公务员期刊网 精选范文 逻辑推理能力培养范文

逻辑推理能力培养精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的逻辑推理能力培养主题范文,仅供参考,欢迎阅读并收藏。

逻辑推理能力培养

第1篇:逻辑推理能力培养范文

关键词:空间与图形;教学;逻辑;培养

初中阶段空间与图形的教学,主要是对平面图形进行较为系统的学习。其数学活动不单是知识的传授,更重要的是引导学生独立思考,培养学生的思维能力,让学生在获取知识和运用过程中发展逻辑推理素质。

一、讲清概念,使学生掌握逻辑推理的基础

概念是构成判断、推理的要素。概念不清,必然招致思维的絮乱和推理上的瞎猜。所以建立清晰的几何概念对于培养学生逻辑推理素质是至关重要的。对于容易混淆的概念,要引导学生用对比的方法弄清他们的区别和联系,达到概念清晰,理解透彻。

例如:在教学“距离”这一概念时,教师要让学生认识几何上的“距离”是与代数上讲的“路程”概念不同。“路程”是指物体移动时经过线路的长度。几何上的“距离”有几种情况:①点与点间距离是指两点间的线段长;②点与线的距离是指点与直线的垂线段的长。教学时,我举了两个例子让学生思考并回答(如图1):①圆心到直线L的距离等于圆半径时,这直线与圆的位置关系是怎么样?②A为直线上一点,圆心O与直线L上的一点A的距离等于圆的半径,这条直线与圆的位置关系又是怎样?通过思考后,绝大多数同学认为第二个问题的结果是相切。通过引导,学生认识到第二个答案是相切或相交。这两道题的训练,使学生认识点与线的距离和点与点的距离的区别,从而掌握了这一概念。

图1

二、讲透定理,使学生掌握逻辑推理的根据

定理教学是平面几何的核心,是逻辑推理的依据。我们教学时一定要引起足够的重视,务必把定理讲深讲透,并让学生领会定理证明过程中所涉及的知识、数学的思想和方法。

例如,在教学相似三角形判定定理2时(如图2)首先让学生自己阅读定理内容,逐字逐句加以理解,并提出以下问题让学生边阅读边思考:①定理的题设部分包含哪些条件,具备这些条件后得到什么结论?②依据定理画出图形,写出已知、求证,然后进行分析。根据已知条件我们不易用判断定理1和定义来证明,应考虑用平行三角形一边的直线的定理证明。

因为∠A=∠A’,可∠A’和∠A重合,再在ABC的边AB、AC(如果AB<A’B’,AC<A’C’,就在AB、AC的延长线上)分别截取AD=A’B’,AE=A’C’,连接DE,显然ADE与A’B’C’,只要证明ADE与ABC相似,就有A’B’C’和ABC相似,由AD:AB=AE:AC,所以证得DE//BC,因此就可证明ADC与ABC相似。接下来就是写出证明过程(略)。定理证好后,引导学生进行小结如下:定理的证明方法是先构造一个三角形,使它与其中一个三角形全等,再证这个三角形与另一个三角形相似,从而得到这两个三角形相似。整个证明过程运用了三角形全等的判定定理(一)(SAS)公理;平等与三角形一边的直线的判定定理,即平等于三角形一边的直线和其他两边(或两边的延长线)相交所构成的三角形与原三角形相似。这样,学生对定理理解深刻,为推理论证扫除了障碍。

三、 注重分析,使学生掌握逻辑推理的方法

所谓分析就是怎样探求解题或证题的途径,主要包括分析题意和分析思路。首先要学生反复读题,弄清题中的条件和结论;其次在学生理解题意的基础上正确地画出图形,要防止用特殊代替一般,正确的画图有助于寻求解题思路。分析思路是进行逻辑推理的关键,要引导学生分析问题时从何处着手,解决这个问题可用哪些基本方法。

如,对三角形的判定(三)中的例3是这样处理的:

例3.已知(如图3),AB=CD,BC=DA,E、F是AC上的两点,且AE=CF,求证:BF=DE。

分析:观察图形:因BF、DE分别是BCF和DAE的边,故只需证明这两个三角形全等即可,要证BCF≌DAE,办为有BC=DA,CF=AE,根据(SAS)公理,还要证明∠1和∠2相等,因为∠1、∠2分别是ABC和CDA的角,故只需证明这两个三角形全等即可,因已知BC=DA,AB=CD,AC=CA,根据SSS公理证ABCCDA。至此本题得证,边分析边画出下边的思路图:

然后让学生用综合法写出证明过程。这种分析综合的思维方法,对解决复杂问题很有意义,用综合法探求解决途径,用递推的方法使之逐渐接近于结论。用分析法设法先找一个包含旧结论而又容易从已知条件推进新结论,以代替旧结论。这样两头夹攻,可逐渐缩短已知和求证之间的逻辑距离。这种逻辑思维的方法,是几何证题中探求证法、建立思路的基本方法。

四、 循序渐进,加强训练,培养学生逻辑推理素质

从易做到难,循序渐进地组织证题训练,是培养学生逻辑推理素质的重要途径。

第2篇:逻辑推理能力培养范文

新疆第四师可克达拉市68团中学,新疆    兵团    835301

 

摘要:初中数学是培养学生逻辑推理能力的重要课程。学生通过学习教学要求的数学知识,解决相关的数学题目,逐步地掌握思考分析的方法,拥有具备良好的逻辑推理能力。在初中数学教学中引导学生收获逻辑推理能力,不仅教会学生如何在数学学习和解决数学题目时更加得心应手,也使学生掌握在未来的学习工作中举一反三的重要能力。

关键词:初中数学  数学教学  逻辑推理 

逻辑推理通常来说是根据已经存在的既有事实、已知条件等内容,依据一些客观的规律、规则,通过分析总结等演绎过程得出结论或论点的过程。这个过程贯穿整个初中数学科目,学生掌握逻辑推理的方法可以学好数学科目,在学习数学科目的过程中也逐渐掌握逻辑推理这种方法应用在更多科目和领域的学习中。认识到逻辑推理方法的重要性,作为初中数学教师更应该注重对学生逻辑推理能力的培养,不仅仅是为了让学生学好数学这一科,同时也让学生通过逻辑推理掌握分析问题、解决问题的能力,感受到数学的魅力。

一、创设生动的问题情境,加强学生的逻辑思维

根据逻辑推理的概念,我们可以了解到在数学教学中培养学生的逻辑推理能力,就是要教会学生从一个逻辑原点出发,利用已知条件和数学知识,通过分析、推理、总结从而得到正确的数学答案。通过解决数学题目的过程,学生可以学会灵活变通,通过眼前已知条件甚至是隐藏在已知条件背后的隐藏条件这些表面的现象去深究事物的本质。要想达到这样的教学目标,就需要教师可以引导学生学会“刨根问底”,主动思考,这就离不开结合问题创设的情境。创设问题情境通俗来说就是我们常见的应用题,不过是把应用题里面的情境设置的更加生动、更加贴近学生生活,让学生通过易于理解、生动形象的情境来理解抽象的数学知识,这本身就是一种举一反三的精神,能进一步提起学生思考探究的兴致。

二、利用思维导图工具,深化学生的思维逻辑

在初中数学教学中培养学生逻辑推理能力的关键在于思维逻辑的培养,让学生具备这样的思维是给学生一个可以终身使用的工具,正所谓“授之以鱼不如授之以渔”。在初中阶段,根据初中数学的课程内容,教师会带领学生从单个的知识点入手进行学习,有点带面,最终才把各个知识面串联成为一个完整的知识体系。初中数学课程内容的设置本身就是非常符合逻辑的,因此可以引导学生做好章节总结或者课程的周总结、月总结,通过写小结的过程把知识点逐渐地汇总起来,自然而然的就形成了知识网络。

引导学生进行知识点总结之前教师可以把思维导图的概念传递给学生,让学生首先掌握一种科学的分析、汇总的方法。思维导图就是利用一些图形符号、线条将一个主题下的内容层层分级、设置子母概念形成一个清晰全面的体系,这个非常适合用来总结数学概念、数学公式等内容。如今多媒体上课已经是非常普遍的一种上课方式,教师也可以利用一些软件教会学生思维导图的使用,比较常用的软件例如X-mind就是一款非常好操作的思维导图软件。为了加深同学们对知识点的理解,在利用电子软件教学的同时仍然鼓励学生自己根据电子版的思维导图进行手写的思维导图绘制。

通过在教学中传授给学生利用隐藏条件解题的做题方法,对学生来说益处多多。初中数学老师在教学过程中,往往是将单个知识点和对应题目搭配讲解,这样的做法更有利于学生接受单个的知识点。对于最终的应试和分析复杂问题,这样的方法显得有些单薄。笔者认为老师在讲解基础知识时,可以利用一些综合性题目对其中的隐含条件进行挖掘式讲解,这样可以提前给学生一种思考方法,未来面对有隐含条件的综合性题目时学生思考更加开阔,提升学生解决初中数学习题的思维层面,避免直接套公式等解题方法的出现。

三、小组合作共同探究问题,提高学生的推理能力

前面笔者有提到,逻辑推理能力的培养不是单纯的让学生学会掌握数学知识、会解决数学题目,更重要的是让学生在逻辑能力培养的过程中养成探究式的思考问题的方式。要想达到这个目的,教师就必须明确在教学过程中,学生才是学习的主体,教师在这个过程中更重要的是引导、指导,尤其不能过度地给学生解决问题,要让学生养成自主学习、主动思考的良好学习习惯。不可避免的问题是,学生自己的学习和思考能力有限,常常没有主动学习的乐趣,那么采用学习小组的学习方式就可以很好的解决这个问题。

通过设立学习小组,就把思考的工作交给了学生本身,善于思考的同学可以带动不爱动脑的学生。分成学习小组以后,各个学习小组之间又形成了竞争关系,这样学生为了更好的解决问题,会更加活跃地进行思考。在这个过程中,老师可以适当地给予学生一些指导,知识方面的纠错,思考方式的调整等。通过学习小组这种方式,学生除了渐渐地养成自己解决问题的习惯,也懂得了如何良性竞争,如何有效合作,一举多得。

四、习题训练注重解题过程,发展学生的逻辑推理

在数学教学的过程中,教师们常用的一种策略就是“题海战术”,以量变引起质变。但是经过笔者的观察很多学生会因为题海战术产生思维麻木的现象,在大量的题目中,学生很容易形成思维定式,这对于学生的思考探究能力的培养是非常不利的,也会忽视逻辑推理的重要性。因此,笔者建议教师可以在课堂练习或者作业布置方面有针对性的给学生布置一些综合性强的题目,让学生详细的写出解题过程。通过这样的方法,让学生能够更加清楚自己的思考过程,哪里有问题会更加的明晰,老师可以根据学生的解题过程了解学生逻辑能力的强弱,有针对性地给学生进行指导。

五、结束语

综合上述内容,我们不难发现逻辑思维能力的培养可以从不同角度入手,利用多种形式对学生进行培养。作为初中数学教师,深知逻辑推理的重要性,为了可以让学生更好的掌握这种能力,这个课题值得我们不断地思考探究。

参考文献:

[1]  陈小平.基于逻辑推理培养的初中数学教学策略[J].基础教育,2019(08):242.

[2]  李爱科.基于逻辑推理培养的初中数学教学探究[J].数学信息,2019(19):128.

[3]  虢铁平.基于逻辑推理培养的初中数学教学策略[J].2019全国教育教学创新与发展高端论坛论文集(卷七) ,2019(07).

第3篇:逻辑推理能力培养范文

1、合情推理与逻辑推理之间的关系

合情推理是一项找到新结论的重要手段,有益于提升学生的创新意识和思维,对学生的成长和学习成绩的提升有着重要的帮助意义[1]。在合情推理当中发现的新结论,可能是错误的,也可能是错误的,需要使用逻辑推理进行验证。因为合情推理为或然性推理,逻辑推理为必然性推理。

数学知识的慢慢累积,依靠的是逻辑推理,是学习数学的不二法则。在学习数学学科当中,应用到的全部知识结论都必须使用逻辑推理进行证明,就算是对角相等这种非常直观和简单的命题,也需要进行证明[2]。正是因为推理当中有着非常强的严谨性,得出的数学结论采更加有效,被重视。但是,在进行逻辑推理之前,经常会使用根据条件预测结果或者结合成果分析成因,这便是合情推理,可为逻辑推理提供证明的有效途径和方向。

因此,逻辑推理与合情推理是紧密联系的,当前在初中数学的授课中所应用的探究式教学,前半段便是合情推理,后面便是逻辑推理。此外,在教学中,还要考虑初中学生的心理、年龄和特征,起初会多应用一些合情推理,并逐步向逻辑推理迈进。

2、合情推理与逻辑推理的教学要点

(1)在初中数学的日常授课中,要注重推理在数学当中的地位,强调其对学生学习产生的作用,合理应用逻辑推理和合情推理,但要使学生理解,?笛У难?习,最后应用的为逻辑推理。

(2)在教学中,如果应用的是合情推理,教师需要为预留出一些时间,并给学生足够的空间进行探究。所谓的空间便是,教师在授课的过程中,不能将知识全部灌输给学生,要留出一部分知识和问题让学生探究,引起其发现和分析等。此外,还要给学生一定的时间进行探究,让学生感受探索、分析、领悟、总结的过程等。当学生将这些探索的过程进行转化,成为学生自己的知识时,学生才真正或得了数学活动经验。

(3)在因果关系的授课中,是引导学生提升逻辑推理能力的初级阶段,其中需要使学生明白因果关系为普遍存在的,并训练学生对因果关系之间的表述能力,之后在强调学生思维当中存在的完整性和条理性、规范性和严谨性等,最后学生会慢慢形成逻辑思维。

(4)逻辑推理教学。在教学中,要注重对学生推理思维的提升,不能只训练学生的书写形式。要在表述上要求学生有完整的步骤和充足的理由,并且使用非常简单的三段论形式。这些全部都是授课的过程,需要学生反复进行体会和感悟[3]。

(5)如果学生在学习的过程中产生了逻辑错误,教师要及时给予引导并进行纠正,强调推理当中的严谨性。这样,学生可以慢慢养成严谨的推理习惯和能力,为之后的数学学习打下良好的基础。

(6)为了使学生能够经一步明确两项推理之间的关系,要使学生明确合情推理可对新的结论进行发现,还可以为逻辑推理提供重要的思考方向,但是逻辑推理可对合情推理的结论进行证明或者证否,要求学生在学习的过程中,对于两项推理能力的掌握要同样重视。

3、实例分析

在初中数学《与三角形有关的角》学习中,需要学生学习三角形内角和定理:三角形三个内角的和等于180°并学会其中的证明方法,延伸知识如:因为三角形内角和为180°,所以延伸出三角形中很多的角的特定关系如:①一个三角形中最多只有一个钝角或直角;②一个三角形中最少有一个角不小于60°;③直角三角形两锐角互余;④等边三角形每个角都是60°等。在之前阶段的学习中,学生使用的方法为量角器度量等,之后概括总结出三角形的内角和等于180°。为了防止学生产生这些合情推理已经足够证明命题的思想,在初中数学的日常授课中,在给出命题之前和给出命题之后,要先引导学生回忆之前学习的过程。因为这一定理对学生的学习非常重要,并且小学阶段到初中阶段,学生学习这一命题的时间比较长,在初中课程中出现的又比较早,教师可应用合情推理和逻辑推理相互结合的教学方式。如:在对命题进行证明之后,可提示学生,测量是会产生误差的,拼剪的过程也会产生误差,所以没有逻辑推理具有严谨性,并不能让所有人都信服;即使测量非常准确,但是三角形有无穷个,而在初中阶段研究的三角形只有几个,所以不能就此下结论。为了证明全部的三角形内角和都是180°,一定要利用逻辑推理证明,这是由于逻辑推理是包括所有的三角形来进行推理的;命题是不是正确的,并不是通过量就能得出结论的,更不能通过看得出结论,要利用完整的推理步骤,并且有充足的理由得出结论。

4、结束语

第4篇:逻辑推理能力培养范文

1岁左右――在变幻的世界里飞

魔方被誉为世界三大智力玩具之一,因为它有着变幻无穷的面孔,所以才魅力无限。LALA布书逻辑推理系列中的魔方,每一块软软的魔方都有六个不同的图案,36个画面随宝宝组合,不要说宝宝,就连爸爸妈妈看到了也会忍不住喜欢;当然,逻辑思维本身就够深奥的,所以,魔方的图案就尽可能贴近宝宝的生活,比如:宝宝的日常生活、熟悉的动物、四季的变化、气候的变化、帮助宝宝数数字的动物图案、爷爷奶奶爸爸妈妈等……让宝宝在辨识图形过程中学会数数字,缩短宝宝理解数字概念所需要的时间;同时可以培养宝宝运用线索解决问题的能力。

1岁以下――转转脑筋认识世界

上下跳动的猴宝宝,荡秋千的长尾猴,可玩耍的男孩女孩玩偶,活动的糖罐儿,可放进取出的糖果,可打开的房门、车门,还有飘动的窗帘,沙沙的响纸……LALA布书逻辑推理系列中的脑筋转转,给小宝宝们带来了一个极具吸引力的认知世界。这本书有极强的趣味性和互动性,让宝宝拿起来就放不下;最为可贵的是,这本布书通过一些对比鲜明的事物,较早地使宝宝理解一些基本概念,从此打开了一条逻辑推理认知之路。

两岁以上――学习充满乐趣

第5篇:逻辑推理能力培养范文

一、应用综合法解决高中生物计算问题

高中生物会涉及一些计算问题,需要学生采用数学逻辑推理方法解答。为了让学生掌握正确计算方法,并在解决生物问题中达到事半功倍的效果,教学中生物教师应对学生予以指导,并采用必要辅导方法,让学生认识到生物不仅是理论知识,而且需要采用数学方法予以验证,同时运用推理思维方式对生物学科中抽象的知识予以领悟。不同生物题型采用的解题方案有所不同,要提高生物计算题解题效率,就要懂得逻辑推理方法的运用。采用综合法,对计算题已知条件进行审读,并将相关生物定理、生物规律等充分利用起来,将生物体文字语言转换为符号或者图形。之后对生物计算题进行详细分析,将生物题中隐含的条件明确,捋顺解题思路,将生物解题方案制订出来。解题之前要审题,这是必经阶段,可以把握住正确解题方向,提高生物题解题速度。

例题:细胞中的DNA分子标记为P,这个细胞进行了5次有丝分裂,计算出含有标记链数占有总数的比例,含有标记链的DNA分子数占有总数的比例。

对该题可采用综合法解题。这道生物题主要考察的知识点是DNA复制和有丝分裂,属于综合性生物题。由于生物题中含有P,就使得生物题的解题更为复杂。采用综合法解题,可以采用三个步骤。其一,其中需要生物知识为DNA复制、有丝分裂。在对学生进行逻辑思维引导的时候,要围绕DNA复制特点进行。其二,将DNA分子的复制模式图画出来,将被标记的链在图中标示出来,使生物题中的文字语言转变为图形语言表达。其三,按照生物题数学计算规律进行计算。染色体复制了4次,后代的DNA分子即为:2=2=32(个)。标记链中含有P,含有两条链。当两条链经过复制之后就会解旋,就会进入DNA分子中。细胞染色体经过5次有丝分裂之后,所含有的标记链数占有1/32,含有标记链的DNA分子占有1/16。

生物教学中,教师仅按照例题给出条件进行讲解是不够的,还需要对相关知识进行扩展,以培养学生灵活运用知识的能力。采用综合法,就是生物教师将高中生物题计算解题方法向学生传授,并在学生计算生物题的时候予以适当指导。学生掌握了这些计算方法,才能对每一个计算步骤都理解,并在解决生物计算题的时候获得准确的答案。

二、应用演绎法对学生的发散思维进行培养

发散思维是指从一个目标出发沿着各种不同途径思考,探求多种答案的思维。

演绎法是从一般到特殊的过程,即从原理角度出发将特殊条件下的结论推出来。在演绎推理中,只要推理的前提和推理方法准确,就会得出准确结论。生物题计算中,演绎法是较为常用的。生物教学中教师要强调学生学好生物原理知识的重要性,让学生掌握生物学规律。只有具备扎实的生物理论知识基础,才能在解题中方向正确,并得出正确结论。

比如:一个基因是由n个碱基所构成的,控制合成蛋白质是由一条多肽链组成的。氨基酸的平均相对分子质量是a,那么,蛋白质的最大相对分子质量是多少?( )

A.a/3-18(n/3-1)

B.a/6

C.na/6-18(n/6-1)

D.na-18(n-1)

这道生物题采用演绎法,对学生综合运算能力进行考察。生物教师采用引导方式,针对例题中的相关生物知识进行解答,诸如基因控制蛋白质成的相关问题,其中包括的生物知识为遗传信息在合成过程中的流动情况,从有关生物规律出发,将DNA进行转录,其中mRNA、mRNA经过转录之后,形成蛋白质具备的特点,将基因的碱基及组成蛋白质含有的氨基酸数目推导出来,推导的结果为6:1。

根据本题所给出的情况,参考与氨基酸脱水缩合相关的数学公式,就可以将最大的蛋白质相对分子质量计算出来。

公式为:氨基酸数量×平均相对分子质量D脱水的数目×水的相对分子质量=n・a/6D18(n/6D1)

从而这道题的正确答案即为D。

在对生物计算题进行讲解的时候,生物教师可以采用“演绎法”,即计算生物题的时候,采用推理方法,保证解题大方向是正确的,在此基础上确保小前提正确;之后基于数学“集合”,要求“小前提”属于“大前提”;最后获得的结论是正确的。

三、应用分析对生物计算题中隐含的条件进行理解

生物题中常见的关键用语有表现为极值条件的用语,隐含某些物理量可取特殊值,挖掘隐含条件,使解题灵感顿生。

生物计算题中除了显性条件之外,还含有隐性条件需要学生理解才能正确解题。采用分析法,就是学生对隐含条件充分理解,保证生物题计算能采用正确的方法。分析法就是所谓的“执果索因法”,也被称为“逆推证法”,就是从结论出发逆推到条件,最终将内容判定为成立的条件。这些条件包括已知的条件、公理、定理等。在解决生物计算题的时候,就要结合相关定律解题,引导学生从结论出发寻求与已知条件相吻合之处,随之从已知结论具备的结构特点出发对给出的条件进行转化,从而使用分析法解决生物问题。

例题:小麦分为高秆(T)和矮秆(t),两者均为显性,无芒(B)与有芒(b)也为显性。两种小麦经过杂交之后,就会出现四种小麦的表现型,即高秆无芒、矮秆无芒、高秆有芒、矮秆有芒,比例为3:3:1:1,那么,小麦的亲本基因型( )。

A.TTBB×ttBb;B.TTBb×ttBB;C.Ttbb×ttBB;D.TtBb×ttBb

第6篇:逻辑推理能力培养范文

2.通过摆火柴游戏,培养思维能力和想象能力。

3.培养灵活的解题技能,增强学习数学的兴趣。

4运用和差变化的规律来纠正错误,找回正确的答案。

5.通过摆图形,让学生更熟悉所学的图形及其性质。

6.通过制作益智巧板,使学生进一步认识常见的基本图形,培养动手能力,进一步形成对数学的兴趣。

7.通过学习和完成推理的题目,对逻辑推理有所认识,培养学生的分析能力,并利用逻辑推理去解决一些推理的问题。

8.拼图练习加深对平面图形的认识,培养操作能力。

9.体会用字母表示数带来解题的方便,加深对方程的认识。中国教育查字典语文网 chazidian.com

二、活动准备

1.投影片

2.火柴棒

3.尺子

4.硬纸板 剪刀 蜡笔 益智巧板 积木

三、活动安排

1.把正确的答案找出来

2.介绍数学家小时侯解题的方法

3.算式的变换

4.猜两位数

5.找回正确的答案

6.连线

7.火柴摆图形

8.制益智巧板

9.拼益智巧板

10.推理(一)

11.推理(二)

12.拼摆图形

13.剪、分、拼

14.字母的另一种作用

第7篇:逻辑推理能力培养范文

关键词:二力平衡 抽象性思维 逻辑推理

“二力平衡”是八年级的教学内容,虽然教参中要求一节课学习,但是我以为它在八年级乃至整个初中物理中是非常重要的一节。

我们知道之所以在八年级以前没有开设物理课程,是和学生的身体成长以及学习的接受能力相关,也就是只有学生的学习能力达到一定程度,思维发展到一定阶段,足以承受这门抽象性、逻辑推理强的学科时,才可以学习它。

并且,若学生没有能很好地培养自己的抽象性思维,形成一定的逻辑推理能力。那么在九年级的电学,乃至高中的物理学习中就会遇到较大的困难。

因此,笔者以为八年级整个学年是以后学习物理这门学科的基础学年,而可以解决以上问题的重中之重就是力学中的“二力平衡”。

北师大版的八年级教材中,第七章第六节讲述了该节内容,教材中首先定义了平衡状态:物体保持静止或匀速直线运动的状态叫做平衡状态。一个物体保持平衡状态可能受几个力的作用,但鉴于八年级物理是新开设的课程,因此研究了最简单的力的平衡问题――“二力平衡”。其条件是作用在一个物体上的两个力大小相等,方向相反,且作用在同一条直线上即合力为零。

二力平衡在解决物理相关问题中发挥了至关重要的作用,比如判断物体是否处于平衡状态,若是处于平衡状态,可利用二力平衡条件求出某个未知力。

例1:教材中第七章第三节,测空气中物体所受重力时,测量仪器是弹簧测力计,重力方向竖直向下,没有办法进行直接测量。笔者进行教学时一再强调,要测量物体重力,一定要求物体保持静止状态,当物体静止时,即处于平衡状态,物体所受两个力一拉力和重力,是一对平衡力,在数值上大小相等,这时重力在数值上等于弹簧测力计所示的拉力。因此重力得以测量。

例2:教材中第七章第四节:探究摩擦力的大小与什么有关时,研究了滑动摩擦力的影响因素。将木块分别放在粗糙程度不同的表面上,测其滑动摩擦力的大小,我们知道滑动摩擦力是发生在相互接触的两表面之间,用弹簧测力计是没有办法直接测量的,因此我们利用了二力平衡,让木块在弹簧测力计的拉动下必须做匀速直线运动(且注意实验桌面要水平,拉力必须沿水平方向),即木块已处于平衡状态,且在水平方向上木块所受的二力一滑动摩擦力和拉力是一对平衡力(大小相等,方向相反,作用在同一直线,同一物体上),滑动摩擦力等于拉力。拉力的具体数值可以直接由弹簧测力计示出。因此,滑动摩擦力就可以用弹簧测力计间接测量。从而实验才可以进行,得出正确的结论,这是利用二力平衡解决实际问题的又一个事例。

例1、例2是教材中实验部分对二力平衡的应用,遵循了以下的逻辑推理顺序:物体保持平衡状态(静止或匀速直线运动状态)一作用在物体上的二力满足二力平衡条件 二力在数值上大小相等,用此方法可以间接测量出难于直接测量的力。

再者,第八章压强与浮力部分是初中物理学习的重点和难点,学生很是头疼,原因是该章要求学生要有教强的抽象性思维和逻辑推理能力,对学生自身要求较高。但是若能很好地理解二力平衡的概念,掌握其应用,对解决该章某些问题将会起到事半功倍的效用。笔者近期出了一套测试题,其中涉及到了该问题。

例3:一艘轮船从河水中驶入到海水中,船受到的浮力将

( )

A.变大 B.变小 C.不变 D.无法判断

同样,学生首先考虑利用阿基米德原理解决此问题,经过分析可知轮船从河水行驶到海水中,液体密度必然变大,但此过程中船所排开的水的体积如何变化仍然无法得知,很明显,此思路是行不通的。可利用二力平衡解决此问题,无论轮船是在河水中还是在海水中,它都处于漂浮、是静止的,处于平衡状态,在竖直方向上所受二力一重力和浮力满足二力平衡条件,是一对平衡力,浮力在数值上大小等于重力,因为是同一艘轮船,质量不变,所受重力也是定值,浮力因此也没有发生变化,所以应是C选项。

例3题目尽管是压强与浮力章节中的典型习题,但却利用了二力平衡知识。因此,该章中若能很好地利用二力平衡,许多题目都大大地简化。若在教学过程中逐步向学生灌输此方法,学生定会逐渐形成自己的抽象性思维和逻辑推理能力,为以后的物理学习打下良好的基础。

小结:二力平衡在初中物理中主要有两方面的应用

(1)判断物体是否处于平衡状态,若是处于平衡状态,可利用二力平衡条件(主要是二力在数值上大小相等)求出某个未知力。如前面所述的重力、滑动摩擦力、浮力等。

(2)若物体受到的二力满足二力平衡条件,则该物体定处于静止状态或匀速直线运动状态,(因为该方面的应用,在初中物理中不常见,就不在此赘述)。

纵观初中物理力学部分,在运动受力分析中讲述了最简单的问题:匀速直线运动状态或静止状态。所以,笔者以为二力平衡方面的知识涵盖了初中物理力学的主要内容,是学好力学部分知识、学好物理这门课程的法宝。且该部分知识是八年级教材的内容,是起始学年,对于培养学生的抽象性思维和逻辑推理能力有着很好的切合点。

总之,若在学力平衡以及力学的相关知识时,教师能强调其重要性,旁征博引,前后引证。引导学生一步一步地利用该知识解决相关问题。同时,回忆联想前面的相关实验及习题,能加深学生对二力平衡知识的理解,更能培养学生的抽象性思维和逻辑推理能力,更好地激发学生学习物理的兴趣,促进其更好地学习。

参考文献:

第8篇:逻辑推理能力培养范文

【关键词】直觉思维;数学悟性;直观领悟;合情推理;类比联想;顿悟灵感;严格证明

培养学生严谨的逻辑思维能力无疑是数学教育的“重头戏”,但我们绝对不能因此而忽视“非逻辑”的直觉思维能力的培养.在以前历次颁布的《高中数学教学大纲》中提到的均是“数学逻辑推理能力”的培养,可在《普通高中数学课程标准(实验)》中,其中的“逻辑”两字已被去掉,而是说成“培养学生的思维能力”,意味着已经将“非逻辑”的直觉思维能力的培养纳入数学教育的目标之中,大大拓展了数学思维的外延,标志的是数学教育理念的发展和进步.

何谓“非逻辑”的直觉思维?著名特级教师黄安成先生在文[2]中将此种思维统称为“数学悟性”,并指出其主要特征:“所谓数学悟性,就是指对数学对象及解决问题时的‘直观领悟、合情推理、类比联想、灵感顿悟’.”

1直观领悟

数学主题通常都是由逻辑推理得到的,彰显的是数学理性精神的光辉,理论上的严谨通达才能使人心理和谐顺畅,且记忆牢固.但我们也发现,也有一些数学主题的获得依靠的是直观领悟,而不是严谨的逻辑推理.正如德国数学家克莱因说:“一个数学主题,只有达到直观上的显然才能说理解到家了.”这种理念在数学新课程、新教材中已得到充分的体现.

如两个计数原理、排列组合公式、各种概率公式的推得,都是不严密的,但利用生活中获得的数学经验,从特殊到一般,从具体到抽象,学生都能达到直观的理解.

《立体几何》中的公理的出台也都是基于“直观上的显然”.一些概念与定理,如直线和平面垂直的定义,只能利用具体的事物来导引学生形成和树立.即便是定理,如直线和平面垂直的判定定理,过去的教材给出了严格的证明,但由于图形复杂、方法生涩、推理繁冗,初学者很难达到透彻的理解和熟练的驾驭,属于“吃力不讨好”之举,故新课程、新教材已将其删去.在现在的教学中,充分运用直观能力可使学生达到实质性的领悟.一条直线如果与平面内的一条直线垂直,当然不能判断这条直线与这个平面垂直;但即使一条直线与平面内无数条直线垂直,也不能判断这条直线与这个平面垂直,因为这无数条直线如果互相平行,那么它们只代表着一个方向,则只能“相当于一条直线”;但如果一条直线与平面内两条相交直线都垂直,则可以判断这条直线与这个平面垂直,这就叫做“线不在多,相交就行”.在“纯理性”论持有者看来,这段话与逻辑思维毫不沾边,“什么叫‘相当于’?不通!”可是学生绝对能懂,而且非常欢迎这种说法.

还有一个更典型的案例,即“导数”的教学.从直线的斜率到函数的平均变化率、函数的瞬时变化率,再到导数概念的最终出台,我们何曾见到一点逻辑思维的痕迹?下面的教学片段颇具说服力:

图1

教者首先带领学生回顾“平均变化率”的概念,函数y=x2在区间[1,1+a]上的平均变化率,即对应的曲线割线的斜率.如图1(多媒体课件配合),当a的值依次为0.1,0.01,0.001,…时,割线的斜率依次为2.1,2.01,2.001,…我们发现了一种奇妙的规律,即当a的值越来越接近于0时,割线的斜率就越来越接近于切线的斜率2.这不应是偶然的吧?需对一般情形进行探讨:

设曲线C:f(x)=x2上的点P(1,f(1)),Q(1+a,f(1+a)),则割线PQ的斜率为

k割=f(1+a)-f(1)(1+a)-1=(1+a)2-1a=2+a.

那么当a的值无限趋近于0时,2+a无限趋近于2,即k割就无限趋近于k切,可概括为a0,则1+a1,2+a2,QP,k割k切.

更一般地,设曲线C:y=f(x)上的点P(x0,f(x0)),Q(x0+Δx0,f(x)+Δx0),那么割线PQ的斜率为

k割=f(x0+Δx0)-f(x0)(x0+Δx0)-x0=f(x0+Δx0)-f(x0)Δx0.

则当Δx00时,k割k切,就将k切叫做函数y=f(x)在x=x0时的导数.

这里的“越来越逼近”“无限逼近”“最逼近”等规律都不是通过严谨的逻辑推理得到的,而是借助于生动、具体、形象的画面,使学生的大脑产生“内化”效应,渐渐地领悟其实质,这种“内化”就是直观领悟的反映.

再说一个反面的教学案例,某教师在“数学归纳法”的教学中,试图用“高观点”来统领教学,即用极严谨的推理方式来阐释数学归纳法的理论基础与渊源,甚至将最小正整数、无穷大等高深理论引进课堂,结果弄巧成拙、事与愿违,学生只能是一头雾水.这节课名副其实地归入“废品”之列.

正面的经验和反面的教训使我们深刻地体会到严谨的逻辑思维不是万能的,也不是随时和随处可见的,学生的思维能力中绝对地包含直觉思维能力.

2合情推理

合情推理与直观领悟有一定的内在联系,但也有自身的特征,那就是虽具有一定的推理成分,但却没有完整的逻辑推理链条,而具有简约、跳跃、猜测等特点.如前所述,在建构知识和技能的过程中需要合情推理,在解答填空、选择题中更需要合情推理.对于解答题,虽然最后的表述需要的是一丝不苟、滴水不漏的推理过程,但在形成思路、确定目标的探索、尝试、构思、检索、猜想、突破、检验、辨误等过程中却离不开合情推理.英国哲学家、数学家休厄尔说:“若无大胆放肆的猜测,一般是作不出知识的进展的.”将合情推理提升到“大胆放肆”的层面,可见合情推理的不可低估的作用.

图2

如在“补集”的教学中,通过教师的引导,学生在深刻领悟图2含义的基础上,很快顺理成章地理解知识的本质并得到“补集”的所有性质:

这类通过合情推理实现知识的顺应与同化的例子比比皆是,因此充分利用合情推理的强大功能是在数学教学中实现节时高效不可或缺的良策.

图3

例1如图3,过点P(0,3)的动直线l交椭圆x29+y24=1于不同的两点A,B,若A位于P和B两点之间(不含P,B),设|PA|∶|PB|=λ,求λ的取值范围.

此题原有的解法极其繁冗,可在课堂上竟有学生给出令人惊愕的简捷解法:

当直线l与x轴垂直时,|PA|=1,|PB|=5,则λ=15.

如果直线l与椭圆相切,设切点为M,此时A,B两点重合于M点,|PA|=|PB|,λ=1.而A,B为不同的两点,所以λ≠1.

综上所述,λ的取值范围是15,1.

上述解法虽不能说尽善尽美,但闪耀着智慧火花的合情推理应得到充分的肯定和褒奖.

3类比联想

从表面上看来,甲乙两种事物似乎没有什么内在联系,但由甲事物的结构、形态、特征联想到乙事物.基于此,将解决与甲事物有关问题的技能、技巧迁移到与乙事物有关的问题中来,就叫做类比联想,属于“非逻辑思维”范畴的一种直觉思维.

比如,设三角形的周长为C,内切圆半径为r,则三角形的面积S=12Cr,由此可得r=2SC或C=2Sr.那么在立体几何中,若多面体有一内切球,内切球的半径为r,多面体的表面积为S,体积为V,则V=13Sr,r=3VS,S=3Vr.从三角形到多面体,从面积到体积,从内切圆到内切球,跨度不可谓不大,但运用类比联想,瞬间实现了沟通,可解决的问题多多.

例2在1,2,3,4,5,6这六个数中任取五个组成数字不重复的五位数,求所有五位数的和.

此题的原本解法非常繁琐,经过改进,虽有所简化,但仍有学生感到不满意,他们给出了如下令人慨叹的更加简捷的解法:

五位数共有A56=720(个),其中最小的是12345,最大的是65432,

所以所求和为12345+654322×720=27999720.

道理如下:

将这720个数按从小到大的次序排列,得a1,a2,a3,a4,…,a717,a718,a719,a720,它们虽然不能构成等差数列,却具有类似于等差数列的性质:a1+a720=a2+a719=…=12345+65432=77777,故得解.

类比联想创造了奇迹!

4灵感顿悟

一位哲人曾说过:“创造是思维的‘短路’,通常是‘不大讲道理’的,若过分囿于逻辑推理,则很难作出创造.”这与上面休厄尔的名言有着异曲同工之妙.著名数学家、数学教育家波利亚也说:“无论如何,你应该感谢所有的新念头,哪怕是模糊的念头,甚至是感谢那些把你引入歧途的念头.因为错误的念头往往是正确的先驱,导致有价值的新发现.”

例3设集合A={0,2,3,5,8},B={1,3,5,7,10},集合C同时满足:①若将C的各元素均减去2,则所得新集合是A的一个子集;②若将C的各元素均加上3,则所得新集合是B的一个子集,那么满足这两个条件,且元素最多的集合C=.

若循规蹈矩地进行逻辑推理,此题的解答必将陷入困境,必须来个“灵机一动”:题目说“减去2”与“加上3”,我们就来个“加上2”与“减去3”.那么将集合A的各元素分别加上2,得集合D={2,4,5,7,10},将集合B的各元素分别减去3,得集合E={-2,0,2,4,7},则所求集合C=D∩E={2,4,7}.

不起眼的一个“金点子”闪耀的却是创造灵感的思想光辉.

图4

例4如图4,平行六面体AC1的底面ABCD是菱形,∠C1CB=∠C1CD=∠BCD=60°,当CD∶CC1为何值时,A1C平面C1BD?请给出证明.

这是一道著名的高考试题,有相当的难度,常规解法为:设CD∶CC1=x,设法列出关于x的方程,但构建和解方程谈何容易!在这种困境之中一个大胆的顿悟使题解出现了根本性的转机,所求比值会不会是1呢?试试,还真的试成功了:

事实上,当CD=CC1时,C-BDC1是正三棱锥,很容易证得A1C平面C1BD,与列方程的解法相比,简直有天壤之别!

行文至此,我们一方面感慨于直觉思维的巨大功能和培养学生直觉思维能力的重要性,但在本文末,还必须说以下两点:

(1)直觉思维的功能绝对掩盖不了数学理性精神的光辉,绝对不能因为强调了直觉思维能力的培养而削弱了逻辑思维能力的培养.

(2)绝不能满足于利用直觉思维对于问题的解决,不能停留在“感情用事”的层面上.利用直觉思维解决问题,即使再漂亮、再简捷、再优美,最后还须做到理性回归,要知其然,还要知其所以然.

【参考文献】

第9篇:逻辑推理能力培养范文

“数学广角――推理”是新人教版《义务教育教科书数学》二年级下册第109页的教学内容。

【教学目标】

知识与技能:让学生了解简单的推理知识,初步获得一些简单推理的经验;培养学生初步观察、分析、推理能力和有条理思考问题的意识。

过程与方法:让学生经历简单的推理过程,体验逻辑推理的思想与方法,体会逻辑推理条件与结论之间的联系。

情感态度与价值观:感受逻辑推理的趣味性、严谨性以及数学结论的确定性,培养学生积极思维的学习品质。

【教学重难点】

重点:经历简单的推理过程,培养学生初步分析推理能力和观察能力。

难点:培养学生初步的有序、全面地思考问题及数学表达的能力。

【教学准备】

课件。

【教学过程】

一、创设情境,游戏引入

1.“瞎”猜

师:“这节课,老师给你们带来了礼物,它们分别放在我的左边和右边口袋,你们能猜出我的左边口袋是什么?右边口袋又是什么呢?谁来猜一猜?

2.“犹豫”猜

师:“是呀!这样是猜不着的,老师给你们补充一个信息吧:这两个礼物分别是小鹿玩具和小乌龟玩具,现在你们能一次猜出我的左边口袋是什么?右边口袋是什么了吗?”生出现两种猜测,还是不能肯定。

3.“确定”猜

师再次提示:左边的不是小鹿

生异口同声肯定“猜”,并说说为什么。

师:刚才我们玩的游戏叫猜一猜,而同学们根据老师的话,判断出了正确的答案,其实这就是一个简单推理的过程(板书:推理),看来在游戏里面也蕴含着数学知识,那这节课我们就继续玩猜一猜的游戏吧!

【设计意图:“兴趣是最好的老师。”挖掘学生熟悉的生活素材,从最简单的随意猜测到简单推理,既活跃课堂气氛,又能为后面的学习做好铺垫。】

二、师生互动,探究新知

1.呈现问题

师:“小红、小丽、小刚也在玩这样的游戏,我们一起去看看吧!”(师课件出示例1)

2.理解题意,分析问题

A.学生观察图画,说说知道了什么?

B.学生先独立思考,把解决问题的过程用自己喜欢的方式记录下来。再把你的想法和同组的同学交流一下。

3.学生交流、汇报

汇报时师要注意引导学生说说是怎么想的。

4.总结时求同引思

师:为什么几位同学叙述自己的思考过程时都从“小红拿的是语文书”开始?以此使学生体会:推理首先应抓住关键的信息,层层分析,最终推导出结论。

师小结:推理时一般先找到最关键的条件,由这个条件往往能直接得到一个结论,这个结论可以帮助我们进行下一步推理。

【设计意图:让学生在独立思考的基础上主动探究解决问题的策略,学会从众多的信息中选择关键信息,有条理地推理出某种结论。学生可以选择不同的解决问题的方法,但重点掌握用连线法辅助推理。】

三、灵活应用,解决问题

1.教科书109页“做一做”第1题。(运用连线的方法解决问题)

2.游戏:猜图形

信封里有一个圆,一个三角形,一个长方形。露出一部分:猜猜它们是谁?

3.创设游戏