前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的逻辑推理的定义主题范文,仅供参考,欢迎阅读并收藏。
一、逻辑推理与实际应用是数学学习动机
数学发展的历史包括两种典型的数学文化:一种是重视逻辑推理的希腊数学文化,一种是重视实际应用的中国数学文化.
数学史家将古希腊数学按时间分期:第一期从公元前600年到前323年;第二期从公元前323年到前30年,也称亚历山大前期;第三期从公元前30年到公元600年,也称亚历山大后期[3].前两个时期,希腊数学文化认为,数学命题只有通过几何形式的逻辑推理论证才能说明其正确性,论证数学成为数学研究的主流,几何形式的逻辑推理证明成为数学成果正确与否的衡量标准.这个标准逐渐发展成为对数学研究的期望或理想,即期望数学成果能够通过几何形式的逻辑推理来论证.在“亚历山大后期”,古希腊数学突破了之前以几何为中心的传统,算术、数论和代数逐渐脱离了几何的束缚.这一时期受罗马实用思想的影响,论证数学不再盛行,如海伦的《量度》中有不少命题没有证明.但论证数学中的逻辑推理在数学研究中仍占有重要位置,如丢番图《算术》书中采用纯分析的途径处理数论与代数问题[4].逻辑推理从几何论证中脱离出来,逻辑推理解决问题的思想发展成为数学研究的新理想,即希望数学问题可以通过纯逻辑推理的方法解决.纵观整个希腊数学文化,数学研究成为满足上述两种理想而付出的劳动,成为实现个人价值、满足求知欲的社会需求而付出的劳动.究其本质,逻辑推理思想是几何论证与分析法解决问题的根本,是上述两种理想中最本质的思想,并且满足动机的定义.因此它是古希腊数学研究的一个动机,也是人类进行数学研究的一个动机.
中国古代数学在整体发展上表现为算法的建构和改进[5].所谓“算法”不只是单纯的计算,而是为了解决一整类实际或科学问题而概括出来的、带有一般性的计算方法[4].算学的目的在于解决实际问题,而实际问题是层出不穷的,因此中国古代数学不仅经受住了统治者废除“明算”科的考验,甚至还有所发展,如元末明初珠算的普及.随着中国数学文化的形成,用数学知识解决实际问题成为算学的理想,即期望数学成果能够被实际应用.中国古代数学研究成为受这个理想而支配的劳动,成为实现个人价值、满足求知欲的社会需求而付出的劳动.实际应用满足动机的定义,因此它是中国古代数学发展的一个动机,也是人类进行数学研究的一个动机.
所以逻辑推理与实际应用是人类进行数学研究的两个动机,按动机的分类它们属于驱力,是从生理需要出发的内在动机.数学学习可以认为是有方向性的对已有数学成果的再次研究过程,可以看作是数学研究的特例形式.依据历史发生原理综合分析得出:人类进行数学研究的内在动机一定会在数学学习中表现出来,即激励人类研究数学的内在动机与激励学生学习的内在动机是一致的.
从实际情况出发,逻辑推理可以作为生活中一种娱乐形式,如逻辑推理游戏、逻辑推理小说、逻辑推理电影等都深受公众喜欢;而实际应用也是大家十分感兴趣的,如通过应用基本的空气动力学知识制作航模.
综上所述,逻辑推理与实际应用是数学学习动机,且这两个数学学习动机是学生共有的、内在的,也是在实际教学中易于对学生进行培养的数学学习动机.
古希腊数学中的公理化思想是希腊数学文化的重要特点之一.公理化思想出现的标志是欧几里得的《几何原本》.在数学中引入逻辑因素,对命题加以证明,一般认为是从伊奥尼亚学派开始的,但毕达哥拉斯学派在这一方面作了重大的推进,他们的工作可以说是欧几里得公理化体系的前驱[3].因此公理化思想的提出要晚于逻辑推理思想,公理化思想是逻辑推理思想的发展.
算法程序化思想是中国数学文化的另一个重要特点.算法程序化思想出现的标志是成书于公元前后的《九章算术》.实际应用思想虽没有明确的出现标志,但在《九章算术》成书前的《周髀算经》、《算数书》等书中涉及的数学知识都蕴含着明确的实际应用思想.算法的提出是为了解决一类实际问题,算法程序化为了使算法严谨、简明、更富一般性.因此算法程序化思想的提出要晚于实际应用思想,且算法程序化思想是实际应用思想的发展.
随着数学发展,公理化思想与算法程序化思想已应用到现代数学中,成为现代数学的特点.但它们不是贯穿整个古希腊数学与中国古代数学研究的内在因素,而是逻辑推理与实际应用数学思想发展的衍生物.公理化思想与算法程序化思想也可作为数学学习的动机,但适宜群体明显要少得多.数学发展至今,数学本身的文化区域性特点淡薄了,希腊数学文化与中国数学文化背后的驱力——逻辑推理与实际应用思想,早已相互融合.近代微积分的应用及理论的严密化过程就是一例.
二、比较古今数学教材以研究初中教材两个学习动机的培养
教材是教学中最重要的用书之一,是教师教学、学生学习的主要依据.《几何原本》、《九章算术》作为西方与中国的数学教科书都有千年之久.两本着作都反映了当时的数学文化背景.重视逻辑推理与重视实际应用分别成为教学思想包含在这两本书中.
因为《九章算术》作为教材多将刘徽注释加入其中,所以将现行数学教材与《几何原本》、《九章算术及刘徽注》进行比较研究.为增加3者的可比性,选择它们共有的内容,且知识体系完备,预备知识基本一致,学生认知水平大抵相同的勾股定理部分作为比较对象.这种比较虽不能以点代面,但仍有较强的代表性与启发性.现行数学教材采用经全国中小学教材审定委员会2004年初审通过的义务教育课程标准实验教科书八年级数学下册[6],以第18章第1节勾股定理内容为标准,选择《几何原本》、《九章算术及刘徽注》部分内容进行比较.因《几何原本》的成书结构是公理化体系,利用已知命题证明未知命题,且命题后没有辅助理解该命题的习题,所以选择其中与勾股定理有关或利用勾股定理证明的命题作为比较对象.由于初中教材在讲解勾股定理时,预备知识中未包含圆、无理量及立体几何内容,故选择《几何原本》[7]第Ⅰ卷命题47、48,第Ⅱ卷命题9、10、11、12、13作为比较对象.《九章算术及刘徽注》的勾股章是利用直角三角形性质求高深广远,因初中教材勾股定理的预备知识中没有相似三角形及勾股数组的内容,所以选择《九章算术及刘徽注》[8]勾股章[一]至[一四]题及[一六]题作为比较对象.
1.各种教材中勾股定理的内容
(1)编写目的
《全日制义务教育数学课程标准(修改稿)》(下简称为《标准》)中勾股定理的教学要求是:探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题[9].《几何原本》与《九章算术及刘徽注》虽没有类似的编写标准,但可以从它们的内容及成书体系分析得出.《几何原本》利用勾股定理转换面积间关系证明几何问题,即在直角三角形中,两直角边上正方形面积和与斜边上正方形面积可以相互转换.如第Ⅱ卷命题9、10、11、12、13都是利用这种思想.《九章算术及刘徽注》利用勾股定理数量关系求得高深广远,解决实际生活的问题.
(2)知识框架
初中教材通过生活发现与几何直观探索,建立从实际到理论再到实际的知识体系,并运用定理解决简单问题.《几何原本》通过已知命题推导勾股定理,建立从理论到理论纯几何形式的知识体系,重在证明未知命题.《九章算术及刘徽注》通过给出3个简单几何问题“术”,建立从理论到实际的应用知识体系,旨在解决实际问题.3者建构的知识框架各不相同.
(3)定理引入
初中教材的导入分为两部分,分析毕达哥拉斯发现的定理特例与探究定理的一般形式.《几何原本》受公理化体系的影响,它的导入可以认为是定义、公理、公设及已知命题.《九章算术及刘徽注》的导入是3个已知两边求第三边的简单几何问题.
(4)定理表述
初中教材用特例猜想定理的一般形式给出勾股定理[6]:如果直角三角形的两直角边长分别为a、b,斜边为c,那么《几何原本》的勾股定理以命题形式给出:在直角三角形中,直角所对边上的正方形等于夹直角两边上的正方形[10].《九章算术及刘徽注》中的勾股定理以3个简单几何问题术的形式给出:勾股各自乘,并,而开方除之,即弦[8].3者对比,初中教材体现数形结合的勾股定理且形体现在边长上;《几何原本》中体现形的勾股定理且形体现在面积上;而《九章算术及刘徽注》体现数的勾股定理.各自的表述为其内容服务,它们之间存在一定差异.
(5)定理证明
初中教材利用我国古代赵爽的弦图(如图1、图2、图3),通过图形旋转证明定理猜想.这种证明方法是近年来学者们倾向于“古证复原”思想提出的.初中教材对定理证明如下[6]:
赵爽注释的《周髀算经》对勾股定理的证明如下:案弦图又可以勾、股相乘为朱实二,倍之为朱实四.以勾股之差自相乘为中黄实.加差实一亦成弦实[8].
两种解释代表两种证明思想,赵爽弦图及其证明方法未成最终定论.初中教材选择历史上的数学作为定理证明既应符合历史,又应符合学生认知习惯.图形旋转是否是赵爽的弦图思想,是否符合学生对一般几何问题证明的思维形式,仍需再斟酌.
关键词:因果关系原因和条件内外因关系逻辑
破坏分子发现炸药仓库的守护卫兵在后半夜两次交接班时警惕性较差,遂利用这一疏漏,接近仓库点燃引爆物引发仓库爆炸,使国家财产遭受重大损失。
破坏分子“点燃”引爆物的行为无疑是仓库“爆炸”的原因。有人认为,保卫工作的“疏漏”也是“爆炸”事件发生的重要原因。还有人根据内外因原理认为,“炸药能够爆炸”(具有爆炸的性能)是内因,破坏分子“点燃”引爆物是外因。内因是根本的、决定性的原因。如果仓库内存放的只是一堆石子而没有炸药,就不会出现爆炸的结果。这一说法看似可笑,但与所说的“温度不能使石头变成小鸡”的例子是颇为类似的。
人们普遍认识到,现实中的因果关系是复杂的,存在“一因一果、一因多果、多因一果、多因多果”等情况。人们还从不同的角度把原因分为“直接—间接、主要—次要、重要—一般、偶然—必然”等等。但由于这些划分标准没有给予严格界定,这就引起许多不必要的争议。本文试图通过对概念进行严格定义,建立起“基本因果关系模型”,并以此为基础对复杂因果关系作出解释。
一、基本因果关系模型
哲学上把现象和现象之间那种“引起和被引起”的关系,叫做因果关系,其中引起某种现象产生的现象叫做原因,被某种现象引起的现象叫做结果。但在现实生活中,人们对“引起”和“被引起”却有大不相同的看法,结果出现了许多复杂的因果关系表述形式。但是表述越是复杂,越容易出现模糊和混乱,给地认识因果关系造成困难。所以对因果关系,学界至今还没有建构起比较完整的框架。
笔者以为,要想在因果关系上有所突破,应当借用数理逻辑的思想,从基本假设和定义出发,建构起“基本因果关系模型”(理论),以此为基础对复杂因果关系给予解释。
作为建构模型基础的基本假设和定义,都必须从现实世界中归纳出来。模型本身,也应当反映日常生活中最基本的因果关系。学研究的主体(基本单位)是个人,研究的是人的活动(体现了与外界的关系)。笔者从经济学得到启发,把通常所说的“事物”分解为动态的“事”和静态“物”两类。“物”是哲学研究的主体,“事”则是“物”的动态变化过程,它体现了主体“物”之间的关系。所以,“事”是由“物”参与产生的,而静态的“物”则可以独立存在。
但是为了利用人们熟知的哲学术语,我们做如下定义:
静态的“物”叫做“事物”,是哲学研究的主体,用A、B、C等表示;“事物”的变化叫做“现象”,是哲学研究的内容,用A、B等表示;“引起”用“”表示;A现象“引起”B现象,即现象A是结果B的原因,用“AB”表示。
日常生活中最基本的因果关系可以用开关的“开、关”与灯泡的“亮、灭”来表示。我们用导线把电池、开关、灯泡三个元件串联起来,构成一个简单电路,静态的开关、灯泡、电池、导线就是“事物”,开关状态的变化(开和关互变)与灯泡状态的变化(灭和亮互变)就是“现象”。“开关由关到开”与“灯泡由灭到亮”两个现象之间就具有“因果关系”。
“开关开”与“灯泡亮”(或“开关关与灯泡灭”)就存在“引起”和“被引起”的关系,可以用符号“AB”。我们把它作为“基本因果关系”的模型。下面就以“基本因果关系”为基础,讨论现实世界中复杂的因果关系。
二、区分原因和条件
我们把与结果发生有关的所有先前情况统称为“先前因素”,探索因果关系就是要确定哪些(个)先前因素是原因,哪些先前因素是条件。
与因果现象实际发生的过程正好相反,人们在探讨因果关系时往往是先知道结果,而后才去探讨其原因,这一过程称为“执果索因”。“执果索因”中必须利用“逻辑推理”,推断哪些现象可能引起结果的出现。
如果几个现象必须全部出现,结果才出现,即对于结果来说(注意,是对于特定结果来说的),这些现象缺一不可,那么这些现象就称为“串联现象”;如果几个现象中只要有一个出现,结果就必然出现,那么这些现象就称为“并联现象”。“串联现象”和“并联现象”是相关现象的两类基本关系。串联和并联“混合”的现象,可在此基础上,本文从略)。在一个电路中,串联开关的每一个都必须“由关到开”,才会出现灯泡“由灭到亮”的结果,所以对于灯泡“由灭到亮”来说,每一个串联开关“由关到开”的现象就属于“串联现象”;类似地,并联开关只要有一个“由关到开”,即可出现灯泡“由灭到亮”的结果,所以对于灯泡“由灭到亮”的结果来说,并联开关的每一个“由关到开”的现象,就属于并联现象。
我们之所以强调“对于特定的结果来说……”,是由于对于不同的结果来说,现象之间的关系就根本不同。例如对于灯泡“由亮到灭”来说,任何一个串联开关“由开到关”都可以引起这一结果,所以对于灯泡“由亮到灭”来说,每一个串联开关“由开到关”的现象,正好属于“并联现象”。同理还可以得出,对于灯泡“由亮到灭”来说,每一个并联开关“由开到关”的现象,正好属于“串联现象”。
在强调一遍,“串联现象”和“并联现象”的划分,是在“执果索因”过程中对“可能引起”结果的现象从上进行的划分,而现实中究竟是哪个现象“引起”了结果的发生,则必须从其它方面入手解决。为此,我们必须引入时间因素(参数)。
我们先研究“串联现象”。假设有n个“串联现象”,我们对它们发生(成就)的时间次序进行排列,分别为第1、2、3……n个现象。由于对结果现象来说,它们中的每一个都是必要的,缺一不可。而直到第n-1个现象出现,结果都没有发生,即它们都没有“引起”结果发生,所以都不是结果发生的原因。而第n个现象一出现,结果就发生了,根据“因果关系定义”,它就应当是结果发生的“原因”,其它n-1个现象则只是因果关系发生的相关“条件”。同理,“并联现象”中任何一个现象的出现都足以引起结果的出现,所以并联现象中最先出现的那个现象就“引起”了结果现象的出现,所以它就是结果发生的“原因”。
可见,时间因素对于因果关系具有重要意义。可以认为,从逻辑上说,原因和条件并无区别(因为逻辑不考虑时间因素)。只是由于它们出现的时间次序不同,才区分出“原因”和“条件”。
三、逻辑推理与因果关系的区别
逻辑推理与因果关系的区别主要有以下几点:
1、如前所述,逻辑推理与因果关系的最根本的区别是,逻辑推理不考虑时间因素,而因果关系却必须考虑时间因素。例如“父母结合”后“生出儿子”,在因果关系中,“父母结合”是原因,“生出儿子”是结果,二者不能颠倒。但从逻辑推理上说,男女结合却不一定能够生出儿子;反过来说,只要有“儿子出生”这一“条件”,则必然能够推出“父母结合”这一结论。写成逻辑推理形式,就是“因为儿子,所以父母”。由于有人把“因为……所以……”框架下的逻辑推理都看做“因果关系”,结果儿子倒成了父母的原因,闹出大笑话。从这一情况可以看出,用“因为……所以……”形式表述的关系,也可能不是因果关系。
2、逻辑推理的条件是有限的,而在任何一个因果关系中,“条件”实际上是无限的。在逻辑推理中,有时一个条件即可推出一个结论,有时多个条件才能推出一个结论。但即使多个条件推出一个结论,这些条件的个数也都是有限的。但现实中的因果关系却大不相同,与结果现象有关的条件实际上是无限(多)的,无法把它们穷举出来。例如在我们的简单电路中,导线的性能,元件的材料,以及是谁拉动了开关,他为什么要拉动等等,都是因果关系发生的相关情况。在研究中,我们只能够限定范围,对那些“不言而喻”的条件也只能“略而不提”,对那些超出界限的情况也不再研究。总之,现实中“原因和结果的关系”,要比逻辑推理中的“条件和结论的关系”复杂许多倍。
3、逻辑推理中(主要指演义推理),条件必然蕴涵结论;但在因果关系中,原因并不必然蕴涵结论,而只有在“条件”都已经具备的情况下,原因的出现才引起了结果的发生。例如在电路中,n个串联开关中,只有在前n-1个开关都发生了“由关到开”的变化之后,即在特定条件都已经“成就”之后,第n个开关“由关到开”才能够成为灯泡由灭变亮的“原因”。如果我们预先把n个开关进行编号,或者设想它们的颜色各不相同但功能完全相同,最后一个发生“由关到开”变化的那个开关是红色的,那么只要前面n-1个开关中只要有一个没有发生“由关到开”的变化,那么红色开关“由关到开”的变化就并不能“引起”灯泡由灭变亮的结果。所以现实生活中发生的每一个因果关系都是具体的,都是特定的原因引起了特定的结果。也许只有在实验室条件下(在实验室中可以严格限定条件),原因和结果的关系才是确定不变的:相同的原因必然引起相同的结果,不同的原因引起不同的结果,就象人们在白开水中加入砂糖则必然使白开水变甜,而加入食盐则会使白开水变咸一样起清楚明确。通常人们认为,“同果必然有同因”,“异果必然有异因”,这一原理也只有在实验室条件下才是有效的。
4、因果关系是“现实”关系,只有在原因现象和结果现象已经发生之后,我们才说,原因A和结果B之间存在“因果关系”。而“逻辑推理”是一种“理论”推导,它不需要任何现实性做支撑,条件就必然蕴涵结论。演绎推理的逻辑结构是:
若A包含于B,并且B包含于C,则A包含于C。就象初等数学中A<B并且B<C,那么A<C一样。
但是因果关系却不具有这种传递性。即A是B的原因,并且B是C的原因,却不能得出A是C的原因。即结果原因的原因,不是结果的原因,就象西欧封建中的等级关系那样:我的附庸的附庸,不是我的附庸。
当然,也有人把原因的原因看作结果的原因,就象我的祖先的祖先,也是我的祖先一样。但如果这样理解因果关系,那么秦始皇统一也许就是两千多年来一切社会事件的原因,一切事物的最终原因就都是界本身。这样理解因果关系,就丧失了研究的意义。如果严格套用因果关系定义,可以看到这些理解并不符合因果关系定义。
不过,从另一个角度看,正是由于理论必须符合现实,它才能够解释和预测现实。逻辑推理尽管是理论上的,也许正是由于它是理论上的,所以可以用于推测因果关系的可能性,并由现实予以证实和证伪。实际上人们也正是这样利用逻辑推理来探索因果关系的。结果在日常生活中,人们往往经常把因果关系中的“结果”与逻辑推理中的“结论”相混淆,例如有人把公安机关侦破刑事案件的结论称为“结果”。问“杀人案有结果了吗?”答曰“有,是张三谋财杀人!”这里的所谓“结果”,实际上是指找到了“杀人结果”的“原因”,它应当属于逻辑推理的“结论”而不是现实中因果关系的“结果”。再如我看到李四到就诊,由于就诊人都是因为有病,所以我就可以根据李四就诊推断他患了病,既由“就诊”这一条件得出了“有病”这一结论。但在平时,我们会说“因为我看见李四就诊,所以李四有病”。这样的表述,“就诊”好象成了“有病”的原因,正好颠倒了其中的因果关系。所以我们在分析“因为……所以……”这样的表述时,一定要搞清它是逻辑推理,还是因果关系。
四、复杂因果关系
现实生活中人们往往会说,有时出现“多因一果”,有时出现“一因多果”,还有时出现“多因多果”。我们应如何看待这些情况呢?
1、“多因一果”关系分析:
从逻辑上说,多个条件得出一个结论的情况很多,但只要引入时间因素“降到”现实中来,可以看到所谓“多因”,实际上只有一个是原因,而其它因素都是条件,就象串联开关和并联开关中只有一个的变化是原因,而其它都是条件一样。还有一个简单例子是有人认为“父和母都是儿子的原因,并且不分先后次序”,即两个原因“引起”一个结果。但这是由于没有正确概念产生的缺陷。严格说来,原因现象和结果现象都应当是动态的,而父、母及儿子都是静态的“物”,不符合“原因”和“结果”的要求。父母的“结合”与儿子的“出生”才是动态“现象”,它们才符合因果关系定义的要求。所以正确的因果关系表述应当是,“父母结合是儿子出生的原因”,原因和结果之间仍然是“一因一果”关系。
另外,笼统地看待结果却具体地探索原因,也会出现所谓的多因一果。例如,笼统地认识,会得出“社会秩序混乱”这一结果,应当说这是一个非常宏观的“现象”。如果在同一层次上分析原因,应当有一个宏观的术语表示“原因”。但实际上,到现在人们甚至还没有试图用一个宏观术语来表述这一宏观原因,于是只好谈论(许多)具体原因,由于具体原因很多,实际上无法统计,人们注意到这一情况,所以认为“多因一果”情况大量存在。但如果在同一层次上认识,就可以认为“社会秩序混乱是人的活动造成的”。只要在同一层次认识问题,就仍然是一果一因。
还有一种复杂的因果关系“链条”(一连串的因果关系),人们往往把中间环节中出现的“结果”都作为最后结果的“原因”,于是就出现所谓的“多因一果情况”。例如,人们往往把一个人所有的“直系祖先”都看作产生这个人的“原因”。但是如前所述,把一个人的“出生”作为结果,父母的“结合”应当是原因,而祖父母的结合则是“父亲”出生的原因,外祖父母的结合则是“母亲”出生的原因……
有人认为2004年美国总统大选时,布什战胜克里而连任总统,是亿万选民投票的结果,其中每一个投布什选票的选民都是布什当选为总统这一结果的“原因”。所以是亿万原因引起了一个结果。但如果我们引入时间因素,设想每个选民在不同的时刻投票,那么决定选举结果的是其中某一个选民的选票,他的票使克里的支持者再没有反败为胜的可能,他的投票才是布什当选总统的“原因”,而此前投票的其他选民则只是这一结果出现的条件(尽管也是非常必要的条件),此后投布什选票的选民,实际上在“布什当选总统”这一结果现象中没有起到作用(如果把选票总数作为“结果”,当然每个选民都起了作用)。但在这一事件中,原因和条件的区分没有多大实际意义,所以也没人进行这一分析。
2、“一因多果”关系分析
“一因多果”的情况与“多因一果”的情况正好相反。首先,现实世界中存在连续因果关系,人们往往把最初因果关系之后,结果作为原因又引起的结果都看做最初原因的结果。例如一个(对)祖先可能有许多直系后裔,如果把每个后裔都作为“结果”,就出现“一因多果”的情况。
其次,宏观地认识原因而微观地认识结果,则是“一因多果”的更为普遍的情况。例如把世界上“人口太多”看作原因,它当然会引起许多具体结果。因为人口有几十亿,每个人都要活动,都会引起相应的结果,于是也出现一因多果的情况。一因多果可以用宏观模型“总电闸断开”与“每个用电器停电”之间的关系表示。这显然是在不同层次上认识问题造成的。如果我们限定在同一层次上分析问题,就可以说,“总电闸断开”是原因,“全局停电”是结果,仍然是一因一果的关系。
3、“多因多果”关系分析
“多因多果”的现象,实际上是一因一果关系的复合。只要从结果中分解出单一结果,则不难在原因中分解出对应的单一原因。例如,厨师在做汤时使用了很多作料,汤的味道鲜美可口。鲜美可口的味道是由许多单一的“味道”组合而成的,我们可以把它分解为单一味道分别加以。我们假定该汤的味道有苦、辣、酸、甜、咸五种,再分别探讨,这五种味道是如何产生的。也许我们发现做汤前只加入了两种调味品,即食盐和五香粉。食盐是单一调味品,它产生了“咸味”;但五香粉是一种混合物,它由几种调料混合而成,只要再继续分解,就可以找出是哪种物质产生了苦味,哪种物质产生了辣味等等。于是在“物质”和“味道”之间就建立了一一对应关系。
五、不同学科对因果关系的不同认识和定义
我们前面是从上对因果关系进行定义的分析的,但是不同学科对因果关系往往有不同的定义和认识。最典型的就是“上的因果关系”和“现实中的因果关系”就大不相同。
例如,果园主人为了防止有人偷果子,故意喷洒了巨毒农药,导致偷果子的人中毒死亡。按照我们的严格分析,对“死亡”来说,“喷洒农药”、“偷果子”、“误食”是“串联现象”,最后一个现象“误食”,应当是死亡的“原因”,而“喷洒农药”、“偷果子”则是因果关系发生的相关条件。但在法律上,追查责任的标准是相关当事人的“过错”大小,由于果园主人违反了农药使用规定,主观上有过错(民事上不分故意和过失),所以就认为果园主人“喷洒农药”的行为与偷果人中毒“死亡”的结果之间“具有法律上的因果关系”,于是判决果园主人承担主要民事责任,甚至还可能承担刑事责任。
在现实生活中,为了对付老鼠,我们可以从市场上购买一个鼠夹子,放置在老鼠经常出没的地方,最后确实逮住了老鼠。对于这一结果来说,我们往往说,“安放”鼠夹子的行为是原因,“逮住”老鼠是结果。但这样说并不严格符合“因果关系定义”。根据我们的分析,“安放”鼠夹子时,结果并没有发生,所以不应该是引起结果的原因。最后的因素是老鼠“接触”到了夹子鼠,它才是引起结果现象发生的原因。
在法律上把有可能导致结果发生的情况都称为“原因”。例如在公路边挖沟修管道,没有作出明显标记,致使晚上骑自行车经过此处的行人摔倒。如果行人是正常行使无过错,就认为挖沟人应承担全部责任,尽管按照因果关系定义,行人的行为是原因,而挖沟只是引起结果发生的有关“条件”。
六、回到问题
利用因果关系基本模型,可以对日常生活中与因果关系有关的情况作出分析和解释。例如所谓的主要原因,是把“条件”都作为原因,根据它的重要程度所作的区分;间接原因,则是原因的原因或条件的原因而已;偶然原因是考察原因(或条件)的来源,把来源“偶然”的原因称为“偶然原因”;根本原因是探讨原因的原因,直到在特定范围内无法再继续探讨为止。有人把根本原因称为“终极原因”,但是如前所述,如果不限定范围,任何事物的终极原因都是界本身。所以脱离一定范围,终极原因的探讨就毫无意义。
学家总想探讨社会的终极原因,这一想法是值得赞赏的。但是既然要探讨终极原因,就应当限定范围,确定探讨到什么程度为止。美国学家诺思就探讨到“人口的自然增长”。应当说,在社会的界限内,这一原因确实可以称为“终极原因”,因为再往前探讨“人口自然增长”的原因,就是人的生物属性,这就超出了社会科学的范围。笔者认为,古代社会的长期停滞根源于特定的地理条件,也是归结到在社会科学范围无法解释的界限为止……
还是回到我们的炸药仓库爆炸的问题上来吧!在炸药仓库爆炸事件中,根据我们已经阐述的原理,破坏分子“点燃”导火线的行为应当是原因;“炸药能够爆炸”是“不言而喻”的前提条件。保卫工作的“疏漏”,是一个持续存在的因素,所以可以分两个阶段进行分析。首先,它被破坏分子发现,使他产生了引发爆炸的特定目的;其后,在破坏分子具体实施爆炸时,又被其直接利用接近仓库。从激发了破坏分子的犯罪目的看,保卫工作疏漏是条件的原因,也可以称为“间接原因”;从被破坏分子利用接近仓库的角度看,保卫工作疏漏又是仓库爆炸的直接“条件”。
“内因外因”则是以某一事物作为界限,把界限内的各种因素(条件)都称为内因,把界限外的事物都称为外因。笔者以为,把内因看成主要的、第一位的原因,也许在人们发挥主观努力上具有作用,但却难以对其进行严格的科学分析。用所谓“内外因关系原理”解释现实生活,则往往闹出大笑话。例如用石头去砸鸡蛋,结果当然是“鸡蛋破碎”。在“用石头砸”和“鸡蛋破碎”这两个现象中无疑存在因果关系,甚至可以说“砸”是“碎”的最直接、最主要、最重要、最根本……的原因,而没有人把“鸡蛋本身不够坚硬”作为“鸡蛋破碎”原因。
【关键词】线性代数;概念;教学;学习方法
《线性代数》是普通高校的一门基础理论课程,通过本课程的学习使学生掌握线性代数的基本概念和基本定理.线性代数有着重要应用,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分.线性代数具有高度的抽象性和严密逻辑性,但是缺乏直观的数学模型.线性代数课时短、内容多、理论多,例题少,它经常开设在大一.这些令学生普遍感到学习线性代数困难.除了上述的原因外,它也与教师的教学经验、教学方式、教学策略、对教材的处理方法等因素有密切关系.为了解决这个问题,笔者认为,可以从以下几方面入手.
一、加强基本概念的教学
在线性代数学习中,定义、定理及其推论等基本概念是我们做题的基础,只有深刻地理解定义、定理隐藏的知识,才能更好地把握定理及其推论的应用.我们在教学中,不能要求学生死记硬背公式,要想办法让学生理解这些概念、公式.怎么做呢? 就是尽量将概念具体化,如何具体化呢?尽量给予事例说明.如矩阵、线性变换、特征值与特征向量,让学生记住具体事例,使之认识深入化.在引导学生学习某些有具体几何背景(向量的模)的概念时,让学生多加联想,指导学生按图索骥.
为了让学生吃透概念,授课时应该提醒学生注意两方面的问题:1.对概念、定理的陈述如果是严谨的,那么就要一字一句的抠,一个字都不能动,改动个别字就会导致题意发生根本变化(线性相关、线性无关的概念);2.对于有些概念、定理,自己能够简明扼要用自己地语言来描述它们.另外,在教学中还可适当的构造反例,使学生加深对概念的理解,例如数的乘法运算满换律和消去律,但矩阵的乘法运算不满换律和消去律,这样的反例,直观性强,浅显易懂,能给学生留下深刻的印象,使学生掌握概念的本质.既提高了学生分析问题和解决问题的能力,又加深了学生对基本基本知识点的理解,为学生后续课程的学习打下了坚实的基础.
二、强化逻辑推理能力训练
逻辑推理是数学的一个基本功能,它也是人们学习和生活中经常使用的思维方式.逻辑推理能力是学好线性代数必须具备的能力,只有具备了良好的推理能力,才能做到既合理猜想又大胆猜想,敢于突破常规思维定式,但是逻辑推理能力的形成和提高是一个缓慢的过程,短时间内很难见效果,我们要创设概念、定理、方法等问题的活动情境,将抽象的理论想办法具体化,让学生自己探究知识、形成结论.这样我们既锻炼了他们的推理能力又培养了他们的学习兴趣,不再觉得学习线性代数是乏味、无趣.推理能力的培养,要考虑学生的自身特点、层次性,思维方式也存在着一定的差异,我们要因人施教,因材施教,这样使学生的逻辑推理能力不断跃上新台阶.线性代数的知识点较多,很多重要概念之间的内在联系并没在课本中充分反映出来.学生只有具备良好的合情推理和演绎推理能力,才能掌握知识点的核心.例如,向量的线性组合与线性方程组的解、向量的线性相关与齐次线性方程组的非零解均关系密切,但教材中把它们放在不同的章节,很少有学生考虑这些概念之间的联系,在这些教学内容完成后,我让学生自己推理出这些概念之间的关系,结果许多学生自己找到了正确的答案.
另外,还要让学生注意新旧知识的联系,最后把同类知识归纳、总结、列表,把容易混淆的概念进行对比,以加强学生的想象力、理解力、记忆力.对于有些习题,还要注意一提多解及同类题的共性,培养举一反三和推理能力.
三、注意学习方法的总结
线性代数的概念很多,重要的有:逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,特征值与特征向量.运算法则也很多,重要的有:矩阵乘法,求矩阵的秩,求非齐次线性方程组的通解,基本运算与基本方法要过关.这些知识点从内容上看环环相扣,相互交错.要使知识点衔接、成网,归纳总结是不可缺少的步骤.我们对问题的表述要富有逻辑性,解题方法灵活多样性.在复习时常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识才能融会贯通,解题思路自然就开阔了.
【关键词】形式证明 命题 逻辑推理 序列
【中图分类号】G632 【文献标识码】A 【文章编号】1674-4810(2014)04-0141-02
在初中阶段的数学学习过程中,几何知识是许多学生都倍感头痛的问题,尤其是几何证明。这是一个较为普遍的现象,其成因颇多,既有主观因素也不乏客观因素。不少同学在听老师讲课时基本能懂能接受,但要其证明时就出现了这样那样的问题,不是不会写证明过程,就是说不清理由;不是东扯西拉,就是前后衔接不上……还有就是想当然者——“我觉得就是这样的”;更有甚者,将举例说明和证明混为一谈,真可谓是“百花齐放”,诸如此,林林总总,本文不在此一一列举。
何谓证明?“一个命题的正确性需要经过推理,才能做出判断,这个推理过程叫做证明。”人教版,七年级下册21页,如是说。诚然,这不能说其不对,但也确实不够清楚。什么是“推理过程”?具体问题又该如何“推理”?从课本的这段话中,我们恐怕不易弄清以上问题。许多初学几何的初中生虽能朗朗上口地背诵定理,但却不能真正理解其含义,更谈不上对其的运用。那么,为何初中生都普遍觉得几何难学呢?问题究竟出在哪里?这些问题本文将稍后逐步探讨。
几何学是一门非常古老的学科,早在古希腊时期几何学就已经非常繁荣,比如欧式几何。时至今日,我们所学的初等几何基本上都是建立在经历了两千多年的欧式几何的基础之上的,由此可见其古老性之一斑。虽然几何学由来已久,并经过了数千年的积淀和研究,然而它仍然令一代又一代的学习者为之困惑,缘何?笔者认为,几何学之难(尤其是几何证明)关键在于其形式化的公理、定理、性质以及演绎推理等。所谓形式化,即是用一系列约定的符号(如逻辑符号)来表示概念、符号化命题以及推理,并将一定范围内的所有正确的推理形式(逻辑规律)都汇集在一个整体中。在此基础之上,由几条公理及公设出发,并规定一些初始符号和规则,经过有效的逻辑推理,得出若干新的、正确的、可靠的结论(即命题),这些命题的集合就形成一个公理系统,这就是形式化几何。初中几何主要研究的是平面几何的图形性质及其数量关系,在欧式几何的公理体系和框架下,早已经形成了许多有关平面几何的命题,但是教师在教学的过程中绝不能只告诉学生们一个结果,更多时候教师需要引导他们去探索并发现规律,总结和证明他们发现的规律,要证明就必然要弄清形式化的推理。
下面,本文就从数理逻辑的角度来探讨何谓推理?何谓证明?为此,需要介绍一些有关的数理逻辑概念和符号。
一 命题与逻辑运算符
定义1:具有确定真假性的陈述句称为命题。
凡是命题都有真值,命题的真值只有两种情况,即取自集合{0,1},具体情况是:真命题的真值为1,假命题的真值为0。
定义2:具有唯一确定真值的陈述句称为命题。
要判断一个语句是不是命题,需要注意两点:一是先判断其是否为陈述句;其次是看其真值是否唯一确定,这两个条件缺一不可。例如,“x>5,x∈R”,该语句虽然是陈述句,但却无法判断真假。因为x是可变的,当x取3时,其为假命题;当x取7时,其为真命题。这类语句可称之为命题变元或称之为命题变量,值得注意的是命题变元不是命题,原因是其真值是可变的,时真时假。此外,还要特别注意像“我正在说谎话”这样的陈述句,这个语句无论你假设其真值为“1”还是“0”都会推出矛盾,这样的语句称之为悖论。在数学中比较著名的有“罗素悖论”。
通常命题可分为简单命题和复合命题,简单命题就是不能分解成更简单的陈述句的命题,简单命题也称为原子命题。复合命题就是除简单命题外的命题,复合命题也可以理解为是由逻辑运算符联结简单命题而成的。为了便于后面的讨论,本文约定用小写的英文字母p、q、r…表示命题或命题变元。
比较常用的逻辑运算符有5种:(1)“”称为否定运算符,读为“非”。(2)“”称为合取运算符,读为“且”或“与”。(3)“”称为合取运算符,读为“或”。(4)“”称为蕴含运算符,读为“蕴含”。(5)“”称为等价运算符,读为“等价”。
以上5种逻辑运算有其优先级,规定其优先顺序为:()、、、、、,其中“()”的意思是有()的就先算,然后再按照、、、、的顺序来做运算,对于同一优先级的运算符,先出现者先算。
二 推理和证明
定义3:命题公式递归定义如下:(1)单个的命题常量或命题变量是命题公式;(归纳基)。(2)若A、B是公式,那么A、AB、AB、AB和AB也是命题公式;(归纳步)。(3)所有的命题公式都是有限次使用(1)和(2)得到的符号串;(最小化)。
在这里可以使用大小写英文字母表示命题公式,英文字母还可带下标。以后在没有二义的情况下,将命题公式简称为公式。命题逻辑的推理理论就是利用命题逻辑公式研究什么是有效的推理。
定义4:推理就是从前提集合开始演绎出结论的思维过程,前提集合是一系列已知的命题公式,结论是从前提集合出发应用推理规则推出的命题公式。
若前提是一系列真命题,并且推理中严格遵守推理规则,则推出的结论也是真命题。在命题逻辑中,主要研究推理规则。
定义5:称蕴含式(A1A2…An)B为推理的形式结构,A1,A2,…,An为推理的前提,B为推理的结论。若(A1A2…An)B为永真式,则称从前提A1,A2,…,An推出结论B的推理正确(或说有效),B是A1,A2,…,An的逻辑结论或称有效结论,否则称推理不正确。若从前提A1,A2,…,An推出结论B的推理正确,则记为(A1A2…An)B。
通俗地讲(A1A2…An)B即是说,若A1,A2,…,An都正确,则B也正确。清楚了什么是推理以及推理的结构后,下面来讨论什么是证明。
定义6:证明是一个描述推理过程的命题公式序列A1,A2,…,An,其中的每个命题公式或者是已知的前提,或者是由某些前提应用推理规则得到的结论,满足这样条件的公式序列A1,A2,…,An称为结论An的证明。
在证明中常用的推理规则有3条:(1)前提引入规则:在证明的任何步骤都可以引入已知的前提;(2)结论引入规则:在证明的任何步骤都可以引入这次已经得到的结论作为后续证明的前提;(3)置换规则:在证明的任何步骤上,命题公式中的任何子公式都可用与之等值的公式置换,得到证明的公式序列的另一公式。
以上是一些基本的逻辑推理规则,如何运用这些规则进行推理和证明呢?在定义6中可以看到,证明实质上就是要把已知的命题公式按照一定顺序排列起来,那么具体问题的证明要如何来将那些已知的条件、公理、定理、推论以及性质等(诸如此类在逻辑上都可视为命题公式)按照怎样的顺序来排列呢?下面,通过初中几何中的具体实例进一步体会理解证明的实质。
例如,已知:如图在RtABC中,∠C=90°,AC=BC,AD=DB,AE=CF。
求证:DE=DF。
分析:由ABC是等腰直角三角形可知,∠A=∠B=45°,由D是AB中点,可考虑连接CD,易得CD=AD,∠DCF=45°。从而不难发现DCF≌DAE。
证明:连接CD。
AC=BC;
∠A=∠B。
∠ACB=90°,AD=DB;
CD=BD=AD,∠DCB=∠B
=∠A。
AE=CF,∠A=∠DCB,AD=CD。
DCF≌DAE。
DE=DF。
上述证明的过程,实质上就是一个命题的序列,可以如下来看:(1)等腰三角形ABC两腰相等(AC=BC);(2)等腰三角形ABC两底角相等(∠A=∠B);(3)已知条件(∠ACB=90°,AD=DB);(4)等腰三角形DCB两腰及两底角相等;(5)等量减等量得等量(AE=CF),(4)得出的结论(∠A=∠DCB,AD=CD);(6)三角形全等的判定定理SAS(DCF≌DAE);(7)全等三角形对应边相等(DE=DF)。
这里的(1)(2)(3)(4)(5)(6)(7)不就是一个序列吗?并且序列中的(7)就是要证明的结论,其实所有的证明都是如此,只要按照逻辑的推理规则构造出一个包含证明结论的序列即可。那么,在这七步的序列中运用了哪些推理规则呢?(1)前提引入规则;(2)前提引入规则;(3)前提引入规则;(4)假言推理规则;(5)置换规则和结论引入规则;(6)假言推理规则;(7)假言推理规则。
数学能够非常有效地训练人的逻辑思维能力,它是其他学科无可替代的,而数学证明又是最为有效的途径,正如罗增儒先生所说,数学证明有助于获得新的体验、发现新的结论;有助于增进理解,只有清楚了一个命题的证明,才能真正理解该命题的内容。对于几何证明,首先应该弄清题意,明确证明方向即把握好题目的已知条件和要证明的结论,然后结合图形理清思路,把和本题有关的命题搜索出来,再来思考需要用到哪些定理,将其罗列出来,最后按照逻辑的思维方法把它们构造成一个包含要证明结论的序列,这就完成了证明的过程。
参考文献
[1]人民教育出版社、课程教材研究所等.数学(七年级下册)[M].北京:人民教育出版社,2012
[2]张顺燕.数学的源与流[M].北京:高等教育出版社,2004
[3]耿素云.离散数学[M].北京:清华大学出版社,2008
一、知识结构、逻辑推理及相互间的关系。
在小学数学教学中,构建良好的数学知识结构是培养发展学生逻辑思维能力的一个重要途径。乌辛斯基早就指出:“所谓智力发展不是别的,只是很好组织起来的知识体系。”而知识体系因为其内在的逻辑结构而获得逻辑意义。数学中基本的概念、性质、法则、公式等都是遵循科学的逻辑性构成的。
“数学作为一种演绎系统,它的重要特点是,除了它的基本概念以外,其余一切概念都是通过定义引入的。”这种演绎系统一方面使得数学内容以逻辑意义相关联。另一方面从知识结构所蕴含的逻辑思维形式中得到的研究方法(如逻辑推理等),再去获取更多的知识。如学习“能同时被2、5整除的数的特征”时,我们是通过演绎推理得到的:
所有能被2整除的数的末尾是0、2、4、6、8;
所有能被5整除的数的末尾是0、5;
因此,能同时被2、5整除的数的末尾是0。
数学中的这种推理形式一旦被学生所熟识,他们又会运用它在已有知识的基础上作出新的判断和推理。
学生知识的习得和构建,主要依赖认知结构中原有的适当观念,去影响和促进新的理解、掌握,沟通新上知识的互相联系,形成新的认知结构系统,这是数学知识学习过程中的同化现象。它包含三方面的内容:一是新旧知识建立下位联系;二是新旧知识建立上位联系;三是新旧知识建立联合意义。这三方面与逻辑结构中的三类推理恰好建立相应的联系。推理,是从一个或几个已知的判断得出新的判断的过程。通常有:演绎推理(从一般性的前提推出特殊性结论的推理);归纳推理(从特殊的前提推出一般结论的推理);类比推理(从特殊的前提推出特殊结论的推理或从一般前提推出一般结论的推理)。如:教学“循环小数”时,先在黑板上出示算式1.2÷0.3=4、1÷2=0.5、4.8÷4=1.2、0.666÷2=0.333;1÷3=0.333……、70.7÷33=2.14242……、299÷37=8.081081……等。观察各式的商学生们直观认识到:小数有有限小数、无限小数之分。进而从一组无限小数中,发现了循环小数的本质属性,得到了循环小数的定义。由两个或几个单称判断10.333…的数字3依次不断地重复出现,2.14242…的数字42依次不断重复出现等,得出一个新的全称判断(循环小数的定义)是归纳推理的一种方法。
在教学的过程中,教师结合教学内容,有意识地把逻辑规律引入教学,注意示范、点拨,显然是有利于发展学生的逻辑思维能力。
二、逻辑推理在教与学过程中的应用。
1.如果原有的认知结构观念极其抽象,概括性和包容性高于新知识,新旧知识建立下位联系、新知识从属于旧知识时,那么宜适当运用演绎推理的规则,由一般性的前提推出特殊性的结论。
“演绎的实质就是认为每一特殊(具体)情况应当看作一般情况的特例”。为了得以关于某一对象的具体知识,先要找出这一对象的类(最近的类概念),再将这一对象的类的属性应用于哪个对象。如:运用乘法分配律简便运算时,学生必须以清晰、稳固的乘法分配律知识为基础,才能得出:
999×999+999=999×(999+1)=999000
这里999×999+999=999×(999+1)是根据一般性判断a×c+b×c=(a+b)×c推出的。当学生理解这种推理的顺序,且懂得要使演绎推理正确,首先要前提正确,并学会使用这样的语言:
只有两个约数(1和它本身)的数是质数;
101只有两个约数;
101是质数。
那么,符合形式逻辑的演绎法则就初步被学生所掌握。
在知识层面中,这种类属过程的多次进行,就导致知识不断产生新的层次,其逻辑结构就越加严密,新的知识也就会不断分化和精确化,就可以逐渐演绎出新的类属性的具体知识。教学中正确把握这种结构,用演绎推理的手段组织学习过程,不但能培养学生的思考方法,理解内容的逻辑结构,还能提高学生的模式辨认能力,缩短推理过程,快速找到解题途径。
在新旧知识建立下位联系时,整个类属过程可分化为两种情况。
(1)当新知识从属于旧知识时,新知识只是旧知识的派生物。可以从原有认识结构中直接推衍。新知识可以直接纳入原有的认知结构中。
如学生已学过两位数的笔算,清晰而稳固地掌握了加法的计算法则,现在要学三、四位数的加法,只要让学生思考并回忆两位数加法计算的表象结构,适当地点拨一下三、四位数加法与两位数加法有相同的笔算法则,学生就能顺利解决新课题。新知识很快被旧知识同化,并使原有笔算法则得到充实新的知识获得意义。虽然这些知识的外延得到扩大,但内涵不变。
教学中,掌握这些知识的内涵的逻辑结构,就会有一个清晰的教学思路,就会自觉地运用演绎推理的手段,与学生一起愉快地顺利地进行下位学习。就不会在讲三、四位数加法时,着眼于竭力以三、四位数加法为例证,说明加法的计算法则。
(2)新知识类属于原有较高概括性的观念中,但不能从原有上位观念中直接派生出来,而需要对原有知识作部分的改组,才能同化新知识。新知识纳入原有知识后,原有知识得到扩展、加深、限制、修饰和精确化。新旧知识之间处于相关类属。这时,运用演绎推理之前,先要对原有知识作部分改组,请出一个“组织者”,再步步演绎。(为新知识生长提供观念上的“固定点”,增加新旧知识间的可辨性,充当新旧知识联系的“认知桥梁”,奥苏伯尔称它为“先行组织者”简称“组织者”。)
如学生已掌握了长方形面积计算公式:S=ab,现在要学习正方形的面积计算公式,这就要对长方形进行改组,把它的长改成与宽相等(a=b),于是“正方形面积计算”可被“长方形面积计算”同化,当a=b时,S=ab=a·a=a[2,]。又如教圆面积之前,向学生演示或让学生动手操作,把圆适当分割后拼成近似长方形,由长方形面积公式导出圆面积计算公式。其间以直代曲,是由旧知识导向新知识的认知桥梁,是由演绎推理构建新知识时,找到的观念上固定点。找到固定点后圆面积的计算被长方形面积同化,于是面积计算规则从直线封闭图形的计算,推广到曲线封闭图形的计算,扩展加深了对原有面积计算规则的认识内容,使有关面积计算的认识结构趋向精确化。
2.如果原有认识结构已形成几个观念,要在原有的观念上学习一个抽象、概括和包容性高于旧知识的新知识,即新旧知识建立上位联系时,那么适当运用归纳推理的规则,可由特殊的前提推出一般性的结论。当需要研究某一对象集时,先要研究各个对象(情况),从中找出整个对象集所具有的性质,这就是归纳推理。归纳推理的基础是观察和试验,是从具体的、特殊的情况过渡到一般情况(结论、推论)。
教材中关于概念的形成,运算法则和运算定律、性质得出,一般是通过归纳推理得到的。如分数的初步认识。在学习前,学生认知结构中已有了分数的某些具体经验,加上教材提供的和教师列举的生活实例和图形。如:一个苹果平均分成两份,每份是它的1/2,一根钢管平均截成三段,每段是它的1/3,一张纸平均分成4份,每份是这张纸的1/4……所有这些操作和演示都让学生认识到几分之一这个概念。随后,再认识几分之几。这种不完全的归纳推理,是在考察了问题的若干个具体特例后,从中找出的规律。(严格地说,由不完全归纳法推理得到的结论还需要论证,才能判定它的正确性。)
运用归纳推理传授知识时,要根据学生的实际经验,选取典型的特例,并能够通过典型特例的推理得出一般性的结论。又要用这个“一般结论”,去解决具体特例。在教与学的进程中,归纳和演绎不是孤立地出现的,它们紧密交织在一起。
3.如果新旧知识间既不产生从属关系,又不能产生上位关系,但是新知识同原有知识有某种吻合关系或类比关系,则新旧知识间可产生并列关系。那么可以运用类比推理。
教材中,商不变性质和分数基本性质,乘数是整数的乘法和乘数是分数的乘法等,学习这类与旧知识处于并列结合关系的新知识时,既不能以上位演绎推理到下位,又不能以下位归纳推理到上位,只能采用类比推理。如五年级学习“一辆卡车平均每小时行40千米,0.3小时行了多少千米?”时,学生还无法根据小数乘法的意义列出此题的解答等式。所以,教学中一般用整数乘法中的数量关系相类推。
原有的认知结构中,整数乘法与小数乘法只是一般的非特殊的并列结合关系。新知识的学习,只能利用原有知识中的一般的和非特殊的有关内容进行同化。
1、常识模块:各省省考常识可能会更偏重于考查与本地有关的考点。
2、言语理解模块:题目难度可能会有差别。
3、数量关系模块:国家公务员考试自2012年开始就不再考查数字推理,但有些省份近年仍旧保留了数字推理的考查,如:江苏、浙江、广东等。
4、判断推理模块:国考与各省省份在图形推理、类比推理、定义判断、逻辑推理四种题型题量设置上会有差别。
1 用“比值法”定义的物理量系统归类
中学物理中应用比值法定义的物理量很多,现将它们收集整理成下表,供同行在教学中参考。
2 “比值法”的特点
2.1 什么是“比值法”
比值法就是应用两个物理量的比值来定量研究第三个物理量。它适用于物质属性或特征、物体运动特征的定义。由于它们在与外界接触作用时会显示出一些性质,这就给我们提供了利用外界因素来表示其特征的间接方式,往往借助实验寻求一个只与物质或物体的某种属性特征有关的两个或多个可以测量的物理量的比值,就能确定一个表征此种属性特征的新物理量。应用比值法定义物理量,往往需要一定的条件;一是客观上需要,二是间接反映特征属性的的两个物理量可测,三是两个物理量的比值必须是一个定值。
2.2 两类比值法及特点
一类是用比值法定义物质或物体属性特征的物理量,如:电场强度E、磁感应强度B、电容C、电阻R等。它们的共同特征是;属性由本身所决定。定义时,需要选择一个能反映某种性质的检验实体来研究。比如:定义电场强度E,需要选择检验电荷q,观测其检验电荷在场中的电场力F,采用比值F/q就可以定义。
另一类是对一些描述物体运动状态特征的物理量的定义,如速度v、加速度a、角速度ω等。这些物理量是通过简单的运动引入的,比如匀速直线运动、匀变速直线运动、匀速圆周运动。这些物理量定义的共同特征是:相等时间内,某物理量的变化量相等,用变化量与所用的时间之比就可以表示变化快慢的特征。
3 “比值法”的理解
1.理解要注重物理量的来龙去脉。为什么要研究这个问题从而引入比值法来定义物理量(包括问题是怎样提出来的),怎样进行研究(包括有哪些主要的物理现象、事实,运用了什么手段和方法等),通过研究得到怎样的结论(包括物理量是怎样定义的,数学表达式怎样),物理量的物理意义是什么(包括反映了怎样的本质属性,适用的条件和范围是什么)和这个物理量有什么重要的应用。
一、根据学生的已有知识储备,做好知识间的衔接,提高学生的学习兴趣
初中阶段的平面几何教学,在中学数学教学中起着承上启下的作用,提高初中平面几何的教学质量,做好中小学的衔接工作很重要。现在小学数学教材中有一部分内容涉及几何初步知识,其特点是通过量、拼、剪等简单的实验活动得出几何图形的概念,都是抽象性的定义,不要求推理。而初中平面几何是把小学“数”的学习转移到“形”的学习中来,要求学生从几何的本质属性方面理解和掌握图形的概念,用逻辑推理的方法把握图形的性质,使学生学会正确使用几何语言,获得作图技能,掌握论证方法。所以,为了让学生轻松学习平面几何,在教学中可以先通过复习小学的知识,对小学教材上提法片面或含糊不清的知识,给予纠正和完善,然后再上升到理论。
二、理解概念,掌握几何语言,是学好平面几何的必备条件
数学不同于其他学科,它的知识内容是一环套一环的,逐层深入,如果基础知识掌握不牢,后面的学习会更加困难,落下的知识也很难补上,因此中学教学大纲中明确指出“正确理解数学概念是学好数学的前提”。几何概念、定理、公理等几何的基础知识,是进行几何证明的理论依据,是最基础的知识,只有理解、把握好每个概念、定理的本质,才能为以后的几何学习打好根基。所以在讲解概念、定理时,让学生积极参与知识的探究,让其感受知识产生、发展、归纳的过程,通过师生、生生合作,逐步加深对概念的理解。学习几何,仅仅掌握概念是不够的,还得掌握几何语言。任何一门学科都有自己的学科语言,只有正确掌握了这门学科的语言,才有可能顺利地进行课程的学习。几何是一门逻辑性十分严谨的学科,它的严谨性突出表现在语言的表述上。掌握几何语言,对理解几何概念,识别几何图形,学会推理论证有着重要的作用。几何语言有三种表现形式:文字语言、图形语言和符号语言,学好这三种语言是完成一个几何证明必须具备的条件。只有理解了几何中的文字语言,才有可能按文字要求画出相应的图形并会使用符号表示。反过来,当图形已知时,要能用几何中的文字语言、符号语言表达图形的形状、大小和位置关系。初中平面几何研究的内容是平面图形的性质及其相互之间关系的学科,几何语言也可以说是图形符号语言,包括图形、符号、文字、作图、推理语言等。所以在教学过程中,图不离文,文不离图,将几何概念中那些各成体系又互相渗透的语言,用文字语言结合图形语言转化成符号语言,或把符号语言“翻译”为文字语言。在教学过程中,反复将这三种语言相互转换,以加深印象,既培养学生的几何思维分析能力,又提高学生学习几何的兴趣。
三、狠抓习惯养成,是培养学生几何能力的前提
1.注重培养学生的读图、识图、画图能力
识图是今后观察图形、分析图形的基础,它的训练应从简到繁、从易到难逐步提高。观察图形时,要指导学生对图形进行拆分,把一个复杂的图形分成几个简单的图形来处理,从而提高识图能力。画图也是几何语言到直观图形的操作过程,是分析问题、解决问题的基本环节。所以在教学中,要求学生掌握基本图形的画法,如如何画直线、射线、线段、角等。同时,在教学中还需充分利用教材编排特点:通过量一量、摆一摆、画一画、折一折、填一填等方法转移学生的注意力,培养学生的动手动脑能力。
2.严格要求几何语言书写格式
结合图形让学生掌握基本图形的表示方法,认真理解数学定义、定理、公理、判定、性质,用简单的符号表述因果关系,然后用以解决综合问题,在训练中逐步规范学生的书写格式。
3.重视几何学习的逻辑推理过程
简单的逻辑推理是学习整个初中几何的基础,教师在实践过程中要重方法的指导,重点介绍“执果索因”的分析方法,让学生从结果入手,逐层分析,寻找原因,找到源头,明白已知条件的用处,然后再由条件到结论,把推理过程写出来,培养他们学习写出推理过程的方法和技巧的能力。
4.强调与生活实际相结合
关键词: 《线性代数》 课程教学 教学实践 教学改革
《线性代数》课程的特点是概念多、结论多、内容抽象、理论性强;计算复杂、技巧性强、逻辑性强;有明显的几何背景,研究方法新颖多样。它是学生从比较具体的数学到抽象的公理化的数学的一个重要过渡,很多学生掌握不好。我院的学生多数是文科生,数学基础比较差,学起来困难更大。有的学生虽然上课听懂了,但是做起题来却感到特别困难,很多学生对所学知识理解不透,从而影响对后续数学课程甚至专业课程的学习。如何使这门课程易于学生理解和掌握?笔者通过多年的教学实践,对这门课程教学进行了改革,收到了很好的效果,主要做了以下方面的努力和尝试。
一、把概念弄清楚,理解确切并且记住。
如果概念不清楚,模模糊糊,就没有办法运用概念进行逻辑推理,做题时就不知如何下手。因此在学习中应当首先复习概念、定理、例题,然后再做作业,从而使作业做得比较顺利,更节约时间。更何况,如果没有弄清楚概念,那么稍微变一下,学生可能就不会了。由于《线性代数》逻辑性强,后面的内容需要用到前面的概念、定理、性质,如果每次课上学的内容都没有及时复习、消化,那么时间越长,学的概念、定理、性质越多,脑子里就会乱成一团麻,理不清头绪,这样学习后面的内容就会很吃力。而如果课后都能及时复习、及时消化,就会越学越顺利。那么怎样才能把概念弄清楚呢?一般来说应当从以下方面着手:①首先弄清楚概念是怎么提出的?它的背景是什么?②这个概念的确切内容是什么?③多举一些具体的例子帮助理解抽象的概念,特别是举一些几何上的例子比较直观、形象。
二、培养逻辑推理能力,即运用概念和已知的定理、性质进行推理、判断的能力。
形式逻辑的一些基本常识是应当熟悉的。譬如,命题有四种形式:原命题,否命题,逆命题,逆否命题。若原命题正确,则逆否命题一定正确,但否命题和逆命题不一定正确。要能进行逻辑推理,就必须熟记概念和定理、性质,否则如同没有武器就没有战斗力,即不知道怎样做题。
三、学习每一章、每一节时,都要明确这章、这节要研究什么问题,是如何解决的。
这样做,就有的放矢,既知其然又知其所以然,思路就清晰明了。如果坚持这么做,就能不断学到方法,就能提高分析问题、解决问题的能力。
四、深入浅出,使抽象内容具体化。
线性代数课程的许多计算、结论及证明都是比较抽象的。例如n阶行列式的计算,高阶矩阵的运算,n个未知量的线性方程组求解等,因为其元素不可能全写出来,因此其运算过程只能靠想象;另外一些重要概念,线性相关、线性无关,向量组的最大线性无关组,齐次与非齐次线性方程组的基础解系及矩阵的秩等,学生都难以接受。在讲这些内容时,我尽量把抽象概念具体化,把相关概念联系起来。例如,向量组的最大线性无关组,向量空间的基,齐次线性方程组的基础解系,虽然它们所讨论的对象不同,但定义都是一样的。我在给出定义后,讲一些具体的例子加以说明,使学生加深对概念的理解,尽量把抽象的内容讲得通俗易懂。
五、有详有略,突出重点,加强应用。
线性代数课程内容多且难,课时紧。我在讲授该课程时,重点要求学生掌握计算问题。如行列式的计算、矩阵的有关运算、矩阵的秩、向量组的秩、线性方程组求解、求特征根、特征向量。详细讲解其意义和用法。对一些复杂的定理证明则主要讲解其思路。只要求学生掌握一些简单的理论证明。
六、教学互补,调动学生学习积极性。
在认真备课,搞好课堂教学的同时,我还调动学生学习的主动性,对于计算问题比较多的内容,安排一些课堂练习,先让学生自己动手做,再有针对性地讲解,选一些具有典型性及综合性的题,提高学生的学习兴趣,从而将前后知识连贯起来。
七、学习线性代数跟任何一门数学课一样,必须适当多做一些习题。
光听课、光看书,自己不动手做,是学不好数学的。只有通过做题,才能加深对概念、定理、性质的理解,才能学到一些方法;做题时,一定要自己动脑想,不要轻易翻书,只有实在想不出来时才能翻看一下习题解答。只有通过自己动脑想出来的东西才是自己的东西,否则很快就会忘记。做题时尽量用多种方法做,从不同的角度分析问题,从而发散思维,拓宽思路;做题时尽量算到底,不要因为算起来比较麻烦就不愿意往下算了,认为反正我方法会了。这样是不行的,因为我们要培养计算能力,有些同学方法都会,就是一动笔就错,一计算就出问题,算了很多次就是算不出答案,说明计算能力不强,而计算能力的增强要靠平时的计算训练。
参考文献: