前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的继电保护的特性主题范文,仅供参考,欢迎阅读并收藏。
[关键词]电力继电保护 可靠性 特点
中图分类号:F416 文献标识码:A 文章编号:1009-914X(2015)16-0060-01
电力企业应用的继电保护主要具备自动运行率高以及兼容性强的特点,但是依据现阶段继电保护技术的发展,未来电力企业所应用的继电保护系统还应该具备计算机化以及信息化的特点。但是这需要电力企业为此做出努力,也需要继电保护技术人员加强研究,使其能够适应电力企业的发展需求,因为继电保护装置也会出现故障,影响其可靠性,因此也需要有关人员采取措施提高其可靠性。
1、继电保护的基本要求
继电保护之所以能够被广泛的应用在电力企业中,只要是因为其自身的特点能够满足电力企业的需求,其主要表现在以下方面:
首先,可靠性方面,电力企业之所以要设置继电保护,主要目的就是让其能够使电路平稳的运行,但是现实生活中,工作人员可以因为误操作或者电路自身故障都会导致继电保护发生误动或者拒动,一旦错误的指令发出,不仅不会对故障设备产生任何的作用,严重者会影响电力系统的运行,因此应用在电力系统的继电保护装置首先应该满足的就是可靠性。
其次,速动性:电路运行故障及时警报处理,能够降低由此导致的经济损失和人身伤亡等。因此,要求继电保护装置必须具备相应的速动性。所谓速动性即在电流量与继电保护装置的故障报警速率成反比。只有这样,在较大突发故障面前,继电保护装置能够对其进行及时快速的报警,节约故障处理时间。
最后,灵敏性:继电保护装置能够依据率先编制好的内部程序,对不同性质和不同程度的故障及时采取相应的保护措施,及时提供故障报警信息,并进行简单的局部处理,降低电路运行故障的危害和影响。
2、电力继电保护的特点
社会的发展需要电力企业做支撑,现代企业以及居民对电能的品质要求越来越高,高品质的电能需要应用专门的设备,而继电保护就是其使用的不可缺少的设备。继电保护之所以能够提高电能的品质,只要是因为该设备的功能就是减少电力企业运行隐藏的故障,能够及时的发现发展,及时检测,及时维修,因为大大降低了电力企业故障维修的成本支出。作为一种较为常见的电气装置,继电保护所使用的技术正是继电保护技术,其电路保护特点十分特别,也正是如此,该装置设备利用范围非常广,同时得到了越来越人的关注。其典型的特点优势如下:
首先,自主化运行率得以大幅度提高,因其运行率提高,所以继电保护的记忆功能加强,因此可以做到分量保护,使得电力系统更加快速无故障的运行,即使出现了故障,继电保护也会及时的发出预警,将故障部分切除,从而不影响其他部分的正常运行,因为电力系统运行的准备率大幅度提高。
其次,具有良好的兼容性,正是如此,所以继电保护具有非常强的辅,选用的方法差异不大,标准统一,另外,继电保护装置比较小,其盘位数量相对来说非常少,便于设置,此外,在此功能的基础上,继电保护装置具有非常强的辅助功能。
最后,便于监控管理,继电保护在运行期间,对其他设备进行监控管理,以便及时上报核心各个设备的运行情况,这正是其能够提高电力系统运行正确率的关键。另外,继电保护所应用的技术能够使得该设备装置中的核心部件不会受到外界环境的伤害,因此其监控管理功能持续时间比较长,不必经常对其维修。
3、提高继电保护的可靠性的措施
提高继电保护装置的可靠性,需要从以下几个方面落实:
3.1继电保护装置检验应注意的问题。将整组试验和电流回路升流试验放在本次检验最后进行,这两项工作完成后,严禁再拔插件、改定值、改定值区等工作。
3.2定值区问题。定值区数量的激增是电力系统与计算机网络系统发展的一个重要表现,它能够适应继电保护装置运行的不同需求,确保了电力系统运作的稳定性。同时由于定值区数量增加,人们对不同的定值数据管理出现纰漏,为此应该加强对定值区的管理,派遣专业技术人员对其进行操作,并将调整的定值数据及时更改记录。
3.3一般性检查。一般性检查虽然没有其他专项检查技术要求难度高,但是其检查质量的好坏也直接关系到继电保护装置的运作。由于一般性检查工作比较琐碎、简单,因此,到目前为止还没有引起人们的重视,一方面没有及时进行一般性检查,另一方面一般性检查敷衍了事,没有得到具体的落实。一般性检查主要包括清洁和固定两个方面。机械表面灰尘过多,可能提高机械的运行温度,降低机械使用寿命,而细小处螺丝和链接的松散,可能存在重大的安全隐患。
3.4接地问题。①保护屏的各装置机箱、屏柜等的接地,必须接在屏内的铜排上。②电流、电压回路的接地也存在可靠性问题,如接地在端子箱,检查那么端子箱的接地是否可靠。
4、电力系统继电保护技术的发展
在输变电行业中,单片机控制技术具有先天优势,在控制技术或电子信号方面,可大大提高控制与保护的精度、速度、范围,而且还能与计算机联网,构成系统化管理体系和无人值守的站点,极大地降低了工作人员的劳动强度,提高了安全性。
4.1 计算机化
随着电路承载输电量的增加,电力系统的工作任务量增大,工作难度系数提升,因此,与计算机技术相互结合,实现继电保护装置的计算机化是未来该装置发展的一个重要方向。计算机化的落实和完善能够提高信息数据处理分析的能力,并提高信息的存储量,方便管理人员及时调阅相关数据。但是,目前的计算机化还不够成熟,需要投入更多的科研力量和研究资金等,只有这样计算机化的发展趋势才能更好的为继电保护装置服务,最终提高电力系统的整体服务质量和经济效益。
4.2 网络化
计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,它深刻影响着各个工业领域。实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络联接起来,亦即实现微机保护装置的网络化。
4.3 智能化
近年来,人工智能技术开始被应用在继电保护研究应用。神经网络是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经网络方法可迎刃而解。
4.4 保护、控制、测量、数据通信一体化
随着继电保护装置与计算机网络系统形成了密切的联系,继电保护装置的功能也突破了原有的保护职能。通过对网络技术的运用,继电保护装置在电路无故障正常运行的条件之下,能够分析电路运行的基本数据,并对数据进行相应的调整、控制和分析,真正实现了继电保护装置保护、控制、测量与数据通信的一体化。
5、结语
综上所述,可知电力继电保护装置优势突出,而且提高其继电保护的可靠性的技术也十分成熟,这是继电保护装置得以长久大规模的应用在电力企业的主要原因,因为用电用户对电能的品质需求非常高,因此电力企业更需要应用继电保护,以此能减少运行故障,但是继电保护性能的发挥,还依靠电力企业的工作人员,需要实时对其进行维护,发现故障及时维修,只有如此,才能确保其功能正常。
参考文献
[1] 廖柏景.电力继电保护的可靠性及特点[J].科技创新导报.2014(11).
[2] 郭景林.论述电力继电保护的可靠性及特点[J].科技与企业.2013(17).
关键词:继电保护装置;运行特点;装置性能;装置触点
中图分类号:TM774 文献标识码:A 文章编号:1009-2374(2013)31-0110-02
随着人们生活水平的不断提高,加大了对电能的需求,对电力供应质量提出了更高的要求。在电力系统中使用继电保护装置,对于保障电力系统的安全稳定运行、降低用电故障出现的频率以及提高电力系统的经济效益具有十分重要的作用。因此,通过对继电保护装置运行的特点、原理以及问题进行分析,提出了相应的解决策略,进而推动电力系统的安全稳定运行。
1 继电保护装置运行的特点
1.1 继电保护装置能够及时、快速地处理电力系统
故障
当电力系统出现故障时,继电保护装置能够及时、快速地对信号进行传递,并准确地将动作反映出来,有效地将电力系统的故障控制在一定范围中,并切断故障。在电力系统的正常运行过程中,继电保护装置自身的作用不够明显,但是电力系统一旦发生故障,那么就能够保护电力系统,防止由于电力故障造成不必要的损失。
1.2 继电保护装置自身出现故障
在电力系统的运行过程中,继电保护装置自身也会出现故障,其故障主要分为两类,分别是拒动故障和误动故障。其中,误动故障指的是在电力系统的正常运行状态下,继电保护装置发出的信号与动作出现错误,进而对电力系统运行的安全稳定性产生影响。拒动故障指的是电力系统在运行中出现故障,继电保护装置自身拒绝发出动作,没有及时地保护电力系统,进而导致继电保护装置不具有保护电力系统安全、稳定运行的功能。此类故障主要出现在传统的继电保护装置中,随着继电保护技术水平的不断提高,继电保护装置朝自动化的方向发展,在电力系统中应用得更加广泛,不仅具备保护电力系统正常运行的功能,而且还能够对电力系统运行设备的参数进行实时监测和控制,具备远程控制的功能,有力地保障电力系统的安全稳定运行。
1.3 提高装置性能
和以往的继电保护装置相比,继电保护装置能够有效地提高装置的性能,准确、快速地将故障反映并切除,保证电力系统的安全稳定运行。自动化的继电保护装置通过使用计算机技术,完成复杂的工作,及时对故障进行检测,并将故障信息传递给工作人员,发出警报信息,有效地将故障解决。另外,继电保护装置抗干扰能力较弱,需要加强对继电保护装置的管理。
2 继电保护装置运行的原理
电力系统一旦出现故障,那么将会出现电流增加、电压降低、线路测量阻抗减小以及电流和电压之间的相位角发生变化等问题。通过利用这些基本参数的变化,能够形成不同原理的继电保护,例如对电流增大而动作的电流速断、反映电压降低而动作的低电压保护、过电流保护等进行反映。通常情况下,继电保护装置主要由测量部分、逻辑部分以及执行部分构成。
2.1 测量部分
进行测量时,主要对被保护对象输入的相关电气量进行测量,例如电流、电压。测量之后还要将其与相关的整定值进行比较分析,然后输出比较结果,对继电保护装置是否应该动作进行判断。
2.2 逻辑部分
针对测量部分检测出的检测量与输出逻辑关系,对其进行逻辑判断,对其是否应该将短路跳闸或者发出信号进行确定,并将相关命令输入到执行部分中。
2.3 执行部分
根据逻辑部分传递出来的信号,将继电保护装置负担的任务进行操作完成,例如操作跳闸或者发出信号等。
3 继电保护装置运行的问题
继电保护装置广泛地应用在人们的生活工作用电、工厂生产用电中,其对于电力系统的电容器、线路和主变进行保护。继电保护装置在日常运行的过程中会出现许多问题,主要表现在以下四个方面:
3.1 继电保护装置触点不稳定
继电器在对负荷过程进行切换时,其中的电接触零件叫做触点。对继电器接触稳定性产生影响的主要因素包括触点松动、触点裂开以及触点尺寸位置不正确等。在操作过程中没有对铆压力进行适当的调节、簧片与接触点的尺寸不合理以及触点材料过硬或者压力大等因素均能导致触点出现松动现象。接触点位置不同所运用的材料和工艺也就不同,例如由于材料硬度高导致的松动。
3.2 继电器的参数不正确
继电器主要运用铆对零部件进行安装,在安装的过程中,容易导致铆出现松动或者强度结合差的情况,进而导致继电器的参数比较混乱。另外,周围环境的温度也会增加继电器的参数值,由于继电器不具有抵抗冲击与机械振动的功能,进而导致参数出现错误。
3.3 继电保护装置中的铆零件变形
电磁系统中的铆装件在安装过铆之后,零件会出现弯曲、倾斜现象,进而导致铆装工序的调整、装配工作出现问题。因此,铆装工作人员要对零部件的尺寸大小、规格进行认真仔细的检查,确保安装到位和电磁系统质量达到标准。
3.4 线圈问题
由于继电保护装置的线圈种类有很多,因此,需要对其进行单件隔开放置,避免出现交连碰撞的情况,防止出现断线。因此,在对铆装电磁系统进行安装时,对压床和压力机进行适当的调整,如果压力过大,会导致线圈断线或者线圈架变形、开裂;如果压力过小,则会加大磁损,使绕线出现松动。
针对以上存在的问题,采取以下的方法进行解决:
提高继电保护装置的抗干扰水平,降低信号干扰给继电保护装置带来的操作失误。由于信号传输容易导致继电保护装置在运行时受到电磁波信号的干扰,因此,增强继电保护装置防护层上的绝缘设置,不使其和地面接触。另外,继电保护装置的元件也要选择隔离性能高与抗干扰能力强的。
继电保护装置接地设置要满足安装需求。大多数继电保护装置虽然在线路上进行了绝缘防护,但是在接地安装过程中容易受到电磁波信号的干扰。因此,工作人员在进行作业时对微机继电保护装置的接地工作进行控制。
对继电保护装置的内部参数和密码进行设置管理,在提高系统运行稳定性的基础上提高系统操作水平,降低
失误。
加强继电保护装置的维护和维修。安排专业人员对继电保护装置的日常运行定期的检查和管理,并做好清洁处理工作。另外对继电保护装置运行产生的电流和电压情况进行记录和监控。
4 结语
总而言之,继电保护装置的工作技术水平较高,因此,要求维护工作人员要具备很高的理论知识水平和高超的实践能力,进而有效地排除电力系统运行中出现的
故障。
参考文献
[1] 王翰,严进伟.电力系统继电保护与自动化装置的可靠性分析[J].中国新技术新产品,2013,3(11):14-15.
关键词:大规模风电接入;电力系统;继电保护;风电机组;电能输送;电网运行 文献标识码:A
中图分类号:TM773 文章编号:1009-2374(2016)32-0087-02 DOI:10.13535/ki.11-4406/n.2016.32.043
电网的安全运行离不开继电保护,作为电网安全运行必不可少的要素,可以快速准确地查找到故障所在并将其隔离,从而尽可能地降低对系统运行的危害,最大程度地保证电能的平稳输送以及应用。风能越来越为广泛应用,随之而来的则是风电场对电力系统的极大影响。尤其是风电场的接入不同则继电保护装置的故障各有其特性,其复杂化个性化的特点,就使得研究大规模风电场接入的继电保护问题尤为紧迫与重要,从而确保电网系统的安全运行。
1 风电场和风电机组的故障特性
继电保护的设计以及计算均是以故障特性为基础进行的。那么对风电场以及风电机组的故障特性进行分析就是必不可少的。传统电力系统的继电保护的基础是三相对称系统和同步发电机电源。在这个基础上建立的继电保护理论体系存在着自身不足,此理论假设故障出现时,同步发电机是以恒态存在的,也就是故障发生前后,其运行的状态和参数没有改变,一如既往,并计算相应的短路电流和其衰减特性,以此作为整定继电保护原理和选择开关设备的依据。目前,大多数风电机组使用的发电机都是异步发电机,由于其自身结构的特殊性而形成的故障特征也就具有了特殊性,必须要与传统的同步发电机的特性进行区分。永磁直驱机组虽然是同步发电机,但是在并网后,不论是在故障特征还是在短路电流上都已经于并网前发生了非常大的改变。当电网出现短路故障时,普通的异步发电机可以提供短暂的、短时间就可以衰减为零的极大电流,缺乏提供持续提供短路电流的能力。双馈式的发电机在故障发生时,其短路电流要小于前者,但衰减时间比前者长,故可以提供连续的短路电流。
2 大规模风电接入输电网的继电保护问题
伴随着风电在电力电网中的百分比的逐步增加,继电保护的问题日益凸显。近年来,国内外学者对这一问题进行了探究,现综述如下:
风电电源接入后,电力系统的零序网络要随着升压变压器的接地而发生了与之相对应的变化,结果就是使得零序保护的灵敏度降低;并网联络线的自动重合闸在大规模风电场联络线跳开后很难重合。之所以出现这个问题是因为我们国家现阶段使用的是在电网并网点接入风力电源的检同期方式,这就要求具有稳定性,来保证供电的平稳进行,但是大规模的风电场在联络线跳开后,风机会进入动态过程,检同期成功与否就存在着不确定的可能,继而出现自动重合闸无法重合,最终导致风电脱网事故的出现;拒动向常态转化。缺乏弱馈保护的专门设备将会使得并联网点联络线的保护性能大大降低,从而出现拒动由偶发变为常态。
风电场接入电力电网系统对速断保护的影响。配电网的主保护是以传统电流也就是同步发电机提供的短路电流为速断保护,而风电场是以类似于异步发电机方式提供短路电流,这就使得风电场接入电力电网系统后产生影响速断保护的问题;距离保护的动作裕度降低。异步发电机的阻抗是正电抗与负电阻的特征,所以阻抗平面轨迹很有可能至第二象限,进而使距离保护动作幅度降低;电磁暂态过程被忽视。由于风电场内机组和机群在现实中的客观问题,如分布以及型的不同,使得理想化的组合――理想电源与系统抗组组成的经典串联模型难以得到,自然也就无法通过采用等效风电场的方式来获得相应的电磁暂态;风电场输出功率波动性对并网联络线距离保护的影响。风电场的大规模的应用必然伴随并网联络线距离保护问题,这与测量所得电流、电压还有风电随机电源的个性化的特殊的故障问题密切相关。实质上就是对整定与管理高压电网的继电保护工作提出了更高的要求。
3 大规模风电场接入电力电网系统的继电保护思路及方法
风电场接入电力电网系统的继电保护问题,国内外学者仁者见仁,智者见智,至今并没有一个统一的标准,相关的研究工作也只是局部地片面地开展,缺乏系统化的深入研究。本文认为,对于大规模风电场接入电力电网系统的保护问题应从以下方面来展开深入的
研究:
3.1 故障出现后的电流波形特点的研究
继电保护的关键是要进行短路故障特征的分析,只有分析清楚问题的所在,才能够着手进行问题的解决。参考相关文献,发现研究者在对短路电流的最大值以及短路电流衰减特性上进行了大量的深入研究,也有从继电保护的配合与整定上来对保护的影响展开工作进行研究。这些研究是必要的但是却不是本质的。继电保护体系中,主保护作用的重要地位不容质疑,而衡量主保护性能的关键的、本质的因素是继电保护的根本原理――故障暂态的滤波算法以及波形特征。波形特征以及滤波算法的异同,不论是在计算工频电器量还是在保护判据方面都会产生很大的差别,对于结果的判别也都有着非常大的影响,是继电保护性能中决定性的因素。这就要求我们在发生故障短路后,必须进行电流波形特征的分析以求加强电网继电保护自动装置与风电场操控系统的配合。
关键词:电力系统 保护线路 串补电容 继电保护系统影响
中图分类号:TM761 文献标识码:A 文章编号:1672-3791(2016)10(b)-0035-02
1 串补电容装于线路始端
如图1所示,此时线路两端距离Ⅰ段的起动阻抗应为:
ZⅠdz.1=ZⅠdz.2=0.85(ZAB-jXC)
式中,ZAB为被保护线路阻抗;
XC为串联电容的阻抗。
当保护1和保护2的距离Ⅰ段采用方向阻抗元件时,它们按上式整定的特性圆和线路阻抗的分布分别如图1(a)、图1(b)所示。
如图1(a)所示,装于A侧的保护1在始端A′点到M点的范围内短路时,阻抗元件的测量阻抗均位于动作特性之外,即保护不能动作,在这种情况下不能使用距离保护。
再看图1(b)所示,装于串补电容对侧变电站B的保护2,受XC的影响使保护区缩短,只能保护由B到N点的范围,但不致出现拒动或误动的现象,因此可以用,但显然XC的数值越大,保护区缩短得越多。注:为便于比较,图中的虚线圆表示未加串补电容时动作特性。
2 串补电容装于线路中间
这种情况下,两侧距离Ⅰ的起动阻抗仍按前式整定:ZⅠdz.1 =ZⅠdz.2=0.85(ZAB-jXC),只要串补电容的补偿度不超过50%,即
XcZAB│,则阻抗元件的动作特性见图1(c),在线路A~B内故障时,保护1、2均可正确动作,而且保护性能也很好。但是,这种补偿方式的缺点是,当短路电流较大时,如果电容器被保护间隙短接,则距离Ⅰ段保护区将大为缩短。
3 串补电容装于变电站的母线之间
串补电容和保护位置(对距离保护的影响)如图2所示。
提出问题:为什么要将串补电容装设在变电站母线之间?
因为由于当多段高压输电线串联,或高压输电线上设有开关站时,此时可将串补电容装于高压变电站或开关站的母线之间。图3展示了装设于两条线路上的保护1、2、3、4的整定特性圆和测量阻抗。
图3向量AB为线路AB的阻抗ZAB。BC代表串补电容的容抗ZBC,CD则代表线路CD的阻抗ZCD。折线DCBA则可看作是从D点看向A点的各线段阻抗。为了表明在同一图上,从D看向A的阻抗假定为负的,与从A看向D的阻抗向量方向相反。
从图3可见,保护1的整定圆1应通过保护1安装点。为保证选择性C点应位于圆1之外。保护3的整定圆3应通过保护3安装点C。因B点位于圆3之内,故在B点及其附近的相邻线路上短路时,保护3将误动(应注意看图B点包在圆3 内),因此,必须采取措施加以防止。保护4的整定圆4应通过保护4的安装点D向下画。B点位于圆4之外,不会误动。保护2的整定圆2应通过保护2安装点B向下画。在反向C点附近短路时,将要误动(应注意看图C点包在圆2内),应采取措施加以防止。
图3中1、3与2、4为两种不同方向的特性圆,其大小为区分之用。
4 结论
当串补电容设置于变电站或开关站母线之间时,在h离串补电容的两端,距离保护Ⅰ段的保护区将大大缩短,而在靠近电容器的两端,距离Ⅰ段的保护区虽较长,和没有电容器一样,但在反向电容器背后及附近的相邻线路上短路时,保护将要误动,因此必须采取防范措施。
由图3可知串补电容装于变电站或开关站母线之间时对距离保护的影响。其他影响距离保护正确工作的因素此处不做进一步分析。
5 结语
在电力系统高速发展的今天,电力网对继电保护的要求也日益增高。特别是智能电网技术在电力系统高速运用的过程中会对继电保护提出更高的要求,同时也会出现种种新的问题,这将使从事继电保护工作的人员面临一系列重要任务,如何有效解决这些问题,并且将更好、更新的继电保护技术与智能电网实现最佳的结合,将成为继电保护工作人员面临的重要课题。
参考文献
[1] 贺家李,宋从矩.电力系统继电保护原理[M].北京:中国电力出版社,1994.
[2] 陈军伟.可控串补对输电线路继电保护影响的分析与研究[D].华北电力大学(北京),2011.
[3] 邹焕雄.串补电容对距离保护的影响及其解决方案的分析[J]. 科技风,2012(13):110.
关键词:电力系统继电保护技术应用发展趋势
一、前言
电力系统的迅速发展对继电保护提出了新的要求,电子技术及通信技术等的迅速发展又为继电保护技术的发展不断地注入了新的活力,随着微机保护装置的应用普及,继电保护二次系统的自动化水平得到不断提高,许多当前由人工处理的模拟信息转化为大量的数字信息,而技术管理人员也有许多用计算机实现的资料和试验记录文档。因此,继电保护技术得天独厚, 在余年的发展时间里经历了个历史阶段,现在是微机保护阶段。
二、继电保护技术
继电保护装置是指:当电力系统中的电力元件(如发电机、线路等)或电力系统本身发生了故障危及电力系统安全运行时,能够向运行值班人员及时发出警告信号,或者直接向所控制的断路器发出跳闸命令以终止这些事件发展的一种自动化措施和设备,一般通称为继电保护装置。其基本任务是:当被保护的电力系统元件发生故障时,应该由该元件的继电保护装置迅速准确地给脱离故障元件最近的断路器发出跳闸命令, 使故障元件及时从电力系统中断开, 以最大限度地减少对电力系统元件本身的损坏, 降低对电力系统安全供电的影响, 并满足电力系统的某些特定要求。反应电气设备的不正常工作情况, 并根据不正常工作情况和设备运行维护条件的不同(例如有无经常值班人员)发出信号,以便值班人员进行处理, 或由装置自动地进行调整, 或将那些继续运行会引起事故的电气设备予以切除。反应不正常工作情况的继电保护装置允许带一定的延时动作。其基本要求是应满足可靠性、选择性、灵敏牲和速动性。这四“性”之间紧密联系, 既矛盾又统一。
三、微机继电保护系统特点
研究和实践证明, 与传统的继电保护相比较, 徽机保护有许多优点,其主要特点如下:
1、改善和提高继电保护的动作特征和性能, 动作正确率高。
其主要是在能得到常规保护不易获得的特性;很强的记忆力能够更好地实现故障分量保护;可引进自动控制、新的数学理论和技术如自适应、状态预测、模糊控制及人工神经网络等, 其运行正确率很高也已在运行实践中得到证明。
2、可以方便地扩充其他辅助功能。
例如故障录波、波形分析等, 能够方便地附加低频减载、自动重合闸、故障录波、故障测距等功能。
3、工艺结构条件优越。
体现了硬件比较通用, 制造容易统一而且标准装置体积小, 减少了盘位数量功耗低。
4、可靠性容易提高。
体现了数字元件的特性不容易受温度变化、电源波动、使用年限的影响, 不易受元件更换的影响且自检和巡检能力强, 可用软件方法检测主要元件、部件的工况以及功能软件本身。
5、使用灵活方便, 人机界面越来越友好。
其维护调试也比较方便, 从而缩短了维修时间同时依据运行经验, 在现场可通过软件方法改变特性、结构。
6、可以进行远方监控。
其实微机保护装置是具有串行通信功能,与变电所微机监控系统的通信联络使微机保护具有远方监控的特性。
四、如何保证继电保护的可靠性
继电保护的可靠是由配置合理、质量和技术性能优良的继电保护装置与正常的运行维护和管理来保证, 任何电力设备都不允许在无继电保护的状态下运行。微机保护在全国电力系统的普及率已相当高, 其可靠性、灵敏度高等优点不言而喻就徽机保护的特殊性而言, 还有一些现场问题值得我们注意, 这就是要采用有针对性的技术措施把微机保护的误动作限制在最小范围以内以下是笔者近年来工作中体会,供同行参考。
(一)继电保护装置检验应注意的问题
当在继电保护装置检验过程中一定要注意将整组试验和电流回路升流试验放在本次检验最后进行, 这两项工作完成后, 严禁再拔插件、改定值、改定值区、改变二次回路接线等工作。
〔二)定值区问题
微机保护主要优点是可以有多个定值区, 这极大方便了电网运行方式变化和代路情况下的定值更改问题。现在必须注意的是定值区的错误对继电工作来说是一大忌, 必须采用严格的管理和相应的技术手段来确保定值区的正确性措施是, 在修改完定值后, 必须打印定值单及定值区号,注意日期、变电站、修改人员及设备名称, 并重点在继电保护工作记录中注明定值编号。
(三)一般性检查
无论哪种保护, 一般性检查都是非常重要的, 但是在现场也是容易被忽略的项目, 至少是没有认真去做。一般性检查大致包括以下几个方面清洁、连接件是否紧固、焊接点是否虚焊、机械特性等。其次是应该将装置所有的插件拔下来检查一遍, 将所有的芯片按紧, 螺丝拧紧并检查虚焊点。在检查中, 也必须将各元件、保护屏、控制屏、端子箱的螺丝紧固作为一项重要工作来落实。
(四)接地问题
继电保护工作中接地问题是非常突出的, 可以分以下两点说明保护屏的各装置机箱、屏障等的接地, 必须接在屏内的铜排上, 一般生产厂家已做得较好, 只需认真检查。电流、电压回路的接地也存在可靠性问题, 如接地在端子箱, 那么端子箱的接地是否可靠, 这些都是严重影响设备安全和人身安全的因素。
(五)工作记录和检查习惯
工作记录一定要认真、详细, 真实地反映工作一部分的重要环节, 这样的工作记录应该说是一份技术档案, 在日后的工作中是非常有用的。继电保护工作记录应在规程限定的内容以外, 认真记录每一个工作细节、处理方法。
五、电力系统继电保护技术的发展趋势
电力企业是一个“三密企业资产密集型、技术密集型、人才密集型”, 知识管理应该成为电力行业发展的灵魂, 继电保护技术未来趋势是向计算机化, 网络化, 智能化, 保护、控制、测量和数据通信一体化等方向发展。随着计算机技术的飞速发展及计算机在电力系统蛛申。保护领域中的普遍应用, 新的控制原理和方法被不断应用于计算机继电保护中,以期取得更好的效果, 从而使徽机继电保护的研究向更高的层次发展, 出现了一些引人注目的新趋势。
(一)计算机化
紧随着计算机硬件的迅速发展, 微机保护硬件也在不断发展电力系统对微机保护的要求不断提高, 除了保护的基本功能外, 还应具有大容量故障信息和数据的长期存放空间, 快速的数据处理功能, 强大的通信能力, 与其它保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力, 高级语言编程等。继电保护装置的微机化、计算机化是不可逆转的发展趋势。但对如何更好地满足电力系统要求, 如何进一步提高继电保护的可靠性, 如何取得更大的经济效益和社会效益, 尚需进行具体深入的研究。
(二)网络化
当计算机网络的作为信息和数据通信工具已经成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化。它深刻影响着各个工业领域, 也为各个工业领域提供了强有力的通信手段。实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络联接起来,亦即实现微机保护装置的网络化。这在当前的技术条件下是完全可能的。微机保护装置网络化可大大提高保护性能和可靠性, 这是微机保护发展的必然趋势。
(三)智能化
近些年来, 人工智能技术例如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用, 在继电保护领域应用的研究也已开始。神经网络是一种非线性映射的方法, 很多难以列出方程式或难以求解的复杂的非线性问题, 应用神经网络方法则可迎刃而解。可以预见, 人工智能技术在继电保护领域必会得到应用, 以解决用常规方法难以解决的问题。
(四)保护、控制、测量、数据通信一体化
在实现继电保护计算机化和网络化的前提下, 保护装置实际上就是一台高性能、多功能的计算机, 是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据, 也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此, 每个微机保护装置不但可完成继电保护功能, 而且在无故障正常运行情况下还可完成测量、控制、数据通信功能, 亦即实现保护、控制、测量、数据通信一体化。
(五)变电所综合自动化技术
现代的计算机技术、通信技术和网络技术为改变变电站目前监视、控制、保护、故障录波、紧急控制装置和计量装置及系统分割的状态提供了优化组合和系统集成的技术基础。高压、超高压变电站正面临着一场技术创新。继电保护和综合自动化的紧密结合已成为可能, 它表现在集成与资源共享、远方控制与信息共享。以远方终端单元、微机保护装置为核心, 将变电所的控制、信号、测量、计费等回路纳入计算机系统, 取代传统的控制保护屏, 能够降低变电所的占地面积和设备投资, 提高二次系统的可靠性。随着微机性能价格比的不断提高, 现代通信技术的迅速发展, 以及标准化规约的陆续推出, 变电站综合自动化成了热门话题。竞争的电力市场将促进新的自动化技术的开发和应用, 在经济效益的驱动下,变电站将向集成自动化方向发展。根据变电站自动化集成的程度, 可将未来的自动化系统分为协调型自动化和集成型自动化。协调型自动化仍然保留间隔内各自独立的控制、保护等装置, 各自采集数据并执行相应的输出功能, 通过统一的通信网络与站级相连, 在站级建立一个统一的计算机系统, 进行各个功能的协调。而集成型自动化既在间隔级, 又在站级对各个功能进行优化组合, 是现代控制技术、计算机技术和通信技术在变电站自动化系统的综合应用所谓集成型自动化系统是将间隔的控制、保护、故障录波、事件记录和运行支持系统的数据处理等功能集成在一个统一的多功能数字装置内, 间隔内部和间隔间以及间隔同站级间的通信用少量的光纤总线实现, 取消传统的硬线连接。
【关键词】电力系统;继电保护;发展趋向
1继电保护技术的含义
继电保护装置是指当电力系统中的电力元件(如发电机、线路等)或电力系统本身发生了故障危及电力系统安全运行时,能够向运行值班人员及时发出警告信号,或者直接向所控制的断路器发出跳闸命令以终止这些事件发展的一种自动化措施和设备,一般通称为继电保护装置。其基本任务是:
(1)当被保护的电力系统元件发生故障时,应该由该元件的继电保护装置迅速准确地给脱离故障元件最近的断路器发出跳闸命令,使故障元件及时从电力系统中断开,以最大限度地减少对电力系统元件本身的损坏,降低对电力系统安全供电的影响,并满足电力系统的某些特定要求。
(2)反应电气设备的不正常丁一作情况,并根据不正常工作情况和设备运行维护条件的不同(例如有无经常值班人员)发出信号,以便值班人员进行处理,或由装置自动地进行调整,或将那些继续运行会引起事故的电气设备矛以切除。反应不正常工作情况的继电保护装置允许带一定的延时动作。其基本要求是应满足可靠性、选择性、灵敏性和速动性。这四“性”之间紧密联系,既矛盾又统一。
2微机继电保护系统的优点
研究和实践证明,与传统的继电保护相比较,微机保护有许多优点,其主要优点如下:
2.1改善和提高继电保护的动作特征和性能,动作正确率高
主要表现在能得到常规保护不易获得的特性;其很强的记忆力能更好地实现故障分量保护可引进自动控制、新的数学理论和技术如自适应、状态预测、模糊控制及人工神经网络等,其运行正确率很高也已在运行实践中得到证明。
2.2可以方便地扩充其他辅助功能
如故障录波、波形分析等,可以方便地附加低频减载、自动重合闸、故障录波、故障测距等功能。
2.3工艺结构条件优越
体现在硬件比较通用,制造容易统一标准装置体积小,减少了盘位数量,功耗低。
2.4可靠性容易提高
体现在数字元件的特性不易受温度变化、电源波动、使用年限的影响,不易受元件更换的影响,且自检和巡检能力强,可用软件方法检测主要元件、部件的工况以及功能软件本身。
2.5使用灵活方便,人机界面越来越友好
其维护调试也更方便,从而缩短维修时间,同时依据运行经验,在现场可通过软件方法改变特性、结构。
2.6可以进行远方监控
微机保护装置具有串行通信功能,与变电所微机监控系统的通信联络使微机保护具有远方监控特性。
3怎样才能保证继电保护的可靠、安全性
继电保护的可靠性主要由配置合理、质量和技术性能优良的继电保护装置以及正常的运行维护和管理来保证,任何电力设备都不允许在无继电保护的状态下运行。微机保护在全国电力系统的普及率己相当高,其可靠性、灵敏度高等优点不言而喻。就微机保护的特殊性而言,还有一些现场问题值得我们注意,这就是要采用有针对性的技术措施把微机保护的误动作限制在最小范围以内。以下几点是笔者近年来工作中的体会:
3.1继电保护装置检验应注意的问题
在继电保护装置检验过程中必须注意:将整组试验和电流回路升流试验放在本次检验最后进行,这两项工作完成后,严禁再拔插件、改定值、改定值区、改变二次回路接线等工作。
3.2定值区问题
微机保护的一个优点是可以有多个定值区,这极大方便了电网运行方式变化和代路情况下的定值更改问题。现在必须注意的是定值区的错误对继电工作来说是一大忌,必须采用严格的管理和相应的技术手段来确保定值区的正确性。措施是,在修改完定值后,必须打印定值单及定值区号,注意日期、变电站、修改人员及设备名称,并重点在继电保护工作记录中注明定值编号。
3.3一般性检查
不论何种保护,一般性检查都是非常重要的,但是在现场也是容易被忽略的项目,至少是没有认真去做。一般性检查大致包括以下几个方面:清洁、连接件是否紧固、焊接点是否虚焊、机械特性等。其次是应该将装置所有的插件拔下来检查一遍,将所有的芯片按紧,螺丝拧紧并检查虚焊点。在检查中,也必须将各元件、保护屏、控制屏、端子箱的螺丝紧固作为一项重要工作来落实。
3.4接地问题
继电保护工作中接地问题是非常突出的,大致分以下两点说明:(1)保护屏的各装置机箱、屏障等的接地,必须接在屏内的铜排上,一般生产厂家己做得较好,只需认真检查。(2)电流、电压回路的接地也存在可靠性问题,如接地在端子箱,那么端子箱的接地是否可靠,这些都是严重影响设备安全和人身安全的因素。
3.5工作记录和检查习惯
工作记录必须认真、详细,真实地反映工作的一些重要环节,这样的工作记录应该说是一份技术档案,在日后的工作中是非常有用的。继电保护工作记录应在规程限定的内容以外,认真记录每一个工作细节、处理方法。
4继电保护技术的发展趋向
电力企业是一个“三密企业(资产密集型、技术密集型、人才密集型)”,知识管理应该成为电力行业发展的灵魂,继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化等方向发展。随着计算机技术的飞速发展及计算机在电力系统保护领域中的普遍应用,新的控制原理和方法被不断应用于计算机继电保护中,以期取得更好的效果,从而使微机继电保护的研究向更高的层次发展,出现了一些引人注目的新趋势。
4.1计算机化
随着计算机硬件的迅猛发展,微机保护硬件也在不断发展,电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力,高级语言编程等。继电保护装置的微机化、计算机化是不可逆转的发展趋势。但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚需进行具体深入的研究。
4.2网络化
计算机网络作为信息和数据通信工具己成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化。它深刻影响着各个工业领域,也为各个工业领域提供了强有力的通信手段。实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络联接起来,亦即实现微机保护装置的网络化。这在当前的技术条件下是完全可能的。微机保护装置网络化可大大提高保护性能和可靠性,这是微机保护发展的必然趋势。
4.3智能化
近年来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,在继电保护领域应用的研究也已开始。神经网络是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经网络方法则可迎刃而解。可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。
4.4保护、控制、测、数据通信一体化
在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能。而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、控制、测量、数据通信一体化。
4.5自适应控制技术
自适应继电保护的概念始于20世纪80年代,它可定义为能根据电力系统运行方式和故障状态的变化而实时改变保护性能、特性或定值的新型继电保护。自适应继电保护的基本思想是使保护能尽可能地适应电力系统的各种变化,进一步改善保护的性能。自适应继电保护具有改善系统的响应、增强可靠性和提高经济效益等优点,在输电线路的距离保护、变压器保护、发电机保护、自动重合闸等领域内有着广泛的应用前景。
4.6人工神经网络的应用
进入20世纪90年代以来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,电力系统保护领域内的一些研究工作也转向人工智能的研究。专家系统、人工神经网络和模糊控制理论逐步应用于电力系统继电保护中,为继电保护的发展注入了活力。
基于生物神经系统的人工神经网络具有分布式存储信息、并行处理、自组织、自学习等特点,其应用研究发展十分迅速,目前主要集中在人工智能、信息处理、自动控制和非线性优化等问题。近几年来,电力系统继电保护领域内出现了用人工神经网络来实现故障类型的判别、故障距离的测定、方向保护、主设备保护等。
4.7变电所综合自动化技术
现代计算机技术、通信技术和网络技术为改变变电站目前监视、控制、保护、故障录波、紧急控制装置和计量装置及系统分割的状态提供了优化组合和系统集成的技术基础。高压、超高压变电站正面临着一场技术创新。继电保护和综合自动化的紧密结合已成为可能,它表现在集成与资源共享、远方控制与信息共享。以远方终端单元(R'I'U),微机保护装置为核心,将变电所的控制、信号、测量、计费等回路纳入计算机系统,取代传统的控制保护屏,能够降低变电所的占地面积和设备投资,提高二次系统的可靠性。
随着微机性能价格比的不断提高,现代通信技术的迅速发展,以及标准化规约的陆续推出,变电站综合自动化成了热门话题。竟争的电力市场将促进新的自动化技术的开发和应用,在经济效益的驱动下,变电站将向集成自动化方向发展。根据变电站自动化集成的程度,可将未来的自动化系统分为协调型自动化和集成型自动化。协调型自动化仍然保留间隔内各自独立的控制、保护等装置,各自采集数据并执行相应的输出功能,通过统一的通信网络与站级相连,在站级建立一个统一的计算机系统,进行各个功能的协调。而集成型自动化既在间隔级,又在站级对各个功能进行优化组合,是现代控制技术、计算机技术和通信技术在变电站自动化系统的综合应用。所谓集成型自动化系统是将间隔的控制、保护、故障录波、事件记录和运行支持系统的数据处理等功能集成在一个统一的多功能数字装置内,间隔内部和间隔间以及间隔同站级间的通信用少量的光纤总线实现,取消传统的硬线连接。
【关键词】电路板;继电保护;装置
【中图分类号】TM774 【文献标识码】A 【文章编号】1672—5158(2012)08—0108-02
所谓继电保护就是通过电流等电路中的物理性质的变化,反映电流信号的强弱,根据电流信号的强弱进行相关的动作,传递信号或者停止动作,从而达到对整个电路系统进行控制和及时修复的目的。因此继电保护作为电力系统中的重要组成部分,是保障供电和输电稳定的关键。继电保护装置的类型多种多样,尤其是随着电力技术的不断革新和发展,继电保护装置的功能也在不断完善。电路板的继电保护装置是迷你的电子控制器件,因为电路板小巧的特征使得继电保护装置更加直观,这样的迷继电保护装置在优化电器的布局以及电路的简化中起着重要作用。
一、继电保护装置的基本性能
继电保护装置具有提高电力系统安全性和可靠性的优势,能够大大提高电路的使用寿命。具体来说,继电保护装置具有以下基本性能:首先,继电保护装置必须具备一定动作选择的主动性。主要是指在电路系统流通的过程中,继电保护装置必须具有一定的自主选择性和灵活性,通过自主选择能够增强继电保护装置在遇到突发故障时的应变能力,这也是对目前的继电保护装置提出的重要要求。二是要保持速动性。继电保护装置需要根据现实的情况和问题及时并且迅速地做出反应,以达到保护电路安全的目的。动作的速动性是和继电装置的灵敏性直接联系在一起的,因此,继电保护装置的另一个基本性能是动作的灵敏性。可靠性是指继电保护装置是应该在保护范围内动作,在电路系统正常运行的过程中保护系统的正常运行。继电保护装置的基本性能决定了电路的稳定性,使得电路板的继电保护发挥重要作用。
二、电路板继电保护装置的特性
电路板继电保护装置是一种基于微型电子技术的继电保护装置,能够更好地提高电路的直观性和智能化,并且使得结构得以简化,提高了继电保护的工作性能。电路板继电保护装置具有其自身的特性,首先,电路板继电保护装置具有较强的触电切换能力,从而提高了继电保护装置的性能和特性。电路板继电保护装置还有区别与其他保护装置的转换触电的模式,一组常开,一组转换,缩短转换时间,提高了继电保护装置的转换效率。另一个重要特征是其微小性。电路板继电保护装置的特性直接决定了其实际应用的广度和深度,我们在对其特性有了正确准确的分析基础上,提高继电保护装置的实际运用效率,发挥其更好地电路维稳作用。
三、电路板继电保护装置运用原理及方法
电路板继电保护装置的运用原理与方法与继电保护装置的运行原理类似,通过对电力系统发生故障时产生的频率、电流等的变化做出反应,从而起到调整和及时发现问题的作用。电路继电保护装置也是如此,通过对电路中产生的故障及时做出反应,例如对电流、电压等的数据参考和性质判断,进而做出相应的反映和处理。由此可见,电路板继电保护装置的运行原理主要是对电路板内部的电压、电流以及频率等进行实时监控和控制。运作原理和工作方法体现在以下几个方面:
(一)基本原理及工作方法
电路板继电保护装置的工作原理是对电路中的异常情况做出反应,结合电路本身的结构和构成,分析电路中物理量的变化趋势,从而发现电路中的异常。电路板继电保护装置的出现是与电路板继电器的出现相适应的,电路板继电保护装置的具体工作原理与装置内部的信号传输直接相关。
首先,在电路系统中,电力运行的基本参数,例如:电流、电压等某一部分的失误都会在电路内部发生一定的参数变化,因此在电路内部形成一定的数据和信号,当这些变量增加到一定程度时,继电保护装置就会产生相应的反应。其次从继电保护装置的具体工作流程来看,电路板继电保护装置的具体操作办法主要包括了以下几个流程:
1.电力系统本身是受到保护的,继电保护装置要获取电力系统中的信号就必须在地区之间建立一定的关联关系。通过对电力系统中的电流、电压等情况进行综合观察,一旦发现异常就做出预警反应;2.信号发出之后是信号的对比分析过程,对信号中的正常状态或者是异常状态做出调整,当电路中的电流信号达到一定的整定值时,电流继电器继续工作,通过接点向下一集单元发出让电路断电跳闸的信号;如果电流信号没有达到整定值,电流继电器不动作,从而停止跳闸,在向下一级单元传递信号的动作也随之停止。这是比较单元在处理电流信号时的处理办法。3.当处理单元接受了比较单元发送的信号时,处理单元则会按照比较鉴别单元的决策进行相关的处理,从而处理单元的行为直接受比较鉴别单元的影响。处理单元会根据时间的先后顺序进行电流的保护、中断、继电等一系列动作,最终由执行单元来进行电流的电路处理。
(二)电路板继电保护装置的重要作用
电路板继电保护装置是维护电路板电路稳定的关键和重要因素,在实际的运用中发挥着重要作用。主要体现在以下三方面:一是电路板继电保护装置在实际运用中能够监视电路板电路系统的运行情况,减轻长期磨损对电路的损害,一定程度上提高了电路的寿命。第二,通过电路板继电保护装置能够直观地反映电路板工作过程中的异常情况,并且根据具体的电路情况和发出不同的信号,从而为保护电路系统的稳定提供决策的客观依据。三是体现在电路系统的自动化发展上,电路板继电保护装置的发展能够很好地提升电路使用的安全性能,同时利用先进的电力技术,促进继电保护功能的进一步完善。电力系统的自动化发展趋势是与目前信息技术现代化不谋而合的,电路的微型化也对继电保护装置提出了新的要求,如何利用现代先进的科学技术进一步提高电路版的继电保护装置的水平,是目前电力工作者以及相关研发人员探讨的重点。
综上所述,继电保护装置有其自身发展的特性,在维护电力系统稳定发展的过程中,继电保护装置发挥着功不可没的作用。从电路板继电保护装置的应用特性和原理上来看,其应用的前景是广泛的,有利于推动电力系统的完善以及综合发展。尤其是随着计算机信息技术的快速发展,信息技术在电路板继电保护装置中的应用,将进一步加强继电保护装置的智能化水平,提高继电保护的基本功能,实现继电保护的高校、准确发展。
参考文献
[1]郭建伸、李敏;浅谈继电保护装置的事故处理方法[J];内蒙古石油化工;2010年第05期
[2]王阳春;浅谈继电保护装置的维护与试验[J];民营科技;2010年第03期
关键词: 电力系统 继电保护 微机保护 安全措施
前言:
在电力系统中, 继电保护的作用在于:当被保护的电力系统元件发生故障时,该元件的继电保护装置迅速准确地给距离故障元件最近的断路器发出跳闸命令, 使故障元件及时从电力系统中断开, 以最大限度地减少对电力元件本身的损坏,降低对电力系统安全供电的
影响, 从而满足电力系统稳定性的要求, 改善继电保护装置的性能,提高电力系统的安全运行水平。随着电力系统规模不断扩大和等级的不断提高, 系统的网络结构和运行方式日趋复杂, 对继电保护的要求也越来越高。
1 继电保护的概念及类型
1.1 继电保护的基本概念
继电保护装置就是在供电系统中用来对一次系统进行监视、 测量、 控制和保护的自动装置。 它能反应电力系统中电气元件发生故障或不正常运行状态,并使断路器跳闸或发出信号。其基本任务是自动、 迅速、 有选择性地将故障元件从电力系统中切除, 使故障元件免于继续遭到破坏, 保证其它无故障部分迅速恢复正常运行。另外,它还能反映出电气元件的不正常运行状态, 并根据运行维护的条件,发出信号、 减负荷或跳闸。
1.2 继电保护的类型
在电力系统中,一旦出现短路故障,就会产生电流急剧增大, 电压急剧下降, 电压与电流之间的相位角发生变化。 以上述物理量的变化为基础,利用正常运行和故障时各物理量的差别就可以构成各种不同原理和类型的继电保护装置,如: 反映电流变化的电流继电保
护、 定时限过电流保护、 反时限过电流保护、 电流速断保护、 过负荷保护和零序电流保护等, 反映电压变化的电压保护, 有过电压保护和低电压保护,既反映电流变化又反映电流与电压之间相位角变化的方向过电流保护, 用于反应系统中频率变化的周波保护, 专门反映变压器温度变化的温度保护等。
2 配电系统继电保护的要求
配电系统继电保护在技术上一般应满足四个基本要求, 即可靠性、 选择性、速动性和灵敏性。 这几个特性之间紧密联系, 既矛盾又统一,必须根据具体电力系统运行的主要矛盾和矛盾的主要方面, 配置、 配合、 整定每个电力元件的继电保护。
2.1 可靠性
可靠性是对继电保护性能的最根本要求。可靠性主要取决于保护装置本身的制造质量、 保护回路的连接和运行维护的水平。一般而言, 保护装置的组成元件质量越高、回路接线越简单, 保护的工作就越可靠。 同时, 正确地调试、 整定, 良好地运行维护以及丰富的运行经验, 对于提高保护的可靠性具有重要的作用。 继电保护的误动和举动都会给电力系统造成严重的危害。 然而, 提高不误动的安全性措施与提高不拒动的信赖性的措施是相矛盾的。由于不同的电力系统结构不同, 电力元件在电力系统中的位置不同, 误动和拒动的危害程度不同,因而提高保护安全性和信赖性的侧重点在不同情况下有所不同。因此,要在保证防止误动的同时,要充分防止拒动; 反之亦然。
2.2 选择性
继电保护的选择性, 是指保护装置动作时, 在可能最小的区间内将故障从电力系统中断开,最大限度地保证系统中无故障部分仍能继续安全运行。 这种选择性的保证, 除利用一定的延时使本线路的后备保护与主保护正确配合外,还必须注意相邻元件后备保护之间的正确配合。
2.3 速动性
继电保护的速动性, 是指尽可能快地切除故障, 其目的是提高系统稳定性, 减轻故障设备和线路损坏程度,缩小故障波及范围, 提高自动重合闸和备用电源或备用设备自动投入的效果等。一般从装置速动保护、 充分发挥零序接地瞬时段保护及相间速断保护的作用, 减少继电器固有动作时间和断路器跳闸时间等方面入手来提高速动性。
2.4 灵敏性
继电保护的灵敏性,是指对于其保护范围内发生故障或不正常运行状态的反应能力。满足灵敏性要求的保护装置应该是在规定的保护范围内部故障时,在系统任意的运行条件下,无论短路点的位置、 短路的类型如何, 以及短路点是否有过渡电阻, 当发生断路时都能敏锐感觉、 正确反应。 以上四个基本要求是评价和研究继电保护性能的基础, 在它们之间, 既有矛盾的一面, 又要根据被保护元件在电力系统中的作用, 使以上四个基本要求在所配置的保护中得到统一。
3 微机保护的特点
传统的电磁和电磁感应原理的保护存在动作速度慢、 灵敏度低、抗震性差以及可动部分有磨损等固有缺点。晶体管继电保护装置也有抗干扰能力差、 判据不准确、 装置本身的质量不是很稳定等明显的缺点。 随着计算机技术和大规模集成电路技术的飞速发展, 微处理器和微型计算机进入实用化的阶段, 微机保护开始逐渐趋于实用。
微机保护充分利用了计算机技术上的两个显著优势: 高速的运算能力和完备的存贮记忆能力,以及采用大规模集成电路和成熟的数据采集,A/D 模数变换、 数字滤波和抗干扰措施等技术, 使其在速动性、 可靠性方面均优于以往传统的常规保护, 而显示了强大的生力, 与传统的继电保护相比, 微机保护有许多优势, 其主要特点如下:
(1) 改善和提高继电保护的动作特征和性能, 正确动作率高。主要表现在能得到常规保护不易获得的特性;其很强的记忆力能更好地实现故障分量保护; 可引进自动控制、 新的数学理论和技术,如自适应、 状态预测、 模糊控制及人工神经网络等, 其运行正确率很高, 已在运行实践中得到证明。
(2) 可以方便地扩充其它辅助功能。如故障录波、 波形分析等, 可以方便地附加低频减载、 自动重合闸、 故障录波、 故障测距等功能。
(3) 工艺结构条件优越。体现在硬件比较通用, 间隔内部和间隔间以及间隔同站级间的通信用少量的光纤总线实现,取消传统的硬线连接。 总体来说, 综合自动化系统打破了传统二次系统各专业界限和设备划分原则, 改变了常规保护装置不能与调度 (控制) 中心通信的缺陷, 给变电所自动化赋予了更新的含义和内容, 代表了变电所自动化技术发展的一种潮流。随着科学技术的发展, 功能更全、 智能化水平更高、 系统更完善的超高压变电所综合自动化系统, 必将在中国电网建设中不断涌现, 把电网的安全、 稳定和经济运行提高到一个新的水平。继电保护技术的未来发展趋势应是向微机化、 网络化、 智能化, 保护、 控制、 测量、 计量、 数据通讯一体和人机智能化方向发展。
4 确保继电保护安全运行的措施
(1) 继电保护装置检验应注意的问题: 在继电保护装置检验过程中必须注意: 将整组试验和电流回路升流试验放在本次检验最后进行, 这两项工作完成后,严禁再拔插件、 改定值、 改定值区、 改变二次回路接线等工作网。电流回路升流、 电压回路升压试验, 也必须在其它试验项目完成后最后进行。 在定期检验中,经常在检验完成后或是设备进人热备状态, 或是投入运行而暂时没负荷, 在这种情况下是不能测负荷向量和打印负荷采样值的。
(2) 定值区问题: 微机保护的一个优点是可以有多个定值区, 这极大方便了电网运行方式变化情况下的定值更改问题。但是还必须注意的是定值区的错误对继电工作来说是一大忌,必须采用严格的管理和相应的技术手段来确保定值区的正确性。 采取的措施是, 在修
改完定值后, 必须打印定值单及定值区号,注意日期、 变电站、 修改人员及设备名称, 并重点在继电保护工作记录中注明定值编号, 避免定值区出错。
(3) 一般性检查: 不论何种保护,一般性检查都是非常重要的, 但是, 在现场也是容易被忽略的项目, 应该认真去做。一般性检查大致包括以下两个方面: ①清点连接件是否紧固、 焊接点是否虚焊、 机械特性等。 现在保护屏后的端子排端子螺丝非常多, 特别是新安装的保护屏经过运输、 搬运, 大部分螺丝已经松动, 在现场就位以后, 必须认
认真真、一个不漏地紧固一遍, 否则就是保护拒动、 误动的隐患。 ②是应该将装置所有的插件拔下来检查一遍, 将所有的芯片按紧, 螺丝拧紧并检查虚焊点。在检查中, 还必须将各元件、 保护屏、 控制屏、 端子箱的螺丝紧固作为一项重要工作来落实。
(4) 接地问题: 继电保护工作中接地问题是非常突出的, 大致分以下两点:
①保护屏的各装置机箱、 屏障等的接地问题, 必须接在屏内的铜排上,一般生产厂家已做得较好, 只需认真检查。 最重要的是, 保护屏内的铜排是否能可靠地接入地网,应该用较大截面的铜鞭或导线可靠紧固在接地网上, 并且用绝缘表测电阻是否符合规程要求。
②电流、 电压回路的接地也存在可靠性问题,如接地在端子箱,那么端子箱的接地是否可靠, 也需要认真检验。
关键词:水电厂;继电保护;隐藏故障;诊断;方法
中图分类号:TM77 文献标识码:A
水电厂担负着电力系统的调峰调频任务,对电力系统的稳定运行具有举足轻重的地位,继电保护系统隐藏故障是造成水电厂机组事故的主要原因之一。因此,研究水电厂继电保护隐藏故障的诊断方法,提升继电保护可靠性,对水电厂机组的安全稳定运行意义重大。
1继电保护隐藏故障的概念
水电厂继电保护隐藏故障被定义为保护系统中的永久缺陷,此缺陷将导致继电保护系统不正确的切除电路元件,并有可能造成其它保护装置相继错误动作,造成机组停机事故。隐藏故障在系统正常运行时故障现象并不明显,很难被发现,严重威胁水电厂机组的安全运行。
2继电保护隐藏故障的特征
在水电厂机组正常运行时,隐藏故障并不会使机组表现出异常,对水电厂机组几乎没有影响。但是,由于水电厂机组出力发生变化或者电力系统出现故障时,如电网出现故障或过负荷等情况,隐藏故障就会被触发从而导致保护系统误动,更有甚者造成连锁故障的发生。继电保护系统中的硬件与软件都有可能存在隐藏故障,例如 PT、CT、各种继电器、通信通道及软件设置错误等,就会威胁到水电厂机组的安全运行。
3继电保护隐藏故障的原因
隐藏故障可能由很多原因引起,主要有两类原因:
3.1定值整定不合理引起的隐藏故障。这种隐藏故障可能是由于整定值和校准的错误,或者整定不能满足水电厂机组的全部运行方式引起的。尤其是水电厂接线或者机组容量改变时,而保护的整定值却没有做相应的修改,此时虽然继电保护装置能够正常运行,但是由于不正确的整定仍然会存在隐藏故障。
3.2设备或元件故障引起的隐藏故障。如元件失灵、磨损或者因为环境和不正确的人为干涉引起的元件损坏等。这类故障可通过人为检修发现,通过定期检修可以减少该类隐藏故障的发生,但要杜绝此类故障的发生却非常难。
4 基于继电保护测量值相关性原理的继电保护隐藏故障诊断方法
根据继电保护的工作原理,研究对保护装置的静态特性和动态特性进行隐藏故障的诊断方法。重点研究静态测量环节、动态测量环节及保护定值的分支系数合理性,利用继电保护提供的丰富的信息,辨识出异常的测量信息,最终实现对保护装置隐藏故障的诊断。
4.1基于保护测量值相关性的静态隐藏故障监测方法
4.1.1静态隐藏故障监测方法
水电厂各保护装置输入的采样值信息都具有很强的相关性,利用这种相关性可以鉴别出保护装置测量回路是否存在隐藏故障。对于变压器的电气量保护而言,通常都配备有基于电流信息的主保护,各保护装置输入的电流信息具有相关性。所以,诊断系统要求能够获得各保护装置的实时采样数据,并要求这些采样数据在时间上具有同步性,确保保护定值的准确性。
4.1.2继电保护装置测量回路的隐藏故障分析
水电厂继电保护装置测量回路由互感器、连接电缆、端线、变换器、模拟低通滤波器,采样保持电路、多路模拟开关、模/数转换电路等组成。若测量回路中任何一个环节出现故障,都将使保护装置获取不到正确的电网运行信息,有可能导致保护装置做出错误的判断,造成保护误动。
4.2基于保护测量值相关性的动态隐藏故障监测方法
4.2.1基于保护测量值相关性的保护动态测量环节的隐藏故障诊断方法
在水电厂保护系统中,电气接线中相邻元件间的保护装置在功能上是互相补充的,各保护装置根据自身获取的测量值信息做出逻辑判断,根据自身获取故障信息的差异,从而做出不同的动作结果,保证了保护动作的选择性,因此保护装置的故障测量值正确与否是保护正确动作的关键。
4.2.2保护启动时测量值的相关性原理
对于同一故障信息,线路保护装置的测量值之间具有相关性,这种相关性与继电保护装置的保护原理有关,也与不同保护装置之间的电路结构有关。保护装置进入动态特性时进行的,因此它不但能够对保护的隐藏故障进行诊断,同时还可对保护动作时的中间动态过程进行有效监视,能够为分析保护性能提供依据。
4.2.3保护起动时的计算测量环节的隐藏故障分析
计算测量环节是把采集的故障数据进行集中处理,所涉及的元件主要是测量回路和测量计算元件等,是对这些元件进行隐藏故障的监测是避免该环节出现隐藏故障的关键。
4.3不同地点继电保护测量值的相关性
水电厂机组在正常运行时,由于电力系统出现扰动,保护装置不启动,其测量环节仅计算电流、电压的幅值和相位,甚至仅做数据采集和起动判断而并不计算任何电气量。静态特性是指继电保护装置在未满足启动条件时,仅进行测量计算而不进行逻辑比较和跳闸出口环节,此环节涉及的硬件设备有互感器测量回路、连接电缆、端线、继电保护前置处理电路、采样及采样值计算等。正常运行时,存在于该环节的隐藏故障可能并不会马上表现出来,也不会造成保护误动作,但系统运行压力变大时,如一次电流增大或保护区外故障,此类隐藏故障将被激活,将导致继电保护误动或者拒动。因此,为避免此类故障的发生,应注意此类隐藏故障的监测。
结语
综上所述,分析水电厂继电保护隐藏故障的原因,结合继电保护工作特性与保护整定值的分支系数是否合理分别展开对继电保护隐藏故障的探讨。通过分析继电保护装置的静态特性,提出针对保护装置测量回路异常的诊断判据及诊断方法。在分析保护动态特性的基础上,提出保护启动时计算测量环节的动态隐藏故障诊断判据。通过研究水电厂继电保护隐藏故障的诊断方法,可以有效地提高水电厂继电保护故障的处理能力,确保水电厂机组的安全运行。
参考文献
[1]贺家李,李永丽,董新洲.电力系统继电保护原理[M].中国电力出版社.2010