公务员期刊网 精选范文 环境空气质量现状范文

环境空气质量现状精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的环境空气质量现状主题范文,仅供参考,欢迎阅读并收藏。

环境空气质量现状

第1篇:环境空气质量现状范文

【关键词】 空气质量 空气污染指数 原因分析

近年来随着我国经济的稳步发展,各大中城市都不同程度地面临着日益加剧的大气污染问题,政府各职能机构和广大公众也日益关注大气污染问题。为了准确及时地反映大气环境质量状况,提高政府的综合决策效能,于2013年10月8日-12日对潮州市区进行一次为期5天的空气质量现状监测。

1 监测概况

经历年的监测显示,市区空气质量中SO2浓度非常低,所以本次的监测项目只包括NO2、PM10(可吸入颗粒物),其污染物的浓度限值分别是NO2(0.080mg/m3)、PM10(0.150 mg/m3)。使用的分析方法为:二氧化氮(Saltzman法)、PM10(大气飘尘浓度测定法)。使用的监测仪器为:KC-120H型智能中流量采样器、TH-110B型大气采样器。这次监测一共设置10个监测点位(详见附件1及表1-1)。其中1-7号点位为手工监测点,8-10号点为空气自动监测点。

2 监测结果

监测结果表明:

(1)十个监测点的污染物浓度范围是:二氧化氮0.006(L)-0.058 mg/m3;可吸入颗粒物0.026-1.511mg/m3。二氧化氮浓度测值由低至高的排列顺序分别是市人防办、引韩管理处、意溪中津村委、档案局、西园路、南国二期工地、四通陶瓷、潮州大道高级中学、市政公司、春荣路北桥大厦。可吸入颗粒物浓度测值由低至高的排列顺序分别是市政公司、档案局、西园路、引韩管理处、市人防办、意溪中津村委、潮州大道高级中学、春荣路北桥大厦、南国二期工地、四通陶瓷。

(2)二氧化氮最高污染物浓度出现在12日春荣路北桥大厦4号测点,浓度值为0.056mg/m3。最低的浓度值出现在市人防办和引韩管理处测点,都是多次出现二氧化氮浓度未检出。5天平均浓度最高的也是在春荣路北桥大厦测点,为0.041mg/m3,最低的是市人防办测点,为0.007mg/m3。最高点和最低点浓度相差6倍,都未超过标准限值。

(3)PM10最高污染物浓度出现在11日四通陶瓷6号测点,浓度值为1.511mg/m3。最低的浓度值出现在市政公司测点,浓度值为0.026mg/m3。5天平均浓度最高的也是在四通陶瓷测点,为0.564mg/m3,最低的是市政公司测点,为0.046mg/m3。最高点和最低点浓度相差12倍,四通陶瓷测点浓度超过标准限值,限值超标倍数为2.76倍。

(4)两种污染物中,二氧化氮占污染负荷为21.7%,PM10污染负荷为89.3%。PM10为我市环境空气污染的主要污染物,其浓度的高低对我市的空气质量指标API指数起着决定作用。潮州市区各种污染物的监测结果统计见表2-1。

3 影响市区环境空气质量主要原因

目前影响潮州市区空气质量主要是地表扬尘、工业废气、机动车尾气三方面。

(1)特殊的地理地形。潮州市位于广东省的东南部,滨临南海,地势北高南低。潮州市区四面环山,常年的主导风向为东南偏东,常年的平均风速为(1.7m/s)。小风速对污染物的扩散不利,造成大量的空气污染物积聚,使得市区的污染物浓度升高。(2)建筑施工及砂石运输所产生的地表扬尘的影响。随着近年来我市加大了道路桥梁基础设施的投资及旧城改造的力度,工程量大面积广,砂石运输量大大增加。建筑施工过程和运输过程所引起的扬尘也隨之增加。(3)城市管理跟不上形势的要求。我市有些运载沙石的货车不遵守有关规定,运载沙石经过市区时不加盖,对车轮不进行冲洗,使沙土到处飞扬。由监测数据就可看出,砂石运输所产生的地表扬尘非常对空气质量影响非常厉害。(4)陶瓷行业是潮州市的传统支柱产业,也是能耗大的行业。枫溪区瓷厂林立,其能耗量、无组织粉尘排放量在全市占有很大比例。同时,我们的瓷泥主产区是在市区东边,而陶瓷生产基地却在市区的西面,生产原料的运输都是经过市区,同样加重了道路扬尘的污染。(5)机动车尾气污染逐步加剧。目前全市拥有机动车约56万辆,汽车约15万辆。机动车尾气是城区空气中NO2的主要来源,机动车尾气尘也是城市空气中总悬浮颗粒物的组成部分,尤其是对人体危害较大的小颗粒。有关资料显示,机动车尾气尘粒径范围为0.4~9.0μm(即PM10)的比率占90%以上,基本属于悬浮的小气溶胶粒子。在大气稳定度比较大的条件下,城市中低架源的排放(主要是机动车)可造成严重的空气污染。而且市区面积小,人口居住地比较集中,道路不够宽敞,一到上下班高峰期,经常造成市区大塞车,也加重了市区的空气污染。(6)城市生活垃圾的不规范焚烧。我市垃圾处理属于集中卫生填埋方式。可是有些单位,为求方便省事,经常进行非法焚烧垃圾及树叶,焚烧后所产生的废气严重影响我市的空气质量。

4 市区空气污染防治对策

综上所述,综合控制潮州市区污染是改善潮州市环境空气质量最根本的出路,为此提出以下对策建议:(1)加快外环路的建设,使大量过境车和运输车能够不经过市区,减少扬尘的污染。(2)加强城市的综合监管责能,在各进出城市的主干道,对运载砂石的车辆进行冲洗。同时强化对建筑工地的监管,让所有出入工地的运载车辆也进行冲洗。环卫部门除尽量利用夜间清扫街道外,还应定时增加每天向市区主要交通干道、街道的洒水次数,尽量减少二次扬尘的产生。(3)强化机动车尾气综合治理,严格执行机动车定期报废制度;加强机动车尾气路检工作;完善城市交通系统,加强交通管制,保证行车顺畅,减少机动车怠速状态下的尾气排放。限制机动车上牌,发展公交事业。(4)大力进行植树造林,严禁滥砍乱伐,增加植被覆盖率,减少水土流失。加强对市区的绿化工作,提高市区绿色覆盖面积。大力宣传环境保护知识,不断提高每个公民的环保意识。

第2篇:环境空气质量现状范文

【关键词】空气质量监测系统;监测网络;现状;发展方向

空气质量监测系统是一套以自动监测仪器为核心的自动“测-控”系统,用于采集和分析环境空气质量的状况和变化,对空气质量日报和预报的发挥着重要的作用,并提高了我国的空气质量监测水平。空气质量监测系统是由中心计算机室、质量保证实验室和系统支持实验室、监测子站等部分组成[1]。基本上做到了自动化采样、自动化分析、自动化数据处理及传输,并能自动显示区域环境质量状况。该方法的连续自动监测在常规监测中占主导地位。不仅欧、美、日等发达国家空气常规监测都采取此方法,一些发展中国家,如墨西哥等国家的城市空气监测也广泛采取此方法,基本采用了点式的空气质量监测系统,部分测点还采用了开放式的差分吸收光谱技术[2]。

1.空气质量监测技术发展现状

1.1点式的空气质量监测仪

点式仪器的空气质量监测系统应用的是比较成熟的监测方法,具有完善的布点理论、数据统计理论、污染成因和演变趋势模型理论、污染预报理论。目前在美国有4000个监测点,日本有2000多个监测点,在我国也大量使用。该方法已成为空气自动监测技术的主导方向[2]。

1.2开放式空气质量监测系统

差分吸收光谱法的大气质量监测系统的特点是采用线采样,其采样代表性较传统的点式有较大的改善,有利于对空气质量的表征。且能够分时测量SO2、NO2、O3三个主要参数,还能测量如:THC、CH4、NMHC、BTX等有机污染参数。具有高灵敏度、高分辨率、多组分、测量结果具有更好的代表性、维护量小、维护周期短、运行成本低的特点。

不足之处是:

(1)DOAS法测量的是直线上的线平均浓度,仅能测出污染物的相对浓度ppm-m,很难直接获得绝对浓度,必须精确测量距离,方可换算为某一直线上的平均浓度。

DOAS技术只适用于具有窄带吸收结构的气体,从而限制了可测气体种类。大气中以及污染控制中许多物质,由于吸收太弱,而不能被探测到。许多种物质,比如烷烃,CO气体,因在紫外一可见区间没有吸收,从而不能被这种方法测量。

虽然技术可同时测量多种气体,但是由于不同气体的最佳光程不同,不同的气体监测需要安装不同的光程和接收装置,要在相距几公里的两个地区安装仪器,并且要相互能看得见,也是相当麻烦的。

DOAS系统对测量环境要求较高,有雾、降雪以及空气悬浮物多的情况均影响监测,仪器会显示光信号较弱,不能进行监测。

DOAS系统不能在线校准,校准比较复杂,且校准系统与现场测量系统存在差异,有可能造成校准不准确。

2.空气监测网络发展现状

从20世纪70年代开始,发达国家陆续建立起空气质量监测系统。到目前为止,美国已经建立了一系列全方位的立体空气监测网络,包括State and Local Air Monitoring Stations (SLAMS)、National Air Monitoring Network (NAMS)、Special Purpose Monitoring Stations (SPMS)和Photo chemical Assessment Monitoring Network (PAMS)等,能够实时在线监测联邦政府规定的常规大气污染物:SO2,CO,NO2,O3,PM2.5,PM10,Pb等,以及其他挥发性有机化合物,灰霾和光化学烟雾污染物等等。并形成颁布了一整套关于监测网络设计、监测方法、标准操作步骤、站点选择和配置、数据处理和通信的技术、指南和规范,建立了一套完善的质量保证和质量控制( QA/QC) 体系,确保了监测数据采集、传输、综合分析和使用的准确性和可靠性;同时,所有监测数据集中传输到美国环保局的空气质量系统(Air Quali ~Subsystem),并通过基于互联网的AIRS( Air Information Retrieval System) 系统供政府官员、研究人员和有兴趣的公众索取和使用[3]。其监测仪器的技术水平居全球首位。

3.我国环境空气质量监测系统存在的问题

我国的空气质量监测系统,较发达国家起步虽晚,但是发展较快,已经具备了国内自主研发生产的能力。国内有河北先河、武汉天虹、北京中晟泰科、铜陵兰盾等已具备一定的该系统的生产能力,成为国内该系统的生产骨干企业。该系统的常规监测仪器无论其性能、可靠性已基本完全满足国内环境监测工作的需求,在技术指标等方面都赶超国际先进水平。

4.发展方向

4.1空气质量监测系统的发展方向

鉴于国内的空气质量监测系统在技术指标等方面与国外的先进仪器还存在差距,所以未来的空气质量监测系统主要从以下几方面发展:

技术水平:优化国产的空气质量监测系统的性能指标,使其检测限和漂移等指标赶超国外先进仪器的性能指标。

监测参数:在保证常规监测的主导地位的基础上,扩充监测参数,从SO2、NOX、CO、O3、PM10等常规参数向H2S、NH3、NOy、苯系物等特征污染物及HC、NMHC、VOC等综合性有机物污染物和PM2.5、PM1等细颗粒物的监测参数方向发展。

应用领域:从目前的常规大气监测向工业区、垃圾填埋、垃圾焚烧、机场、交通路口等特定区域发展。

精度等级:从目前的常规大气用普通精度向国际先进的高精度、高稳定性、高可靠性发展,以满足不断发展的大气农村站、背景站建设的要求。

产品形式:由单一的普通点式监测向宏观、大尺度和现场化、小型化多种监测方式发展。

质控体系:建立与国际质控体系一致的质控体系,逐步建立包括固定式校准系统、便携式校准系统、移动式全程校准系统在内的全面校准设备体系,以满足大气监测系统不断严格的质量控制和管理要求。

监测分析方法:要由国内标准化向国际统一化的方向发展。监测分析方法将是在国内建立标准化方法后,再向ISO的标准方法看齐。

4.2 质量保证系统的发展方向

质量保证和质量控制体系主要是通过建立国家网络的量值溯源标准传递和国家-省市区-环保重点城市质控实验室体系,利用基本标准和控制标准的溯源传递,严格校准网络空气子站的工作标气、臭氧校准仪、质量流量计等工作标准物质。通过定期进行标准膜检查,校准颗粒物监测仪。各省站作为其辖区内的质量管理中心。我们要建立与国际质控体系一致的质控体系,逐步建立包括固定式校准系统、便携式校准系统、移动式全程校准系统在内的全面校准设备体系,以满足大气监测系统不断严格的质量控制和管理要求。

参考文献:

[1] HJ/T 193-2005 环境空气质量自动监测技术规范.

第3篇:环境空气质量现状范文

关键词:PM2.5 监测 空气质量

一、前言

PM又称大气颗粒物质,是大气中固体和液体颗粒物的总称,而PM2.5指的是空气动力学当量直径小于等于2.5μm的细颗粒物。其主要来源于机动车尾气、化石与生物质燃料燃烧、工业生产及建筑扬尘等。虽然直径小于等于2.5μm的颗粒物只占了地球上大气成分中很少的一部分,但由于其颗粒直径非常小,可长时间滞留在环境中,可能会富集大量的致癌物质和有毒物质(比如重金属、苯并芘(a)等),易进入人的支气管和肺泡,对呼吸系统和心血管系统造成危害,严重影响人体健康。PM2.5的这些特点使之成为污染空气、危害人体健康以及影响大气能量平衡的一个重要因素。从20世纪80年代开始,国内就针对PM2.5监测开展了大量的研究,并在日常研究中使用大量的监测工具,获得了很多关于PM2.5的研究成果。本文结合我国PM2.5的监测历史与现状,重点比较我国PM2.5的各种监测方法,针对性的提出相关对策建议,希望对提高我国PM2.5的监测管理与污染防控水平有所帮助。

二、我国PM2.5的监测历史与现状

1.我国PM2.5的监测状况

1982年,我国针对空气中飘尘状况制定了第一个环境空气质量标准《大气环境质量标准》,但并未明确的提出PM2.5。直到2012年,我国才真正地将PM2.5纳入到环境空气污染指标中,对环境空气质量标准给与了新的修订,目前我国对PM2.5的监测还处于较低的水平,监测技术和规范体系尚待统一和完善。在我国公布新环境空气质量标准之前,国内仅广州、上海及南京等少数城市开展了PM2.5的研究性监测。随着新的环境空气质量标准的推出,京津冀、长三角、珠三角等重点区域及直辖市、省会城市将率先开展PM2.5监测。因此,我国对PM2.5的监测还有很强的发展潜力。

2.开展PM2.5监测的重要意义

PM2.5主要来源于机动车尾气、燃料燃烧、餐饮油烟、工业生产及建筑扬尘等。通过这些途径,PM2.5可能会富集大量重金属元素或者多环烃等致癌物质,这样就在很大程度上污染了环境空气,同时对人体健康也造成了很大的危害。尽管大气颗粒物在大气中只占很少的一部分,但它对城市大气光化学性质的影响可达99%[2],对人眼所能见到的光产生很大的干涉作用,特别是当颗粒物的直径与可见光的波长几乎一样的时候,颗粒物就会对光纤产生很强的消光作用,PM2.5的粒径基本上已经非常接近可见光的波长范围,因此,PM2.5浓度的增加导致了大气中可见光范围的缩小。此外,正是由于PM2.5的粒径非常的小,导致了PM2.5在空气中的滞留时间比较长,加上PM2.5富集的大量有毒有害物质,被人吸入肺中,影响呼吸系统的正常运转,给人体造成很大的危害,长期处于PM2.5浓度较高的空气环境中很容易患上支气管炎、心脏病以及各种呼吸道炎症等疾病。正是由于PM2.5对空气质量的影响以及对人体健康的危害,我国开始加强对PM2.5的监测,研究其形成机理与污染组分,掌握其变化规律及变化趋势,不仅能够让公众更加精确的感知到环境空气的真实状况,更能够为PM2.5的污染防控工作提供数据和技术支撑。随着我国逐渐的对PM2.5的监测引起重视,我国空气PM2.5严重超标的状况将会得到很大的改善,进一步提高我国居民的生活水平,提高我国的空气质量。

三、PM2.5的监测分析方法

开展PM2.5的研究以及防控工作应该将获得准确的监测数据作为此项工作的基础来进行,然而PM2.5的监测分析是一个十分复杂的过程,是因为PM2.5不但直径非常小,而且其形成机制与化学组成亦十分复杂。目前我们对PM2.5的监测主要包括了两个步骤:一是将PM2.5与其他大颗粒物分离;二是测定分离出来的PM2.5颗粒物的重量。

四、加强PM2.5监测的对策建议

1.大力发展监测技术,形成统一的技术规范体系

我国的PM2.5监测起步晚,水平相对较低,需要不断地吸收国外先进技术,同时还应结合我国空气质量的特点,进行创新完善,形成一套适应我国空气污染特征的PM2.5采样方法及监测技术规范体系。此外,还需要对国际上的先进监测技术进行追踪,不断地开发适合我国空气质量的监测仪器,从而提高我国的空气监测水平。

2.优化资源共享体系,不断提升环境预警水平

要从根本上提高我国PM2.5的监测水平,很关键的部分还在于气象和环保等部强力合作。只有在气象和环保部门的合作下,加强对PM2.5的监测点位的优化布设,才能不断扩大PM2.5监测所覆盖的区域,动、静态掌握其变化趋势及变化规律,同时利用气象部门的气象数据来进行环境预警分析,从而提高环境空气质量预测、预警水平。

3.加快推进监测能力建设,尽快形成PM2.5及相关指标的监测能力

要想彻底改变PM2.5的污染现状,切实改善环境空气质量,首先要加强环境空气质量监测网的建设,尽快形成PM2.5的监测能力,同时还应加强对PM2.5主要影响因子的监测分析能力,为PM2.5的源解析及变化规律研究提供数据支撑。

4.不断加强监测成果应用,充分服务环境管理与环境决策

由于PM2.5的组分复杂,污染特征存在区域性差异,各监测部门在监测环境空气PM2.5浓度的同时,应加强对日常监测数据的综合分析,逐步开展PM2.5的源解析及有关PM2.5的研究分析工作,动态掌握本辖区内PM2.5的产生原因、成分特征、污染特征、其变化规律与变化趋势,并将监测成果应用于环境管理与环境决策之中,为本辖区内的PM2.5污染防控提供强有力的技术支撑,从而达到改善环境空气质量的目的。

5.建立健全相关法律法规,加强政府监督管理力度

在对PM2.5监控的过程中,政府可以利用自身的强大影响,对经济的发展中各种气体的排放给予制约,并制定相关的制度和法律,进行监督和制约,从根源上降低空气中PM2.5的浓度含量。

五、小结

虽然我国对PM2.5的研究取得了一些进展,但是经济社会的发展避免不了污染物的排放,希望环保部门、气象部门及政府方面对PM2.5给予足够的重视,不仅要从源头减少PM2.5的排放,还要从各个监测手段上监督和制约PM2.5浓度的上升,最大限度的降低PM2.5对生态环境的影响。

参考文献

[1]肖美,郭琳,何宗建.空气环境中PM2.5研究进展[J].江西化工.2006(04).

[2]杨复沫,马永亮,贺客斌.细微大气颗粒物PM2.5及其研究概况[J].世界环境.2000(04).

[3]杨书申,孙珍全,邵龙义.城市大气细颗粒物PM2.5的研究进展[J].中原工学院学报.2006(01).

第4篇:环境空气质量现状范文

1.1浅谈空气污染监测的重要意义随着人类社会的不断发展,人们的生活水平不断提高。但是,人类文明的高速发展也带来了众多的弊病,其中最严重的就是对自然环境的破坏。人类对于自然环境的破坏主要集中在对森林、水源、空气上,而其中对人们的生活影响最大、影响面最广的,就要属对空气的破坏。现在的环境空气的质量与人们的生活密切相关,人们的工作、生活、学习都与空气的好坏密切相关。因此,人们需要对身边的空气质量有一个直观的了解。从另一方面讲,随着经济的不断发展,人类对环境的污染越来越严重,人们的环保意识也在不断地增强,都希望目前的生活环境能够得到改善。因此,相关部门有责任、有义务加强空气环境监测工作,为民众提供及时、准确的空气质量报告,以便于人们对日常生活进行调整,便于相关环部门作出正确地决策。只有做到以上几点,人们的生活环境才会从根本上得到提升。因此。从环境对人工作、生活、学习的影响来看,开展高效、及时的空气污染监测工作是十分必要的。

1.2浅谈现阶段空气污染监测现状我国的空气监测起步较晚,但是发展速度很快,相关部门根据实际情况制定了众多的措施,并取得了良好的成效。环境监测是环境保护的基础性工作,它具有涉及面广、专业性强和投资大等特点。为了能够提高全国空气监测工作的质量于效率,国内环境部门将已经在全国组织监测网络。除此之外,国家也制订了统一的监测原则,在各地方设立了环境监测站,充分发挥了各方面的技术人才的优势,同时引进众多先进设备,大幅提高了我国空气监测的工作的质量。我国的空气质量监测人员应用了科学合理地监测与测试数据的技术,使我国的空气质量监测水平不断提高,逐渐的在世界占据领先地位。在我国广大空气质量监测人员的不断努力的基础上,国家仍在不断地完善环境保护法律,促进我国环境监测工作进一步地展开与加强。现在空气环境监测工作主要是运用各种方法连续或者间断地测定环境空气中污染物的性质、浓度进行分析,并评价空气环境质量的过程。现在国内监测环境主要分为环境空气污染源监测、环境空气质量监测、特定目的应急监测等三种。经过近20年的发展,我国的空气质量监测体系逐渐完备,整体环境监测工作并无漏洞。但是仍然在一些细节工作存在问题,这需要我国的空气质量监测人员不断总结经验,并根据实际工作情况作出合理的调整,争取最大程度的提高我国空气质量监测工作的质量。

1.3加强空气污染监测的办法空气污染监测工作与人们的日常工作、学习息息相关,做好空气污染监测工作才能制定出更为有效地保护环境方案,因此,如何提高我国空气污染监测质量就显得极为重要。为了能够提高污染监测质量,监测人员首先需要对有关空气质量的法规、技术标准、污染测定方法及对测定仪器有着足够的了解。其次,监测人员要规范空气监测手段,在进行监测时一定要秉着科学的态度进行监测工作,确保监测数据和信息的及时、准确、可靠。另外,空气质量监测人员要掌握进行空气污染建模的步骤,只有科学的空气污染建模,才能使污染检测更加科学、高效。影响空气污染监测的因素有很多,这需要监测人员有着足够的监测工作经验,并在工作中能够积极学习优秀的污染监测案例,总结经验,尽可能的提高监测工作的质量。

2浅谈空气污染建模

2.1进行空气污染建模的意义科学、合理的布点建模工作可以大大地提高空气质量监测工作的效率,得到的监测的数据也会更加准确,能够更加真实地反映大气的污染状况。进行空气污染建模工作的重点就是合理选择空气污染监测点,它直接影响到监测结果的代表性和精度,合理的检测地点可以减少监测工作的工作量,也可以提高所得数据的精准度。因此,合理的进行空气质量监测、科学的选择检测地点是监测质量保证的重要环节。

2.2进行空气污染建模的注意事项

2.2.1明确监测的目的,在空气污染监测体系中,包括城市环境空气质量的监测和污染源对环境影响的监测,目标不同,它们的监测目的是不同的。这需要城市环境空气质量的监测,主要是为了调查环境空气中污染物的时空分布规律以及对敏感体的暴露情况,进行污染对环境影响的监测,主要是为了掌握污染源的变化趋势以及排放污染物的规律。

2.2.2确定污染源的状况,不同的污染源的建模方法不尽相同,因此,在进行分布建模之前,需要相对调查范围内及附近范围污染源的分布、排出量等因素进行综合的调查及分析,确保空气污染建模工作能够顺利进行。

2.3空气质量监测点的选择合理的进行空气质量检测点的选择是科学的进行空气污染建模的重中之重,进行空气质量检测点的选择主要考虑以下两个方面:其一是监测点的代表性,其二是检测点的数量。从代表性来讲,由于每个监测点所代表的作用是不同的,每一个监测点都有特殊的作用如是代表一定的功能区,代表污染源的影响、代表区域环境背景等,因此,进行监测点的选择要综合考虑当地的空气污染源、污染度、地形地势、监测任务的周期等众多问题。从检测点的数目来讲,如果监测任务是暂时性的,同时需要得到精度较高的监测数据,就需要增大样点的布设范围,对于需要布设众多监测点的情况下,可以选择各种布点方法,例如规格网格法、扇形布点法等。对于长期的定点监测,则不能够设立过多的监测点,这将需要花费大量的资金,因此需要采用按人口和功能区布点法。以上所述的两点因素对监测工作后期的布点建模有较大的影响,还有一些次要因素如地形特征,风力情况等也会对检测工作造成影响,。因此在监测工作中监测人员必须考虑全部因素,才能形成有代表性的布点建模,更好地完成空气污染监测工作。

3结论

第5篇:环境空气质量现状范文

关键词:环境控制监测;质量控制;措施

中图分类号:Q89 文献标识码:A 文章编号:

所谓环境空气监测就是指,环境监测机构对环境空气监测的程序及法规进行规定,对表示环境空气质量和发展趋势的各种要素进行全面的技术监测,并对环境行为符合相关法律法规的状况进行相应的执法监督、控制和评价。近些年来,我国的经济取得了高速的发展,城市化、工业化进程不断提升,城市原有的环境、规划和人口分布产生了巨大的变化,城市原有的环境空气监测网络已经无法满足当前环境空气检监测的需要,环境空气监测质量需要进一步的提升。

一、环境空气监测中质量控制存在的问题

当前影响环境空气监测质量的主要问题表现为:一些高精度监测点位的筛选确定及评估体系还不是非常完善;缺少高频次、高准确度、高分辨率的立体监测方法和设备;一些空气监测设备的质量控制技术已经无法适应当前的监测需求;监测所获得的数据信息无法得到充分深入的分析;缺少必要的环境空气质量和污染源归因和反控制技术;缺少必要的环境空气监测预警技术等。

二、环境空气监测质量控制的有效措施

2.1、不断优化环境空气监测点位布局

随着我国城市化的不断发展,工业水平正在不断提高,原有的环境空气质量监测点位已经无法满足当前社会环境管理的需要,因此,建立科学合理的环境空气监测点位已经成为一项迫切的需要。首先,对环境空气监测的点位网络进行优化,坚持、系统化、完整化及代表性的点位设置原则,对现有的环境空气监测点位进行充分的优化调整,实现点位网络的科学布局和设置。其次,点为网络应该逐步朝着基层和农村延伸,在基层和农村建立专门的环境空气自动监测站,从而实现空气质量监测的城乡一体化,从而建成一个覆盖面广,符合当前社会环境空气监测要求的环境空气监测网络。

2.2、不断提升环境空气监测的准确性和公信力

环境空气监测能力的高低主要是有科技水平决定的,科学技术水平的高低直接影响着环境空气监测质量。当前,环境空气监测工作的复杂性越来越高,这也给环境空气监测科技水平提出了更高的要求,同时也是环境空气监测科技提升和变革的一次重大机遇。

2.3、以综合防治为基础,不断提升空气质量

环境空气质量的提升需要长时间的努力,不能简单的依靠某一种方式或手段来实现,应该多种方式共同努力的方法。环境空气监测是环境空气质量控制的第一步,只有实现科学有效地监测,才能够更好的实现联合防治和控制。首先,不断加强部门间的协同合作;其次,实施环境空气防治责任制;再次,不断加强法律法规建设;最后,加强各种治污工程的建设。此外,还应该加大对机动车的监测和治理工作,利用旧车淘汰、标准升级、区域限行、油气回收等手段,强化对机动车尾气的治理工作。

2.4、加强相关环境空气监测技术的培训

要想实现环境空气监测质量的提升,全面提高生态文明建设水平,必须重视社会对环境空气信息的知情权和监督权,大力推动环境空气监测信息的公开化。首先,利用各种技术讲座的形式,对当前的环境空气质量标准进行深入的分析和解读,并对相关的空气监测技术人员进行全面的技术培训。其次,邀请领导、专家、设备厂家进行环境空气监测知识的讲座,加强对PM2.5相关监测设备的技术培训,不断提升环境空气监测人员的技术水平。此外,还应该不断培养环境空气监测人员良好的学习氛围,举办各种形式的环境空气知识竞赛活动,调动相关人员的学习积极性,形成一种良好的学习环境空气监测技术知识的分为,最终实现提升环境空气监测质量的提升。

2.5、加强空气自动监测系统联网

利用空气自动监测可获得连续监测结果的特点,实现省级和国家自动监测网络的联网,为省级和国家级监测站实时分析评价区域性的空气质量,及时为环境管理服务提供了方便,各省级站将根据自己情况,逐步建立空气自动监测网络。空气自动监测系统联网控制体系,同时空气自动监测已成为空气质量监测的主要手段,原有城市环境空气自动监测系统质量保证和质量控制体系也需要完善。随着国家现代化发展的进程,国家环境空气监测网将根据国家环境管理的需要,确定全国的环境空气质量变化趋势、空气污染的背景全水平和全国及各地方的环境空气质量是否满足环境空气质量标准的要求,及时准确地提供监测和分析结果。

总之,判断大气质量是否符合国家制定地大气质量标准,科学监测是科学治理的基础,对环境空气的监测点选择应科学规范,最真实反映城市总体空气质量,避免人为因素影响监测结果。

参考文献

1、刘婵芳,我国环境空气监测评价现状分析与改善建议,科技创新与应用,2012(20)

第6篇:环境空气质量现状范文

改革开放以来,我国社会经济高速发展,以煤炭为主的化石燃料消耗量大幅度上升.我国跃居美国成为汽车消费品的第一大国,经济发达地区NOx和挥发性有机化合物排放量显著增长,O3和PM2.5污染进一步加剧,同时PM10和总悬浮颗粒物(TSP)的污染还未能实现全面控制和有效评估[7].沿海发达地区的PM2.5和O3污染进一步加重,灰霾现象频繁发生,严重威胁着人们的身体健康[8-10].因而,在充分考虑到我国复合型、压缩型环境空气污染特征以及发达国家和国际组织环境空气质量管理的经验及环境空气质量标准的基础上,国家保护部于2008 年设立了修订《环境空气质量标准》(GB 3095-1996)项目计划,并和国家质量监督检验检疫总局于2012年2月29日联合了空气质量标准(GB 3095-2012)[11].

发达国家和一些国际组织在环境空气污染治理、空气质量标准的制定方面开展了系统的并富有成效的研究,积累了较为丰富的经验.因此,本文将美、日等发达国家以及欧盟、WHO等国际组织的环境空气质量标准与我国的加以比较,分别从污染物控制项目及限值、标准分区分级、数据统计的有效性规定以及标准的实施等诸多方面进行分析和评价,以期通过探寻空气质量管理的普遍规律,能够对我国空气质量的改善起到积极的作用.

1 国际环境空气质量标准的最新进展

2006年以来,发达国家和国际组织开展了一系列卓有成效的空气质量标准修订工作,具有代表性的修订情况如表1所示.由表1可知,发达国家或国际组织普遍都增添了PM2.5的环境空气质量标准,同时提高了对臭氧排放浓度限值的要求.

2 污染物控制类别

当前各国的空气质量标准中所规定的污染物控制类别如表2所示.

环境空气质量标准中污染物浓度控制类别的选择取决于各国的环境空气质量管理的评价体系.从各国的环境空气质量[11,13-16]看,普遍将SO2、CO、NO2、O3、PM10 作为污染物项目.其中大部分发达国家和地区还将 PM2.5 作为浓度控制对象.大部分发达国家和发展中国家将Pb作为浓度控制对象,以我国为代表的许多发展中国家仍将 TSP作为浓度控制对象.日本及欧盟中的一些发达国家还规定了苯的浓度限值.另外,以欧盟为代表的一些国家和组织还将As、Cd、Ni等重金属污染物纳入标准评价体系中.

表2中需要特别指出的是,我国根据重金属污染防治的有关要求,参照国际经验,增加了重金属和氟化物参考浓度限值,供地方制定空气质量标准时参考.而近年美国、WHO等发达国家和组织对PM2.5和PM10的成因、环境作用机理、人体健康影响等方面进行了深入、系统的研究,认为有必要对可吸入颗粒物中的粗颗粒物(PM2.5~10)、细颗粒物(PM2.5)分别制定不同的环境空气质量标准予以区分.

3 主要污染物的浓度限值

3.1 可吸入颗粒物PM2.5/PM10

3.1.1 PM2.5/PM10作为评价指标的意义

国外大量的流行病学研究发现:即使是在低于各国的大气质量标准的浓度下,大气中PM10和PM2.5浓度上升与易感人群总死亡数、心血管和呼吸系统疾病的死亡数也存在密切关联[17].

另一方面,以往评价空气质量时,主要依据SO2、NO2和PM10评价空气质量,得出的空气质量评价结论与人们日常生活的主观感知存在较大差异,甚至在空气质量评价的结论显示优良的情况下,空气的能见度依然无法得到公众的认可.

图1给出了我国和其它国家、国际组织PM2.5环境空气质量标准.我国此次修订的新标准其实只是做到了与世界的“低轨”相接.WHO给出的PM2.5准则值为10 μg·m-3,这是从人体健康角度出发要求的最佳值,也是各国努力为之奋斗的终极目标.从图1可知,无论是美国、欧盟等发达国家和地区,还是以我国为典型代表的发展中国家,在制定标准过程中,都没能按照WHO的准则值制定标准,而是选取了适合本国国情的目标值.综合归纳,包括我国在内,美国、欧盟、日本和WHO等国家或国际组织的年平均浓度值在15~40 μg·m-3,日平均浓度限值在35~75 μg·m-3之间.

总体而言,美国、欧洲都有十几年的环境空气的治理历史,PM2.5的治理过程也相当漫长.近年来治理成果才逐渐显现,PM2.5浓度呈下降趋势.我国PM2.5治理仍需要漫长的过程,各地、各部门需要做的应该是循序渐进地推进空气质量标准的推广:在沿海和经济发达地区首先开展监测,积累经验,逐步认识总结治理规律,凝炼出适合我国国情和经济社会发展的治理方案与行动,真正做到环境空气质量的标本兼治[18-19].

表3、表4分别给出了中国与WHO空气质量准则中PM2.5、PM10的比较.根据此次最新修订的标准,除新增了PM2.5浓度限值外,还提高了对PM10的年平均浓度值的要求,这是因为:衡量一个地区或者城市的空气质量优劣,年平均值显然更具说服力.一般情况下,在污染浓度比较高的空气环境中,短时间内对人体健康不会有明显的影响.但是经过长时间的暴露,其危害和影响便会慢慢显现,所以和日平均值相比年平均值要求相对宽松.

3.1.2 PM2.5/PM10的标准制定仍然存在完善空间

图2给出了我国和其它国家、国际组织PM10环境空气质量标准.欧盟等发达国家的PM10年平均浓度限值普遍在40 μg·m-3以下,美国2006年前的标准为50 μg·m-3.目前美国在最新的标准中只规定日平均浓度限值.各国日平均浓度限值一般在50~150 μg·m-3.我国PM2.5的标准制定主要参照了世界卫生组织第一阶段的浓度限值.但是国际标准是否适合我国人群特点,仍是一个需要进一步验证的问题.

作为一个经济、工业蓬勃发展的新兴经济体,我国面临的问题比西方更为复杂.欧美等发达国家的机动车高速增长的时代已经过去,加之近年普遍采用较高的汽车及燃油排放标准,机动车的污染物排放得到了有效控制.与之形成鲜明对比的是我国各种标准还有待完善,很多污染源未纳入国家统一管理范畴,这都给PM2.5减排带来困难 .从另一个角度来说,加速治理便意味着高昂的成本和代价.制定更为严格的空气质量的评价标准必然会牵涉到平衡经济发展与环境改善的关系,政府必须投入巨大的财力、人力和物力以支撑监测技术水平的提高、治理投入以及公众参与力度的宣传,甚至还会涉及到诸如关键技术的国产化研发、提升制造业成熟度等方面的问题.

3.2 氮氧化物(NOx)

NOx因其浓度增加易引起其它二次污染物的形成而受到学术界的广泛关注[19].图3为欧美、日本及我国等的NO2标准浓度限值和WHO准则值的比较.GB 3095-1996中一级标准的年平均和日平均浓度限值相对来说依然处于较为严格的水平.1 h平均浓度限值比发达国家的浓度限值和WHO的准则值要严格许多.因此,我国本次修订的新标准中一级标准年平均和日平均浓度限值维持不变,1 h平均浓度限值由120 μg·m-3调整为200 μg·m-3,以实现与国际标准相接轨.

另一方面,我国原先实行的GB 3095-1996中二级标准年平均、日平均和1 h平均浓度限值分别为80、120、240 μg·m-3,与发达国家和WHO的指导值相比,仍处于较为宽松水平,进一步收紧二级标准的空间仍然存在.这将有利于我国NOx排放量的有效控制,促进PM2.5和O3综合污染防治.因此,我国本次修订年平均浓度限值和日平均浓度限值分别恢复至40 μg·m-3和80 μg·m-3;1 h平均浓度限值由240 μg·m-3调整为200 μg·m-3,以求进一步与WHO和欧美日等发达国家浓度限值接轨.

3.3 臭氧(O3)

WHO依据近年的研究结果,提出的8 h平均浓度准则值为100 μg·m-3,过渡期第1阶段目标值为 160 μg·m-3[1].研究发现:在低臭氧浓度水平下暴露6~8 h仍然会引起健康效应.与1 h 暴露相比,较低浓度水平经8 h暴露引起的健康效应更为直接[20-23].因而上世纪90年代后期国际上的O3环境空气质量基准逐渐发展为8 h平均浓度值.

图4给出了我国和其它国家、国际组织O3环境空气质量标准中日最大8 h平均浓度限值主要都在120~150 μg·m-3.WHO的日最大8 h平均浓度指导值为100 μg·m-3,设置的过渡期第1阶段目标值为160 μg·m-3.我国本次修订一级标准日最大8 h平均浓度限值为100 μg·m-3,与 WHO 的准则是一致的;二级标准日最大8 h平均浓度限值为160 μg·m-3,略宽于发达国家的上限值,与WHO过渡期第1阶段目标接轨.我国现行一级和二级标准 1 h平均浓度限值分别为160 μg·m-3和200 μg·m-3,分别处于国际上限和下限水平.

3.4 铅(Pb)

图5为各国、国际组织环境空气质量标准中Pb的浓度限值.美国、欧盟等国家和地区的环境空气质量标准Pb的浓度限值不分级.欧盟等发达国家和地区则主要制定了年平均浓度限值,主要集中在0.5 μg·m-3的水平上;美国则制定了滚动三个月平均浓度限值0.15 μg·m-3,WHO仅制定了年平均浓度准则值0.5 μg·m-3[22];日本则未制定.

相比较而言,我国原先实行的GB 3095-1996中一级和二级标准年平均浓度限值相同:1.0 μg·m-3.本次修订统一调整为0.5 μg·m-3;保持与WHO的准则值相同,与欧盟等大多数发达国家和地区的年平均浓度限值相同.GB 3095-1996中季平均浓度限值为1.5 μg·m-3,本次修订统一调整为1.0 μg·m-3.

4 空气质量标准保护对象和分级

根据美国《清洁空气法》的要求,美国的环境空气质量标准分为两级:一级标准(Primary standards)是为了保护公众健康,包括保护哮喘患者、儿童和老人等敏感人群的健康;二级标准(Secondary standards)是为了保护社会物质财富,包括对能见度以及动物、作物、植被和建筑物等保护[14].欧盟的大气环境质量标准则尤其注重对人体健康和环境的保护,充分体现了《欧洲联盟条约》中的“保护人体健康”的目标[15].2005年《世界卫生组织空气质量准则》是以目前具有科学证据的专家评价为基础,旨在减少空气污染对健康的影响提供的全球性指导[1,13].相关的对比分析如表5所示.

近30年多年来,我国社会和经济得到了长足发展,人民群众生活水平大幅度提升.与此同时,公众对于环境空气质量的要求不断提高,取消三类区的条件逐步趋于成熟.因此,在本次标准的修订过程中,我国将三类区全部合并为两类,环境空气功能区仅分为两类.[24]

5 环境标准质量的实施

考虑到环境空气质量标准实施是一项及其复杂的系统工程.结合目前全国的环境监测能力现状和以往标准实施过程中的经验,为保障数据的准确性和可比性,我国将本次标准全国统一实施的时间定为2016年1月1日,以便为各地区预留足够的准备时间并加强标准实施的有关配套工作.在这一点上的突破亦充分彰显了“以人为本、全面协调可持续发展”的国家战略以及科学治理空气污染的决心[25-27].

总之,我国在本次新标准的制定过程中充分借鉴了发达国家将空气质量标准作为环境空气质量管理的目标并要求针对各类区域制定实施计划的做法,这对于空气质量的持续改善和维持具有重要而深远的作用与意义.

6 结论

(1) PM10、NO2、O3、SO2、CO和Pb等仍是当今世界各国环境空气质量标准中的主要控制污染物,中国和绝大多数发达国家都开始将PM2.5 纳入评价体系,发达国家和国际组织都有增加苯、重金属等污染物的趋势,我国则是已经将这些评价指标列入参考浓度限值之列.

(2) 我国所制定一级标准中的各项主要污染物浓度限值在国际上是较为严格的,基本上与 WHO准则值持平或略低;二级标准浓度限值趋近于欧美日等发达国家和WHO;与其它国家和地区相比,中国的CO浓度限值相对较为严格.对于NO2和SO2污染物浓度的容忍度处于中间水平;PM10和Pb在本次修订中则是与国际接轨,普遍从紧;我国还对O3浓度限值的相关标准作了修订.

(3) 我国在充分学习并借鉴了欧美等发达国家的基础上,在本次修订中将数据统计有效性的规定进一步提高至90%.

参考文献:

[1] ANDREWS E,SAXENA P,MUSARRA S,et al.Concentration and composition of atmospheric aerosols from the 1995 SEAVS experiment and a review of the closure between chemical and gravimetric measurements [R].Air Waste Manag Assoc,2000.

[2] U S EPA.Air quality criteria for particulate matter [R].Washington D C:WHO,2004.

[3] U S EPA.Air quality criteria for ozone and related photochemical oxidants[R].Washington D C:WHO,2006.

[4] U S EPA.Air quality criteria for lead[R].Washington D C:WHO,2006.

[5] U S EPA.Integrated science assessment for oxides of nitrogen-health criteria[R].Washington D C:WHO,2006.

[6] U S EPA.Integrated science assessment for oxides of nitrogen and sulfur-ecological Criteria[R].Washington D C:WHO,2008.

[7] 国家环境保护部.中国环境状况公报[EB/OL].[2012-09-20].http://jcs.mep.gov.cn/.

[8] 中国工程院环境保护部.中国环境宏观战略研究环境要素保护战略卷(上)[M].北京:中国环境科学出版社,2011:254-255.

.环境与健康,2008,25(12):1103.

[10] 中国工程院环境保护部,中国环境宏观战略研究环境要素保护战略卷(下)[M].北京,中国环境科学出版社,2011:329-330.

[11] 国家环境保护部.GB 3095-2012环境空气质量标准[S].北京:中国环境科学出版社,2012.

[12] 王宗爽,武婷,车飞,等.中外环境空气质量标准比较[J].环境科学研究,2010,23(3):253-254.

[13] European commission air quality standards [EB/OL].[2012-02-23].http://ec.europa.eu/environment/air/quality/standards.html.

[14] U S EPA.National ambient air quality standards (NAAQS)[EB/OL].[2012-02-23].http://epa.gov/air/criteria.html.

.Bonn:WHO Regional Office for Europe,2005.

[16] Environmental quality standards in Japan:air quality [EB/OL].[2012 -02-23].http://env.go.jp/en/air/aq/aq.html.

[17] 贾海红,王祖武,张瑞荣.关于PM2.5的综述[J].污染防治技术,2003,16(4):136-137.

[18] 腾恩江,吴国平,胡伟.环境空气PM2.5监测分析质量保证及其评价[J].中国环境监测,1999,15(2):36-38.

[19] 廖永丰,王五一,张莉.城市NOx人体健康风险评估的GIS应用研究[J].地理科学进展,2007,26(4):44-46.

[20] U S EPA.Air quality criteria for ozone and related photochemical oxidants[R],Washington D C:WHO,2006.

[21] U S EPA.National ambient air quality standards for ozone final rule[R].Washington D C:WHO,2008.

.Washington D C:WHO,2000.

[23] U S EPA.National ambient air quality standards for lead final rule[R].Washington D C:WHO,2008.

[24] 胡必彬.欧盟关于环境空气中几项污染物质量标准制定方法[J].环境科学与管理,2005,30(3):24-26.

[25] 国务院办公厅.关于推进大气污染联防联控工作改善区域空气质量指导意见的通知(〔2010〕33号)[EB/OL].[2012-6-20].http://gov.cn/zwgk/2010-05/13/content_1605605.html.

第7篇:环境空气质量现状范文

关键词:空气质量;污染损害指数;开封市

中图分类号:G642.0 文献标识码:A 文章编号:1674-0432(2011)-08-0153-2

0 引言

随着社会经济持续发展,城市规模扩大,城市环境问题也日益突出,特别是城市环境空气质量状况的恶化给人们的生产和生活带来了诸多的影响,并将成为制约今后经济发展的主要因素之一[1-4]。本研究利用开封环境空气质量定点监测资料,探讨城市发展过程中空气质量变化趋势及其影响因素,并提出建议和对策,为有关部门进行环境质量评估提供参考。

1 开封市环境空气污染状况

上世纪末,开封市空气烟尘污染较为严重。据资料显示,开封市空气污染以煤烟型为主,煤烟型污染是以尘和SO2为代表的污染类型[5]。主要污染因素有:气候和人为原因造成的风沙扬尘、建筑施工尘,燃煤污染,机动车尾气污染和饮食业烟尘油烟污染等[6]。近几年,市有关部门对燃煤锅炉和饮食业烟尘油烟污染进行了集中整治,并加强施工工地现场管理,采取措施防止扬尘,环境空气状况有所改观,但环境形势依然严峻。

2 数据收集与处理

2.1 数据来源

文中所用数据来自开封市空气自动监测站、1999-2008年河南省统计年鉴和1999-2008年开封市环境状况公报。

按人口和功能区布点法,开封市环境监测站在城区设立了4个环境空气质量常规监测点,分别为:龙亭旅游品商场(商业、旅游及居住混合区),纱厂(工业、居住混合区),柴油机厂(工业、交通混合区)、世纪星幼儿园(交通、居住混合区)。

1999-2008年的主要监测指标SO2、NO2、TSP(2004年以后为PM10)的年均值见表1。

表1 1999-2008年开封市主要空气污染物浓度(mg/m3)[6]

注:由于测量项目不同,大气颗粒物1999-2003年以总悬浮颗粒物为监测指标,2004-2008年以可吸入颗粒物为监测指标。

另附:

表2 各主要监测指标的国家环境空气质量二级标准[7]

2.2 数据分析处理方法

本研究先采用污染损害指数法来分析污染因子对开封市环境空气质量的危害程度,然后通过国内外常用的污染趋势定量分析方法――相关系数法来分析开封市大气污染的变化趋势[8,9]。

除此之外,本研究还进行了各主要污染物年际变化分析,探讨各污染物的浓度与城市人口数量、市GDP总值、工业企业数量、民用汽车总量等因素之间的关系,旨在找出对环境污染贡献较大的因素,为决策部门提供参考意见。

3 结果分析

3.1 整体空气质量的污染状况分析

3.1.1 单因子的污染损害指数 国内外学者已经提出了多种环境空气质量评价方法,常见的有污染指数法、模糊评价法、灰色聚类法等。但这些方法都存在各自的不足[10,11]。污染损害指数公式是我国学者李祚泳借鉴空气污染损害率评价法后提出的,能应用于多种污染物的空气质量评价[12-15]。

空气污染损害指数公式[13]如下:

其中xj为用下式表示的污染物j浓度的相对值:

两式中:Ij――空气污染物的污染损害指数;

Cj――污染物j的实测浓度;

Cjo――为污染物j的设定的“基准”浓度值(表3)。

表3 空气污染物的“基准”浓度值[13]

根据空气污染损害指数公式,计算出各监测指标的污染损害指数见表5。

3.1.2 污染损害综合指数 受m种污染物污染的空气污染损害综合指数计算公式为[13]:

式中:Wj――为污染物j的归一化权值(表4)。

表4 环境空气质量级别与污染损害指数的对应关系[13]

由上述公式计算出历年污染损害综合指数见表5。

表5 1999-2008年开封市主要空气污染物污染损害指数

整体上看,开封市近十年总体状况为轻度污染。2004年污染损害综合指数达19.7,中度污染,为历年环境空气质量最差的一年。从各污染物单因子损害指数来看,以TSP与PM10为代表的大气颗粒物污染贡献最大,全年污染损害指数均值超过12.5。

3.2 主要大气污染物的变化趋势分析

污染趋势定量分析方法――相关系数法采用了Daniel趋势检验,使用了Spearman相关系数,公式如下[16,17]:

式中:N――时间周期(年);

di――变量Xi和Yi的差值,即:di=Xi-Yi;

Xi――周期Ⅰ到周期N按浓度值从小到大排列的序号;

Yi――按时间排列的序号。

如果rs为正值表示呈上升趋势,若rs为负值则表示有下降趋势。用秩相关系数rs与Spearman秩相关系数统计表中的临界值Wp进行比较,若rs>Wp,则变化趋势显著,有意义;若rs

3.2.1 大气颗粒物 1999-2007年,无论监测指标是TSP还是PM10,年均值均超过国家二级标准,只有2008年PM10年均值未超标,TSP历年超标率为100%,PM10历年超标率为80%。从污染损害程度方面分析,2004年的污染损害指数为历年最高,达21.5,属中度污染;2008年损害指数最低,为7.9,属轻度污染。对1999-2008年连续10年的监测数据(表1)、污染物损害指数(表5)及趋势进行分析,TSP的rs=-0.6,│rs│ Wp(0.9)。结果表明:大气颗粒物为主要污染物;1999-2003年开封市环境空气中TSP浓度处于下降趋势,但下降趋势不显著;2004-2008年PM10浓度也处于下降趋势,且下降趋势显著。

3.2.2 SO2与NO2 开封市热能源以煤为主,SO2主要来自煤炭燃烧。1999-2003年开封市大气环境中的SO2浓度呈逐年上升的趋势。从2004年起呈现波动下降趋势,到2008年SO2浓度年均值减少到历年最低值0.038mg/m3。近十年间,SO2浓度除了2003、2004和2006年超标之外,其余7年均低于国家二级标准,超标率为30% 。SO2年平均值为0.056mg/m3,接近国家二级标准阈值。污染损害指数属于轻度污染。经检验,1999-2008年SO2的rs=0.236

NOx浓度全年变化较为平稳,近十年都控制在国家二级标准之内。由图4可看出2001-2008年,开封市NOx变化规律与SO2大体一致。经检验,NOx的rs=0.03

3.2.3 NOx/SO2 近十年间,空气中各种污染物浓度呈现出不同的消长趋势,使开封市空气污染的总体特征也发生改变。总体看来,开封市环境空气污染为煤烟型污染,但在2001年之前环境空气污染更接近汽车尾气型污染,2000年NOx/SO2的比值[18]是10年间的最高值1.389。2001年以后,除了个别年份有所波动之外,NOx/SO2的比值总体表现出缓慢增长的态势,2003年NOx/SO2的rs=0.943>Wp(0.829),说明2003-2008年NOx与SO2的比值呈明显上升趋势。若按此趋势发展,并考虑到民用汽车拥有量的增长,开封市环境空气有可能会由煤烟型污染转化为煤烟和汽车尾气复合型污染。

4 结论

(1)1999-2004年开封市整体环境空气质量介于轻度污染和中度污染之间,自2004年来各监测指标对环境空气的综合损害指数逐年下降,且SO2与PM10的浓度年均值呈明显下降趋势,可见近年整体环境空气质量在提高。随着环保工作力度的进一步加大,开封市整体环境空气质量有从轻度污染转为清洁的可能性。

(2)通过对各主要污染物浓度年均值损害指数和变化趋势分析发现,大气颗粒物(TSP、PM10)近十年年均污染损害指数最大,达到中度污染,其浓度呈逐年降低趋势。SO2和NOx的污染损害程度较小,2006-2008年间污染状况有较明显改善。

(3)自2003年起,SO2和NOx的比值呈显著上升趋势,由此可说明开封市环境空气正由煤烟型污染向煤烟和汽车尾气复合型污染转化。

参考文献

[1] 孔大为,王静,曲东.塘沽区环境空气中S02浓度变化及其原因分析[J].西北农业学报,2009,18(5):359-362.

[2] 鲍强.中国城市大气污染概况及其防治对策[J].环境科学进展, 1996,4(1):1-18.

[3] Mayer H. Air pollution in cities[J].Atmos Envion,1999,33(2):4029-4037.

[4] 刘方,王瑞斌,李钢.中国环境空气质量监测现状与发展[J].中国环境监测, 2004,20(12):8-10.

[5] 刘欣艳,任仁.北京市大气污染的特点及成因[J].城市与减灾,2003(1):41.

[6] 开封市环境保护局.开封市环境状况公报[R].1999-2008.

[7] GB3095-1996,环境空气质量标准[S].中华人民共和国环境保护局,1996.

[8] 周作明,荆国华,徐欣.湘潭市环境空气质量变化趋势分析及对策[J].四川环境,2005,24(5):27-29.

[9] 钱虹,李昌平.徐州市环境空气质量20年变化趋势及对策[J].污染防治技术,2001,14(4):37-40.

[10] 刘康兰,袁浩.模糊综合评判在环境质量评价中的应用[J].环境工程,2008,18(1):55-56.

[11] 冯利华,王基一,章明卓.环境质量的灰色聚类评价[J].环境保护科学,2000,26(4):37-39.

[12] 黄晓英,李娟,宛中华,宋丽红.基于污染损害指数的深圳市环境空气质量评价与分析[J].三峡环境与生态,2009,2(4):41-45.

[13] 李祚泳,彭荔红.基于遗传算法优化的大气质量评价的污染危害指数公式[J].中国环境科学,2000,20(4):313-317.

[14] 李祚泳,欧阳洁.环境空气质量评价的普适公式[J].环境污染与防治,2001,23(4):200-202.

[15] 李祚泳,丁晶,彭荔红.环境质量评价原理与方法[M].北京:化学工业出版社,2004.

[16] 中国环境监测总站.环境监测资料汇编[M].北京:中国科学出版社,1998-12.98-99.

[17] 曲格平.中华环境保护基金会编.中国环境保护工作全书[M].北京:中国环境科学出版社,2002.

[18] 张菊,苗鸿,欧阳志云,王效科.近20年北京市城近郊区环境空气质量变化及其影响因素分析[J].环境科学学报,2006,26

(11):1886-1892.

第8篇:环境空气质量现状范文

摘 要:阐述了安康中心城市环境空气质量监测点位、时间、项目及结果,依据监测结果,对照国家及行业标准,说清安康中心城区环境空气质量现状,针对环境空气中主要污染物采取相对应的防治对策。

关键词:安康;环境;空气;质量;现状;对策

,在安康市委、市政府的高度重视和正确领导下,全市环境保护工作紧紧围绕推进突破发展、构建和谐安康奋斗目标,紧扣污染物排放总量控制,加强结构、工程、管理三项减排措施,着力解决关系民生的突出环境问题一条工作主线,落实环境保护责任,全市环境空气质量总体保持稳定,局部有所改善。城市环境空气质量污染指数平均为 2.12,与上年持平;全年环境空气质量好于二级天数354天,居全省第一。

一、环境空气质量监测概况

(一)安康市中心城区基本概况。安康中心城市位于安康市境内中心地带,已建成城区面积26平方公里,其中江南18平方公里,江北8平方公里;城市人口25万人,其中江南16万人,江北9万人。安康中心城市是安康市政府所在地,属安康市政治、经济、文化教育、交通的中心。按照“十一五”期间中心城市重心北移,提升江南的发展思路,目前已形成“一江两岸,南北互动”的布局。江北突出现代工业气息,以工业园区为基地,把重污染企业陆续迁入工业园区内,建设江北工业经济区。江南城区则形成以商业、居住、文教、办公和服务产业为主的区域。城市燃料结构得到改善,逐步形成以石油液化气为主的燃烧方式,使城市大气环境质量得到有效改善。

(二)环境空气质量监测点位布设。,安康市环境监测站对安康市城区江南(市监测站)和江北(望江小区)大气环境质量进行了自动监测,同时在江南城区设手工对照监测点,共布设监测点位3个。其中自动监测点位2个,手工监测点位1个,详见表1。

表1 环境空气常规监测布点

编号

采样地点

所属功能区

采样类型

备注

1

望江小区

交通稠密区

自动

省控点

2

安康市监测站

混合区

自动

省控点

3

香溪洞

江南(对照点)

手工

省控点

(三)、监测项目及分析方法1

,大气自动监测项目有二氧化硫、二氧化氮、可吸入颗粒物三项;手工监测项目有二氧化硫、二氧化氮、总悬浮颗粒物和自然降尘等四项。

各监测项目均按照相应《环境空气质量自动监测技术规范》4hj/t193-和《环境空气质量手工监测技术规范》5hj/t194-执行,具体方法详见表2。

表2 环境空气监测项目及分析方法

监测项目

分析方法

方法代号

备注

二氧化硫

紫外荧光法

--

自动

甲醛缓冲溶液吸收—盐酸付玫瑰苯胺比色法

gb/t15262—94

手工

二氧化氮

化学发光法

--

自动

saltzman法

gb/t15435—1995

手工

可吸入颗粒物

β射线法

--

自动

总悬浮颗粒物

重量法

gb/t15432—1995

手工

自然降尘

重量法

gb/t15265--94

手工

(四)监测频次与数据获得情况

1、 监测频次。,大气自动监测频次为365天,每天24小时;手工监测频次为每月1次,每次5天。其中二氧化硫、二氧化氮手工监测每天采样4次,每次45分钟,总悬浮颗粒物每次采样1小时30分钟,每张滤膜采两次样,一天两张滤膜。

自然降尘每月监测一次,每次连续采样一个月,全年共监测12次。

2 、监测数据获得情况。全年大气常规监测共获原始数据53196个,其中自动监测数据52560个,手工监测数据636个,以及有关气温、气压、湿度、风向、风速等气象数据资料。

(五)评价标准及方法

1、评价标准。环境空气质量评价标准采用国家《环境空气质量标准》2 3(gb3095—1996)二级年均值标准,自然降尘采用陕西省暂定标准,详见表3。

表3 评价标准

监测项目

浓度限值(毫克/立方米)

日平均

年平均

二氧化硫

0.15

0.06

二氧化氮

0.12

0.08

可吸入颗粒物

0.15

0.10

总悬浮颗粒物

0.30

0.20

自然降尘

18吨/平方公里·月

2、评价方法

(1)对比法。将空气中主要污染物的年均浓度值与空气质量标准中的二级年均值标准对比,大于该项目标准值时,按超标计。以此来评价城市空气质量的达标情况。

(2)空气污染综合指数法。空气污染综合指数是各项空气污染物的单项指数的加和,可用于评价城市空气质量的总体状况和年际变化及季节变化情况。

其数学表达式为:

n ci

p= ∑ pi 其中pi=

i=1 c0i

式中:p—空气污染综合指数

pi —i项空气污染物的分指数

ci —i项空气污染物浓度的年均值

c0i —i项空气污染物浓度的年平均标准值

n—计入空气污染综合指数的污染物项数

本报告计入空气污染综合指数的参数为二氧化硫、二氧化氮、可吸入颗粒物(手工监测总悬浮颗粒物换算为可吸入颗粒物)和自然降尘。空气污染综合指数数值越大,表示空气污染程度越严重,空气质量越差。

(3)污染负荷系数法。用以反映各项污染物的分指数在综合指数中的构成比例,确定各污染物的分指数对综合指数的贡献大小以及对空气污染程度的影响大小,其数学表达式为:

pi

fi= 100%

p

式中:fi —i项空气污染物的负荷系数

二、环境空气质量状况

(一)二氧化硫。,安康市环境空气二氧化硫日均值浓度范围为0.003~0.210毫克/立方米,年均值为0.054毫克/立方米(手工监测为对照点,不参与统计计算,下同),符合国家二级年均值标准(0.06毫克/立方米)。全年日均值超标率为2.2%。日平均最高值0.210毫克/立方米出现在江南城区的第一季度。

不同功能区二氧化硫均值浓度比较:混合区大于交通稠密区。混合区年均值超标0.17倍,交通稠密区和手工监测对照点均未超过国家二级年均值标准。

从季度变化来看,全市二氧化硫浓度表现为第一季度最高,第四季度次之,第三季度最低。说明二氧化硫浓度升高与冬季采暖期燃煤量增加有关。以上结果比较见图1。

(二)二氧化氮。,二氧化氮日均值浓度范围为0.004~0.077毫克/立方米,年均值为0.020毫克/立方米,符合环境空气质量二级年均值(0.08毫克/立方米)标准。全年日均值超标率为零。日平均最高值0.077毫克/立方米出现在江南城区的第四季度。

不同功能区二氧化氮浓度比较:混合区大于交通稠密区。各区域年均值均未超过国家二级年均值标准。

从季节变化看,全市二氧化氮浓度整体水平较低,季节变化幅度较小,第一、第四季度浓度略高于其它两个季度,第二、第三季度浓度基本持平。以上结果比较见图2。

(三)可吸入颗粒物。,可吸入颗粒物日均值浓度范围为0.012~0.287毫克/立方米,年均值为0.063毫克/立方米,符合国家二级年均值标准(0.10毫克/立方米)。全年日均值超标率为6.3%。日平均最高值0.287毫克/立方米出现在江南城区的第一季度。

不同功能区浓度比较:交通稠密区大于混合区。各区域年均值均未超过国家二级年均值标准。

从季节变化看,全市可吸入颗粒物浓度表现为第二季度最高,第四季度次之,第三季度最低。可吸入颗粒物偏高主要与第二季度气候干燥少雨、扬沙浮尘等因素有关,同时也与第四季度部分月份处于采暖期,燃煤量大幅度增加,烟尘排放量增大有关。以上结果比较见图3。

(四)自然降尘。全年自然降尘月平均浓度范围为2.14~16.57吨/平方公里·月, 全年平均降尘量为6.00吨/平方公里·月,符合陕西省暂定标准(18吨/平方公里·月)。与上年相比,浓度降低30.8%。最高值出现在江北城区的第二季度。

不同区域自然降尘浓度比较:交通稠密区大于混合区。各区域年均值均未超标。

从季节变化来看,全市降尘浓度表现为第二季度最高,第一季度次之,第三季度最低。造成降尘浓度偏高的原因除二次扬尘外,还与第一、第二季度气候干燥及扬沙浮尘天气影响有关。以上结果比较见图4。

三、环境空气质量评价及年际变化

(一)、环境空气质量评价

1、各功能区环境空气质量评价。由表4可知,全市四项监测指标平均分指数均小于1,各项指标符合标准。四项污染物分指数由大到小依次为:二氧化硫、可吸入颗粒物、降尘、二氧化氮。

四项指标综合分析,江南混合区污染综合指数为2.24,大于江北交通稠密区污染综合指数1.99,说明混合区的污染相对重于交通稠密区。

表4 空气污染指数统计

所属功能区

pso2

pn02

ppm10

p降尘

p综

交通稠密区

0.63

0.20

0.74

0.42

1.99

混合区

1.17

0.30

0.52

0.25

2.24

全市平均

0.90

0.25

0.63

0.34

2.12

2、环境空气质量季节变化。由表5可知:安康市环境空气污染第一季度最重,综合指数为2.70;第二、四季度次之,综合指数分别为2.19和2.24;第三季度污染较轻,综合指数为1.34,环境空气质量相对较好。

表5 各季度环境空气污染综合指数及年际变化

所属功能区

第一季度

第二季度

第三季度

第四季度

全年

交通稠密区

2.17

2.42

1.30

2.10

1.99

2.53

混合区

3.23

1.96

1.37

2.38

2.24

1.70

全市平均

2.70

2.19

1.34

2.24

2.12

2.12

3、 污染负荷系数统计。由表6可以看出,四项污染物的平均污染负荷系数由大到小依次为二氧化硫41.9%、可吸入颗粒物30.2%、降尘16.2%、二氧化氮11.7%。污染负荷系数最大的是二氧化硫,是安康市环境空气中的主要污染因子,其次是可吸入颗粒物,污染负荷系数最小的是二氧化氮。由此说明,影响安康市环境空气质量的主要原因是煤烟型污染。

表6 空气污染负荷系数统计表

所属功能区

fso2

fn02

fpm10

f降尘

交通稠密区

31.7%

10.0%

37.2%

21.1%

混合区

52.2%

13.4%

23.2%

11.2%

全市平均

41.9%

11.7%

30.2%

16.2%

(二)、环境空气质量年际变化。根据表7和表8两年环境空气监测结果统计可知,与各项指标比较,除二氧化硫上升46.3%外,其它三项指标均有不同程度的下降。其中可吸入颗粒物下降27.6%、二氧化氮下降9.1%、自然降尘下降30.8%。

,全市空气自动常规监测结果表明:全市平均污染综合指数(2.12)与持平。其中交通稠密区污染综合指数(1.99)低于上年(2.53);混合区污染综合指数(2.24)高于上年(1.70),详见图6。空气质量自动监测优良天数为354天,比上年增加53天,环境空气质量略有好转。空气中主要污染物二氧化硫、二氧化氮、可吸入颗粒物浓度年日均值分别为每立方米0.054、0.020、0.063毫克。污染物的污染指数与上半年比较,二氧化硫下降8.2%,二氧化氮下降7.4%,可吸入颗粒物下降28.4 %。三项污染物浓度均未超过国家二级标准(0.06、0.08、0.10)。全市城市空气污染仍属二氧化硫和可吸入颗粒物为主要污染物的煤烟型污染。

表7 年与年环境空气监测结果比较

所属功能区

二氧化硫

二氧化氮

可吸入颗粒物

年均值(mg/m3)

年均值(mg/m3)

年均值(mg/m3)

交通稠密区(自动)

0.038

0.033

0.016

0.030

0.074

0.099

混合区(自动)

0.070

0.025

0.024

0.013

0.052

0.076

江南(手工对照点)

0.036

0.022

0.017

0.011

0.055

0.069

全市平均

0.054

0.029

0.020

0.022

0.063

0.087

表8 年与年环境空气自然降尘监测结果比较

所属功能区

交通稠密区(手工)(吨/平方公里·月)

混合区(手工)

(吨/平方公里·月)

香溪洞(手工对照点)(吨/平方公里·月)

全市平均

(吨/平方公里·月)

7.51

4.48

5.02

6.00

10.99

6.35

5.40

8.67

四、大气环境污染防治对策

本年度影响我市环境空气质量的主要污染因子是二氧化硫、可吸入颗粒物、降尘。产生原因除主要来源于燃煤和工业粉尘,其次来源于地面灰尘和沙尘、扬沙污染。由于地面原因,加之冬、春季干燥少雨天气,特别是近年来房地产业的兴起,各小区、城区道路等相继破土动工,使很多机动车辆带土进城,还有环卫工人使用传统的扫地工具,致使二次扬尘尤为突出。为此建议:

1、加快城市基础设施建设,使用电、天然气等清洁能源替代。天然气是一种清洁、高效、方便的能源,大力发展天然气供应是城市现代化建设的重要组成部分,对发展生产、方便人民生活、节约能源、改善环境具有重要作用。因此,加快建设安康中心城市天然气供应工程,将会给安康市带来良好的环境效益、社会效益和经济效益。不仅代替和改变了安康市城区居民和第三饮食服务行业以煤为主的燃煤结构和燃煤方式,更重要的是减少了安康市城区燃煤量,从源头上减少了燃煤废气中二氧化硫、烟尘的排放量,对于提高安康中心城市环境空气质量起到积极作用。

2、做好推广使用清洁能源(例如天然气、甲醇或乙醇)的宣传工作,以进一步减少汽车尾气的污染。

3、合理规划,优化环境功能分区,实行集中供热,有利于改善大气环境质量。围绕污染物排放总量控制,加强污染源结构、工程、管理三项减排措施,有利于降低大气污染物排放量。

4、环卫部门除尽量利用夜间清扫街道外,还应定时增加每天向市区主要交通干道、街道的洒水次数;更新传统的扫地工具;推广使用袋装垃圾;在市区主要街道及公共场所设立垃圾箱,并分类进行回收;公安、交警部门应在市区内控制机动车车流量,以减少二次扬尘的产生。

5、大力进行植树造林,严禁滥砍乱伐,增加植被覆盖率,减少水土流失,从而避免和减轻沙尘和扬沙天气带来的危害。

(6)加强对市区的绿化工作,提高市区绿色覆盖面积。大力宣传环境保护知识,不断提高每个公民的环保意识,把市委市政府提出营造“绿色安康”的战略部署真正落实到实处。

五、结论

1、安康中心城市环境空气污染负荷系数由大到小依次为二氧化硫41.9%、可吸入颗粒物30.2%、降尘16.2%、二氧化氮11.7%。安康市环境空气污染整体表现为煤烟型污染,污染负荷系数最大的是二氧化硫,是本市环境空气中的主要污染因子,其次是可吸入颗粒物和降尘,污染负荷系数最小的是二氧化氮。

2、不同区域环境空气污染表现为江南大于江北。

3、各季度环境空气污染变化规律是第一季度最重,第二、第四季度次之,第三季度最轻。

4、,环境空气污染综合指数与持平。空气质量自动监测优良天数为354天,比上年增加53天,环境空气质量略有好转。

5、使用电、天然气等清洁能源是改善安康中心城市环境空气质量的有效途径之一。围绕污染物排放总量控制,加强污染源结构、工程、管理三项减排措施,有利于改善大气环境质量。

参考文献:

1空气和废气监测分析方法编委会.空气和废气监测分析方法.第四版.北京:中国环境科学出版社,.9

2国家环境保护总局.环境空气质量标准(gb3095-1996).北京:中国环境科学出版社,1996

3国家环境保护总局.关于.环境空气质量标准(gb3095-1996)修改单的通知.环发1号,.01

4国家环境保护总局.环境空气质量自动监测技术规范.hj/t193-

第9篇:环境空气质量现状范文

[关键词] 高校;教室;空气质量;调查

人的一生大约有90%的时间是在室内度过的,因此,室内环境对人生活和工作质量以及公众的身体健康的影响远远超过室外环境。高等学校的教室作为一类公共场所,是高校教师和学生接触最密切的环境之一,在校大学生约有40%的时间是停留在教室内,因此教室内空气质量的优劣直接影响着教师和学生的身体健康和学习效率。为了解潍坊市高校教室空气质量现状,提出适合当地改善教室环境质量的措施,2010年3-4月对潍坊市4 所高校 38 间教室的空气卫生指标进行了检测。

1调查对象和方法

1.1调查对象

从潍坊市的高校中选择4所学校,再从4所高校中随机选择 38间教室作为调查对象。

1.2检测方法和评价标准

2010年3 -4月,对所选教室内空气卫生指标如温度、相对湿度、风速、甲醛、可吸入颗粒物(PM10) 、氡和空气细菌总数等进行现场检测。采样点的布设按照GB/T18883-2002的要求,采用梅花布点,面积小于等于50m2的教室设 3个点,面积小于等于100m2的教室设 5个点,面积大于100m2的教室设 8个点,每个点采样 3次,采样高度均为1-1.5m 。采样均在学生下课后立即进行,采样时教室均保持上课使用时的状态。空气细菌总数的测定采用自然沉降法。

检测仪器有:TES-1366温湿度计、TY-9900数字风速仪、GXH-3010 F便携式红外线CO2分析仪、4160-1型甲醛分析仪、P- 5L2C型便携式微计算机粉尘仪、Model 1027连续测氡仪。各仪器在采样前均经校正。

各指标均按《室内空气质量标准》(GB/T18883-2002)进行评价。

1.3数据处理

所得数据用SPSS 16.0进行分析。

2结果和讨论

2.1教室内空气质量检测结果

表138间教室内空气质量检测结果

备注:*表示几何均数。

由表1可知,在本次调查期间各指标的不合格率从大到小排列顺序依次为 PM10、CO2、相对湿度、风速、温度、细菌总数、甲醛和氡。由此可知,在调查的4所高校教室内污染较严重的是PM10和CO2 ,污染较轻的是甲醛、氡和空气细菌总数。在调查的38间教室内,相对湿度的不合格率为29.4%,温度的不合格率为18.7%,不合格的教室内相对湿度和温度均低卫生标准的低限。

2.2不同类型的教室内空气质量比较

本次调查的教室按照面积可以分为小教和大教两类,两类教室内各指标的合格率及统计分析结果见表2。两类教室内温度、风速和PM10的合格率差异有统计学意义(P0.05 )。

3讨论

本文调查的4所高校38间教室中除了2间教室最近进行了简单装修外, 其余教室的装修时间都比较久且装修程度都很低。新装修的2间教室内氡浓度最大值为74.80Bq/m3,未超过国家标准,但是远高于我国大陆平均室内氡水平26.2Bq/m3和世界平均室内氡水平40 Bq/m3[1]。

从调查结果来看,潍坊市高校教室空气质量主要存在的问题就是PM10、CO2、相对湿度和风速等指标的不合格率较高,PM10和CO2为教室空气的主要污染物。PM10的污染状况最严重,不合格率达到了61.7%,这一结果可能与调查时的气象因素有关系。此次调查的时间是3-4月,正好是潍坊市风沙较大的时候,大气中颗粒物浓度会明显升高,从而影响教室内空气质量。另外,教室是学生活动频繁的空间,学生的走动、翻书、粉笔的使用等因素造成了教室空气中颗粒物的浓度超标。调查结果显示,CO2的不合格率高达49.5%,提示教室空气CO2污染现状不容忽视,应提倡教室在使用过程中加强机械通风或自然通风,特别是在冬春季节更应该大力提倡,以降低由于人的新陈代谢而产生的CO2,从而保护学生身体健康,提高学习效率。相对湿度和风速的不合格率相对较低,但湿度和风速对PM10和CO2浓度的影响不可忽略。

在本次调查中,小教室和大教室除了温度、风速和PM10这三个指标的合格率有差异外,其余指标的合格率均没有差异,这一结果可能与使用教室的人数有关系,面积大的教室能容纳的人数多,而面积小的教室容纳的人数少,人数的多少可以影响空气质量。

4建议

针对潍坊市高校教室空气存在的若干卫生问题,应采取有效防制措施,改善教室环境卫生,保护学生健康。为此,提出建议,供有关部门参考。

4.1有条件的学校可以在教室安装空气质量监测装置, 使教室卫生质量处于监控之下。

4.2 在恶劣的气象条件,可采用空气调节装置降低室外污染物进入教室的数量,在夏秋季节, 尽量采用自然通风以减少污染物浓度并增加新风量。

4.3 控制教室的装修程度,对装修材料的选择要严格把关,装修后的教室不得立即投入使用, 一定要经过一段污染消除期。

4.4大力加强教室内绿化,摆放盆栽花卉,如吊兰、橡皮树等等,调解教室内的微小气候,降低颗粒物、有害气体等浓度。

考虑到本次调查时间短、调查对象较少,对潍坊市高校教室空气质量状况了解不是很全面,还有待于进一步调查研究。