变质会同步进行,地质结构事件控制了地质内部矿产资源储量的变动,遥感技术的应用能够观察到遥感图像的变化情况,当遥感图像变动为线性时,图像上会显示呈持续形式或断续形式的线状、带状的分布影像,这个遥感影像说明地质结构中存在着断裂、节理等结构,控制了岩浆的具体活动,同时对矿液的移动、储存等都起到了十分重要的作用。当地质结构在遥感图像呈现出环状时,即呈现出圆形的结构环状,说明地质结构的活动主要发生在地壳中,这是一个非常鲜明的外在特征。总而言之,无论遥感图像表现出来的形状如何,是线性或者环形,通过遥感技术的应用,所形成的图像可对地质工作者进行深入直观的分析,这对于地质矿产勘查十分有帮助。

第6篇:遥感成像原理与遥感图像特征范文

关键词:遥感信息 目视解译 计算机信息提取

遥感实际上是通过接收(包括主动接收和被动接收方式)探测目标物电磁辐射信息的强弱来表征的,它可以转化为图像的形式以相片或数字图像表现。多波段影像是用多波段遥感器对同一目标(或地区)一次同步摄影或扫描获得的若干幅波段不同的影像。

在遥感影像处理分析过程中,可供利用的影像特征包括:光谱特征、空间特征、极化特征和时间特性。在影像要素中,除色调/彩色与物体的波谱特征有直接的关系外,其余大多与物体的空间特征有关。像元的色调/彩色或波谱特征是最基本的影像要素,如果物体之间或物体与背景之间没有色调/彩色上的差异的话,他们的鉴别就无从说起。其次的影像要素有大小、形状和纹理,它们是构成某种物体或现象的元色调/彩色在空间(即影像)上分布的产物。物体的大小与影像比例尺密切相关;物体影像的形状是物体固有的属性;而纹理则是一组影像中的色调/彩色变化重复出现的产物,一般会给人以影像粗糙或平滑的视觉印象,在区分不同物体和现象时起重要作用。第三级影像要素包括图形、高度和阴影三者,图形往往是一些人工和自然现象所特有的影像特征。

遥感信息提取方法分类

常用的遥感信息提取的方法有两大类:一是目视解译,二是计算机信息提取。

1.1目视解译

目视解译是指利用图像的影像特征(色调或色彩,即波谱特征)和空间特征(形状、大小、阴影、纹理、图形、位置和布局),与多种非遥感信息资料(如地形图、各种专题图)组合,运用其相关规律,进行由此及彼、由表及里、去伪存真的综合分析和逻辑推理的思维过程。早期的目视解译多是纯人工在相片上解译,后来发展为人机交互方式,并应用一系列图像处理方法进行影像的增强,提高影像的视觉效果后在计算机屏幕上解译。

遥感影像目视解译原则

遥感影像目视解译的原则是先“宏观”后“微观”;先“整体”后“局部”;先“已知”后“未知”;先“易”后“难”等。一般判读顺序为,在中小比例尺像片上通常首先判读水系,确定水系的位置和流向,再根据水系确定分水岭的位置,区分流域范围,然后再判读大片农田的位置、居民点的分布和交通道路。在此基础上,再进行地质、地貌等专门要素的判读。

遥感影像目视解译方法

(1)总体观察

观察图像特征,分析图像对判读目的任务的可判读性和各判读目标间的内在联系。观察各种直接判读标志在图像上的反映,从而可以把图像分成大类别以及其他易于识别的地面特征。

(2)对比分析

对比分析包括多波段、多时域图像、多类型图像的对比分析和各判读标志的对比分析。多波段图像对比有利于识别在某一波段图像上灰度相近但在其它波段图像上灰度差别较大的物体;多时域图像对比分析主要用于物体的变化繁衍情况监测;而多各个类型图像对比分析则包括不同成像方式、不同光源成像、不同比例尺图像等之间的对比。各种直接判读标志之间的对比分析,可以识别标志相同(如色调、形状),而另一些标识不同(纹理、结构)的物体。对比分析可以增加不同物体在图像上的差别,以达到识别目的。

(3)综合分析

综合分析主要应用间接判读标志、已有的判读资料、统计资料,对图像上表现得很不明显,或毫无表现的物体、现象进行判读。间接判读标志之间相互制约、相互依存。根据这一特点,可作更加深入细致的判读。如对已知判读为农作物的影像范围,按农作物与气候、地貌、土质的依赖关系,可以进一步区别出作物的种属;河口泥沙沉积的速度、数量与河流汇水区域的土质、地貌、植被等因素有关,长江、黄河河口泥沙沉积情况不同,正是因为流域内的自然环境不同所至。地图资料和统计资料是前人劳动的可靠结果,在判读中起着重要的参考作用,但必须结合现有图像进行综合分析,才能取得满意的结果。实地调查资料,限于某些地区或某些类别的抽样,不一定完全代表整个判读范围的全部特征。只有在综合分析的基础上,才能恰当应用、正确判读。

(4)参数分析

参数分析是在空间遥感的同时,测定遥感区域内一些典型物体(样本)的辐射特性数据、大气透过率和遥感器响应率等数据,然后对这些数据进行分析,达到区分物体的目的。大气透过率的测定可同时在空间和地面测定太阳辐射照度,按简单比值确定。仪器响应率由实验室或飞行定标获取。利用这些数据判定未知物体属性可从两个方面进行。其一,用样本在图像上的灰度与其他影像块比较,凡灰度与某样本灰度值相同者,则与该样本同属性;其二,由地面大量测定各种物体的反射特性或发射特性,然后把它们转化成灰度。然后根据遥感区域内各种物体的灰度,比较图像上的灰度,即可确定各类物体的分布范围。

1.2计算机信息提取

利用计算机进行遥感信息的自动提取则必须使用数字图像,由于地物在同一波段、同一地物在不同波段都具有不同的波谱特征,通过对某种地物在各波段的波谱曲线进行分析,根据其特点进行相应的增强处理后,可以在遥感影像上识别并提取同类目标物。早期的自动分类和图像分割主要是基于光谱特征,后来发展为结合光谱特征、纹理特征、形状特征、空间关系特征等综合因素的计算机信息提取。

1.2.1自动分类

常用的信息提取方法是遥感影像计算机自动分类。首先,对遥感影像室内预判读,然后进行野外调查,旨在建立各种类型的地物与影像特征之间的对应关系并对室内预判结果进行验证。工作转入室内后,选择训练样本并对其进行统计分析,用适当的分类器对遥感数据分类,对分类结果进行后处理,最后进行精度评价。遥感影像的分类一般是基于地物光谱特征、地物形状特征、空间关系特征等方面特征,目前大多数研究还是基于地物光谱特征。在计算机分类之前,往往要做些预处理,如校正、增强、滤波等,以突出目标物特征或消除同一类型目标的不同部位因照射条件不同、地形变化、扫描观测角的不同而造成的亮度差异等。利用遥感图像进行分类,就是对单个像元或比较匀质的像元组给出对应其特征的名称,其原理是利用图像识别技术实现对遥感图像的自动分类。计算机用以识别和分类的主要标志是物体的光谱特性,图像上的其它信息如大小、形状、纹理等标志尚未充分利用。计算机图像分类方法,常见的有两种,即监督分类和非监督分类。监督分类,首先要从欲分类的图像区域中选定一些训练样区,在这样训练区中地物的类别是已知的,用它建立分类标准,然后计算机将按同样的标准对整个图像进行识别和分类。它是一种由已知样本,外推未知区域类别的方法;非监督分类是一种无先验(已知)类别标准的分类方法。对于待研究的对象和区域,没有已知类别或训练样本作标准,而是利用图像数据本身能在特征测量空间中聚集成群的特点,先形成各个数据集,然后再核对这些数据集所代表的物体类别。与监督分类相比,非监督分类具有下列优点:不需要对被研究的地区有事先的了解,对分类的结果与精度要求相同的条件下,在时间和成本上较为节省,但实际上,非监督分类不如监督分类的精度高,所以监督分类使用的更为广泛。

1.2.2纹理特征分析

细小地物在影像上有规律地重复出现,它反映了色调变化的频率,纹理形式很多,包括点、斑、格、垅、栅。在这些形式的基础上根据粗细、疏密、宽窄、长短、直斜和隐显等条件还可再细分为更多的类型。每种类型的地物在影像上都有本身的纹理图案,因此,可以从影像的这一特征识别地物。纹理反映的是亮度(灰度)的空间变化情况,有三个主要标志:某种局部的序列性在比该序列更大的区域内不断重复;序列由基本部分非随机排列组成;各部分大致都是均匀的统一体,在纹理区域内的任何地方都有大致相同的结构尺寸。这个序列的基本部分通常称为纹理基元。因此可以认为纹理是由基元按某种确定性的规律或统计性的规律排列组成的,前者称为确定性纹理(如人工纹理),后者呈随机性纹理(或自然纹理)。对纹理的描述可通过纹理的粗细度、平滑性、颗粒性、随机性、方向性、直线性、周期性、重复性等这些定性或定量的概念特征来表征。相应的众多纹理特征提取算法也可归纳为两大类,即结构法和统计法。结构法把纹理视为由基本纹理元按特定的排列规则构成的周期性重复模式,因此常采用基于传统的Fourier频谱分析方法以确定纹理元及其排列规律。此外结构元统计法和文法纹理分析也是常用的提取方法。结构法在提取自然景观中不规则纹理时就遇到困难,这些纹理很难通过纹理元的重复出现来表示,而且纹理元的抽取和排列规则的表达本身就是一个极其困难的问题。在遥感影像中纹理绝大部分属随机性,服从统计分布,一般采用统计法纹理分析。目前用得比较多的方法包括:共生矩阵法、分形维方法、马尔可夫随机场方法等。共生矩阵是一比较传统的纹理描述方法,它可从多个侧面描述影像纹理特征。

1.2.3图像分割

图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程,此处特性可以是像素的灰度、颜色、纹理等预先定义的目标可以对应单个区域,也可以对应多个区域。图像分割是由图像处理到图像分析的关键步骤,在图像工程中占据重要的位置。一方面,它是目标表达的基础,对特征测量有重要的影响;另一方面,因为图像分割及其基于分割的目标表达、特征抽取和参数测量的将原始图像转化为更抽象更紧凑的形式,使得更高层的图像分析和理解成为可能。

图像分割是图像理解的基础,而在理论上图像分割又依赖图像理解,彼此是紧密关联的。图像分割在一般意义下是十分困难的问题,目前的图像分割一般作为图像的前期处理阶段,是针对分割对象的技术,是与问题相关的,如最常用到的利用阈值化处理进行的图像分割。图像分割有三种不同的途径,其一是将各象素划归到相应物体或区域的象素聚类方法即区域法,其二是通过直接确定区域间的边界来实现分割的边界方法,其三是首先检测边缘象素再将边缘象素连接起来构成边界形成分割。

1)阈值与图像分割

阈值是在分割时作为区分物体与背景象素的门限,大于或等于阈值的象素属于物体,而其它属于背景。这种方法对于在物体与背景之间存在明显差别(对比)的景物分割十分有效。实际上,在任何实际应用的图像处理系统中,都要用到阈值化技术。为了有效地分割物体与背景,人们发展了各种各样的阈值处理技术,包括全局阈值、自适应阈值、最佳阈值等等。 2)梯度与图像分割

当物体与背景有明显对比度时,物体的边界处于图像梯度最高的点上,通过跟踪图像中具有最高梯度的点的方式获得物体的边界,可以实现图像分割。这种方法容易受到噪声的影响而偏离物体边界,通常需要在跟踪前对梯度图像进行平滑等处理,再采用边界搜索跟踪算法来实现。

3)边界提取与轮廓跟踪

为了获得图像的边缘人们提出了多种边缘检测方法,如Sobel, Canny edge, LoG。在边缘图像的基础上,需要通过平滑、形态学等处理去除噪声点、毛刺、空洞等不需要的部分,再通过细化、边缘连接和跟踪等方法获得物体的轮廓边界。

4)Hough变换

对于图像中某些符合参数模型的主导特征,如直线、圆、椭圆等,可以通过对其参数进行聚类的方法,抽取相应的特征。

5)区域增长

区域增长方法是根据同一物体区域内象素的相似性质来聚集象素点的方法,从初始区域(如小邻域或甚至于每个象素)开始,将相邻的具有同样性质的象素或其它区域归并到目前的区域中从而逐步增长区域,直至没有可以归并的点或其它小区域为止。区域内象素的相似性度量可以包括平均灰度值、纹理、颜色等信息。

区域增长方法是一种比较普遍的方法,在没有先验知识可以利用时,可以取得最佳的性能,可以用来分割比较复杂的图像,如自然景物。但是,区域增长方法是一种迭代的方法,空间和时间开销都比较大。

1.2.4面向对象的遥感信息提取

第7篇:遥感成像原理与遥感图像特征范文

关键词: 光栅型成像光谱仪; 畸变量; 图像拼接

引言20世纪80年代开始,成像光谱仪因能够获取高光谱分辨率景物或目标的高光谱图像,被广泛应用在航空、航天器上,从而对陆地、大气、海洋等进行观测[1]。成像光谱仪按分光方式的不同可分为光栅色散型、棱镜色散型、滤光片型、干涉型和计算层析型。光栅型成像光谱仪中不同采样步长的选择及不合理的拼接方法会导致目标图像的畸变,从而会影响成像光谱仪在探测目标时的准确性和精度,使图像信息缺失或者变形,造成探测误差。因此可以看出畸变是影响光谱测量精度的重要原因之一,通过合理的方法减小畸变就非常必要。1光栅型成像光谱仪成像原理色散型成像光谱仪工作原理如图1所示,目标物的反射光通过前置物镜成像在狭缝平面上,狭缝作为视场光阑使物体条带的像通过,挡掉其他部分光。目标物的条带像经准直物镜照射到色散元件上,经色散元件在垂直狭缝方向按波长(λ)色散,由成像物镜会聚成像在光谱仪像平面上的二维CCD探测器上。焦平面上平行于狭缝的水平方向,称为空间维,每一行像元对应于一个光谱波段的狭缝像;焦平面上垂直于狭缝方向,即色散方向,称为光谱维,每一列像元对应于狭缝上一个空间瞬时采样视场的不同波长的光谱像。这样,面阵探测器得到的每帧图像是与狭缝对应的目标条带区域的光谱图像数据。若让成像光谱仪相对目标运动,让前置物镜形成的目标像依次通过狭缝,同时记录狭缝的光谱图像,即得到目标的光谱图像三维数据立方体[2]。本文研究的光栅型成像光谱仪在扫描采样的过程中,为了获得准确的目标图像,必须对载物台的运动速度进行精确的控制。

本系统利用步进电机驱动载物台运动。因此,载物台的运动速度是通过对步进电机的转速控制来实现的,而步进电机的转速是由软件来控制。步进电机给定的步长数即采样步长直接影响到获得目标像的畸变量。由上所述的原理可知,由于目标在探测器上成像只有一列,因此必须通过扫描的方式才能得到目标景物的高光谱图像。光学仪器第35卷

第2期韩军,等:光栅成像光谱仪图像畸变校准方法研究

2拼接原理传统的块匹配法虽然精度高但存在速度过慢的缺点,本文应用了一种结合区域特征与小波变换的图像拼接方法,拼接流程如图2所示。

2.1图像预处理图像在采集过程中经常会受到光照明暗程度以及设备性能的优劣等因素的影响而导致同一时间、同一地点拍摄的图片在灰度值上的偏差,所以在后续处理前要对采集图像进行预处理。

2.2图像提取根据光栅型成像光谱仪的工作原理,某一通道的目标信息是通过对采集到的一系列图像中每一幅图像特定波长的狭缝像信息准确的提取和合成而来。

2.2.1通带宽度的确定为了获得一个通道的宽度,所以要选择单色光源,由于激光单色性好,本文选择波长为632.8 nm的HeNe激光器作为光源进行测量,读出光谱采样点,对采样数据点进行高斯拟合处理就可以确定其通带宽度。由于要提取的是某特定波长的通带信息,所以需对波长定标。

2.2.2波长定标由于所用仪器的光谱范围是400~900 nm,用低压汞灯作为标准光源来定标。由于在400~900 nm的可见光波段内的特征谱线有限,所以本文利用了二级光谱。选择404.656 nm,435.833 nm,546.073 nm一级光谱和730.966 nm,809.312 nm,871.666 nm二级光谱等6条特征光谱[3]进行波长定标。

2.3小波分解小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节[4]。

2.4区域特征的选取和融合规则主要研究基于区域的小波融合算法,选用平均梯度作为区域特征来构造新的融合算法,平均梯度用来衡量图像的清晰程度,由此来反映图像微小的细节反差。

2.5融合规则与算法利用相关系数的公式,采用循环式搜索与已经截下来的图片相关系数大于等于某一数值,一般都在相关系数大于等于0.9以上的模块或区域,然后进行相应的图像拼接。具体来说,该算法可以分为以下几个步骤:(1)对源图像进行二维小波变换,将源图像分解为表示低频信息的近似子图像和表示高频信息的细节子图像,细节子图像分为水平方向,垂直方向和对角线方向;(2)使用加权,平均的融合规则合并最后一个分解层的近似子图像,近似子图像是图像滤除细节信息所得,包含的是主要的背景信息;(3)对于细节子图像系列采用基于邻域平均梯度的融合规则;(4)一致性的检验。利用3×3或者5×5的窗口在融合后的图像上移动,通过窗口周围的像素来验证窗口中心的像素,如果中心像素取自源图像A的子图像,而周围的像素大部分取自源图像B的子图像,则把该中心像素改为对应的源图像B的子图像在该位置的系数;(5)重构图像。根据融合规则确定的各子图像进行小波反变换,重构出融合图像。3实验

3.1通带信息提取结果选择波长为632.8 nm的HeNe激光器作为光源进行测量,读出的光谱采样点,对采样数据点进行高斯拟合处理得出一个通带宽度占13个像元,如表1所示为光谱采样点数据。选择404.656 nm,435.833 nm,546.073 nm一级光谱和730.966 nm,809.312 nm,871.666 nm二级光谱等6条特征光谱[5],实验采集到的特征波长和CCD探测单元的对应关系如表2所示。根据表2中的数据,采用最小二乘法进行拟合。 通过对线性拟合、二次拟合、三次拟合函数对已知波长误差的均方根比较可知,三次多项式拟合可达到较高的波长定位精度,因此对于光谱仪波长定标是采用三次多项式拟合的方法。图3为其中一幅狭缝像及提取信息后的图像,其中(a)为原始狭缝像。(b)为提取后的图像。

3.2小波分解效果图图4为小波分解后的三分量:

4结论本文介绍了一定采样步长不同拼接方法下校正光栅成像光谱仪图像畸变量的原理和方法。实验证明,基于区域和小波变换的拼接方法在采样步长为0.002 1°时分划板图像的畸变量得到了减小,实现了成像光谱仪图像畸变的修正。本文提出的方法有效地减小了成像光谱仪图像的畸变,提高了成像光谱仪在探测目标时的准确性和精度,避免了因图像信息缺失或者变形而造成的探测误差。参考文献:

[1]郑玉权,禹秉熙.成像光谱仪分光技术概览[J].遥感学报,2002,6(1):75-79.

[2]杜述松,王咏梅,王英鉴.空间应用干涉成像光谱仪的研究[J].光学仪器,2008,30(3):77-82.

第8篇:遥感成像原理与遥感图像特征范文

摘要:遥感技术已经成为一项快速、准确地监测土地利用变化的重要手段,全国地理国情普查是一项重大的工程项目,在全国范围内,遥感影像在整个地理国情中占有很大的比重。

关键词:遥感影像;地理国情;目视解译;人工解译;时效性

引言

地理国情主要是指地表自然和人文地理要素的空间分布、特征及相互关系,是基本国情的重要组成部分。开展全国地理国情普查,系统掌握权威、客观、准确的地理信息,是制定和实施国家发展战略和规划、优化国土空间开发格局和各类资源配置的重要依据,是推进生态环境保护、建设资源节约型和环境友好型社会的重要支撑,是做好防灾减灾工作和急救保障服务的重要保障,也是相关行业开展调查统计工作的重要数据基础。为了全面把握当前中国的地理情况和满足经济社会发展需要和生态文明建设,国务院决定开展2013~2015年国情第一次国家地理的调查。遥感图像信息提取技术能够很好的利用遥感图像中丰富的光谱、纹理、形状等信息,提取的结果更适合于提取地理国情信息。这种技术在地理条件监测中的应用,不仅可以提高地理国情普查的地理条件的速度,而且还可以减少工作量,大大提高普查的效率。广州市需完成覆盖行政区域范围内约7434m2地理国情普查数据采集,开展广州市地理国情调查是了解广州市城市化进程和社会经济发展中的基本矛盾及发展趋势的基本手段,是制定发展政策的重要支撑。通过全面获取多尺度、多时相的历史数据资料、遥感影像、土地利用信息以及社会经济统计信息等普查成果资料,结合遥感、遥感影像等空间技术,对广州市发展过程中的地理国情特征进行动态监测与分析,包括:城市扩张动态监测分析和生态空间动态监测分析等两部分内容。

1遥感影像的分类与信息提取方法

1.1遥感影像的分类方法

遥感图像信息提取是基于各种样本的内在相似性。遥感图像同一物体在相同的外部条件(地形、照度、季节等)上具有相同或相近的光谱特征、纹理特征和空间特征,从而表现出相同的某种固有的相似性。同一类的像素特征在同一特征空间区域内具有不同的光谱特征或纹理特征,并在不同的特征空间区域进行聚类。传统的图像分类方法主要针对中低分辨率图像的设计,因为低空间分辨率的遥感图像本身就是混合像元的单像素。光谱分辨率和低空间分辨率遥感图像普遍较高,高分辨率遥感影像光谱特征相对不丰富,应采用自上而下的综合处理方法。高分辨率遥感影像通过建模可以从分割图像的光谱信息中获取空间特征、形状特征、纹理特征等信息。如图1简单的遥感影像图。

1.2遥感影像的信息提取方法

目视解译。视觉的解释是基于不同光谱特性的结构规律和发展规律的解释,各种类型的目标图像的纹理特征、几何成像原理和空间特征,通过分析图像中的物体的视觉识别土地类型的特征,从而提取特征信息。基于像素的分类方法是一种传统的计算机分类方法。它应用广泛,技术发展相对成熟。它主要包括监督分类和非监督分类:监督分类是自上而下的知识驱动的方法,即先进行分类训练,即学习和分类第一。包括最小距离分类法、分类法和多级开窗法特性曲线、最大分类法;非监督分类是一种自下而上的数据驱动的方法,假设遥感图像相似的对象在相同条件下具有相同的光谱信息特征。非监督分类主要采用聚类分析方法,聚类是一组按相似性划分为若干类的像素,即“物以类聚”。其目的是使尽可能小的同一类像素之间的距离,以及在不同的类的像素之间的距离尽可能大。非监督分类方法主要有层次聚类法和动态聚类法。面向对象分类方法。面向对象的遥感图像光谱特征的遥感分类技术,结合形态、特征尺寸、纹理、几何特征的位置和结构、目标对象和周围环境之间的关系和其他因素,根据适当的对象分类规则建立的特点,完成图像信息提取,所以你可以充分利用图像信息,提高测量精度,有效地避免了传统的基于像素的分类方法发生信息丢失的现象,也可以有效地避免噪声的影响,采用合适的分割尺度设置、噪声,以像素对象为特定对象,而不是分别提取分类,从而避免“椒盐现象”。

2面向对象分类方法的研究现状

自上世纪90年代以来,面向对象的信息提取技术得到了飞速的发展,为了提取图像,用面向对象分类法,充分利用光谱、纹理和形状特征的图像对象的信息,取得了较高的分类精度;通过各种数据源收集k,在高分辨率遥感遥感影像为数据源,多尺度影像分割和面向对象的图像分析方法为主要技术,城市绿化覆盖信息的自动提取,达到绿色城市的库存。

3几种遥感影像分类技术的应用

3.1人工目视判读分类

提取影像信息遥感图像的人工视觉分类是通过肉眼观察到的解译解决方案,图像特征和图像首先总结了对象,然后建立解译标志的对象,根据人工的经验解决矢量对象的边缘类型特点的解读和阐释。根据土地利用现状的分类,类型为耕地、园地、林地、草地、房屋建筑物、道路、构筑物、人工堆掘地和水域。通过人工视觉判别分类结果,对象的分类比较清晰,不同类别的土地之间有一个明确的分界,并且边缘的斑点是相对平滑的。因为它是通过人眼的分类,判断和分类的主要依据是纹理和颜色,从而容易造成泄漏和错误。一些细长或小尺寸类是容易错过的,一些小但显着差异的纹理不同的地面对象容易出错,手动收集了一个相对较长的时间,特别是大面积的图斑花费更多的时间和人力。

3.2基于面向对象的遥感影像信息提取

面向对象的分类方法首先对图像分割和对象提取是同质的,特征或特征的组合和建立分类系统,最终实现用相应的分类方法,不同类型的地形信息提取。采用面向对象的遥感影像信息提取技术,分类结果相吻合,特别是对于耕地信息,提取结果更准确。但通过目视判读,这种方法会把一些果园和山脊转化为耕地,将一些图像信息和相邻但不接近的相似像素的实际特征的位置分为一类,因为土地流转现象频繁,果园的纹理特性和农作物中的一部分非常接近,导致分类错误,需要探讨未来研究更好的方法,进一步提高分类精度。

4遥感影像在地理国情的作用

4.1内业采集数据

(1)以遥感正射影像为基础底图,利用收集的参考数据,采用人工解译的方式,参考地理信息、土地利用、水利普查等资料,进行地表覆盖分类。基于所采用的数字正射影像数据,参照地表覆盖外业调查成果,对地表覆盖图斑的范围、位置及类型进行编辑、修改,包括对相关图斑的拆分、合并和修改。例如:单栋房屋离连片房屋建筑区距离较小,但与周边其他房屋建筑在形状、结构及排列上明显不同的单独房屋应编辑为独立房屋建筑;对于乡村地区集聚程度较低、自然散乱分布、被其他类型分隔的房屋建筑,编辑为独立房屋建筑。地表覆盖分类数据编辑过程中,应注意道路、水体、构筑物等地理国情要素与地表覆盖分类数据同时表达时,二者之间的空间位置和属性逻辑关系的正确性。其中,道路中心线一般应穿过相应路面图斑范围内;堤坝要素中心线一般位于作为覆盖类型的堤坝图斑范围内。人工解译和编辑主要是在分割和分类的基础上,将分类结果套合正射影像,参考基础地理信息数据及收集到的专题资料,对影像进行识别和判读,对初步解译结果进行合并、拆分、重构等编辑。主要包括地物的删除和添加、地物的合并和拆分、地物边界线修正、地物空间位置处理、地物属性信息修改或添加等。

2)遥感影像解译的采集本着从已知到未知、先易后难、先地表后深部、先整体后局部、先宏观后微观与先图形后线形的原则,重点开展基于遥感影像的解译地表覆盖信息提取,并通过解译与编辑,以提高整体分类精度,满足地表覆盖信息地理国情普查对地表覆盖分类精度的要求。

4.2提供地理方面信息,提高政策分析的科学

在国土资源决策管理、农业资源信息、区域农业规划、农作物研究、区域农业可持续发展研究、农业生态环境监测、基于GPS和遥感影像的精细农业信息处理系统研究、森林资源的开发、利用和保护、土地利用与土地覆被现状分类与制图;以及土地利用与土地覆被动态监测等方面收集、存储了大量数据信息,建立相应地理数据库,实现空间数据的浏览、检索、分析等,并产生专题地图,建立各种模型,利用遥感影像的模型功能和空间动态分析以及预测能力,实现资源管理的信息化。我国资源短缺、环境污染严重、区域发展不协调等问题的存在使得建设资源节约型社会更加紧迫。这需要监测地理国情,通过获取地形、土地利用、粮食生长、交通状况、污染物分布、能源资源分布等地理国情信息,加强对资源环境的调查、监测、评估和预测,为政策分析提供更多定量化的重要资料和科学依据,使政策分析结果更加准确和切合实际。外业调查成果包括外业调查数据、元数据、原始轨迹数据、外业调查技术总结等。其中外业调查数据包括:数字调查成果或纸质调查成果扫描数据、补测数据。该成果是对普查底图数据的类型、边界、属性等信息进行编辑、修改的主要依据。在农村土地利用现状更新调查检查验收过程中,对农村土地利用现状更新调查工程项目的质量评定,为了对农村土地利用现状更新调查工程项目的质量进行公平准确评价,应采用外业成果质量检查验收方法探讨。

4.3遥感影像防灾减灾方面的信息

从国内外发展状况看,遥感影像在重大自然灾害和灾情评估中有广泛的应用领域。地理国情中就包括灾难环境和灾难分布,灾区状况和重建情况等。其空间信息需要通过遥感影像技术获得、整合、,最终用于防灾减灾的决策中。中国作为世界最大的发展中国家之一,既是自然灾害高发的国家,也是信息技术高度发达的国家。在利用现代信息技术加强灾害管理方面,已积累了丰富的经验。

4.4遥感影像技术保证了地理国情监测工作的准确性

地理国情监测,不仅需要掌握各时期的历史档案数据,更需要快速动态掌握最新地理信息。为此,要加强测绘基础建设,加快构建内容丰富、更新及时、服务高效的数字中国。充分利用先进卫星定位技术手段,提供高精度、高效率的导航定位服务;加快实施国家重大测绘工程,积极推动数字省区、数字城市建设。

5结语

遥感影像技术是测绘技术手段,也是地理国情监测必不可少的保证。快速发展的现代测绘技术和测绘部门长期积累的大量地理国情信息,为开展地理国情监测奠定了良好基础,提供了强有力的支持配合,共同推动地理国情监测这项利国利民的工作取得良好实效。

参考文献

[1]王波.基于面向对象的高分辨率遥感影像人工地物信息提取[D].江西:江西理工大学,2011.

第9篇:遥感成像原理与遥感图像特征范文

关键词:遥感技术;矿产资源;开发预测;地质遥感信息

中图分类号:P627文献标识码:A文章编号:1009-2374(2009)20-0057-03

遥感在地质学上的应用始于20世纪70年代,人们利用遥感视域宽、信息丰富、具有定时性、定位性的特点,研究地球表面及表层的地质体、地质现象的电磁辐射特征,识别地质体的物性及运动状态,从而为地质构造研究、矿产资源勘查、区域地质调查、环境和灾害地质监测等研究提供帮助。

一、遥感技术概述

(一)遥感技术的概念

遥感技术是从远距离感知目标反射或自身辐射的电磁波、可见光、红外线等目标进行探测和识别的技术。例如航空摄影就是一种遥感技术。人造地球卫星发射成功,大大推动了遥感技术的发展。现代遥感技术主要包括信息的获取、传输、存储和处理等环节。完成上述功能的全套系统称为遥感系统,其核心组成部分是获取信息的遥感器。遥感器的种类很多,主要有照相机、电视摄像机、多光谱扫描仪、成像光谱仪、微波辐射计、合成孔径雷达等。

现代遥感应用技术是指在数字地球框架下,将遥感技术与传统的地质方法相结合,和现代信息技术相结合的遥感信息深化应用技术。它的核心是遥感信息的延伸应用和信息化。最大限度地利用信息资源,以提高矿产资源的勘查效果。一方面,露出地表的矿明显减少,勘查目标已由地表或近地表转向地下深处的隐伏矿床,找矿难度愈来愈大。另一方面,各种地学手段取得的信息资源愈来愈丰富,为遥感信息与其它地学信息的集成创造了条件。

(二)遥感技术的原理

任何物体都具有光谱特性,具体地说,它们都具有不同的吸收、反射、辐射光谱的性能。在同一光谱区各种物体反映的情况不同,同一物体对不同光谱的反映也有明显差别。即使是同一物体,在不同的时间和地点,由于太阳光照射角度不同,它们反射和吸收的光谱也各不相同。遥感技术就是根据这些原理,对物体做出判断。遥感技术通常是使用绿光、红光和红外光三种光谱波段进行探测。绿光段一般用来探测地下水、岩石和土壤的特性;红光段探测植物生长、变化及水污染等;红外段探测土地、矿产及资源。

利用多种遥感平台获取的多种类、多时相遥感数据,采用多种遥感图像处理方法,室内对比提取矿产资源开发地采矿活动痕迹的影像信息,发现其不同时间段采矿活动痕迹变化信息。

二、遥感技术的优势及其在矿产资源开发预测工作中的作用

随着RS(遥感)、GIS(地理信息系统)、GPS(地理定位系统)的发展,遥感数据的可解释程度与速度得到更快地提高,影响遥感解译的不确定性因素在不断减少,在矿产资源预测评价方面,尤其是在自然环境比较恶劣的地区,遥感的作用将由矿产资源调查评价的配角到主角的新角色。

(一)遥感技术的优势

与常规手段相比,遥感技术用高空鸟瞰的形式进行探测,可以跨越交通的阻隔和视野的限制,洞察地面调查的和死角,对大面积的环境状况进行全面彻底的调查;同时,它远离观察对象,不损害研究对象及其环境条件,保证了获取信息资料的客观性、可靠性;遥感技术具有的“多点位”、“多波段”、“多时相”、“多高度”的获取和“多次增强”遥感信息处理的特征。

根据不同的任务,遥感技术可选用不同波段和遥感仪器来获取信息。例如可采用可见光探测物体,也可采用紫外线,红外线和微波探测物体。利用不同波段对物体不同的穿透性,还可获取地物内部信息。

目前,遥感技术的发展主要体现在空间、时间和光谱分辨率的不断提高。民用卫星遥感数据中Quick Bird数据的最高空间分辨率已达0.61m,轨道重复周期1~6d(取决于纬度高低);而几何分辨率为1m的IKONOS卫星数据,重复周期仅为1~3d;高光谱卫星数据Hyperion,波段高达220个,几何分辨率达30m。相对于卫星遥感而言,航空遥感具有更机动灵活、更高精度的优势,如目前较先进的基于POS系统的航空摄影技术,可根据POS系统检校场的测量数据直接制作正射影像图,从而实现无地面控制点的高精度航空遥感影像定位,极大地提高调查的几何精度,缩短调查周期。

(二)在矿产资源开发预测工作中的作用

在矿产资源预测的应用主要在于矿产遥感信息的形成机理和遥感成矿模式研究上。地质遥感信息形成机理研究是遥感理论研究的新领域,是遥感找矿方法的科学性、针对性和有效性,促进遥感地质解译向规范化、模式化方向发展的必由之路。这些信息的识别提取在许多地区已经有了初步应用,取得较多的成矿信息,资源预测及其评价效果比较好。遥感技术在矿产预测工作流程图如图1所示:

主要是对遥感数据(ETM+、SPOT5)进行辐射校正、PAN波段数据与多光谱数据进行融合处理、天然假彩色合成、几何校正、大地配准与镶嵌等。然后制作国际标准分幅图像,对其格式转换后与地形数据进行叠加显示,以人机交互方式对各种矿山地质环境现象进行解译,最后将解译结果提供野外验证。

1.几何校正与大地配准。在地形图上采集控制点对遥感数据进行几何校正,在1∶100000地形图上采集控制点对ETM+数据进行校正;在1∶50000地形图上采集控制点对SPOT5数据进行校正。每景图像采集控制点数25~36个,且均匀分布于图像内,控制点残差控制在1个像元以内,将图像配准至大地坐标。

2.数据融合。针对遥感图像不同光谱和不同分辨率的特点,融合处理主要集中于象素级与特征级融合,可将来源于不同传感器的遥感图像的优势集中起来,减少数据的冗余度,增强图像的清晰度,提高解译的精度和准确性,针对多分辨率遥感数据图像融合的方法比较多,主要有色彩空间变换如HIS、Lab、CN以及KL变换、小波变换等方法。对不同的数据组合、不同地形情况、不同区域及不同的研究目标使用的融合方法各异。针对本项目以突出矿山地质环境状况的特点,利用HIS融合方法,对ETM+的7、4、3波段与PAN波段组合,SPOT5的4、2、1波段与PAN波段组合进行融合处理的结果图像能较好反映矿山地质环境各要素。

3.图像镶嵌。由于研究范围较大,跨17景ETM+图像,部分矿区存在跨越多景遥感图像,给解译时带来不便。需要对跨图幅影像进行镶嵌,镶嵌时为了使图像满足以下条件:(1)信息丰富;(2)色调和谐;(3)镶嵌的几何精度高。

4.图像剪裁。为了方便解译、控制精度精度、解译成果的拼接等工作,在矿山比较连片的地区,需要将整景图像或镶嵌图像按按1∶100000或1∶50000国际标准图幅制作分幅图像。

5.格式转换。将制作的国际标准分幅图像存储为*.TIF格式,然后转换为MAPGIS内部图像格式*.MSI格式,以便于人-机交互解译。影像与1∶100000或1∶50000地形图能完全叠合,因此在上面解译的结果与地形图叠合比较好,给野外检查验证带来方便。

三、遥感技术在贵州矿产资源开发找矿方面的应用实例

位于云贵高原东部的贵州,系隆起于四川盆地与广西、湘西盆地或丘陵之间的高原山区。在长达10多亿年的地质演变历史中,具有良好的成矿地质条件,造就了当今贵州矿产资源丰富、分布广泛、门类较全、矿种众多的优势格局。贵州素以“沉积岩王国”著称,是矿产资源大省。沉积矿产中以煤、磷、铝、锰为优势,具有“量大质优”的特点。

在发现的矿产中,有包括能源、黑色金属、有色金属、贵金属、稀有稀土分散元素、冶金辅助原料非金属、化工原料非金属、建材及其它非金属、水气等九大类矿产在内的76种,不同程度地探明了储量。在已探明的储量矿产中,依据保有储量统一对比排位,贵州名列全国前十位的矿产达41种,其中排第一至第五的有28种,居首位的达8种,列第二、第三的分别为8种与5种。尤以煤、磷、铝土矿、汞、锑、锰、金、重晶石、硫铁矿、稀土、镓、水泥原料、砖瓦原料以及多种用途的石灰岩、白云岩、砂岩等矿产最具优势,在全国占有重要地位。而且人均与国土单位面积占有矿产资源潜在经济价值量,都高于全国平均水平,远高于邻近省区市占有水平。从开发利用角度论,贵州矿产资源具有资源比较丰富、优势矿产显著;分布相对集中、规模大、质量较好、主要矿产资源潜力大、远景好;共伴生矿产较多;资源丰歉不均,部分矿产短缺等五个方面的主要特点。

(一)煤矿的遥感找矿模式

1.石炭系煤。(1)含煤地层的识别:由于该套地层顶底板都是碳酸盐岩,因此,分布在喀斯特地貌区,呈条带状展布的非喀斯特地貌即流水侵蚀地貌,是快速、准确地判读大塘期含煤岩系的最直接标志;(2)地貌标志:由于含煤岩性及其顶、底板岩层在物质属性及侵蚀作用上的差异,常常沿含煤岩系形成走向次成谷。

2.二叠系煤。(1)含煤地层的识别:含煤岩系是间于上覆三叠系碳酸盐岩与下伏峨眉山玄武岩及下二叠统碳酸盐岩中的一套地层,因此,分布在喀斯特地貌区,呈条带状展布的非喀斯特地貌――流水侵蚀地貌,是判断晚二叠世含煤岩系的标志;(2)地貌识别标志:在山盆期地貌保存良好的地区,该套非可溶岩层除发育规模较小的走向次成谷外,还常常与其上下碳酸盐岩形成垄(脊)―槽(谷)组合地貌;在乌江期地貌发育区,该套非可溶岩层常形成规模不等的走向次成谷。

(二)磷矿的遥感找矿模式

1.晚震旦世磷块岩。(1)地层识别:首先,含磷岩系在空间上受岩相古地理控制,在省内主要分布于黔中地区。由于含矿的磷块岩层位于上震旦统碳酸盐岩系的下部,而这套碳酸盐岩系,上、下均为碎屑岩,故在参考区域地质资料基础上,可在TM影像上通过对碳酸盐岩的识别大致圈出其分布。(2)地貌识别标志:由于含矿层与其上下岩层在物质属性及侵蚀作用上的差异,常常沿含矿地层形成走向次成谷。

2.早寒武世磷块岩。(1)地层识别:同晚震旦世磷块岩一样,岩相古地理控制矿产的区域分布是明显的。含矿层识别主要依据地层层序的相互关系并结合影像特征予以区别。如在区域上下二叠统栖霞―茅口组碳酸盐岩影像上有较为突出的特征,岩溶地貌发育,碎斑状影纹图案,顺这套地层往下,一般可“清理”出下伏各组地层。如在织金一带,其下伏依次为下石炭统地层以及下寒武统和上震旦统含磷层位。(2)地貌识别标志:典型的岩溶地貌区,常形成峡谷及峰丛,山体较尖棱。

(三)铝土矿的遥感找矿模式

1.地层识别:含矿地层主要为下石炭统“九架炉组”,“九架炉组”分布于形态各异、大小不一的古喀斯特洼地中。

2.地貌识别标志:含铝岩系的底板、顶板均是主要由碳酸盐岩形成的喀斯特地貌,但其喀斯特微地貌仍有差异。顶板碳酸盐岩常常形成坡体相对高差较大的峰丛(林),且仍发育成走向比较清楚的山脊线;而底板碳酸盐岩则常常形成坡体相对高差较小的峰丛(林),且不存在山脊线。含铝岩系就产于这喀斯特微地貌的变化处。

四、结论

矿产资源是人类社会可持续发展的重要物质基础,没有矿产资源作保障,经济就不可能发展,人类社会就不可能进步,我国全面建设小康社会的宏伟目标就无法实现。因此,我们必须充分认识国情和省情,树立和落实科学发展观,要进一步加强矿产资源调查评价与勘查。本文结合贵州当地的矿产资源,利用遥感技术对其进行开发找矿、预测等的探讨,旨在提高矿产资源可供性,实施矿产资源可持续发展战略。

参考文献

[1]常庆瑞,蒋平安,周勇. 21世纪高等院校教材:遥感技术导论[M].科学出版社,2004.

[2]徐水师,谭克龙,曹代勇.中国煤炭资源遥感调查评价理论与技术[M].科学出版社,2009.

[3]童庆禧,张兵,郑兰芬.高光谱遥感的多学科应用[M].北京:电子工业出版社,2006.