前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的开关电源的设计与实现主题范文,仅供参考,欢迎阅读并收藏。
电源变压器具备的主要功能是隔离绝缘、传送功率以及变换电压。电源变压器是一种主要软磁电磁元件,被广泛运用于电力电子技术和电源技术中。开关电源变压器是开关电源的核心部件,能够转换和传输能量。此外,在开关电源变压器的开关电源中,主要的体积与重量占有者,也是发热源,可以使得开关电源向小型轻量方向发展,并且实现平面智能等目标。因此,开关电源的高频化是重中之重。
1 高频开关电源变压器的主要构成以及分类
通常从广义角度而言,凡是将半导体功率的开关器件作为开关管,经对开关管,进行高频开通,或者是进行关断控制,均会促使电能形态向其他电能形态装置转化,即开关转换器。开关电源是指将开关转换器作为主要组成部件,通过采取闭环自动控制的方式,实现输出电压保持稳定的目标,并且实现在电路中增加保护环节电源。高频开关电源是指采用高频DC/DC转换器,作为开关电源工作状态下的开关转换器。
高频开关电源的基本路线主要是由开关型功率变换器,整流滤波电路,交流直线转换电路及控制电路几部分组成。高频开关电源变压器分为他激式和自激式、隔离式和非隔离式、硬开关以及软开关几类。
2 高频开关电源变压器的优化设计
2.1 设计参数选取
高频变压器的设计参数彼此联系,所以,在具体设计时,针对各个参数应该在合理范围内进行有效折中。基于各类应用场景应当首,首先符合占支配地位的重要影因素,其次权衡剩余其他参数带来的影响。因为各参数间紧密联系,在设计时,想把一切参数均达到最佳基本上不太可能。如变压器体积和效率二者之间存在的矛盾,漏感合分布电容二者难以同时减小。所以,在高频开关电源变压器优化设计的整个过程中,本文选取了三个相对比较重要的参数,以此展开分析。
2.1.1 温升
在变压器具体工作的整个过程中,铁芯和绕组中的损耗必定会产生一定热量,从而促使变压器温度逐渐升高,与此同时,这些热量通常会采取辐射和对流的方法,在周围环境中相互传递。因此,应该有效控制温升,进而以防绕组被烧,或者是防止变压器热击穿、防止磁芯性能下降的现象出现。并且,在计算变压器的温升时,通常是会将磁芯和绕组的损耗归在,假设热量经过磁芯与绕组后,整个表面积会发生均匀消散的现象。
2.1.2 分布参数
高频变压器的主要分布参数通常是漏感、分布电容。在高频下,分布参数对开关电源性能会产生关键影响。在开关式的变换器上,漏感可以致使电压尖峰,此时电路中的部分器件会受此影响,发生不必要的破坏。同时,分布电容可能会引起电流尖峰,且可以大幅度延长充电时间,从而开关和二极管会受此影响,发生大规模损耗,进而降低变压器效率及可靠性。因此,在这样的工作模式种,需要尽量降低变压器的分布参数。此外,对于谐振式的变换器而言,能够吸收、利用变压器分布参数。所以在这种模式下,要求必须准确设计分布电容和漏感的值。
2.1.3 损耗与效率
本文将输入功率和输出功率二者的差视为变压器功率损耗值,并且,将其分成两个分量,即绕组损耗和磁芯损耗。通常,在额定电压运行的条件下,随着负载电流的不断变化,铁损不会发生变化,所以铁损也被称作是不变损耗。如果忽视励磁电流,铜损和负载电流的平方成正比,所以铜损也被称作是可变损耗。笔者对变压器分别进行了两项实验,即短路试验实验和空载实验,在额定电压下,分别测得铁损耗和额定负载下铜损耗,结果得出铁损在正常工作时依旧保持不变,而随着负载的变化,铜损会发生一系列变化。
2.2 优化目标
高频开关电源变压器优化的目标是尽量使变压器体积向更小的方向发展,因为只有重量达到更轻,频率达到更高,才能保证温升,从而使得分布参数和绝缘满足设计的前提条件。为将变压器的效率实现最大化,需要注意的是,在设计的过程中,应该遵循以下两个基本原则:
(1)保证变压器的铜损和铁损二者相等。
(2)保证在初次绕组时,变压损耗相呈相等状态。
此外,为使得变压器的体积尽量缩小,在设计时必须采用合适的磁芯和绕组结构,以此保证设计的正常进行。
2.3 优化设计方法
现阶段,纳米晶带材的可用磁心结构主要分为矩形与环形。在磁心结构确定后,根据变压器自身指定的工作条件,初级绕组匝数和绕组结构直接决定了变压器的磁芯截面积大小,绕组尺寸和磁心的窗口面积。因此,对于矩形和环形这类磁心结构,一般是需要对不同层次和匝数下,变压器的体积、重量以及损耗等进行具体的比较,进而对高频开关电源变压器采取更加优质的设计方案。
3 高频开关电源变压器的应用
通过将本文的设计进行应用分析可后可知,在变压器功率相同时,矩形磁心比环形磁心更紧凑,主要原因是:
(1)环形变压器通常是会占用部分磁心,从而使变压器保持固定状态,但是矩形变压器可以利用下侧磁心,进而实现固定变压器的目标。
(2)环形变压器的绕组内侧长度,会极大降低磁心窗口实际利用率,以使变压器的中心出现较大冗余空间,但是矩形变压器的磁心窗口利用率通常不会受到任何的影响。
参考文献
[1]甘焯欣.高频开关电源变压器优化设计分析[J].电子制作,2016(02):28.
[2]宣炯华,罗中良,陈治明,邓雪晴.开关电源高频变压器超声波测量装置设计[J].现代计算机,2014(12):48-51.
[3]张学廷.如何进一步优化高频开关电源变压器[J].科技创新与应用,2015(03):122-123.
[4]周兴明,朱锡培.开关电源高频变压器电容效应建模与分析[J].电子世界,2014(10):482.
[5]杨旭峰,韩闯,李彦斌,YANGXu-feng,HANChuang.关于开关电源变压器变换效率优化设计[J].计算机仿真,2015(10):149-153.
[6]王晓毛,梅桂华,谢应耿.基于高频开关电源的反向注入式直流平衡装置的研究及应用[J].电力系统保护与控制,2015(08):139-144.
作者简介
常乐(1984-),女,山西省晋中市寿阳县人。现为山西职业技术学院本科硕士讲师。主要研究方向为应用电子、通信工程。
关键词:开关电源 高频 小型
1 引言
随着电力电子技术的告诉发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一成本反转点。随着电力电子技术的发展和创新,使得开关电源技术在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广泛的发展空间。
开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。 2 开关电源的分类
人们的开关电源技术领域是边开发相关电力电子器件,边开发开关变频技术,两者相互促进推动着开关电源每年以超过两位数字的增长率向着轻、小、薄、低噪声、高可靠、抗干扰的方向发展。开关电源可分为AC/DC和DC/DC两大类,DC/DC变换器现已实现模块化,且设计技术及生产工艺在国内外均已成熟和标准化,并已得到用户的认可,但AC/DC的模块化,因其自身的特性使得在模块化的进程中,遇到较为复杂的技术和工艺制造问题。以下分别对两类开关电源的结构和特性作以阐述。 2.1 DC/DC变换
DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路由以下几类: (1) Buck电路——降压斩波器,其输出平均电压Uo小于输入电压Ui,极性相同。 (2) Boost电路——升压斩波器,其输出平均电压Uo大于输入电压Ui,极性相同。 (3) Buck-Boost电路——降压或升压斩波器,其输出平均电压Uo大于或小于输入电压Ui,极性相反,电感传输。 (4) Cuk电路——降压或升压斩波器,其输出平均电压Uo 大于或小于输入电压UI,极性相反,电容传输。
当今软开关技术使得DC/DC发生了质的飞跃,美国VICOR公司设计制造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W等,相应的功率密度为(6、2、10、17)W/cm3,效率为(80-90)%。日本NemicLambda公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200~300)kHz,功率密度已达到27 W/cm3,采用同步整流器(MOS-FET代替肖特基二极管),是整个电路效率提高到90%。 2.2 AC/DC变换
AC/DC变换是将交流变换为直流,其功率流向可以是双向的,功率流由电源流向负载的称为“整流”,功率流由负载返回电源的称为“有源逆变”。AC/DC变换器输入为50/60Hz的交流电,因必须经整流、滤波,因此体积相对较大的滤波电容器是必不可少的,同时因遇到安全标准(如UL、CCEE等)及EMC指令的限制(如IEC、FCC、CSA),交流输入侧必须加EMC滤波及使用符合安全标准的元件,这样就限制AC/DC电源体积的小型化,另外,由于内部的高频、高压、大电流开关动作,使得解决EMC电磁兼容问题难度加大,也就对内部高密度安装电路设计提出了很高的要求,由于同样的原因,高电压、大电流开关使得电源工作消耗增大,限制了AC/DC变换器模块化的进程,因此必须采用电源系统优化设计方法才能使其工作效率达到一定的满意程度。
AC/DC变换按电路的接线方式可分为,半波电路、全波电路。按电源相数可分为,单项、三相、多相。按电路工作象限又可分为一象限、二象限、三象限、四象限。
3 开关电源的选用
开关电源在输入抗干扰性能上,由于其自身电路结构的特点(多级串联),一般的输入干扰如浪涌电压很难通过,在输出电压稳定度这一技术指标上与线性电源相比具有较大的优势,其输出电压稳定度可达(0.5~1)%。开关电源模块作为一种电力电子集成器件,在选用中应注意以下几点: 3.1输出电流的选择
因开关电源工作效率高,一般可达到80%以上,故在其输出电流的选择上,应准确测量或计算用电设备的最大吸收电流,以使被选用的开关电源具有高的性能价格比,通常输出计算公式为: Is=KIf 式中:Is—开关电源的额定输出电流; If—用电设备的最大吸收电流; K—裕量系数,一般取1.5~1.8; 3.2接地
开关电源比线性电源会产生更多的干扰,对共模干扰敏感的用电设备,应采取接地和屏蔽措施,按ICE1000.EN61000.FCC等EMC限制,形状开关电源均采取EMC电磁兼容措施,因此开关电源一般应带有EMC电磁兼容滤波器。如利德华福技术的HA系列开关电源,将其FG端子接大地或接用户机壳,方能满足上述电磁兼容的要求。 3.3保护电路
开关电源在设计中必须具有过流、过热、短路等保护功能,故在设计时应首选保护功能齐备的开关电源模块,并且其保护电路的技术参数应与用电设备的工作特性相匹配,以避免损坏用电设备或开关电源。 4 开关电源技术的发展动向
开关电源的发展方向是高频、高可靠、低耗、低噪声、抗干扰和模块化。由于开关电源轻、小、薄的关键技术是高频化,因此国外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是改善二次整流器件的损耗,并在功率铁氧体(Mn-Zn)材料上加大科技创新,以提高在高频率和较大磁通密度(Bs)下获得高的磁性能,而电容器的小型化也是一项关键技术。SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。开关电源的高频化就必然对传统的PWM开关技术进行创新,实现ZVS、ZCS的软开关技术已成为开关电源的主流技术,并大幅提高了开关电源工作效率。对于高可靠性指标,美国的开关电源生产商通过降低运行电流,降低结温等措施以减少器件的应力,使得产品的的可靠性大大提高。
【关键词】开关电源 现状 发展趋势
前言
电源是对公用电网或某种电能进行交换和控制,并向各种用电负载提供优质电能的供电设备和动力装置。因此,电源的应用十分广泛,已深入到每个人的生产和生活领域。
直流电源应用很广泛,尤其在军事、医疗和煤矿等领域应用更为频繁。传统的直流电源往往采用线性电源技术,但是这种结构形式造成电源整体效率偏低,性能一般,体积较大,重量沉。因此,直流电源倾向于采用开关电源技术,使得直流电源变得效率高、性能更好、体积小、重量轻。据业内咨询机构统计,在2009年全球开关电源的市场规模都已达到160亿美元,并随着电力电子技术的高速发展,更促进了开关电源技术的快速发展和提高,应用领域也越来越广泛,在整个电源领域中开关电源所占据的比重愈来愈大。
1. 开关电源的现状
开关电源技术属于电力电子技术,它运用功率变换器进行电能变换。经过变换的电能,可以满足各种用电需求。当负载需要高要求的直流供电时,其供电电源采用开关电源。
开关电源具有功率转换效率高、稳压范围宽、重量轻等特点。开关电源由于采用大功率开关管的高频整流技术,不但可以方便地得到不同等级的电压,更重要的是甩掉了体积大、笨重的工频变压器及滤波电感电容。在传统开关电源中,由于功率器件工作在开关状态,器件常在高电压下开通,在大电流下关断时,也存在着一些问题,如射频干扰和电磁干扰大、开关损耗大、输出纹波大、器件的安全工作区窄、电路对分布系数比较敏感等缺点。随着电力电子技术的发展,特别是功率器件的更新换代、功率变换技术的不断改进、新型电磁材料的不断使用、控制方法的不断进步以及相关科学的不断融合,开关电源的缺点正逐步得到克服,射频干扰和电磁干扰已经被抑制在一个很低的水平上,输出纹波可以达到几毫伏以下。因此,开关电源是当今电子信息产业飞速发展不可缺少的一种电源方式。
2. 开关电源的发展趋势
开关电源的许多方面的运用已经趋于成熟,将来的发展趋势是高频,高可靠性,高性能,低耗,低噪声,模块化。文献介绍了功率的增加必然导致电源内部电磁环境的复杂,由此所产生的各种电磁干扰对电源本身和附近的其他电子设备的正常工作带来了严重的影响,即既是干扰源,又是扰者。电磁兼容性(Electromagnetic Compatibility,简写EMC)设计的目的是使开关电源在预期的电磁环境中实现电磁兼容。电磁兼容问题已成为当前研究的热点,一些发达国家已有EMC技术的规范和标准。我国虽然在EMC方面工作起步较晚,有关部门也正颁布相关指令,跟上国际步伐。
开关电源也对功率器件提出了更高的要求:耐压高、电流大、导通电阻小,恢复速度快。由于金属氧化物半导体场效应晶体管(MOSFET)具有很快的开关速度,因此开关电源的开关频率可以做得更高,重量更轻,功率密度更大,电源体积更小。提高器件耐压,同时减小导通电阻仍是今后MOSFET的主要研究方向。开关电源的性能指标,如纹波、精度、久冲、过冲等受到功率铁氧体材料技术及功率器件性能的限制,与电源发达国家还有很大的差距,
开关电源高频化是其发展方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用。另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。但是高频化存在一些新的问题有待解决,如开关损耗、无源元件损耗增大、高频寄生参数及高频电磁干扰增大等。
综上,开关电源的发展从来都是与半导体器件及磁性元件等的发展休戚相关。高频化的实现,需要相应的高速半导体器件和性能优良的高频电磁元件。发展功率MOSFET等新型高速器件,开发高频用的低损磁性材料,改进磁元件的结构及设计方法等,对于开关电源的发展有着巨大的推动作用。
3. 结束语
总的来说,在电力电子技术的不断发展与创新的背景下,开关电源技术在理论方面将取得更大的突破,其产业方面也有着广阔的发展前景,开关电源技术也更将趋于可靠、成熟、经济、适用。
【参考文献】
[1]钟和清,徐至新,邹旭东,朝泽云.软开关高压开关电源研究.武汉:华中科技大学,430074.
[2]钱平,蒋伟凌,袁正民,蒋鸿飞.开关电源的发展趋势.上海冶金高等专科学校学报,1999.
[3]石林林,苏玉刚.基于三电平变换的高压开关电源的设计.重庆:重庆大学自动化学院,2011.
[4]王兆安,黄俊.电力电子技术.北京:机械工业出版社,2000:8-42.
[5]张恩怀.开关电源的发展概况.清华大学.北京:电力电子技术,1996(02).
[6]苏玉刚,付军,夏晨阳,孙跃.一种宽压自适应开关电源的设计[J].电工技术,2009(6).
[7]夏晨阳,董军,孙跃,付军.基于AC/DC变换的宽压自适应电源研究[J].
[8]付军,苏玉刚.宽压自适应开关电源的研制[D].重庆:重庆大学自动化学院, 2009.
关键词 直流稳压电源;线性电源;开关电源
中图分类号:TM44 文献标识码:A 文章编号:1671―7597(2013)031-134-01
1 线性直流稳压电源
1)晶体管串联式直流稳压电源:晶体管串联式直流稳压电源工作在线性放大状态,因而具有反应迅速,电压稳定度和负载稳定度高,输出纹波电压小,噪声小。在电路技术方面,其控制电路所用的元件少。对调整管的开关特性,滤波器的高频性能等无特别要求,所以可靠性高。
串联式稳压电源的严重缺点是效率低。要提高效率就必须降低调整管上的压降,减少在调整管上的损耗。解决的办法:①PNP和NPN晶体管互补:串联式稳压电源输出电源电流较大时,通常调整管都要接成共集电极的达林顿组合管。因为在晶体管电参数相同情况下在保持电流放大倍数相等的情况下,互补连接的组合调整管的集射极压降减少了,因而电源的效率得到提高;②偏置法:一般共集电极组合管集射间的压降一定程度上取决偏置电流。采用偏置连接法当输出电流一定时可以有效的提高电源效率;③开关稳压器作前置予调节:在输入-输出电压差比较大,输出电流也比较大的场合,采用开关稳压器作串联式稳压器的前置予调节也是提高电源效率的有效办法。开关予调节还可以设置在电源变压器的原边。
2)集成线性稳压器发展:早期市场集成稳压器的厂家很多,产量大、应用广泛。主要有半导体单片式集成稳压器和混合式集成稳压器两大类。它们的电路形式、封装、电压及电流的规格都是多种多样的。集成稳压器可分为定电压的,可调的,跟踪的和浮动的。但是不管哪一种形式,它们通常由基准电压源,比较放大器,调整元件即功率晶体三极管和某种形式的限流电路组成。有些集成稳压器内部还有逻辑关闭电路和热截止电路。集成稳压器与由分立元件组成的稳压器比较,集成稳压器的优点非常明显,成本低,体积小,使用方便,性能好,可靠性高。
3)恒流源网络稳压电源技术:采用恒流网络稳压是目前串联稳压电源的有一特点。采用恒流网络可以有效地提高电源的稳定性。集成稳压器中普遍采用了恒流网络。分立元件组成的串联稳压器也愈来愈多地运用恒流技术。使用晶体管场效应管和恒流二极管等元件可以实现恒流。恒流二极管在分立元件的串联稳压器中使用更为方便。
2 开关直流稳压电源
开关式直流稳压电源指其功率调整元件以“开”、“关”方式工作的一种直流稳压电源。早期的磁放大器开关直流稳压电源是利用铁芯的“饱和”、“非饱和”两种状态进行“开”、“关”控制,那是一种低频磁放大器。在此过程中出现的可控硅相控整流稳压电源也属于开关直流稳压电源。随后,高频开关功率变换技术得到了快速发展,这主要是指变换器方式的高频开关直流稳压电源。上个世纪90年代电力电子技术、PWM等技术的日趋成熟,直流开关电源和交流开关电源已成为主导市场。电力电子技术是利用电力电子技术对电能进行控制和转换的学科。它包括电力电子器件 、变流电路和控制电路三个部分,是电力、电子、控制三大电气工程技术领域之间的交叉学科。随着科学技术的发展,电力电子技术由于和现代控制理论、材料科学、电机工程、微电 子技术等许多领域密切相关,已逐步发展成为一门多学科相互渗透的综合性技术学科。
1)无工频变压器化:省掉工频电源变压器而采用直接从电网整流输入方式是开关电源减少体积和重量的一个重要措施。无工频变压器化已成为当代先进开关电源的一个特点。无工频变压器的开关电源与各种有工频变压器的直流稳压电源相比,其突出优点是体积小、重量、效率高。开关电源的电路形式已多种多样了。就调制技术而言有脉宽调制型、频率调制型、混合调制型,其中脉宽调制占绝大多数。目前出现了完全无变压器的开关电源,即连高频变换器都不需要。这种电源的最大特点是体积还可比现在的无工频变压器开关电源小的多,而且没有绕制的变压器这一类器件,可以集成电路工艺制作。
2)开关电源高频化:现代开关电源的一个显著特点是开关频率不断提高,不管是晶体管开关电源、可控硅开关电源还是场效应管开关电源都是向高频化方向发展。随着功率IGBT和MOSFET的出现,开关电源的工作频率已从早期典型的20KHz逐步提高到兆赫范围甚至G赫范围。
3)控制电路集成化:早期开关电源的控制电路是用分立元件构成的。这样,电路设计复杂,调试维修麻烦,影响开关电源的推广应用。为了适应开关电源的迅速发展,集成化的开关电源控制电路被研制成功,而且功能愈加完善。开关电源控制电路集成化,大大简化了开关电源的设计,提高了开关电源的电性能和可靠性,而且体积小,降低成本。
4)主要元器件高频化:为了适应开关电源迅速发展的需要,开关电源所用的主要元器件的发展也很快,其主要目标是高频化。开关电源中的开关元件-功率晶体管、可控硅和场效应管都在提高看工作频率方面取得了成绩。但是最引人注目的是功率管IGBT复合管,MOSFET场效应管的出现,它不仅开关频率提高到1MHz-1GHz,而且开关特性好,所需驱动功率小,不存在二次就穿,能防止热奔等特殊优点。另外大电流肖特基势垒的出现大大改善了低电压电流开关电源的整流效率,它具有开关速度快、反向恢复时间短,正向压降地等优点。在滤波过程中,电容器等器件也要在材料、结构工艺诸方面进行研制,以适应开关电源高频化的要求。
5)全数字化控制:开关电源的控制已经由模拟控制,模数混合控制,进入到全数字控制阶段。全数字控制是一个新的发展趋势,已经在许多功率变换设备中得到应用。但是过去数字控制在DC/DC变换器中用得较少。近两年来,开关电源的高性能全数字控制芯片已经开发,费用也已降到比较合理的水平,欧美已有多家公司开发并制造出开关变换器的数字控制芯片及软件。全数字控制的优点是:数字信号与混合模数信号相比可以标定更小的量,芯片价格也更低廉;对电流检测误差可以进行精确的数字校正,电压检测也更精确;可以实现快速,灵活的控制设计。
参考文献
关键词:开关电源 重启 反激式电源
中图分类号:TM46 文献标识码:A 文章编号:1007-9416(2016)11-0073-01
开关电源具有高效率、低功耗、体积小、重量轻等显著优点,其电源效率可达到80%以上,远远高于传统的线性稳压电源从而使得开关电源应用领域十分广泛。根据负载功率的不同,往往采用自激振荡式,即反激式和正激式不同的方法。随着开关电源的使用的不断发展,反激式开关电源也在更多的领域使用,但该开关经常存在着不断重启的缺点,导致设备工作不够稳定,所以,探索和研究有效的技术策略,就有着非常重要的意义。
1 反激式电源的基本原理
本文以其中一种反激式开关电源为例进行说明。该电源通过220V电压供电,通过整流桥整流和电容滤波将交流电变成直流电,通过两个1M欧的电阻限流给LD7535启动电流,LD7535启动,控制MOSFET,不断开关,形成高频开关电压来使变压器工作,变压器通过芯片供电绕组给芯片供电,通过副绕组转换成为想要得到的高频电压,再通过高频二极管整流,形成需要得到的电压,同时通过TL431中的内部设定基准电压(2.5V)和电阻的串联分压来设定输出电压,并通过光电耦合器来进行反馈调节。
其中NTC为防止启动时电流过大,电阻R5和电阻R8负责启动时对LD7535供电,启动后改为变压器通过R9和D5给予供电,C8和C8A负责储能。R6的10欧姆电阻防止MOS管的电压斜率过于陡峭,R1大功率小电阻负责电流检测,从而改变保护电流;R19和C9串联防止TL431自激,R20和R21为了确定输出电压。
2 LD7535特点及其在反激式电源中的应用
但是,在反激电源制作过程中会遇到开关电源空载时不断重启的过程,并且伴随着这种现象,往往能够听到变压器的响声。其空载不断重启,需要通过LD7535控制器加以技术改进。
LD7535是一种低成本,低启动电流,电流模式,PWM控制的省电模式控制器,具有包括电流检测的前沿消隐、内部斜率补偿,采用SOT-26封装。常用于高效率,较少元器件的AC/DC电源设备。其特点是高压CMOS工艺,具有优良的ESD保护,仅需要极低的启动电流(
各个引脚定义为:第1引脚GND,接地端,第2引脚COMP,电压反馈引脚,通过连接光电耦合器,以使控制环路闭合,实现调节,第3引脚RT,设置开关频率,通过连接一个电阻对地设置开关频率,第4引脚CS,位电流检测引脚,连接到感应电流MOSFET,第5引脚VCC,为电源电压引脚,第6引脚OUT,栅极驱动输出,以驱动外部MOSFET。
3 重启的解决方法
在反激电源制作过程中开关电源空载时不断重启的原因是由于IC供电不足或者光耦供电不足引起。对于此种不断重启的现象,有以下几点方法进行克服。
3.1 设立假负载
设立假负载是最有效的解决开关电源不断重启的方法,只需要在输出端增加一个大电阻,使得开关电源一直处于工作状态,这种方法简单易行,对产品的价格也没有太大影响,但是这种方法会对开关电源真正的使用转换效率有一定的影响,造成转换效率有所降低,对于转换效率要求不是很高的或者需要大电流输出的开关电源来说最为合适。
3.2 采用较好的二极管对芯片供电
出现不断重启的原因往往是供电芯片的供电电压介于满足启动和不满足启动的临界状态,当采用较好的供电二极管(D7)时,如FR107二极管,可以提高了二极管的开关速度,并且也降低供电二极管的管压降,从而能够满足控制芯片的供电电压,从而解决二极管不断重启的现象。
3.3 采用增加芯片供电绕组的匝数
采用增加对芯片供电绕组的匝数对产品价格没有太大影响,也不会增加产品工序,但是由于绕组匝数的增加会增加变压器的电感量,造成变压器性能有一定的改变,致使很多参数需要重新计算或修订,更严重的会造成变压器不适合本产品而需要重新设计变压器。
4 结语
本文通过一个具体的电路设计为例,简要的说明针对开关电源不断重启现象的一些改进的方法。本文并通过实际使用,证明了其有效性。
参考文献
[1]张占松,蔡宣三.开关电源的原理与设计[M].北京:电子工业出版社,1998.
[关键词]开关电源 电磁干扰 抑制措施 改进措施
开关电源EMI(Electro magnetic Interference),就是通过用电子线路组成开关式(方波)震荡电路来达到对电能的转换。这种方式有好多优点,一是稳压范围宽,在一定范围内输出电压与输入电压变化无关,电脑电源可以在80V~240V都可以正常工作,是其它方式电源无法比拟的。二是效率高,由于采用开关震荡工作方式,热损耗特别少,发热低。三是结构简单,相对于其它相同功率的电源,开关电源的体积与重量要少得多。因此,在众多的电子设备中,开关式电源已经是相当普遍。随着开关电源应用领域的不断扩大,其电磁干扰已成为一个很严重的问题,开关电源的功率管工作在非线性条件下,采用脉宽调制(PWM)开关控制方式,加之开关频率的不断提高,使得电磁干扰越来越突出,对电网造成污染。因干扰的存在,输入电源的电网受到了干扰,影响到其它设备,使其不能正常的工作,也影响到电网的供电质量。所以,寻找干扰抑制的方法是很必要的。这里分析与比较了几种有效的方案,并为开关电源EMI的抑制措施提出新的参考建议。
一、开关电源电磁干扰的产生机理
开关电源首先将工频交流电整流为直流电,然后经过开关管的控制变为高频,最后经过整流滤波电路输出,得到稳定的直流电压。因此,自身含有大量的谐波干扰。同时,由于变压器的漏感和输出二极管的反向恢复电流造成的尖峰,都会产生不同程度的电磁干扰。开关电源中的干扰主要集中在电压、电流变化大(即dv/dt或di/dt很大)的元器件上,尤其是开关管、输出二极管和高频变压器等。同时,杂散电容会将电网的噪声传导到电子系统的电源而对电子线路的工作产生干扰。开关电源产生的干扰,按噪声干扰源种类来分,可分为尖峰干扰和谐波干扰两种;若按耦合通路来分,可分为传导干扰和辐射干扰两种。现在按噪声干扰源来分别说明:
1.二极管的反向恢复时间引起的干扰;
2.开关管工作时产生的谐波干扰;
3.交流输入回路产生的干扰;
4.其他原因。
元器件的寄生参数,开关电源的原理图设计不够完美,印刷线路板(PCB)走线通常采用手工布置,具有很大的随意性,PCB的近场干扰大,并且印刷板上器件的安装、放置,以及方位的不合理都会造成EMI干扰。
二、开关电源EMI的特点
作为工作于开关状态的能量转换装置,开关电源的电压、电流变化率很高,产生的干扰强度较大;干扰源主要集中在功率开关期间以及与之相连的散热器和高平变压器,相对于数字电路干扰源的位置较为清楚;开关频率不高(从几十千赫和数兆赫兹),主要的干扰形式是传导干扰和近场干扰;而印刷线路板(PCB)走线通常采用手工布线,具有更大的随意性,这增加了PCB分布参数的提取和近场干扰估计的难度。
三、目前抑制干扰的几种措施
形成电磁干扰的三要素是干扰源、传播途径和受扰设备。因此,抑制电磁干扰也应该从这三方面着手。首先应该抑制干扰源,直接消除干扰原因;其次是消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径;第三是提高受扰设备的抗扰能力,减低其对噪声的敏感度。目前抑制干扰的几种措施基本上都是用切断电磁干扰源和受扰设备之间的耦合通道,它们的确是行之有效的办法。常用的方法是屏蔽、接地和滤波。
1.采用屏蔽技术可以有效地抑制开关电源的电磁辐射干扰。系统中的安全保护地线、屏蔽接地线和公共参考地线各自形成接地母线后,最终都与大地相连。
在电路系统设计中应遵循“一点接地”的原则。如果形成多点接地,会出现闭合的接地环路,当磁力线穿过该回路时将产生磁感应噪声,实际上很难实现“一点接地”。因此,为降低接地阻抗,消除分布电容的影响而采取平面式或多点接地,利用一个导电平面(底板或多层印制板电路的导电平面层等)作为参考地,需要接地的各部分就近接到该参考地上。为进一步减小接地回路的压降,可用旁路电容减少返回电流的幅值。在低频和高频共存的电路系统中,应分别将低频电路、高频电路、功率电路的地线单独连接后,再连接到公共参考点上。
2.滤波是抑制传导干扰的一种很好的办法。例如,在电源输入端接上滤波器,可以抑制开关电源产生并向电网反馈的干扰,也可以抑制来自电网的噪声对电源本身的侵害。在滤波电路中,还采用很多专用的滤波元件,如穿心电容器、三端电容器、铁氧体磁环,它们能够改善电路的滤波特性。恰当地设计或选择滤波器,并正确地安装和使用滤波器,是抗干扰技术的重要组成部分。
EMI滤波技术是一种抑制尖脉冲干扰的有效措施,可以滤除多种原因产生的传导干扰。测试表明,只要适当选择元器件的参数,便可较好地抑制开关电源产生的传导干扰。
四、目前开关电源EMI抑制措施的不足之处
现有的抑制措施大多从消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径出发。这的确是抑制干扰的一种行之有效的办法,但很少有人涉及直接控制干扰源,消除干扰,或提高受扰设备的抗扰能力。殊不知后者还有许多发展的空间。
五、改进措施的建议
我认为目前从电磁干扰的传播途径出发来抑制干扰,已渐进成熟。我的视点要回到开关电源器件本身来,在电路方面要注意以下几点:
1.印制板布局时,要将模拟电路区和数字电路区合理地分开,电源和地线单独引出,电源供给处汇集到一点;PCB布线时,高频数字信号线要用短线,主要信号线最好集中在PCB板中心,同时电源线尽可能远离高频数字信号线或用地线隔开。其次,根据印制线路经电流的大小,应尽量加粗电源线宽度,减少环路电阻。再次,可以根据耦合系数来布线,尽量减少干扰耦合。
2.印制板的电源线和地线印制条尽可能宽,以减小线阻抗,从而减小公共阻抗引起的干扰噪声。
3.器件多选用贴片元件和尽可能缩短元件的引脚长度,以减小元件分布电感的影响。
4.在Vdd及Vcc电源端尽可能靠近器件接入滤波电容,以缩短开关电流的流通途径,如用10μF铝电解和0.1μF电容并联接在电源脚上。对于高速数字IC的电源端可以用钽电解电容代替铝电解电容,因为钽电解的对地阻抗比铝电解小得多。
六、结论
产生开关电源电磁干扰的因素还很多,抑制电磁干扰还有大量的工作。全面抑制开关电源的各种噪声会使开关电源得到更广泛的应用。
参考文献:
关键词:电力电子;开关电源;应用
1绪论
着半导体和信息技术的推进,电力电子技术的发展带动开关电源由低频向高频,整体化到模块化,由高能耗向低能耗进行技术转变。高频开关电源作用为将交流输入的电流转化为合适的直流输出。经过大功率开关元件,如金属—绝缘体—半导体管等组成的逆变电路,将直流高压转换成方波,之后将方波电压由高压降低为低压,最后输出稳定的直流电压,在现代开关电源的应用中得到极大推崇。高频开关电源主要特点如下:
1.1质量低、体积小。
高频技术可以不使用工频变压器,使质量和体积减少90%。
1.2功率系数大。
随着可控硅导通角的变化使相变整流器的功率系数变化,负载较小时,系数较小,可以达到0.3;完全导通时可以使系数达到0.69以上。
1.3噪声弱。
开关电源噪声只有45db左右,较工频变压器以及滤波电感在相控整流设备中的噪声降低30%。
1.4效率高。
减少开关瞬间消耗,而且由于整机的功率因数补偿,可以使效率达到90%以上。
1.5结构模块化。
模块式结构可以便于整个开关的设计和研发,降低成本。
2现代电力电子的应用领域
高频开关电源能通过大功率晶体管如IGBT等进行运行,使频率限制在区间60~110kHz。并且整流器功率容量也增大到48V/400A以上。大规模集成电路的突飞猛进更是促进电源模块体积的减小,从而进一步增加电源的功率密度,以实现开关电源的高效化和微小化。整体科技的进步需要计算机和通信设施具有更高的性能和稳定性,UPS不间断电源便顺时而出。输入它的交流电经过整流器转换为直流输出,一部分流入电池给其充电,另一部分经过逆变器、转换开关等元器件到工作设备。不间断电源使用脉宽调制技术和大功率IGBT,降低噪声强度,提高电源利用效率和系统稳定性。变频器主要在电气传动系统中用于交流电机的变频调速,具有节能环保作用。它的电源经过大功率晶体管和高频变换器将电压转换为交流输出,其电压和频率可变,功率可以超过110kW[1]。通过模块科学堆积、程序智能控制、神经网络控制等现代高新技术实现强电和弱电有效结合,降低大功率设备的研发成本和研发难度,并且可以极大的提升生产效率,实现环保节能、经济高效、系统稳定的卓越性能。
3电力电子技术在开关电源中的应用
3.1软开关技术
IGBT功率器件控制的PWM电源可以克服传统大功率电源逆变主电路结构的高耗能问题,是能耗降低30%~40%。软开关技术采用谐振原理,克服传统电路使用缓冲电路消除电压尖峰和浪涌电流问题,从而使系统趋于简单,降低故障发生的可能性。传统电路在开关启动和关闭的瞬间会产生极大的电流和电压,瞬间产生的电压无法有效利用,从而增加能耗。谐振电路可以吸收高频变压器中电感以及电容等,降低晶体管等元件的压力,从而提高电源的利用率和稳定性。
3.2同步整流技术
同步整流技术时在软开关的基础上进一步提升效率的技术,它通过作整流开关二极管的金属绝缘体~半导体管反接,适用于低压、大电流的电源上。同步电流通过零电压开关和零电流开关,它们驱动同步整流的脉冲信号与初始的脉冲信号联动,将其上升沿超过原来的上升沿,降低延迟以实现金属~氧化物半导体场效应晶体管和零电压开关方式。
3.3控制技术
主电路的设计必须满足开关变换器的结构不同、离散非线性的特点,因此开关电源要使用多路控制。开关电源的动态性可以通过电子运动和时间周期的增减来控制实现,开关电源的智能性可以通过基因算法~BP算法、模糊控制、微机控制、人工神经网络等技术实现。MEMS技术发展使微机运算的速度巨大提升,微机或者DSP应用到大功率开关的数字模块的实现更加促进电源数字化和高效化的实现。
3.4功率半导体
MOSFET和IGBT半导体器件的研发,使开关电源的高效利用能源的能力又得到极大的飞跃,两种晶体管的内部电阻都很小,驱动功率需求低,最重要的是能耗极其小。结合同步整流技术和控制技术,将高频化开关电源的实现向前推进了极大的一步。
4结语
电力电子技术在开关电源中的应用会随着技术的不断进步转向更加广泛的应用,高频化、模块化、智能化、节能化等必然成为其未来的应用方向。高频开关技术的应用更是标志着电子电力技术在开关电源上应用的成熟,相信不远的未来,电力电子在开关电源中的应用会进一步的突破。
参考文献:
[1]杨威,卢俊.电力电子技术在高频开关电源中的应用[J].城市建设理论研究,2012(36).
[2]王予倩.电力电子技术的发展及其在开关电源中的应用[J].四川电力电子,2005,28(5):45~47.
关键词aber;反激式开关电源;仿真
中图分类号TM359.4 文献标识码A文章编号1673-9671-(2010)042-0020-01
开关电源被誉为高效节能电源,它代表着稳压电源的发展方向。目前,随着各种新科技不断涌现,新工艺被普遍采用,新产品层出不穷,开关电源正向小体积、高功率密度、高效率的方向发展,开关电源的保护电路日趋完善,开关电源的电磁兼容性设计及取得突破性进展,专用计算机软件的问世为开关电源的优化设计提供了便利条件。
Saber是美国Analogy公司开发,现由Synopsys公司经营的系统仿真软件,被誉为全球最先进的系统仿真软件,也是唯一的多技术,多领域的系统仿真产品,现已成为混合信号、混合设计技术和验证工具的业界标准,可用于电子、机电一体化、机械、光电、光学、控制等不同类型系统构成的混合系统仿真,与其他由电路仿真软件相比,其具有更丰富的元件库和更精致的仿真描述能力,仿真真实性更好。
1反激式开关电源基本原理
反激式开关电源其拓扑结构如图1。
其电磁能量储存与转换关系如下
如图2(a)当开关管导通,原边绕组的电流Ip将线形增加,磁芯内的磁感应强度将增大到工作峰值,这时可以把变压器看成一个电感,逐步储能的过程。
如图2(b)当开关管关断,初级电流降到零。副边整流二极管导通,感生电流将出现在复边。从而完成能量的传递。按功率恒定原则,副边绕组安匝值与原边安匝值相等。
2基于UC3842的反激式开关电源电路设计
由Buck-Boost推演并加隔离变压器后而得反激变换器原理线路。多数设计中采用了稳定性很好的双环路反馈(输出直流电压隔离取样反馈外回路和初级线圈充磁峰值电流取样反馈内回路)控制系统,就可以通过开关电源的PWM(脉冲宽度调制器)迅速调整脉冲占空比,从而在每一个周期内对前一个周期的输出电压和初级线圈充磁峰值电流进行有效调节,达到稳定输出电压的目的。这种反馈控制电路的最大特点是:在输入电压和负载电流变化较大时,具有更快的动态响应速度,自动限制负载电流,补偿电路简单。以UC3842为控制芯片设计一款50W反激式开关电源,其原理图如图3所示。
2.1高频变压器设计
1)原边匝数
因为作用电压是一个方波,一个导通周期的伏秒值与原边匝数关系如式(1)
Np=(1)
式中 Np――原边匝数;
Vp――原边所加直流电压(V);
ton ――导通时间(us);
Bac――交变工作磁密(mT);
Ae――磁心有效面积(mm2)。
2)副边绕组
由原边绕组每匝伏数=母线电压/原边匝数可得
副边绕组匝数=(输出电压+整流二极管压降+绕组压降)/原边绕组每匝伏数
3)气隙
实用方法:插入一个常用气隙,例如0.5mm,使电源工作起来在原边串入电流探头。注意电流波形的斜率,并调整气隙达到所要求的斜率。
也可用式(2)计算气隙。
lg=(2)
式中lg ――气隙长度(mm);
u0 ――4n×107;
Np――原边匝数;
Lp――原边电感;
Ae ――磁心面积(mm2)。
2.2反馈环节
图3中反馈环节由光耦PC817和TL431组成,适用于电流控制模式。输出电压精度1%。电压反馈信号经分压网络引入TL431的Ref段,装换为电流反馈信号,经过光耦隔离后输入UC3842的控制段。
TL431是由美国德州仪器生产的2.5V-36V可调式精密并联稳压器。内有参考电压2.5V,它与参考端一起控制内部的比较放大器。在输出阴极和参考端可加反馈网络,影响整个开关电源的动态品质特性。
2.3控制芯片电路
UC3842由4脚外接RC生成稳定的振荡波形,振荡频率=1.8/R12×C15。6脚输出驱动脉冲,驱动MOSFET在导通和截至之间工作。8脚提供一个稳定的5V基准源。
3Saber电路仿真
利用 Saber 软件进行仿真分析主要有两种途径,一种是基于原理图进行仿真分析,另一种是基于网表进行仿真分析。基于原理图进行仿真分析的基本过程如下:
1)在Saber Sketch中完成原理图录入工作;
2)然后使用net list命令为原理图产生相应的网表;
3)在使用simulate命令将原理图所对应的网表文件加载到仿真器中,同时在Sketch中启动Saber Guide界面;
4)在Saber Guide界面下设置所需要的仿真分析环境,并启动仿真;
5)仿真结束以后利用Cosmos Scope工具对仿真结果进行分析处理。
在这种方法中,需要使用Saber Sketch和Cosmos Scope两个工具,但从原理图开始,比较直观。所以,多数Saber的使用者都采用这种方法进行仿真分析。但它有一个不好的地方就是仿真分析设置和结果观察在两个工具中进行,在需要反复修改测试的情况下,需要在两个窗口间来回切换,比较麻烦。
4系统仿真及实测
在Saber Sketch中完成原理图。并进行DC/AC分析。
如图4(a)为开关电源在220V交流输入时的MOSFET驱动电压波形仿真结果(b)为实测样机MOSFET驱动电压波形。作为专业级开关电源仿真软件,Saber在控制环路设计上,能够真实且直观的检验设计的稳定性。
如图5(a)为开关电源电流采样电阻上的电压波形的仿真结果(b)为实测波形。涉及开关电源部分器件选型的重要参数也同样可以通过仿真波形得到,例如开关器件MOSFET额定工作时通态最大电流等参数,同样可以从仿真波形中得出。
5结束语
在电路设计初期,借用Saber的电路级仿真可以很直观的对开关电源电路设计进行的评估,并在控制环路的设计上会有很大的帮助。在完成样机的初步测试后,同样可以借助仿真对电路功能进行校验。该电路广泛应用于小功率场合,具有体积小,成本低,结构简单等优点。
(a)仿真(b)实测
图4MOSFET驱动电压波形
(a)仿真 (b)实测
图5电流采样电阻电压波形
测试结果(图5b)为220V,50Hz交流输入时,实验样机测试波形。
参考文献
[1]沙占友.单片开关电源最新应用技术,2006.
[2]王建秋,刘文生.Saber仿真在移向全桥软开关电源研发中的应用,2009.
[3]张占松,蔡宣三.开关电源的原理与设计,2000.
[4]Saber.仿真中文教程.
[5]张煜.基于Saber的Boost APFC仿真分析及DSP实现.2009.
自从英国广播公司(BBC)于1936年在伦敦开通世界上首个公共电视广播以来,电视机技术已取得了长足的发展:从BBC于1953年首先开通彩色电视广播,到日本NHK于1981年进行首例高清电视(HDTV)系统演示等,不一而足。当前,世界各国纷纷采取行动,以将TV信号从模拟传输升级至具备更高质量的数字制式。以美国为例,到2009年2月美国将停止模拟电视信号传输。
但是,“在客厅中坐在一个老式大盒子面前(看电视节目)的方式已经变得落伍。对于电视行业来说,新技术的发展,正催生着无穷的机遇”。这是美国《新闻周刊》2005年6月份所描述的一个景象。推动这些机遇的其中一项技术,就是平板显示(FPD)。该技术具有以下两个显著特点:
・支持高达1080p的高清电视(HDTV)
・屏幕尺寸更大,但总体外形更小
不同尺寸平板电视的电源转换链
平板电视与传统电视很大的一项不同,便是传统电视所采用的阴极射线管(cRT)被LCD或等离子屏幕取而代之,与之相应的是电视机厚度和机体尺寸的大幅降低。但是,我们应当注意的是:
・平板电视消耗的电量相对较高,并且不同尺寸和功能组合的平板电视耗电量也会不同。与CRT电视相比,平板电视平均每立方厘米尺寸所消耗的功率要高出许多。
・传统上消费者会将电视摆放在客厅,电视机机身的噪声传播开来,可能会酿成一个问题。如果在电视机设计中增添冷却风扇,可能不会受到消费者欢迎。
・在消费电子领域,竞争非常激烈,成本问题非常重要,而目前平板电视的售价相对较高。
在这种情况下,平板电视制造商根据面板尺寸的不同,应用了不同的电源转换链,从而优化每一款电视机的设计。
小尺寸:最大为21英寸
这种尺寸的平板电视功耗通常低于70W。这个数值低于大多数谐波含量标准对功耗的要求,因此无须使用功率因数校正(PFC)技术。在这种情况下,通常使用一个开关电源(SMPS)。在正常模式下,开关电源必须输出额定功率,而在待机模式下,开关电源必须拥有较高的能效。
市场上也有不同的处理方式:如采用外部电源,适配器遵从各种不同标准和行为准则。当然,作为替代之选,电源也可被嵌在电视机内部作为开放式电源。这种电源必须满足待机能耗要求,并且在有源模式运作下的能效较高,从而减少面板内的发热量。
在使用内部电源单元和外部电源单元这两种方式中,通常都采用到了反激式拓扑结构。转换器既能工作在固定频率,也能工作在可变频率(特别是就准谐振模式而言)。
在额定负载和轻载条件下,要同时实现较高能效,关键就在于要采用能够根据负载状况调整工作模式的智能开关电源控制器。
针对这种情况,多家半导体公司开发出了一些备选方案,以安森美公司为例:
・跳过多余周期方案:固定频率的如NCP1200/1216/1271,可变频率的如NCPl207/1337。该方案如图l所示。
・频率反走方案:NCPl351
中等尺寸平板电视:介于26英寸至32英寸之间
对于这种尺寸面板的平板电视而言,功耗大幅增加,最大可达180W。由于输入功率高于75W,因此,这种应用应该遵从欧盟IEC 1000-3-2D类标准或类似区域性谐波含量标准。在这里,功率因数校正(PFC)技术也开始应用;而且,由于主电源必须进行优化,以实现更高的能效和更小的体积。因此,有源PFC能够发挥突出作用,对主电源单元输入电压的变化进行限制。在这种功率级别,临界导电模式(CRM)PFC是应用得最为广泛的拓扑。在这方面,安森美半导体公司推出的NCP1606提供了一种具有高性价比并且可靠的解决方案。
在这种尺寸范围面板的平板电视中,常用的有两种电源转换链。
第一种方法包含两个电源。其中一个开关电源采用的是反激式拓扑,专门用于背光,可为面板提供24V@5A的输出功率;另一个开关电源采用的也是反激式拓扑,负责为控制音视频输入输出信号处理(CAVIO)板供电,可以提供40W@12V的功率(某些条件下电压为5V)。后者还用于待机模式,在这种模式下,多种严格的轻载能效标准可以适用。
第二种电源转换链只包含一个主开关电源,可以为面板提供24V的电压,还可以为CAVIO板提供12V电压,这里要求的功率将在170W等级内。此外,它还包含另一个专用于待机模式的器件,该器件可在正常模式下提供10W功率,而在待机条件下的电流消耗仅为500mA。
为了适应更高的输出功率,主开关电源的拓扑不应该还是单开关反激,而应该采用关反激,尽管这个区域也采用了一个半桥谐振LLC。这种拓扑与屏幕尺寸更大的面板共用一个通用拓扑。
这种方法有一个显著的好处,就是优化了待机能耗,因为在这个模式下,主开关电源器件与PFC的功能会被关闭。
这两种方法中,采用关电源的方法拥有许多优势:
・功率被予以更好地均衡,从而允许使用单开关反激转换器。
・消除了对背光进行数字调光过程中滋生的交互稳压隐忧,避免了这个过程中负载变化过大的问题。
・面向不需要执行IEC谐波兼容规范的美国/北美地区的产品型号中,更易于移除PFC级。
・解耦源自CAVIO电源的面板功率。如果未来需要采用不同的背光技术,如EEFL、FEL和LED等,CAVIO电源可以简化演进过程。
较大尺寸平板电视:37英寸
这种尺寸的LCD TV功耗最高达220W。在这种情况下,必须使用PFC技术,并强烈推荐使用有源PFC。在这个功率等级,可以考虑三种备选拓扑,分别是临界导电模式(CRM)、固定频率非连续导电模式(FF DCM)和连续导电模式(cCM)。
NCPl605中采用了固定频率非连续导电模式。这种模式结合了临界导电模式的一些优点,如从输入正弦电压的顶端开始减小峰值电流,还结合了固定频率解决方案的长处,也就是当输入电压通过零电压时可对开关频率进行钳位,从而可对EMI信号进行更好的控制。
在CCM模式下工作的紧凑型8引脚PFC控制器近期已经推出,如安森美半导体推出的NCPl653和NCPl654器件。
与尺寸介于26~32英寸之间的面板相似,在37英寸面板市场,有两种架构:
・关电源架构:其中一个开关电源专用于背光,另一个电源器件专用于CAVIO板,并支持待机模式。
・单一主开关电源架构:主开关电源提供24V和12V电压,另加一个专用
的待机开关电源。在待机模式下,主开关电源被切断。
虽然关电源架构拥有明显优势,但在高达200W的功率范围下,设计人员必须考虑到轻载性能变得越来越重要,因为CAVIO的功率容量增加了。不仅如此,采用反激等传统拓扑能够实现的功率密度在这里则成为一个问题。其他能够提高能效、减小尺寸和改善交互调节状况的拓扑必须予以考虑。例如,大多数设计人员已经选择半桥谐振LLC解决方案来实现这些性能改善目标。
大尺寸平板电视:40英寸及更大尺寸
40/42英寸LCD TV的功耗可能高达300W,46英寸的更是高达330W。在这个功率等级,连续导电模式(CCM)拓扑对PFC而言最为适用。此外,最少需要两个开关电源来满足背光和信号处理的功率需求,以及遵从待机能耗要求。在这个功率等级,传统的反激拓扑不再适用,设计人员必须考虑新的拓扑,如单/关前向拓扑或半桥拓扑。这两种拓扑都需要在连续导电模式下工作,而该模式会导致出现硬开关和EMI信号挑战,以及滋生在紧凑型消费导向应用中不受欢迎的电磁问题。对于功率等级较低的LCD TV而言,它们通常采用的是准谐振模式,这种模式凭借减小开关损耗而能够提高能效。而在功率等级更高的大屏幕平板电视中,采用谐振拓扑的优势十分突出,这种模式会引导设计人员采用半桥谐振LLC,而后者是谐振转换器系列中的一员。半桥谐振LLC的优势体现在:
・基于完整负载范围的零电压开关(zVSX在零漏极电压条件下进行开关切换。通电损耗因此接近于零,与半桥相比EMI信号质量更佳,而半桥拓扑是工作在硬开关条件下。
・低关断电流:开关在低电流条件下关断,因此关断损耗也比半桥拓扑更低。
・副二极管可进行零电流关断:当转换器工作在满载条件下时,输出整流器会在零电流时关断,从而减少EMI信号问题。
・无需增加元件数量:元件数量基本上与传统半桥拓扑相当。
・良好的交互调节功能:尽管事实上采用单个开关电源器件来同时为面板提供24V电压和为CAVIO板提供12V电压,但背光的数字调光并不会与两路输出电压的调制产生干扰。
在这个功率等级,最常见的电源转换链包含一个主开关电源及一个待机专用开关电源,其中主开关电源采用半桥谐振拓扑,能够同时输出24V和12V电压。
图所示为该谐振转换器的结构。一个50%负载周期半桥提供了在零到输入电压VIN再到谐振电路之间摇摆的高压方波。通过采用压控振荡器(VCO)来调节频率,反馈回路能够根据功率需求来调节输出等级。
该谐振电路由电容Cs,以及两个电感Ls和Lm串联组成。其中的Lm电感代表的是变压器磁化电感,它与Ls和Cs一起,会构成一个谐振点。这个电感上的负载产生的反射要么会令谐振点从电路上消失(在大负载电流条件下,Lm会被电阻值较小的、发生了反射的负载电阻RL所完全短路),要么会使其在轻载条件下继续与串联电感Ls串联。其结果是,根据负载条件的不同,谐振频率会在最小与最大之间变动。
工作频率取决于功率需求。在低功率条件下,工作频率相当之高,且离谐振点相当远。但在高功率条件下,控制回路会降低开关频率,并会采用其中某个谐振频率来为负载提供必需的电流。
结论
平板电视电源转换链的设计需要考虑诸多的挑战和相互冲突的设计折中,才能设计出无需有源冷却的高性价比、高能效、小巧纤薄的解决方案。此外,为了满足不同消费者的需求,平板电视制造商需要提供众多不同的功能组合,同时要求无须对每款电源进行重新设计。系统设计和IC制造商已经合作起来探寻最佳的设计折中组合。如今,我们需要集中力量开发下一代的LCD TV,令面板背光子系统能够直接从功率因数转换段供电。
Onstar最新监测系统出招,被盗的车辆会自动减速
当偷车贼驾驶着盗窃的车辆被警察追逐时,被盗车辆会自动减速,这要得益于 OnStar的一种新的被盗车辆服务。OnStar的这种服务容许安全顾问通过发出遥控信号让被盗车辆引擎的燃油流动减少,从而使被盗车辆减速。该公司表示,其安全顾问可能不久将与法律强制权力机构一道工作,并向被盗车辆发出信号,以便这些被盗车辆将逐渐减速。
车辆必须具备电子系统、无线服务和QP9卫星信号,以便于OnStar工作,并且户主必须订购该服务。该服务将在一些通用汽车公司的2009年车型上亮相。大约160万辆汽车,其中,大约2/3是雪佛兰牌汽车,将配备这种服务。驾驶员必须报告车辆被盗窃,然后,呼叫OnStar请求被盗车辆定位辅助系统,该系统依赖于GPS实现精确的跟踪。一旦警察锁定了该车,他们就能够要求OnStar顾问遥控减速。OnStar公司表示,它拥有安全装置以确保顾问能够瞄准正确的车辆。一个遥控信号与动力总成系统交互作用来减少燃油的流动。