前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的高层建筑如何抗震主题范文,仅供参考,欢迎阅读并收藏。
关键词:提升高层建筑;建筑结构;抗震性能;关键措施;
中图分类号:TU208 文献标识码:A 文章编号:1674-3520(2015)-04-00-01
一、提升高层建筑结构抗震性能研究的意义
在经济贸易高速发展的背景下,建筑行业迎得了其快速发展的契机,高层建筑越来越多的出现在城市中,它们与人们生活的联系也更加密切。随着人们生活水平的普遍提高,人们对于高层建筑的地理位置、居住面积、抗震性能等问题的关注力度不断增加,所以如何提升高层建筑结构抗震性能的研究得到了越来越多的关注。高层建筑结构抗震性能的设计好坏直接关系着建筑物能否达到人民群众对于其使用安全性、使用稳定性的要求,综合利用美观、实用、人性化等因素为提升高层建筑结构抗震性能以及基于抗震性能的设计方案进行更好的科学人性化设计提供了更加广阔的思路。高层建筑由于其自身建筑高度、建筑面积等特点,给建筑结构的抗震性能设计提出了许多挑战,这就要求设计人员在进行提升高层建筑结构抗震性能设计时要区别于其他不同建筑的抗震设计、抗震措施,要根据其特点进行针对性的分析,采用适合高层建筑结构的抗震措施,体现出高层建筑结构抗震性能设计与其他建筑抗震性能设计的不同之处。
二、提升高层建筑结构抗震性能的关键措施
对于提升高层建筑结构抗震性能这关键问题,具有针对性的对建筑整体进行安全性、稳定性的分析研究,根据建筑物的实际结构安全性、稳定性情况采取必要的措施加固措施,提升建筑结构的抗震性能,减少地震发生时的人员伤亡和财产损失,在一定程度上保障建筑物在地震发生时能够更好的发挥其结构抗震性能。对于提升高层建筑结构抗震性能的关键措施如下所示:
(一)对于高层建筑结构的构件加固措施。对于高层建筑的结构构件进行加固是提升其抗震性能的关键措施之一,要尽可能的使建筑物底部承受剪力的墙体厚度增加,并且增加大量的钢筋混凝土柱或者加大其底部的配筋比例。面对建筑结构中连接梁的加固配筋,要运用科学的分叉方式进行搭接,确保其结构稳定性。对于一些结构节点或者框架连接,要进行严格的检测控制,通过增加构造的措施实现其加固。
(二)在建筑结构按照图纸施工,将结构进行平面布置的过程中,扭转是破坏这一过程中的主要力,避免扭转带来的恶劣影响就要保证建筑结构侧向材料的刚度可以在水平方向上发生均匀变化。这对于构件的整体设计,构件的实际施工提出了新的挑战,只有进行多层次、多方面的反复构件核算,才可以得到最为理想的构建布置方案、布置位置。
(三)良好的梁式转换层的结构构件是提升高层建筑结构抗震性能的重要措施。在一般的建筑施工中,梁式转换层一般都是一层,为了更好的提升高层建筑结构的抗震性能,在施工过程中将梁式转换层加伸到两层是非常必要的。除此之外对于承受剪力的墙体进行配筋强度的增加,在转换层上使用双层配筋都是提升结构抗震性能的有效措施。
三、提升高层建筑结构抗震性能设计的基本要求
面对我国高层建筑结构抗震性能设计起步较晚的现实,面对人们对于高层建筑结构抗震性能的高度关注,设计人员对于提升高层建筑结构的抗震性能设计提出了以下几个基本要求:
(一)在进行提升高层建筑结构的抗震性能设计时,设计人员要尽可能的采取措施设计出多层次的抗震防线。面对高层建筑的建筑结构特点,要想保证每一个建筑物都具备良好的抗震体系,该建筑物就必须要有多个具有良好延展性的分体建筑结构所组成,这些结构不仅要紧密的结合在一起,而且还要在结构的配合下不影响其相互间的作用。在高层建筑结构抗震性的设计过程中设计出多层次的抗震防线,对于地震发生后保障高层建筑结构稳定性、安全性、延伸性等有着重要的意义,多层次抗震防线的设计不但可以科学有效的保障高层建筑结构的稳定性、安全性,而且还可以起到减轻地震整体危害的作用,在一定程度提升了高层建筑结构的整体抗震性能。
(二)高层建筑的建筑施工相对其他建筑项目来说存在一定的难度,对于高层建筑结构中的薄弱环节的分析研究、检测控制是提升其建筑结构抗震性能的必要措施。当面对地震这种不可抗拒的自然灾害时,高层建筑结构的主体结构承受了绝大部分的地震冲击力,为了保证高层建筑结构的稳定性、安全性,加大对于高层建筑结构中薄弱环节的检测控制是非常重要的,这对于提升高层建筑结构抗震性能具有重要意义。
(三)为了满足人民对于高层建筑结构抗震性能的要求目标,设计人员在对高层建筑进行建筑结构抗震性能设计的过程中,要对建筑本身的稳定性、承载能力等方面进行深入的分析研究,保证整个建筑结构的构建严格按照国家安全要求进行,对承受力较大的区域采取必要的加固措施,从建筑结构开始大力提升其抗震性能。
四、结语
随着社会经济发展水平的快速提高,高层建筑在人们的生活中的作用越来越重要,高层建筑物的建筑高度在不断增加的同时,其建筑难度也在不断加大。面对人们对于高层建筑结构抗震性能的更高要求,如何提升建筑结构的抗震性能成为当下社会关注的焦点问题。科学合理的抗震设计对于提高建筑结构的稳定性、安全性具有重要意义,想要真正保证高层建筑的安全稳定,就要大力开展对于其抗震性能设计、加固措施等方面的研究探索。本文从提升高层建筑结构抗震性能的意义、措施、要求三个方面进行了一系列探索了,为提升高层建筑结构抗震性能提供了一些参考依据,相信在未来的建筑结构抗震性能的研究中,真正科学有效的抗震措施可以更多的探索研究出来。
参考文献:
[1]冯兴,张瑞云,王慧东. 转换层位置对高层建筑结构地震反应影响的研究[J]. 国防交通工程与技术. 2006(04)
【关键词】高层建筑;结构设计;抗震
1、抗震设计在建筑结构设计中的重要性分析
随着全球化、城市化发展进程的加快,许多国家、城市高层建筑的数量不断的增加,城市人口密度也在不断的增加,过多的人和财富都集中在一个区域,一旦该区域发生地震灾害,其在成的人员伤亡和财产损失是不可估量的。地震是一种自然灾害,现阶段的科学技术手段并不能够完全准确的预测地震灾害的方法,并且也没有相应有效的防止对策。针对地震这种不确定、危害性的大自然灾害,世界各国的地震工程界都进行了深刻的反思——如何利用现有的抗震思想和技术降低地震给建筑带来的损失。目前,全球90%以上的国家进行建筑抗震设计坚持的原则为“小震不破坏建筑结构、中震建筑可加固、大震建筑不倒”,该抗震原则的广泛推广和应用,在很大程度上提高了建筑结构的抗震性能。但是,在小、中地震灾害发生时,会导致出现建筑部分结构功能丧失的现象,由于建筑内的技术装备、装饰等费用超过建筑结构本身的费用,其造成的经济损失是不可估量的,由此可见加强建筑结构抗震设计的重要性。
2、高层建筑结构抗震性能的影响因素
(1)高层建筑结构上的设计,建筑物在进行平面布置时,如果要想具备多样化的特征,那么质心和刚心就无法重叠在一起,增加建筑物扭转效应发生率,降低建筑物的抗震能力,此外,结构设计时,如果建筑物的重心偏高,那么发生地震时,建筑物倒塌的可能性非常大。(2)高层建筑建造材料,高层建筑的高度比较高,抗震能力比普通建筑差,因此,人们更为关注高层建筑的抗震能力,尤其是地震频发地区,材料是高层建筑的关键性部分,材料的选择直接关系着建筑物的抗震能力,在使用材料的过程中,如果材料的质量比较差,或者不符合标准,那么建筑物的抗震能力就会比较低,同时,材料自身的抗震能力比较差时,同样会导致建筑物的抗震能力降低,威胁人们的生命健康。(3)高层建筑地址的选择,在进行高层建筑选址时,如果选择的为地震频发地带或者地震强烈地带,那么建筑抗震设计要求更高,当无法满足要求时,就会影响建筑物的抗震能力。
3、加强高层建筑结构抗震性能的有效措施
3.1应采用合理的建筑结构体系
(1)抗侧力构件应布置合理。如在框架—剪力墙结构中,剪力墙宜均增布置在建筑物的周边附近、楼梯间、电梯间、平面形状变化及恒载较大的部位,剪力墙间距不宜过大;平面形状凹凸较大时,宜在凸出部分的端部附近布置剪力墙;纵、横剪力墙宜组成L型、T型和[型等形式;剪力墙宜贯通建筑物的全高,避免刚度突变;剪力墙开洞口宜上下对齐;抗震设计时,剪力墙的布置宜使结构各主轴方向的侧向刚度接近。
(2)结构的整体性要好。高层建筑结构中,楼盖对于结构的整体性起到非常重要的作用。楼盖相当于水平隔板,它不仅聚集和传递惯性力到各个竖向抗侧力的子结构,而且要使这些子结构能协同承受地震作用,特别是当竖向抗侧力子结构布置不均匀或布置复杂或各抗侧力子结构水平变形特征不同时,整个结构就要依靠楼盖使各抗侧力子结构能协同工作。楼盖体系最重要的作用是提供足够的平面内刚度和抗力,并与竖向各子结构有效连接。所以房屋的顶层、结构转换层、平面复杂或开洞过大的楼层、作为上部结构嵌固部分的地下室楼层应采用现浇楼盖结构。
3.2合理的基础设计
建筑的基础是整个高层建筑质量的根本保证,建筑抗震的设计更要有好的基础。在建筑设计中,同一个结构单元要设置在性质相同的地基上,尽量采用相同的结构形式。地基有软弱粘性土、液化土、新近填土或严重不均匀土层时,要采取措施加强基础的整体性和刚性,以保证地基的稳定性。底层框架结构由于具有良好的实用性,目前使用比较广泛,但这种结构上部刚度比较大,而下部刚度又比较小,上下性质截然不同,变形能力相差比较大,在地震时抗扭曲的性能较低,容易引起高层房屋的倒塌和断裂,因此,在抗震区要尽量少采用。或者是在利用时采取一定的措施将上下刚度的性质进行协调,提高其抗震能力。
3.3注重隔震与消能减震设计
有些区域对高层建筑的抗震性能要求比较严格,不仅要具备相关规范中所要求的普通的抗震能力,而且还要具备隔震、消能减震的功能。所以在隔震與消能减震的设计过程中要注意以下几点:首先,在选择建筑场地及地基时,要保证地基的密实度,保证地基的牢固性,即可最大程度减少地震对建筑体造成的破坏;其次,建筑结构不同,对其隔震系数的要求也存在差异,所以实际设计过程中要结合工程的实际情况来设计,合理选择隔震支座,注意不能忽略风力负荷因素;最后,在选择隔震、消能减震方面的建筑构件时,首先要考虑材料的延性,以降低地震对建筑的破坏程度。
3.4减少地震时能量的输入
在具体的设计中,采用基于位移的结构抗震方法,对具体的方案进行定量的分析,使结构的变形能力能够满足预期地震作用下的变形需求。在验算结构的承载力之外,还要对结构在大震作用下的层间位移角限值或位移延性比进行控制;根据建筑构件的变形和建筑结构的位移之间的关系,确定构件的变形值;根据建筑截面的应变大小和应变分布,来确定建筑构件的构造需求。另外,对于高层建筑,在坚硬的场地上施工,可以明显的减少地震时能力的输入,降低对高层建筑的破坏。
结语:
地震灾害对建筑安全以及人们的生命、财产安全造成巨大的威胁,在进行高层建筑结构设计过程中必须充分的认识到抗震设计的重要性,并严格的控制抗震设计的各个要点,以便于更好的提高建筑结构的整体抗震性能,为建筑安全以及人们的生命、财产安全保驾护航。
参考文献:
[1]张丽霞,张荣辉.高层建筑结构抗震技术的分析与探讨[J].中国建设信息,2009(8):.
关键词:高层建筑结构;抗震设计;弹塑性分析;结构延性
中图分类号:TU97文献标识码:A
随着我国经济的飞速发展和城市化进程的加快,建筑业作为国民经济的支柱产业也一直保持着较高发展热度。作为一个人口密集的国家,积极发展高层建筑是解决国民住房问题的重要途径。然而高层建筑由于其自身结构特点和我国地震活动分布特点使得它从一开始就避免不了建筑结构设计的一个重要问题--抗震。2008年汶川地震、2010年玉树地震以及刚刚发生的芦山地震使得建筑结构抗震这一课题的研究越发显得紧迫。
一、我国地震活动及特点
我国位于欧亚板块的东南端,东接太平洋板块,南临印度洋板块,由于板块的构造运动,我国大陆受到太平洋板块向西、印度洋板块向北、欧洲向东的推动和挤压,因此我国的地震活动分布十分广泛。
我国的地震带主要有三条:北起贺兰山,经六盘山、秦岭,沿四川西部至云南东北部的南北地震带;沿陕西、山西、河北北部向东至辽宁千山一带的东西地震带;西起帕米尔高原,经昆仑山、秦岭,直至大别山区的东西地震带。总体来讲,我国绝大部分地区都发生过较强的破坏性地震,不少地区的地震造成了极大地人员伤亡和经济损失。我国地震活动具有分布广泛、震源浅、强度大、位于地震区人口密集城市多、地震区建筑物抗震性能差等特点。相比发达国家,我国开展抗震研究相对较晚,同时受经济水平的限制,我国相当一部分城市和农村建筑抗震性能较差,一旦发生强烈地震将会造成巨大的损失。
二、高层建筑结构抗震分析与研究的主要内容
工程抗震设防的基本目的是在一定的经济条件下,最大限度地限制和减轻建筑物的地震破坏,保障人民的生命财产安全。我国建筑结构抗震设计的基本准则是“小震不坏、中震可修、大震不倒”。我国现行抗震规范对高层建筑抗震计算的要求是在小震作用下,按反应谱理论计算地震作用,用弹塑性方法计算结构内力和位移,用极限状态方法设计构件。到目前为止,时程分析发被认为是进行抗震变形验算和震害分析最为精确可靠的方法,但这种方法对设计人员的专业知识水平要求较高,且计算结果受地震波的影响较大,不存在唯一答案,有时难以判断,所以在工程实践中的具体应用不是很广泛。目前弹塑性静力分配法主要运用于第一振型控制为主的中高层建筑,研究工作者们一直在努力研究如何使该方法能反映高阶振型的影响。
高层建筑抗震设计的方法
高层建筑结构抗震设计,主要从减小地震作用力的输入和增强地震抵抗力两个方面进行考虑。以下将从五个方面经行分析:
(一)延性结构设计
采用延性结构,适当控制建筑物的刚度,允许地震时结构的构件进入到具有很大延性的塑性状态,能提高建筑结构对地震作用能量的消耗,减弱地震对高层建筑的危害。研究表明,具有较高延性的建筑,在地震中不容易倒塌,因为延性构件能吸收较多的能量,经受较大的结构变形。提高结构的超静定次数,在地震时能够出现的塑性铰就越多,能耗三的地震能量也就越多,结构承受地震作用的能力就越强。台湾101大厦在设计中采用了巨型阻尼器来防止地震作用下结构破坏,阻尼器能大量吸收地震能量,巧妙地降低了地震作用下建筑物的摆动幅度,提高了结构的抗震性能。
建筑材料的选择
在高层建筑抗震设计中,建筑材料的选择也十分重要。从抵抗地震的角度来讲,就是要控制建筑结构的延性要求,这就要求我们从高层建筑施工的各方面综合考虑来选择满足抗震要求且经济适用的建筑材料。在国外,特别是地震区,高层建筑结构体系以钢结构为主,而在我国钢筋混凝土及混合结构占了90%以上。如此高的钢筋混凝土及混合结构,国内外都还没有经受较大地震作用的考验。
(三)合理的建筑布置
抗震设计中提倡建筑平、立面简单对称。平面宜为方形、矩形、圆形等规则平面,地震时结构各部分能协同工作。若平、立面布置不规则,结构质心和刚心不重合,地震使转角应力集中,扭转震动明显,导致远离刚心的小刚度构件侧移量增大,分担的水平地震力增大,容易发生破坏,甚至整个结构发生倒塌。另外,竖向抗侧力构件的截面尺寸和材料强度宜自下而上逐渐减小,避免抗侧力结构的侧向刚度和承载力突变。
(四)尽可能设置多道抗震防线
强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。因此,高层建筑设计时应设置多道抗震防线,多到抗震防线能大大提高结构能抵抗地震作用而被破坏的概率。高层建筑结构形式应采用具有联肢、多肢及壁式框架的框架剪力墙,剪力墙框架简体,筒中筒等多道抗震防线结构体系。例如,框架剪力墙具有性能较好的多道防线抗震结构,其中的剪力墙是第一道防线,也是主要的抗侧力构件。
(五)提高短柱抗震性能
对于高层建筑的底层柱,随着建筑物高度的增加,其所承担的轴力不断增加,而抗震设计对结构构件有明确的延性要求,在层高不变的情况下,提高延性就要控制轴压比不能过大,这样必然导致柱截面的增大,从而形成短柱,甚至成为剪跨比小于1.5的超短柱。在抗震设计时,应当尽量提高短柱的承载力,减小短柱的截面尺寸,采取各种有效措施提高短柱的延性,改善短柱的抗震性能,从而增强高层建筑结构的抗震能力。
结语
安全重于泰山,地震作用时刻威胁着人们的生命财产安全,高层建筑结构抗震的研究还将继续。从长远观点看,高层建筑结构的大发展必将使高层建筑结构抗震设计在未来很长时间里作为建筑设计的热点问题而不断被探讨研究。
参考文献:
【1】王建强,《建筑结构抗震设计》2011,9.
【2】王正国,高层建筑结构抗震探析[J].《科技信息》.
作者简介:
关键词 :超限高层建筑 性能抗震设计
一、 我国超限高层建筑发展概况以及我国地震灾害现状
高层建筑是社会生产的需要和人类生活需求的产物,是现代工业化、商业化和城市化的必然结果。由于生产力水平的限制,我国高层建筑的起步远远低于欧洲大陆国家,直到20世纪六七十年代才,高层建筑才逐渐出现在人们的视野当中。改革开放以来,我国国民经济持续快速发展,我国的高层建筑也得到了迅速发展,我国内地成为高层建筑发展的中心之一。上海及长三角地区、广州、深圳以及珠三角地区、京津地以及以重庆为代表的中西部地区都建造了大量的高层建筑。我国高层建筑的数量及建筑高度均在世界前列。
据报告显示,截至2009年初我国共有高层建筑近10万幢,其中100米以上的超高层建筑1154幢,而各地为争当“第一高楼”仍然暗战不休,这个数字还在不断被刷新。
我国是世界上陆地面积第三大的国家,地质条件复杂多样,自然灾害种类多样,反生频繁。中国地震活动频度高、强度大、震源浅,分布广,是一个震灾严重的国家。1949年以来,100多次破坏性地震袭击了22个省(自治区、直辖市),其中涉及东部地区14个省份,造成27万余人丧生,占全国各类灾害死亡人数的54%,地震成灾面积达30多万平方公里,房屋倒塌达700万间。地震及其他自然灾害的严重性构成中国的基本国情之一。
中国的陆地地震占全球陆地地震的三分之一,而造成地震死亡的人数达到全球的1/2以上。当然这也有特殊原因,一是中国的人口密、人口多;中国的经济落后,房屋不坚固,容易倒塌,容易坏;第三与中国的地震活动强烈且频繁有密切关系。
由此,世界各国,特别是我国对超高层建筑的抗震设计进行研究,美国在经历过1989年和1994爆发的两次大地震之后逐渐建立了基于性能抗震设计的综合设计体系。我国也在基于性能抗震设计上进行了大量的研究并于2000年颁布了《建筑抗震设计规范》,对基于性能抗震设计的目标进行了统一的规范和指导,同年颁布的《高层建筑混凝土结构技术规程》则将基于性能的抗震设计思想同高层建筑相挂钩,要求在对高层建筑进行设计的同时可以将该思想融入其中进行指导和借鉴,由此可见基于性能抗震设计在我国的建筑界中处于一个十分重要的位置。
二、超限高层建筑基于性能抗震设计相关分析
(一)对超限的判别
10层以上的建筑被称为高层建筑。其中包括超限高层建筑。对高层建筑是否超限的判别是通过将其有关高度同相关规范规定的限额相比较来进行,这主要包括高宽比的超限、平面规则超限以及竖向规则超限三个方面。
(二)超限高层建筑基于性能抗震设计的思想内容
在当前的社会环境下,世界各国都将“小震不坏、中震可修、大震不倒”的思想作为其建筑抗震的标准,同时经过时间和实践的证明,该思想对地震灾害在处理结构上是目前人们能够想到的最为合理的方法。但是,该思想最大的不足之处就在于虽然能使建筑物在大震面前屹立不倒而保证人们的安全但是在地震中很容易导致建筑物结构功能的丧失,从而在另一方面对社会造成损失,而在我国的实践基础上,该思想已经导致了大量了经济损失,其不足之处也得以显现,因此,基于性能的抗震设计越来越重要。基于性能的建筑设计起初就以抗震为基础而贯穿于整个建筑过程的始终,主要对结构体系的布置、设计,施工期间对结构体系的使用、对其质量的把握等方面进行规范从而达到建筑结构体系在地震作用下也能实现其结构功能的目的。
(三)超限高层建筑抗震性能水准
按照当前有关规定,我国的超限高层建筑的抗震性能水准主要包括以下六个方面的标准:1、在地震之后能够保持建筑结构的完整,不需要对其进行修复就能再次使用;2、在地震之后能够保持建筑结构的完整,仅有一些轻微的裂缝,一般情况下不需要对其进行修复就能再次使用;3、在地震之后能够保持建筑重要结构的完整,其他部位虽有裂缝但在对其进行一般修复之后就能再次使用4、在地震之后建筑重要结构有轻微破损,其他非重要结构有中等程度的破损,建筑需要经过一定的修复才能再次使用;5、在地震之后建筑重要结构有中等程度的破损,其他非重要结构有中等程度以上的破损,建筑需要经过一定的修复和加固才能使用;6、在地震之后建筑重要结构有明显中等程度以上的破损,其他非重要结构严重破损,但未发生倒塌情况,建筑危及人们身体健康。
(四)我国超限高层建筑基于性能抗震设计的缺陷
由于历史条件的制约,我国的科学技术水平还未达到一定的水准,超限高层建筑基于性能抗震的设计并不能有效的解决现实中出现的一系列问题;同时伴随着社会的进步,超限高层建筑的设计越来越复杂,在对建筑进行可行性结构评估时,由于评估结果是依据相关试验得到,导致这在实践操作中很难得到有效实施;在当今日新月异的时代,每栋高层建筑都要求有所创新,这使得许多超限高层建筑的抗震性能水平难以得到准确的界定,同时由于超限高层建筑的复杂性,对其抗震性能水平的评估方法Pushover 分析方法在有些情况下也不能满足计算的需要,因此对其进行分析的计算方法也有待提升。综合以上所说,基于性能的抗震设计在超限高层建筑的设计中是最为合理的,但是由于建筑的特殊性和复杂性,具体该如何操作和设计还有待研究。
(五)对我国超限高层建筑基于性能抗震设计的建议
根据前文所述,我国超限高层建筑基于性能抗震设计的不足之处主要集中于对抗震性能水平的评估上,尤其是根据《高层建筑混凝土结构技术规程》,其中对中震水平没有明确的规定,导致在对结构进行设计时往往不能达到“中震可修”的目的。因此,为了弥补规程中对地震作用水准规定的不足,可以在中震和小震之间再增加一个中小震的指标,将对中震的规定更加细化,并规定相应的性能指标,使得“中震可修”的目标更为具体化。再将前文提到的六大结构性能水准改成建筑物功能完好、轻微破损、较严重破损、严重破损和近乎倒塌的五个性能水准,简化相应的结构性能水准指标,使得建筑设计更加具有目的性和可操作性。
(六)抗震措施探讨
要使用复合螺旋箍筋来提高柱子的抗剪承载力, 改善对混凝土的约束作用, 能够达到改善短柱抗震性能的目的。采用分体柱方法。提高短柱的受压承载力可减小柱截面、提高剪跨比, 从而改善整个结构的抗震性能。
结论
对于超限高层建筑而言,基于性能的抗震设计方法是一个合理化的趋势,这种方法使得建筑在性能水准上更为具体,更加具有可操作性,对高层建筑的宽高度、相关规则以及新技术、新方法的使用并没有过多笼统的限制,这也使得超限高层建筑的设计者能够根据高层建筑的具体特点和价值目标来对建筑的整体性能水准、目标进行评估与论证,大大提高了设计的灵活性,近年来我国对超限高层建筑基于性能抗震的设计在实践上也取得了不俗的成果,大大促进了相关科学技术的发展,增强了超限高层建筑的可靠度。虽然基于性能的抗震设计方法还有有很多的问题和缺陷比如地震作用水准的评估以及建筑性能水准的计算等方面没有得到解决,但是随着未来我国社会科技的不断发展进步,研究的不断深入,该设计方法能够得到很好的完善和成熟。
参考文献:
[1]宫方武,玉琢. 浅谈高层建筑结构抗震设计[J]. 硅谷,2008,(10) .
[2]赵媛. 高层建筑的抗震设计及减灾措施[J]. 建筑,2010,(22) .
[3]蔡金兰.浅谈建筑中抗震设计理念的发展[J]. 价值工程,2010,(23) .
关键词 高层建筑;结构设计;问题对策
中图分类号:TU208 文献标识码:A 文章编号:1671-7597(2013)21-0164-01
随着城市化进程的加快,大量农村人口涌向城市,城市用地日益紧张。为了缓解这一问题,高层建筑应运而生。其具有减少市政投资、会给企业带来显著的社会效益与经济效益、加快城市化建设的进程等特点。其存在不仅可以节约城市用地,还可大大缩短公用设施、市政管网的开发周期,所以越来越受到人们的推崇。虽然城市化进程加快推动了高层建筑的发展,但高层的功能适用性、经济可行性、技术合理性并不是随着层数的增加而增加,当其层数以及高度达到一定的程度上时,这一切都会发生质的变化。同时,高层建筑在我国国内建筑技术仍未成熟,无论在设计上,还是在建筑技术上,都有很多技术难题需要考虑与解决。
1 高层建筑结构设计需要攻克的技术要点
高层建筑结构设计需要攻克的技术要点与难点有很多,包括:如何合理计算高层建筑体型的高宽比例;如何尽量保持建筑的平面、体型、立面的质量和刚度之间的匀称,保持整个建筑的稳定性;在众多结构设计要点中,笔者认为,高层建筑中的抗风、抗震、防火以及建筑的扭转问题这四个方面是当前高层建筑中需要集中力量攻克的难度与要点。
1.1 高层建筑中的抗风结构设计
高层建筑楼由于其具有楼层多,高度高的特点,因此相比较其他建筑,在建筑物表面更易改变风的流动性和空气的动力效应。在楼层柔软部分风和空气会产生动力形式和静力形式,并由此产生的震动,会对楼层的墙体、装饰结构以及支撑结构产生破坏,危害建筑的稳定性,所以在进行高层结构设计的过程中,应该进行抗风结构的设计,杜绝建筑物在自然因素的影响下留下隐患。
1.2 高层建筑中的抗震结构设计
高层建筑中的抗震结构设计一直以来都是建筑业设计的难点,由于地震这一自然因素每个地区的具体情况并不相同,计算出来的数据并不是每一个地区都适用,在进行地震结构设计数据的计算上存在很多变化的因素,再加上有些设计人员不够灵活,对抗震结构设计不完善。
1.3 高层建筑中的防火结构设计
我国相关的法律法规明确指出,高层建筑结构的消防设计必须合理化、科学化,因为高层建筑楼层多、建筑材料易燃、高层结构不利于火势的控制、当火灾发生时难以疏散、难以设计排烟系统等诸多因素,都是高层建筑中的防火结构设计需要攻克的难点。
1.4 高层建筑中的扭转问题设计
要求高层建筑的结构设计必须三心尽可能汇于一点,即建筑结构的刚度中心、几何形心、结构重心三心合一。倘若在设计中未很好地做到三心汇聚一点,建筑易发生扭转问题,并在水平力作用下造成高层建筑结构的毁坏。
2 高层建筑结构设计问题的有效对策
2.1 制定合理科学抗风结构设计方案
要保证高层建筑结构具有良好的抗风性。
1)要确保建筑结构基础的稳固,可在基础设计时采用高级砂石,在基础持力层设计时加设抗拔锚杆。
2)增加高层建筑内部耗能结构的设计,如利用耗能构件对剪力墙、楼板等非承重构件进行耗能设计,以减少风能对建筑物的影响。
3)在设计中要控制水平力对建筑的影响程度,同时施工时采用高性能混凝土,进一步减少结构内力的出现。这主要是考虑到高层建筑在风力作用下极产生结构内力,在其与风力叠加时形成更大的水平作用力,对建筑造成很大的安全隐患。
4)认真验算高层建筑结构的承载力以及抗风力,设定一个标准,并在此基础上制定一个放大系数,进一步保证高层结构的抗风性能。
2.2 制定合理科学抗震结构设计方案
对于高层建筑抗震结构的设计,如今仍存在较多的问题以及难点,笔者经走访相关建筑工地以及企业发现,要最大程度上做好高层建筑抗震结构的设计,需要做到以下几点。
1)为了提高结构的连续性以及稳定性,在设计中应该合理布置抗测力构件。在设计时,通过改变抗侧力构件的位置,形成水平方向上的应力分布系统,同时加强竖直方向上的测力结构性能,形成一套应力分布体系,保证能够有效地降低建筑由于水平方向的对称在地震中的破坏程度。
2)通过高性能剪力墙的设计,通过适当增加墙体和楼板的刚度来控制建筑的位移,达到抗震的目的。因为根据研究显示设计高性能剪力墙可大大提高剪力墙在地震过程中吸收建筑内力的能力。
3)在地震过程中,高层建筑的地基很容易遭受毁坏,因此,在抗震结构的设计中,可通过增加桩基埋深(基础施工中),增加桩基和上部结构的联动性,以增加基础的抗震能力。
4)高层结构构件的简化以及一体化对于加强整体结构的连续性和刚度,增强建筑的抗震能力起到一定的作用。在设计中,可以通过对扶壁、筒口、筒脚的简单化处理,达到相应建筑物的对称。
2.3 制定合理科学防火结构设计方案
在高层建筑的防火结构设计中,首先应加强防火结构间的距离控制,要符合当地地形条件,在此基础上,可以进行一定程度的加大处理。使用材料时,尽量增加使用耐火材料,减少使用易燃材料,达到防火的目的。另外,在疏散系统上,由于高层建筑的疏散是呈垂直状态的,不利于人员的疏通,在设计中增设双通道,防烟区、或耐火区、避难层等设施,可大大增强建筑的防火能力。同时,可以在高层结构的设计中设置隔离结构,以防止火势的蔓延,提高建筑整体的消防能力。
2.4 合理布局平面格局
在高层建筑的设计中,三心并未合一直接导致建筑物质量分布不均,并由此产生扭转问题。所以,在高层建筑的设计中,尽量不采用L、T、十字形等复杂的平面形式,应更多采用相对规则的正方形、圆形等较为简单,分布均衡的规则图形。在面对特色的环境要求或者某些特定的情况,应严格根据相关规范进行设计,同时,要尽可能地保持结构的对称性。
3 结束语
建筑结构的设计是一个全面、系统而且复杂的过程,对于设计师而言,是一项充满挑战的工作。作为高层建筑的设计人员,应根据具体情况作出具体分析,运用已经掌握的专业知识灵活处理实际建筑设计中遇到的各种难题。
参考文献
关键词:高层建筑;设计;作用;因素
中图分类号:[TU208.3] 文献标识码:A 文章编号:
1 高层建筑设计的论述
高层建筑通常情况下组成部分包括:裙房、主体和顶部,高层建筑设计对于一个城市而言,高层建筑往往具有一定的代表性和象征性,对此反应了一个城市的经济水平和发展程度,也有些建筑在设计中加入了活跃元,以使整栋建筑造型生动活跃起来。高层建筑的塔楼部分虽然变化的余地不大,但是底层部分却可以运用一些巧妙的方法进行处理来丰富空间形式。选择合理的造型就显得尤为重要。
高层建筑是一座城市有机组成部分,因其体量巨大,高度很大,是城市的重要景点,对城市产生重大的影响。随着我国钢筋混凝土高层建筑迅速发展,科技的不断进步,高层建筑也存在着一些设计问题,从基本的框架到高层的叠加,每一层都存在着一些设计问题,这些问题影响着我们在建筑中存在着一些风险问题。
2 高层建筑设计存在的因素
2.1 能量。护墙耗费能量较大,大约占25%左右的能量,护墙的保温效果弱将消耗能量较大。
2.2 形状。建筑的形体也影响着占地面积多少,例如:圆柱宝塔形状,椭圆形建筑,立方体形状等。
2.3 环境。建筑的环境位置也会影响设计。
2.4 季节。不同的季节对建筑需要的热能不同,冬季风强就会热损失较大,增大冷空气的渗透量,使室内热损失加大。由于建筑某些部位处理不当,墙体内部易产生冷凝水。因此,建筑保温材料的选用,建筑构造的合理性应建立在科学、可靠的基础上。
2.5 风荷载是结构设计的控制因素,随着建筑物高度的增高,风荷载的影响越来越大。高层建筑中除了地震作用的水平力以外,主要的侧向荷载是风荷载,在荷载组合时往往起控制作用。
2.6 对于高层建筑更改设计时,应在图纸首页说明更改原因、更改范围、更改内容等,以减少设计存在的因素。
3 高层建筑中的设计作用
高层建筑一般分布在城市中商业发达的地段,这些地段的街道本身交通荷载就较大,高层建筑又大大增加了这些街道的交通压力,所以分布在这些街道两侧的高层建筑要尽量控制其层数和高度,同时在规划设计时要对这些街道进行扩展,加大其通行能力。
高层建筑结构抗震分析和设计的主要内容,当前国内外抗震设计的发展趋势,是根据对结构在不同超越概率水平的地震作用下的性能或变形要求进行设计,结构弹塑性分析将成为抗震设计的一个必要的组成部分,但是由于结构弹塑性分析的复杂性,在如何进行计算和如何设定具体要求的问题上,各国的做法也有所不同,抗震设计要求建筑的平、立面布置宜规正、对称,建筑的质量分布和刚度变化宜均匀,否则应考虑其不利影响。但有的平面设计存在严重的不对称:一边进深大,一边进深小;一边设计大开间,一边为小房间;一边墙落地承重,一边又为柱承重。
高层建筑对城市各构成要素也产生重大的影响,高层建筑的位置、高度的确定,也应充分地考虑该城市尺度、传统文化,不当的尺度会对城市产生不良的影响,改变了城市传统的历史文化,也改变了原来城市各构成要素之间有机协调的比例关系。
4 高层建筑的结构技术
高层建筑对结构的设计有着严格的要求和计算原则,不论是框架结构还是混合结构,都严重的影响着结构技术,高层建筑重要解决模板、混凝土、钢筋三个方面的施工技术,对小模板、大模板、各个模板均有其优点缺点和其他的适用范围,对于高层建筑的设计在未来方向将面向标准化,工具化方面发展,尺度是在不同空间范围内,建筑的整体及各构成要素使人产生的感觉,是建筑物的整体或局部给人的大小印象与其真实大小之间的关系问题。在结构分析与计算阶段,如何准确,高效地对工程进行内力分析并按照规范要求进行设计和处理,是决定工程设计质量好坏的关键。由于新规范的推出对结构整体计算和分析部分相当多的内容进行了调整和改进,计算确定的构件设计单位均应进行计算并提供计算书。选用标准图时应注明标准图集号及所用参数。采用电算的,除电算计算书外,尚应提供原始计算资料(如面荷载、线荷载的计算),原始数据及总信息中参数取值应校对、审查无误后再输入。因此,对于计算结果,一定要仔细核对,不能算出结果就画图,尤其对于平面形状不规则,不是水
平的构件;两根互相连接的悬挑构件;框支桁架等等。必要时,应当用手算简化补充计算,构工程师也应该相应地对这一阶段比较常见的问题有一个清晰的认识。
5 高层建筑设计中的外部尺度
①城市尺度。高层建筑位置、高度的确定,对高层建筑的城市各构成要素也产生重大影响。②整体尺度。整体尺度指高层建筑各构成部分,一般在最高和最低等级之间还有1~2 个尺度等级,也不易过多,太多易使建筑造型复杂而难以把握。③街道尺度。街道尺度是指高层建筑临街面的尺度对街道行人的视觉影响。④近人尺度。近人尺度是指高层建筑最底部分及建筑物的出入口的尺寸给人的感觉。
关键词:高层建筑;结构;抗震设计;抗震效果
中图分类号:TU208文献标识码: A
随着世界工程人员和研究人员对地震作用研究的深入,抗震理论研究的越来越完善,工程人员和研究人员对抗震设计的经验总结也越来越全面。同时,抗震设计也越来越受到重视,更多的研究会更专注于抗震设计。弹性理论分析已经相当成熟,现代的弹塑性分析取得了很大的进展,但是还有很多关键的问题尚未得到很好地解决,这也将是今后结构弹塑性抗震分析科研和工程实践的发展方向。结构的抗震作用是直接关乎人类生命和财产安全的,因而结构的抗震性能亟待提高,抗震理论分析亟待完善。
一、高层建筑结构抗震设计的目标分析
随着现今的高层建筑愈来愈多,高层建筑基于性态的抗震设计必然显得尤为重要,传统的“小震不坏,中震可修,大震不倒”的抗震设防目标显然是不够水准的,设计上的突破就显得势在必行,笔者认为还要从以下两个评价水准进行考察:
1、正常使用水准评价
一般情况下,对于重现期大约为50a的地震,建筑物只能出现的损伤应该可以忽略,结构在设计时要求结构的反应状态基本处于弹性反应状态。
2、倒塌水准评价
大量研究表明,对于重现期与2 500 a的地震水准非常接近的地震,要对最大地震振动有所预计,并设计为真正遇袭的条件能有效防止倒塌,并能证实以下几点:
(1)、对于结构中所有的延性构件,其非弹性变形需求必须都比其变形能力要低;
(2)、对于具有非延性破坏模式的结构部件,其中对力的需求应大于等于其名义上的强度;
(3)、对于超高建筑物,又或者是复杂建筑物在设计上,对于起控制作用的构件还必须要证实其受到中等地震的振动作用,仍能保持弹性。
二、影响建筑物抗震效果的因素
要提升高层建筑物其结构的抗震效果,在设计前就必须对影响建筑物抗震效果因素有所了解。笔者结合工程实践,可以从以下几个方面进行分析:
1、建筑使用材料
建筑结构选用什么样的材料将直接对抗震效果构成影响,不过目前由于种种原因,这个因素往往被人们忽视了。大量理论研究和实验证实:通常情况而言,建筑物受到地震作用力的大小与其质量构成线性关系,两者成正比例。实验表明,在同等地震环境下,对建筑物材料的选择就相当关键,选用越合理,可以促使其受到越小的地震作用力;相反,材料选择的不恰当,不精细,容易导致建筑物因此而遭到来自地震的作用力达到很大。正因为如此,在实际的建筑物的设计和建设中,应多采用隔断、维护墙、板楼等构件,尽量采用质轻的建筑材料如加气混凝土板、空心砖、塑料板材等等,如此一来,能有效的提高建筑物的抗震性能。
2、工程的施工质量
光有好的材料,如果建筑结构施工过程不科学,如果不是每一个环节的质量控制都能做到位,也必然会影响建筑结构的抗震效果。为此,在高层建筑项目的具体施工中,相关部门一定要强化监管,严格把各个环节做到规范,提高高层建筑施工管理的质量,通过对建筑结构质量严格的控制来提升结构抗震的效果。
3、建筑的结构设计质量
大量工程实践表明,结构设计是影响抗震效果一个最大的因素,实践经验告诉我们,无论点式住宅或是版式住宅,只有进行科学的、合理的结构设计,保证抗震措施合理,建筑物才能达到抗震的目的。
理论研究表明,建筑物一旦对平面的布置呈现为复杂情况,导致质心与刚心有不一致的时候,一旦发生地震,在地震的作用下,将会加剧地震的作用影响力,导致破坏性有所增强。所以,我们在对建筑物的结构进行平面布置设计时,应尽量将建筑物质心和刚心设计在同一点,借此使得建筑物的抗震能力能有效地提升。具体进行建筑结构设计的时候应注意以下几点:
(1)、控制出屋面建筑部分的高度,不宜太高,借此有效地降低地震过程的鞭梢影响;
(2)、在设计中如果遇到平面布置不规则的建筑,设计时应注意偏离建筑结构刚心远端的抗震墙等等。
4、地质环境情况
实践证实,在地震中地质环境对建筑物造成破坏的原因可以是多方面的,包括以下几个方面:
(1)、因为岩石断层、地表滑坡、山体崩塌等等因素导致地表发生了运动,引发对建筑物的破坏;
(2)、海啸、水灾等次生性灾害引发对建筑物的破坏。
而这些因素中,有些影响因素是能够借助具体的工程措施进行有效预防的。对于具体的建筑项目,对于建筑工地的位置的选择,必须事先对场区实施详尽的勘测,对地形和地质条件进行详尽的分析,对于不利地段要有效避开,挑选出能有效提升建筑物抗震效果的地点。
三、高层建筑抗震设计的方法
在具体的高层建筑进行结构抗震设计时,我们应该重点从减小地震作用力的输入,以及如何增强地震抵抗力两个方面进行思考,具体的有以下5个方法:
1、促进地震发生时能量的输入能有效地减少
(1)、对于具体的工程设计,应采用积极的、基于位移的结构抗震方法,定量分析具体的设计方案,有效地保证结构的变形弹性能够达到预期地震作用力下变形的需求。
(2)、在验收建筑构件的承载力的同时,对建筑结构在地震作用下的层间位移限值实施有效的控制。
(3)、应综合分析建筑构件的变形和建筑结构的位移两者之间精确的关系,有效地确定构件的变形值;
(4)、结合建筑物的实际如建筑界面的应变分布及其大小来对建筑构件的构造需求进行有针对性的设计。
(5)、选择坚固的场地,实施建筑施工,亦是有效减少地震发生作用时能量的输入的另一个方面。
2、运用高延性设计
理论研究和实践表明,对于一个具体的高层建筑而言,如果其承载能力不是很大,但是其具有的延性较高,那么当地震发生时,它也是不容易倒塌,这是由于延性构件能够充分地吸收地震带来的能量,使得建筑物能经受住很大的结构变形。实践证明,延性结构的运用,在很多情况下是有效的,它可以消耗地震能量,有效减轻地震反应,促使地震给高层建筑带来的破坏被有效地减弱,避免重大损失的发生。
3、注重抗震结构的设计
设计的质量和方法决定着抗震效果的高低,因此,高层建筑抗震设计的结构必须得到足够的重视。从国内外高层建筑结构的设计上来看,主要为如下三种:“框――筒”、“筒中筒”和“框架――支撑体系”。
4、重视建筑材料的选择
在高层建筑的抗震方案设计中,建筑结构的材料选择也非常重要。首先,我们可以对建筑材料的参数进行抗震性能的分析,从整体上对材料的参数变异性进行研究,而不能仅考虑建筑材料的承载力忽略其他因素。从抵抗地震的角度来讲,就是要控制建筑结构的延性需求,这就要求我们从高层建筑建设施工的各方面,来选择符合抗震需求而且经济适用的建筑结构材料。
5、增多抗震防线的建设
高层建筑结构防震可以设置多道抗震防线,增强对地震的抵抗力。高层建筑物设置多层的地震抵抗防线,第一道防线遭到破坏之后,有后备的第二道、第三道甚至更多的防线对地震的作用力进行阻挡,避免高层建筑物的倒塌。高层建筑结构进行抵抗地震设计时,可以采用具有多个肢节和壁式框架的“框架剪力墙”等防震结构。框架剪力墙具有性能较好的多道防线抗震结构,其中的剪力墙是第一道抗震防线也的主要的抗侧力构件。所以,剪力墙要足够多,保证它的承受能力较高,不小于高层建筑底部地震倾覆力矩的一半。
参考文献:
[1]吕西林・复杂高层建筑结构抗震理论与应用[M]・2007・
[2]刘华新,孙志屏,孙荣书.抗震概念设计在高层建筑结构设计中的应用[J].辽宁工程技术大学学报,2007(2).
关键词:带转换层;设计; 建筑的安全性
Abstract: the conversion layers design is in the structural design of high-rise building is a key part. Taking the high-rise building with conversion layers structure as the research object, analyses the architecture design of security problems, finally discusses how to design of the building structure in how to improve the safety of the building.
Keywords: take conversion layers; Design; Construction safety
中图分类号:S611文献标识码: A 文章编号:
近年来随着科学技术的进步,现代高层建筑结构向着体型复杂、功能多样的综合性方向发展,带有转换层的高层建筑得到了大量应用。由于建筑功能的需要,形成了建筑上层的结构形式与下层的结构形式不一样;或上下层结构形式一样,但上下层结构的柱网的尺寸不一样。为解决这一矛盾,就采用了转换层结构。高层建筑结构转换层形式有梁式楼盖转换、箱形楼盖转换、析架转换、厚板转换和斜柱转换。
1带转换层建筑结构的特点及存在安全问题
1.1结构转换层的特点
1)转换结构构件常常承受其上部结构传下来的巨大竖向荷载或悬挂下部结构的多层荷载,使得转换结构构件的内力很大,因此,竖向荷载成了控制转换结构构件设计的主要因素。2)转换结构构件通常具有数倍于上部结构的跨度,转换结构构件的竖向挠度成为严格控制的目标。3)转换结构的连续施工强度大,有的施工过程复杂,有一定的难度。4)结构中由于设置了转换层,沿建筑物高度方向刚度的均匀性会受到很大的破坏,力的传递途径有大的改变,这决定了转换层结构不能以通常结构来进行分析和设计。
1.2带转换层建筑结构的安全问题
转换层在国内外早就有研究和应用。早在上世纪五十和六十年代,苏联和东欧一些学者就提出了柔性底层板材房屋的设计方案,也就是上部均为剪力墙、下部均为框架的结构体系,并认为柔性底层有利于隔震,提高整座建筑物的抗震能力,因而兴建了不少这样的房屋。这是初次通过设置转换层而取得底层大空间的尝试。但是,震害的结果表明,这种柔性底层的剪力墙房屋并不具有人们所希望的隔震、抗震能力,框支剪力墙结构的侧向刚度在剪力墙和框架交接的楼层处发生突变。在强烈地震力的冲击下,结构因底层框架刚度太小、侧移过大、延伸性差以及强度不足等而引起破坏,甚至整座建筑物的倒塌。例如1964年南斯拉夫斯可比耶地震,这类房屋很多倒塌或严重破坏;1978年罗马尼亚布加勒斯特地震,许多这样的住宅、计算中心建筑由于底层柱破坏而倒塌;1988年12月原苏联亚美尼亚地震总结出同样的教训:底层柔性的房屋抗震性能很差,地震中破坏严重。所以,底层均为框架的纯框支剪力墙结构体系,在地震区不宜采用。
2建筑结构设计中如何提高建筑的安全性
2.1竖向布置
1)应避免高位转换。根据前人研究成果,转换层位于3层以上时,层间位移角、剪力的分配及传力途径发生急剧突变,易形成薄弱层,抗震非常不利。对部分框支剪力墙高层建筑结构,其转换层的位置,7度区不宜超过第5层;8度区不宜超过3层。转换层位置超过上述规定时,应作专门研究并采取有效措施,6度时其层数可适当增加;底部带转换层的框架-核心筒结构和外筒为密柱框架的筒中筒结构,其转换层的位置可适当增加。
2)布置形式。沿高层建筑方向转换结构可以是分段布置,形成大框架套小框架的巨型框架结构;可以间隔布置,形成错列墙梁或析架式框架结构,这种情况是要求没有支撑障碍的宽敞内部空间,它必须采用大跨度楼盖结构,即采用一组三层水平构件的梁系统,由转换大梁来支撑主梁,再由主梁支撑次梁。这里的转换大梁起到解决大跨度楼盖和改变各主梁间距的作用,与用它来改变柱列是同一实质;错列剪力墙结构也可设置于建筑物的顶部,悬挂下部结构的荷载;叠层承托析架结构及多梁承托结构。
2.2结构加强层
当建筑物较高柔(例如框架-简体结构),整体刚度有可能不足时,在结构竖向的一定部位设置水平刚性楼层(即加强层),人为地加强结构的整体弯曲效应,这时转换层可同建筑物的加强层、设备层等统一考虑。由于刚度突变导致层间位移角、剪力的分配及传力途径发生急剧突变,形成薄弱层,就应控制好转换层的侧向刚度比,抗震时不应大于2。
2.3转换层结构计算的一般原则
1)带转换层的高层建筑结构可分别情况,按空间协同工作分析方法、三维空间分析方法或其它有效方法进行整体内力与位移计算。此时转换构件作为结构的一部分参与整体计算。巨型框架结构可将主框架连同次级框架一起作为整体结构进行空间分析。当次级框架梁,柱的刚度较小时,也可以将次级框架作为荷载,只对主框架进行空间分析,此时,次级框架只对竖向荷载进行内力计算。底层柱上端和转换梁(墙)宜采用平面有限单元法进行局部应力分析并相应配置钢筋。底部框支剪力墙在转换梁附近墙体宜采用平面有限单元法进行局部应力分析,此时宜采用高精度的平面应力单元。转换平板,箱形结构宜采用板单元或组合单元进行局部应力分析。2)转换层的高层建筑结构,其薄弱层的地震剪力应乘以1.15的增大系数。特一、一、二级转换构件水平地震作用计算内力应分别乘以增大系数1.8、1.5、1.25;8度抗震设计时转换构件尚应考虑竖向地震的影响。带转换层的高层建筑结构,其框支柱承受的地震剪力标准值应按下列规定采用:每层框支柱的数目不多于10根,当框支层为1~2层时,每根柱所受的剪力应至少取基底剪力的2%;当框为3层及3层以上时,每根柱所受的剪力应至少取基底剪3%;每层框支柱的数目多于10根,当框支层为1~2层时,每层框支柱承受剪力之和应取基底剪力的20%;当框支层为3层及3层以上时,每层框支柱承受剪力之和应取基底剪力的30%;框支柱剪力调整后,应相应调整框支柱的弯矩及柱端梁(不包括转换梁)的剪力、弯矩,框支柱轴力可不调整。
2.4结构布置
1)底部大空间部分框支剪力墙高层建筑结构在地面以上的大空间层数,8度时不宜超过3层,7度时不宜超过5层,6度时其层数可适当增加;底部带转换层的框架-核心筒结构和外筒为密柱框架的筒中筒结构,其转换层位置可适当提高。剪力墙和筒体底部墙体应加厚。转换层上部结构与下部结构的侧向刚度比;底部大空间为1层时,等效剪切刚度比Y宜接近1,非抗震设计时Y不应大于3,抗震设计时丫不应大于2。底部大空间层数大于1层时,等效侧向刚度比Ye宜接近1,非抗震设计时Ye不应大于2,抗震设计时Ye不应大于1.3。框支层周围楼板不应错层布置;框支剪力墙和筒体的洞口宜布置在墙体的中部;框支剪力墙转换梁上一层墙体内不宜设边洞,不宜在中柱上方设门洞。
2.5截面设计
1)截面的限制条件:框支梁与框支柱截面中线宜重合;框支梁截面宽度不宜大于框支柱相应方向的截面宽度,且不宜小于其上墙体截面厚度的2倍,且不宜小于400mm;当梁上托柱时,尚不应小于梁宽方向的柱截面宽度。梁截面高度,抗计时不应小于计算跨度的1/6,非抗震设计时不应小于计算跨度的1/8;框支梁可采用加腋梁;2)配筋构造:梁上、下部纵向钢筋的最小配筋率,非抗震设计时分别不应小于0.3%;抗震设计时,特一、一和二级分别不应小于0.6%、0.50%和0.40%;b.受拉的框支梁,其支座上部纵向钢筋至少应有50%沿梁全长贯通,下部纵向钢筋应全部直通到柱内;沿梁高应配置间距不大干200mm、直径不小于16mm的腰筋。框支梁上部的墙体开有门洞或梁上托柱时,该部位框支梁箍筋应加密配置,箍筋直径、间距及配箍率按规范采用,当洞口靠近框支梁端部且梁的受剪承载力不满足要求时,可采取框支梁加腋或增大框支墙洞口连度等措施;框支梁不宜开洞。若需开洞时,洞口位置宜远离框支柱边,上、下弦杆应加强抗剪配筋,开洞部位应配置加强钢筋,或用型钢加强,被洞口削弱的截面应进行承载力计算。
3结语
论文重点针对转换层设计是高层建筑结构设计中非常关键的部分。论文重点针对以带转换层的高层建筑结构为研究对象,分析了建筑设计中的安全问题,最后重点探讨了如何在建筑结构设计中如何提高建筑的安全性。希望对实际工程提供借鉴。
参考文献:
[1]超,王建云.高层结构的转换层及应用探讨.国外建材科技,2005,26(4):87~88
1)在单元结构的局面设计上能够采用合理的设计原则在高层建筑中,对于相互独立的单元格结构,是结构设计中重点涉及内容,这种结构的设计工作是符合简单的并且具有规则的平面设计原则的,这种平面的长以及独立的部分的长都需要在一定范围内,这样才能够将承载力以及刚度方面平均分配,这样做也是能够在竖向上的结构平均以及规则的设计方式,对于高层建筑的外部与内部收放结构中,都可以采用有效的控制手段。2)在设计中尽量优化混凝土与钢筋使用比例高层建筑建设需要耗费较多的混凝土、钢等材料,若混凝土和钢的强度过大,势必会造成建筑材料总造价过高,同时加大其它构件的造价,从而降低建筑建设的经济效益。因此,混凝土的结构设计人员应当对高强度的混凝土与钢筋的使用进行合理的优化控制。3)在设计中对于剪力墙的平面布置要本着合理的设计原则①以建筑的各项基本结构功能为依据,在满足这些功能的前提下,尽可能地使剪力墙的布置实现相对的集中化与均匀化,对具有较高的恒载或者平面形式变化较大的部位设计剪力墙,应当尽量缩小其间距。②以建筑的主轴方向或者是其他方向为基准,对剪力墙进行双向的布置,且墙肢截面具备较小的侧向刚度的简单规则的形式,在设计中还要尽量地减少对短肢剪力墙的使用。
2.高层建筑中的混凝土结构具体设计优化措施
1)在高层建筑中结构符合安全性①设计人员应当在保证建筑各项功能的同时,通过考虑结构自身的抗震性能及外部人为因素可能造成的结构破坏,有目的地将高层建筑的抗震构造提升。②设计人员要从建筑建设过程中及投入应用后的各个方面入手,综合考虑其荷载变化的状况。2)高层建筑设计中的抗震概念高层建筑的混凝土结构在应用过程中,最容易受到的破坏,便是来自于地震威胁,在进行设计的过程中,设计人员要以抗震概念设计为依据,通过进行抗震试验得出该建筑结构的抗震等级,或者借鉴相似建筑的抗震设计经验等,对高层建筑的结构体系、平立面设计、结构构件延展性等进行优化设计,以使建筑的抗震能力得到有效的提升。3)在结构设计中对于耐久性的把握①选择质量良好的混凝土材料。设计人员应当在保证混凝土材料的质量与基本性能的基础上,重点从结构的稳定性能、抗侵入性能、抗裂性能等几个方面入手,选择坚固、耐久、洁净的骨料,含碱量与水化热反应较低的水泥,减少对于硅酸盐水泥与用水量的应用,并适当地将矿物掺合料加入到材料中。②优化结构方面的设计工作。高层建筑中的混凝土结构普遍包括多个构件,每一个构件所处的环境存在显著的差别,这就决定了不同构件具备的耐久性寿命存在差异,因此,设计人员要根据实际的使用环境,明确建筑中不同结构构件的使用界限与注意事项。以屋面、阳台及女儿墙的设计为例,这些部位的梁柱构件,耐久性寿命普遍低于室内,必须合理设定这些部件维修或更换的时间。③如何应用合理设计结构构造形式。设计人员根据建筑的具体侵蚀环境与设计使用年限,设计厚度在20mm~70mm之间的混凝土保护层,并通过协调构件的截面积与表面积,避免侵蚀性物质集中停留区域的形成,同时注意高侵蚀度的环境中,混凝土墙板的通风效果,并注意配筋间距的合理设计,以减少钢筋锈蚀、保护层剥离等问题的出现。
3.结束语