公务员期刊网 精选范文 生物质发电的缺点范文

生物质发电的缺点精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的生物质发电的缺点主题范文,仅供参考,欢迎阅读并收藏。

生物质发电的缺点

第1篇:生物质发电的缺点范文

【关键词】 生物质发电厂 化学水处理系统 设计特点

生物质发电就是通过燃烧小麦、玉米秸秆及树皮等生物质燃料进行发电的一种技术,是可再生能源发电的一种。生物质发电开创新的能源利用方式,变废为宝,变害为利,可降低有害物的排放。生物质发电厂每燃烧100吨秸秆,可节约标准煤约40吨,减少二氧化碳排放量约55吨,具有良好的经济效益和环境效益。生物质发电厂在中国作为一种新生事物,随着该项技术的国产化和政府扶持力度的加大,今后将会有非常广阔的应用前景。化学水处理设计在生物质发电厂设计中举足轻重,本文以山东某生物质发电厂为例,阐述其化学水处理系统设计特点。

1 工程概况

该工程新建1台130t/h振动炉排、高温高压、生物质燃料锅炉,配1台30MW凝汽式汽轮发电机组,不可虑扩建。主汽参数:8.83MPa, 535℃。机组年利用小时数为5500小时。

化学水处理系统水源取自该电厂附近河水,从水质分析的结果来看,水质较好,悬浮物、有机物、含盐量等均不高。

2 化学水处理系统设计

2.1 化学水处理系统工艺选择

根据水源水质和机组参数,化学水处理系统拟采用工艺为:来河水加热器超滤超滤水箱一级反渗透一级淡水箱二级反渗透二级淡水箱EDI除盐水箱主厂房用水点。

该处理工艺为全膜法处理,目前化学水处理常用的处理工艺有:离子交换法和膜法,相对于离子交换法,全膜法处理工艺具有如下特点:

(1)优点

(a)水质变化适应性强;

(b)出水水质好,对有机物、胶体、硅的去除率较高;

(c)无酸碱再生,无酸碱废液排放,环境污染小;

(d)运行维护简单,自动化程度高,要求运行人员少;

(e)设备布置紧凑,占地面积少。

(2)缺点

(a)系统水回收率较低;

(b)设备投资稍高;

(c)运行能耗较高。

经比较,由于全膜法具有产水水质好,出水水质稳定,无酸碱废水排放、环保,操作控制简单,运行维护人员少,占地面积少等优点,选择全膜法作为化学水处理系统的处理工艺。

2.2 化学水处理系统出力选择及运行

根据机组水汽损失量7.7t/h,化学水处理系统出力设计为8t/h。其中设备选用2套12t/h超滤装置、2套9t/h一级反渗透装置、2套8.9t/h二级反渗透装置以及2套8t/hEDI装置。正常运行时,各启动一套设备即满足用水量的要求,根据需要,也可两套设备同时启动。整套系统的运行为PLC全自动控制。

2.3 化学水处理系统出水质量控制指标

化学水处理出水水质满足以下要求:硬度≈0μmol/L,电导率(25℃)≤0.2μs/cm,二氧化硅≤20μg/L。

3 化学水处理布置设计

本工程化学水处理室并未设置独立的厂房,而是在主厂房外侧建一毗屋与主厂房构成联合建筑。采用与主厂房联合布置,具有以下优点:(1)布置更集中、紧凑,减少了独立建筑物数量;(2)便于集中管理;(3)减少占地面积;(4)缩短了化学水处理系统至用水点的连接管道;(5)节约投资。

该水处理系统设备布置分室内布置和室外布置两部分,其中室内厂房为24m×9m的建筑,占地面积216m2。设备除了2台除盐水箱容积较大室外布置外,超滤装置、一二级反渗透装置、EDI装置、超滤水箱、一二级淡水箱以及泵等为室内布置。超滤、反渗透装置均组合式框架结构,其中一二级反渗透组合在一个框架内,设备安装和管道连接都非常简便。根据生物质发电厂水处理系统设备出力小的特点,超滤水箱和一二级淡水箱容积均不大,为室内布置提供可行性。超滤水箱、淡水箱室内布置使水处理系统的设备布置更紧凑,整体性更强,工艺连接管道更短,无论从减少占地面积还是从节约投资上均具有极大优势。

4 结语

在该化学水处理系统运行的一年中,出水水质稳定,出水水质情况为:硬度=0μmol/L,电导率(25℃)=0.08~0.15μs/cm,二氧化硅=5~12μg/L,满足锅炉用水水质要求。设备采用全自动化运行,所需运行人员少,基本1~2人即可满足运行要求。

由于全膜法处理具有环保,水质适应性强,出水水质好,运行操作简便,设备占地少等优点,在工艺和布置上均可实现优化设计,在生物质发电厂化学水处理设计中值得推广和应用。

参考文献:

第2篇:生物质发电的缺点范文

【关键词】新能源,发电,现状,情景

引言

在我国,充足保障电力供应对经济的持续发展必将起到决定性作用,在现有大电网的基础上,大力发展新能源发电技术将是我国电力系统发展的趋势。新能源发电是指某些中小型发电装置靠近用户侧安装,它既可以独立于公共电网直接为少量用户提供电能,也能直接接入配网,与公共电网一起为用户提供电能。它是以资源和环境效益最大化、能源利用效率最优化来确定方式和容量的新型能源系统。

一、我国能源和发电技术的现状

我国作为工业大国和人口大国,对能源的消耗量非常大。近年来,消耗总量的增长速度也非常快:标准煤从2001年的14亿吨增长到2005年的22亿吨,原油进口从2001年7300万吨增长到2008年的1.79 亿吨。电力电能作为能源输出的最大方向,其消耗总量从2001年的3.2亿千瓦增长到了2008年的7.9亿千瓦。如此巨大的电能消耗,必然会加剧能源的需求,对于我国的能源政策也更加不利。

目前,集中发电、远距离输电和大电网互联的电力系统是我国电能生产、输送和分配的主要方式。这种大电网的弊端主要有:不能灵活跟踪负荷的变化,无法及时更改供电量,如冬季取暖负荷的激增就会导致电力供应短时不足;另外,电力系统庞大,事故发生频率高,在这种大型互联电力系统中局部事故极易扩散, 导致大面积的停电,而一旦发生电网崩溃,其所造成的破坏和影响将十分严重。

电能是国民生活和生产的根基,因此无论是从能源角度,还是电力系统自身方面来看,研究新能源发电技术对于我国的现代化建设和人民生活都具有相当大的现实意义和战略意义。

二、我国的新能源发电技术及其现状

目前我国用于发电的新能源主要有风能、太阳能、生物能、核能、地热能等,由于这些能源在我国应用起步时间及其对技术的要求不同,其发展程度也各有深浅,下面坐着就其中几种主要的性能源的应用现状进行具体分析。

2.1 风力发电的应用及现状

风力发电系统由桨叶、机械传动系统、发电机、电力电子装置、升压变压器等组成,风力发电系统的发电过程是一个能量转换过程,风的动能先被风机的桨叶捕获转换为机械能,再经过机械传动系统传递给发电机,由发电机实现机械能到电能的转换,直接接入电网或通过电力电子装置接入电网。目前风机的输出电压多为690 伏,需要经变压器升压到满足电网要求的电压,一般为35 kV 及以上。

自19世纪80年代以来,美国电力工业的奠基人查尔斯•弗朗西斯•布拉升安装了世界上第一台自动运行且用于发电的风机,到现在为止,风机技术发展越来越成熟,尤其是20 世纪90 年代以后,世界各国政府相继出台了风电发展的激励政策等,促进了风电技术的快速发展。目前已经出现了几种成熟的主流技术, 包括失速型恒速风机,主动失速型恒速风机,双馈变速风机,直驱变速风机,半直驱变速风机。

现代风机的单机容量不断增大, 从几百千瓦到兆瓦级。目前市场上的风机单机容量平均约为2000千瓦,风机单机容量最高已达6000千瓦。

1986年4月中国第一个风电场在山东荣成并网发电,1989 年起全国各地陆续引进风机建设风电场,装机容量逐年增长,规模在1000千瓦以上的电场有新疆达坂城、内蒙古辉腾锡勒、广东南澳等地的风电场。2009年底我国风电并网总容量为1613万千瓦,同比增长92.26%,截至2010 年底,风电并网总量已超过2000万千瓦,而我国风电开发潜力超过25亿千瓦。

2.2 太阳能发电技术的应用及现状

太阳能是地球永恒的能源, 我国陆地面积每年接收的太阳辐射得热量在 3.3×103~ 8.4×106kJ/ ( m2•a)之间,相当于2.4×104亿t 标准煤的发热量, 属太阳能资源丰富的国家。全国总面积 2/ 3 以上的地区年日照时数大于2000h,日照得热量在5×106kJ/ ( m2•a)以上。我国、青海、新疆、甘肃、宁夏、内蒙古高原的年太阳辐射得热量和日照时数均较高,属太阳能资源丰富地区;除四川盆地、贵州等地太阳能资源稍差外,东部、南部及东北等地区均为太阳能资源较丰富和中等地区。

太阳能发电有2 种方式,即太阳能热发电和太阳能光伏发。我国在“八五”“九五”“十五”期间,对太阳能热发电技术进行了一些研究,但实际应用尚未真正起步。美国和欧洲一些发达国家目前正处于太阳能热发电商业化的前夕。据专家预测,2020年左右,太阳能热发电系统将在发达国家实现商业化, 并逐步向发展中国家扩展。

太阳能光伏发电技术已日趋成熟,2004 年全球安装的太阳能发电系统装机容量已超过1000GW。中国第一座大功率的太阳能发电站建于内蒙古巴林右旗古力古台村,功率为560W,1982年10月11日正式投运。随后又在建成2座10kW、一座20kW和一座25kW的光伏电池电站。中国目前装机容量最大的太阳能发电工程是安多光伏电站,安多光伏电站于1999年3月建成,,装机容量达100 kW.。该电站自投入运行以来,累计发电量达131280 kW•h,日平均发电量达240kW•h。

2.3 生物质能发电技术的应用及现状

所谓的生物质指的是农林废弃物、水生植物、油料作物、工业加工废弃物和人畜粪便及城市污水和垃圾等。生物质能发电是指利用生物质本身的能量,将其转化为可驱动发电机的能量形式,用来发电,然后将所发电能直接提供给用户或并入电网。

目前,美国在生物质发电领域有许多成熟的技术和实际工程,处于世界领先地位,总装机容量已达10 GW。底特律拥有世界上最大的垃圾发电厂,日处理垃圾量4000t,发电能力65 MW。在这方面,我国尚处于起步阶段,首座国产化的垃圾焚烧发电厂日前已在温州市瓯海区并网发电,日处理生活垃圾320t,年发电量2500万kW•h。

2.4 核能发电技术的应用及现状

核能自从问世以来就被许多专家认为是当代可能大规模开发的新能源,尤其对于能源资源匮乏的国家和地区来说,核能已成为必不可少的替代能源,是解决生态环境问题和保障能源安全供应的有效途径。

我国拥有丰富的核能资源,天然铀提炼及其加工能力已初具规模,能够自行设计制造300MW压水堆核电站的成套设备,正在建造600MW的核电站。我国目前已形成广东、浙江、江苏3个核电基地,自从1985年秦山一期核电站开工至今,我国现有机组11台、装机容量900万kW。

2004 年国务院分别批准了广东岭澳二期、秦山二厂扩建和浙江三门、广东阳江4个核电项目。预计到2020年,我国核电装机容量将达到40GW,占全国发电总装机容量比例由目前的1.7%上升到4%。

2.5 地热发电的应用及现状

地热发电是利用蒸汽的热能在汽轮机中转变为机械能,然后带动发电机发电,这一点和火力发电的原理是一样的,不同的是,地热发电不像火力发电那样要有庞大的锅炉,也不需要消耗燃料,它利用的是地热能,需要有载热体把地下的热能带到地面上来。目前能够利用的载热体,主要是地下的天然蒸汽和热水, 因此地热发电可分为蒸汽型地热发电和热水型地热发电两大类。

20世纪70年代初,我国各地涌现出大量的地热电站,如广东风顺、山东招远、辽宁熊岳、江西温汤等地,建于1977年的羊八井地热电站位于我国羊八井地热田,地热蒸汽温度高达172℃,是我国目前已探明的最大高温地热田。

目前,全球范围的地热发电每年大约以9%的速度增长,以此速度推测,到2020年,全球年地热发电量将达到3180亿千瓦时。我国要发展地热发电,还必须加大对地热资源的勘查,加强对地源热泵技术的研究。

三、新能源发电在中国的应用前景

目前,新能源发电在中国刚刚起步不久,其特点适应中国电力发展的需求与方向,在中国有着广阔的发展前景,具体体现在:

(1)新能源发电是中国发展可再生能源的有效形式。国家“十二五”规划将积极推动和鼓励可再生能源的发展作为中国的重点发展战略之一。一方面,充分利用可再生能源发电对于中国调整能源结构、保护环境、开发西部、解决农村用能及边远地区用电、进行生态建设等均具有重要意义;另一方面,中国可再生能源的发展潜力十分巨大。然而,可再生能源容量小,功率不稳定,独立向负荷提供可靠供电的能力不强以及对电网造成波动,影响系统安全稳定的缺点将是其发展中的极大障碍。若能将负荷点附近的分布式能源发电技术、储能及电力电子控制技术等很好地结合起来构成微电网,则可再生能源,充分发挥其重要潜力。例如,对于中国未通电的偏远地区,充分利用当地风能、太阳能等新能源,设计合理的微电网结构,实现微电网供电,将是发挥中国资源优势,加快电力建设的重要举措。

(2)由新能源组成的微电网在提高中国电网的供电可靠性,改善电能质量方面具有重要作用。中国的经济已进入数字化时代,优质、可靠的电力供应是经济高速发展的重要保障。在大电网的脆弱性日益凸显的情况下,将地理位置接近的重要负荷组成微电网,设计合适的电路结构和控制,为这些负荷提供优质、可靠的电力,不仅可省去提高整体可靠性与电能质量所带来的不必要成本,还可以减少这些重要负荷的停电经济损失,吸引更多的高新技术在中国发展。

(3)微电网与大电网间灵活的并列运行方式可使微电网起到消峰填谷的作用,从而使整个电网的发电设备得以充分利用,实现经济运行。此外,对于中国已有的众多独立系统,在系统中加入基于电力电子技术的新能源并配以智能、灵活的控制方式,一方面可提高系统的智能化与自动化,另一方面也可为企业带来可观的经济效益。

四、结束语

总之,科学技术的不断发展促进了发电技术的进步,新能源在我国未来的应用中前景必将十分广阔,充分利用好各项电能资源有助于缓解国内用电危机,这对于实现社会经济可持续发展也具有重要的实际作用。

参考文献

[1] 赵异波.新能源发电技术的最新进展[J].电工技术, 2004.

第3篇:生物质发电的缺点范文

【关键词】沙特;发电;新能源;太阳能

1 沙特的地理条件及能源储备

沙特位于亚洲西南部的阿拉伯半岛,东濒海湾,西临红海,海岸线长2437公里,以“石油王国”著称,石油储量和产量均居世界之首,石油和石化工业是其经济命脉。沙特已探明的石油储量为2612亿桶,占世界石油储量的26%。沙特的天然气储量也极为丰富,沙特已探明的天然气储量为263万亿立方英尺,居世界前列。

沙特的国土中有一半是沙漠,境内没有长年流水的河流或湖泊,国民70%以上的用水依靠海水淡化,其每年生产的淡化水约占全球人工淡水的18%。其年平均降雨不超过200毫米,年日照时间在3400小时以上。

2 沙特发电行业的发展趋势

2.1 天然气发电将占据主导地位

沙特目前以燃油发电为主,但随着环保问题的凸显,且当前可再生能源发电的技术尚未成熟,我们认为未来一段时间内天然气发电将成为沙特发电行业的主流,而燃油发电将逐渐退出主导地位,其原因如下

2.1.1 发电成本低

根据沙特King Fahd University of Petroleum & Minerals 2004年的一份分析报告(此报告的数据采集时间为:2003.09月01日~2004年08月31日),从表1中我们可以看出天然气发电的成本明显低于燃油发电。

2.1.2 利于环保、使用安全

天然气是最清洁的燃料。天然气燃烧后生成二氧化碳和水,与重油比较,燃烧天然气产生的有害物质大幅度减少。另外天然气还具有安全的特点,燃烧时不会产生一氧化碳等有毒气体,不会危害人体健康,密度比空气轻,即使泄露,也是往上空飘散,不易形成爆炸源。

2.1.3 机组功率高、热耗率低

以联合循环运行的燃气轮机PG6581B型燃机(南京汽轮电机(集团)有限责任公司有此型号产品)为例:以天然气为燃料,透平排气温度较高,有利于提高蒸汽参数和汽轮机的出力。以天然气为燃料较以重油为燃料,功率提高4062kW,约提高10.7%;热耗率下降307kJ/kW.hr,降低约2.65%;排气温度提高25℃。

2.1.4 零部件寿命延长、维护费用减少、维修间隔周期延长

燃料种类不同,不仅对同一种零部件的寿命有很大差别,而且维修期也大不相同,例如,英国JB公司根据已生产的燃气轮机的运行经验认为,对火焰筒而言,燃用天然气的寿命是烧重油的八倍、维修期是四倍。可见燃料种类不同,机组寿命差别很大。

从上述分析可以看出,天然气发电较重油发电可以提高经济效益、降低能源消耗、减轻劳动强度、改善生态环境。因此在可再生能源发电技术尚未发展成熟之前,将由拥有成熟技术的天然气发电占据沙特发电行业的主导地位。

2.2 可再生能源发电将是发展趋势

环境污染、气候变化和能源紧张是当前全球最突出的问题,推进能源革命,大力发展可再生能源,已成为世界可持续发展和培育新的经济增长点的最佳选择。可再生能源包括太阳能、水能、生物质能、氢能、风能、波浪能以及海洋表面与深层之间的热循环等。根据沙特的地理条件,沙特最具有发展优势的可再生能源是风能和太阳能。

2.2.1 风能发电

据GWEC(全球风能委员会)数据显示,2012年全球风电装机容量达到4471万千瓦,较2011年增加近415万千瓦,增幅为10.23%。

风能发电的优点在于:风能为洁净的能量来源,且是可再生能源;风能设施日趋进步,大量生产降低成本,在适当地点,风力发电成本已低于发电机;风能设施多为不立体化设施,可保护陆地和生态。

风能发电的缺点在于:风力发电在生态上的问题是可能干扰鸟类;在一些地区、风力发电的经济性不足。

风能发电对风速的要求:一般而言,若当地10m高度的年平均风速在3.5m/s以上,便可以进行可行性研究;但从经济合理的角度出发,风速大于4m/s才适宜于发电,且风力愈大,经济效益也愈大。

风能发电可以分为在岸风能发电和离岸风能发电。那么从沙特本土条件和全球风能发电的趋势考虑,沙特应采用何种风能发电的方式呢?

2.2.2 在岸风能发电

沙特政府1970~1982年对其20个城市地区进行了风力数据采集并对此进行了研究,并对风能发电成本作出了测算,发电成本包括:投资成本、运营成本、维护成本和资本成本。其中投资成本包括:风能转换成本、附加设备成本、输电网连接成本及计划、行业准入成本;运营、维护成本包括:维修成本、保险成本、监测成本和管理成本;资本成本包括利息及偿还贷款的成本。

经监测,无论采用2500kW、1300kW还是600kW风机,Yanbo的发电成本最低,次之是Qaisumah。据相关资料显示,Yanbo在地平面以上10m的年最大风速为25.65m/s,年平均风速为4.63m/s。另外,Yanbo位于沿海地区,达到发电要求的风速占全年的50%以上;而位于内陆的Qaisumah,符合发电要求的风速占全年的45±5%。因此我们认为如果采用在岸风能发电,在Yanbo建立风场是最为适宜的。

2.2.3 离岸风能发电

在沙特相关的研究资料中,研究人员选择了Abu Ali Island (位于北纬27°18′03″,东经49°41′57″)和Jebel Abu Kharuf(位于北纬27°22′26″,东经49°10′21″)进行对比,监测时间自1993.05~1995.11。经对比得出,Ali Island年平均风速为5.43m/s,Abu Kharuf的年平均风速为4.9m/s。由此可以看出,离岸年风速比在岸年风速高,更适合发电。

2.2.4 在岸风能发电与离岸风能发电对比

2011年有媒体报道,离岸风能发电比在岸风能发电的成本高出30%~50%,原因在于离岸发电设备费用、运输费用和海上安装费用。但是离岸风能发电的高能效可以抵偿其成本的30%,且不会占用陆地、减少了对居民的噪声污染、海上风力较为平稳、风速较高,因此随着技术的不断发展,其高成本问题将会被解决,离岸风能发电将逐渐被市场认可。

2.3 太阳能发电

太阳能发电分为太阳能光伏发电和太阳能光热发电两大类,因为太阳能光伏发电的技术已较为成熟,且已投入商业运营中,其技术在商业运营中不断完善、发展,故短期内太阳能光伏发电仍是太阳能发电的主力军。但从长期看,随着太阳能光热发电的技术不断成熟,且在商业运营中不断实践,其建设成本将不断降低,有机构预测,预计未来10年内,技术相对成熟的槽式系统的建设成本仍有望下降30%~40%,而其他技术类型的成本下降空间则更大。另外,沙特70%以上的用水依靠海水淡化,而太阳能光热电站的蒸汽余热可以进行海水淡化。可见太阳能光热发电带给沙特的将是双赢的结果,不仅可以发电还可以淡化海水。

2.3.1 太阳能光热发电

太阳能光热发电(CSP)分为抛物面槽式、集热塔式、抛物面碟式及线性菲涅尔式,这四种类型的技术特点、性能及成本对比见表2。

抛物面槽式表所使用的技术以非常成熟,建设风险较小,但缺点是耗水量大,发电效率较低;集热塔式工作温度较高,可达800~1000℃,使其年度发电效率可以达到17%~20%;由于管路循环系统较槽式系统简单的多,提高效率和降低成本的潜力都比较大;采用湿冷却的用水量略少于槽式系统,但定日镜的跟踪系统在结构和控制上比槽式系统复杂;线性菲涅尔式结构简单、能够直接使用导热介质产生蒸汽,故其建设和维护成本相对较低,但聚光器效率低,致使年发电效率仅能达到10%左右;抛物面式蝶式发电效率比其他三种方式高,可实现灵活部署的模块化,既适合以数百千瓦的规模进行分布是部署,又可以构建数百兆瓦的大型电站,发电过程中不需要用水进行冷却或导热,仅需要少量水用于设备清洁,但较难配置储能系统,在使用该技术建设大规模电站时,所输出电力的可调度性将会较低。

从图1中我们可以看出,抛物面槽式因技术成熟度高,在运行和建设的CSP电站中的权重分别接近94%和95%,而技术成熟也意味着其进一步提升效率的空间已十分有限,只能通过更大规模的生产降低一些成本。相对于抛物面槽式的“线聚光”,采用“点聚光”的集热塔式和抛物面蝶式能够具有更高的能量转换效率,且其技术也逐渐获得认可,采用这两项技术的多座商用电站(或大型实验电站)已于近几年建成。另外,从下图1中我们可以获知,在已完成规划的项目中,集热塔式和抛物面蝶式的权重迅速攀升至30%和18%,其价格竞争里也正逐渐接近抛物面槽式系统的水平。随着集热塔式和抛物面蝶式系统设备生产规模的扩大,加之他们的系统效率仍有相当的提升空间,此两类CSP电站的建设和发电成本下降的速度将明显快于抛物面槽式系统,最终呈现出明显的价格竞争力应当只是时间问题。

综上,太阳能光热发电中集热塔式和抛物面蝶式系统的市场占有量将逐渐增加,而集热塔式将成为太阳能光热发电行业的主力军。

3 结论

目前沙特发电行业以火力发电为主,而火力发电中以燃油发电为主,天然气发电次之。众所周知,当今火力发电技术已相当成熟,因此短时期内,沙特发电行业仍以火力发电为主,但是火力发电中的天然气发电的市场份额将逐渐超过燃油发电的市场份额,其原因正如本文2.1中所述,即天然气发电较重油发电可以提高经济效益、降低能源消耗、减轻劳动强度、改善生态环境。

随着可再生能源发电技术的不断完善,并结合沙特的地理条件及沙特政府的愿景,从长期看,风能和太阳能发电也将成为沙特发电行业的重要力量。

尽管目前已收集的资料中没有迹象表明沙特已拥有风能发电,但是沙特政府很早就对本国适合风能发电的地点进行了风力测试,测试结果表明若以风力衡量Yanbo是最适合建设在岸风场的地点。同时,沙特的研究人员还监测了离岸风力和在岸风力,证明离岸风力较在岸风力更适合发电。遗憾的是因沙特没有风能发电,故本文2.2.1中没有对在岸风能发电和离岸风能发电在沙特当地的发电成本进行比较。目前在世界上离岸发电的成本高于在岸发电的成本,而离岸发电成本的降低仅是时间问题。

太阳能发电已进军沙特的发电行业,虽然目前以太阳能光伏发电为主,但随着太阳能光热发电尤其是集热塔式技术的发展和完善,集热塔式发电也将成为沙特发电行业不可或缺的力量。

第4篇:生物质发电的缺点范文

随着全球石油、煤炭的大量开采,能源日益枯竭库,存量不断减少,能源短缺和随之而来的环境污染日渐引起人们的关注,并已成为制约我国经济社会又快又好发展的瓶颈。改善能源结构,利用现代科技开发生物质能源来缓解能源动力,减少污染物排放等问题刻不容缓。我国政府及有关部门对生物质能源利用也极为重视,已将“大力发展生物质能”列入国家“十二五”规划。

2、我国生物质能产业发展现状及前景

现阶段我国的生物质能应用主要集中在沼气利用,生物质直燃发电,工业替代燃料和交通运输燃料这四方面。

2.1 沼气利用

近年来沼气利用在中国发展迅速,在中央投资的带动下,各地也加大投入,形成了户用沼气、小型沼气、大中型沼气共同发展的新格局。沼气开发利用现在不仅能解决农民的烧柴问题,更重要的是我国的沼气发展正从分散式农户经营向产业化方向转变。2008年山东民和牧业建成了一个利用鸡粪为原料的3MW热电联产沼气工程;2009年安阳贞元集团通过与丹麦技术资金伙伴合作,以养殖场,公共污粪和秸秆为原料在安阳建立了一个年产400万m3的车用气的沼气项目。从目前情况看,通过生物发酵产沼气的技术相当成熟,但是现阶段还存在沼气工程总体规模较小效益不高,产气不是很稳定,特别是在北方冬季产气明显不足,和沼气副产品市场需求不足等因素约束。

2.2 生物质直燃发电

生物质直燃发电是最早采用的一种生物质开发利用方式,也是消耗量最大、最直接、最容易规模化和工业化的能源利用方式。早在2004年,山东单县、河北晋州和江苏如东这三个地方就开始了生物质直燃发电的试点示范,而2006年《可再生能源法》的施行更极大促进了生物质直燃发电行业的发展,年投资额增长率都在30%以上,到2010年我国生物质直燃发电量已达到550万千瓦。其中,我国生物质最大的企业国能生物发电集团有限公司在2010年投入运营和在建生物质发电项目近40个,总装机容量100万千瓦。到2013年,该公司规划生物质发电装机数量达到100台,装机容量达到300万千瓦。届时每年可为社会提供绿色清洁电力210亿千瓦时,年消耗农林剩余物可达3000万吨,每年可为农民增收约80亿元,每年可减排二氧化碳1500万吨以上。

生物质直燃发电技术比较成熟,而且它是增加农民收入、促进农民增收的直接载体,是实现工业反哺农业、加快农村经济发展的重要途径。需要注意的是生物质直燃发电还存在项目投资和运营成本较高,原料供应季节性强,需要政府补贴,受国家政策影响风险大等问题。

2.3 工业替代燃料

生物质作为工业替代燃料主要包括生物质成型燃料、生物质可燃气和生物质裂解油。

生物质成型燃料一般以木块、木粉、木屑和秸秆等农业生物质废弃物为原料,用作工业锅炉的燃料。生物质成型燃料的技术研究开发始于20世纪80年代,早期主要集中在螺旋挤压成型机上,但存在成型筒及螺旋轴磨损严重,寿命较短,电耗大等缺点,导致综合成本较高,发展停滞不前。进入2000年以来,生物质成型技术得到明显的进展,成型设备的生产与应用已初步形成了一定规模。国家发改委规划到2010年,生物质成型燃料生产量可达100万t。生物质成型燃料多用在一些中小型的工业蒸汽锅炉、有机热载体锅炉和商业蒸汽锅炉方面。其中,珠海红塔仁恒纸业有限公司的“生物质固体成型燃料替代重油节能减排项目”项目是目前全国最大的生物质成型燃料节能减排项目,该项目2011年投入运行,以两台40t/h生物质成型燃料专用低压蒸汽锅炉,代替现有的六台燃油锅炉。

生物质可燃气较早使用在气化发电方面,一般是生物质气化净化后的燃气送给燃气轮机燃烧发电或者将净化后的燃气送入内燃机直接发电。生物质气化发电厂的规模一般为几十千瓦到十几兆瓦,与生物质直燃发电相比,它的规模较小,但它发电效率较高,投资成本较少,对原料的来源限制也较少。除了气化发电,生物质可燃气也越来越多地应用在工业替代燃料方面。深圳华美钢铁厂就是国内首家使用生物质能源的钢铁企业,它将原燃烧重油的两段式连续推钢加热炉改烧生物燃气,该项目在2009年初立项,并2010年5月正式投产至今运行正常,这是目前世界范围内建成运行的最大的工业生物燃气项目。

生物质裂解油是指将秸秆、木屑、甘蔗渣等农业废弃物通过高温快速加热分解为挥发性气体,再经冷却后提炼出的一种液体。生物质裂解油的热值一般为16~18MJ/kg,产油率可达70%,它可直接用作锅炉和窑炉的燃料,也可进一步加工转换成化工产品。我国在生物质裂解油这方面的研究起步较晚,但近年来发展较快。浙江大学,中国科技大学,山东理工大学等高校在生物质热解液化装置优化和油品的应用、分析和提纯方面都做了大量的研究工作,也取得了不错的成绩。在生物质裂解油的工业化应用过程中,2007年广州迪森公司在广州萝岗开发区成功建设了一套年产3000吨的生物油工业实验装置并一直连续运行。易能生物公司则使生物油迈入了工业应用的新阶段,从2007年在安徽合肥建立起第一套年产万吨的生物油装置以来,其2009年在山东滨洲和2011年在陕西铜川宜君科技工业园分别投产了第两套和第三套的年产万吨的生物油装置,这也标志着生物质裂解油的产业化进入了实质性阶段。生物质裂解油与生物柴油、燃料乙醇相比生产成本较低,但是它热值较低,又具有一定的酸性,需要对燃烧设备进行少量改造。生物质裂解油除能直接用于中低端燃料市场外,还可以进一步通过精炼工艺生产多种化学品,开发利用的市场潜力巨大,具有十分广阔的发展前景。

2.4 交通运输燃料

生物能源作为交通运输燃料主要包括生物燃料乙醇和生物柴油。上世纪末,利用粮食相对过剩的条件,我国开始发展生物燃料乙醇。从目前的情况看,玉米、小麦等粮食类作物和甘蔗、木薯等经济类作物加工燃料乙醇的技术比较成熟,但基于对国家粮食安全的担心,和发展经济类作物会发生品种单一,种性退化较严重等问题,国家一直有意保持国内燃料乙醇的产量在一定的限制水平。

玉米和木薯加工燃料乙醇目前已处在比较尴尬的境地情况下,我国的企业和科研院校正加大力度地投入研发纤维素等新的燃料乙醇的生产。据了解,中国拥有发展纤维素乙醇的原料优势。纤维素广泛分布于农作物秸秆、皮壳当中,资源丰富且价格低廉。2008年吉林燃料乙醇有限公司和2009年安徽丰原生化公司都以玉米秸秆为原料分别建立了一套年产3000t和一套年产5000t燃料乙醇工业化示范装置。中粮集团与中石化、丹麦诺维信公司联手建造的中国规模最大的年产万吨的纤维素TU将于2011年正式投建。纤维素乙醇的生产代表了中国未来燃料乙醇的主流方向,目前需要做的是加快研发力度,突破技术瓶径,降低生产成本,加快商业化生产的速度。

生物柴油主要应用于运输业和海运业,是一种重要的交通运输燃料。生物柴油在国内的发展状况与燃料乙醇相似,用油类植物生产生物柴油的技术比较成熟,但是它受原料的制约严重。要发展大力生物柴油产业,必须要有稳定的原料来源。据了解,欧美国家主要以菜籽油、大豆油为原料生产生物柴油,但我国人多地少的国情决定了我国生物柴油产业不宜以食用油为原料,只能大力发展丘陵盐碱等非粮用地发展麻风树、黄连木等乔灌木油料作物。2010年底中海油在海南中海油东方化工城内的6万t生物柴油项目正式投产运行,其采用的是高压酯交换(SRCA)生物柴油生产工艺的装置,产品已在海南岛内的柴油零售批发网点推广使用,这是我国首个麻风树生物柴油产业化的示范项目。

近年来,利用微藻制备生物柴油受到了国内外的广泛关注,因为微藻繁衍能力高,生长周期短,可大量培养而不占用耕地,能有效解决原料来源不稳定的问题。美国在2007年推出“微型曼哈顿计划”,其宗旨就是向藻类要能源,目标是到2010年每天产出百万桶生物燃油,实现藻类产油的工业化。2008年10月英国碳基金公司也启动了目前世界上最大的藻类生物燃料项目,投入的2600~-英镑将用于发展相关技术和基础设施,该项目预计到2020年实现商业化。我国的科研人员也在政府和企业的大力支持下加紧研发这项新技术,希望能早日实现产业化。虽然现在较高的生产成本制约着微藻生物柴油产业的发展,但通过今后技术的不断改进,相信微藻生物柴油产业的前景是十分广阔的。

第5篇:生物质发电的缺点范文

【关键词】太阳能;热水器;凸透镜;聚光;光伏效应

1.太阳能的概念

太阳能是太阳内部连续不断的核聚变反应过程产生的能量,是一种可再生能源。广义上讲,它还是地球上很多能源的来源,如风能、潮汐能、水的势能等等。

2.太阳能的特点

太阳能很普遍可直接开发利用,无需开采和运输;而且太阳能不会污染环境,是难得的清洁能源;每年到达地球表面上的太阳辐射能约相当于130万亿吨标煤,其总量属世界上可以开发的最大能源;相对于其他能源,太阳能的储存量可以说是用之不竭的。太阳能除了有这些优点外,还有一些缺点,表现在能量密度低,不同地方不同时间分布不均匀,其利用效率低,这些都限制了太阳能的开发利用。

3.太阳能的使用历史

20世纪太阳能利用得到的更广泛的研究:

第一阶段(20世纪头20年),世界上太阳能研究的重点仍是太阳能动力装置,典型装置有1901年,在美国加州建成一台太阳能抽水装置,采用截头圆锥聚光器,功率:7.36kW。

1902至1908年,在美国建造了五套双循环太阳能发动机,采用平板集热器和低沸点工质。

1913年,在埃及开罗以南建成一台由5个抛物槽镜组成的太阳能水泵,每个长62.5m,宽4m,总采光面积达1250m2。

第二阶段,接下来的20多年,由于历史原因及其石油的大量开发利用,太阳能研究工作逐渐受到冷落。

第三阶段,1945年以后的20年,太阳能研究又迎来了。1954年,美国贝尔实验室研制成实用型硅太阳电池,为光伏发电大规模应用奠定了基础;1952年,法国国家研究中心在比利牛斯山东部建成一座功率为50kW的太阳炉;1961年,一台带有石英窗的斯特林发动机问世。在这一阶段里,加强了太阳能基础理论和基础材料的研究,取得了如太阳选择性涂层和硅太阳电池等技术上的重大突破,平板集热器有了很大的发展,技术上逐渐成熟。

第四阶段,1965-1973年这一阶段,太阳能的研究工作停滞不前,主要原因是太阳能利用技术处于成长阶段,尚不成熟,并且投资大,效果不理想,难以与常规能源竞争,因而得不到公众、企业和政府的重视和支持。

第五阶段,1973年10月爆发中东战争,石油危机使许多国家,尤其是工业发达国家,重新加强了对太阳能及其它可再生能源技术发展的支持,在世界上再次兴起了开发利用太阳能热潮。1973年,美国制定了政府级阳光发电计划,促进太阳能产品的商业化。1974年日本公布了政府制定的“阳光计划”, 1975年,在河南安阳召开“全国第一次太阳能利用工作经验交流大会”,进一步推动了中国太阳能事业的发展。

第六阶段,70年代兴起的开发利用太阳能热潮,进入80年代后不久开始落潮,逐渐进入低谷。世界上许多国家相继大幅度削减太阳能研究经费,其中美国最为突出。导致这种现象的主要原因是:世界石油价格大幅度回落,而太阳能产品价格居高不下,缺乏竞争力;太阳能技术没有重大突破,提高效率和降低成本的目标没有实现,以致动摇了一些人开发利用太阳能的信心;核电发展较快,对太阳能的发展起到了一定的抑制作用。

第七阶段,由于大量燃烧矿物能源,造成了全球性的环境污染和生态破坏,1992年联合国在巴西召开“世界环境与发展大会”,把环境与发展纳入统一的框架,确立了可持续发展的模式。这次会议之后,世界各国加强了清洁能源技术的开发,将利用太阳能与环境保护结合在一起,使太阳能利用工作走出低谷,逐渐得到加强。

1996年,联合国在津巴布韦召开“世界太阳能高峰会议”,会后发表了《哈拉雷太阳能与持续发展宣言》,会上讨论了《世界太阳能10年行动计划》(1996~2005年),《国际太阳能公约》,《世界太阳能战略规划》等重要文件。这次会议进一步表明了联合国和世界各国对开发太阳能的坚定决心,要求全球共同行动,广泛利用太阳能。

4.太阳能的使用现状

每天我们都在直接或间接地使用太阳能,太阳能的利用方式有光—电、光—热、光—化学、光—生物四种,其中光—热使用最为广泛。下面分别介绍。

4.1光—热利用方式

自古以来,人类就懂得用阳光晒干衣物、用来保存食物如制盐和晒咸肉等。这些是比较传统的利用方式,这种方法显然是比较被动的。长期以来人类对太阳能的利用都局限于此。随着社会的发展,人类对能源的需求越来越多,化石燃料等不可再生能源存储量急剧下降,各国都在研究太阳能的进一步利用,将太阳辐射能收集起来,通过与物质的相互作用转换成热能加以利用,这种光热利用方式逐渐改变人们的生活,使用最多的太阳能收集装置,主要有平板型集热器、真空管集热器和聚焦集热器等三种。光—热利用方式技术最成熟,产品也比较多,如太阳能热水器、开水器、干燥器、太阳灶、太阳能海水淡化装置以及太阳能采暖和制冷器等。光—热利用方式的用途还有太阳能发电,利用光—热—电转换,一般是用太阳能集热器将所吸收的热能转换为工质的蒸汽,然后由蒸汽驱动气轮机带动发电机发电。前一过程为光—热转换,后一过程为热—电转换。

4.2光—电利用方式

太阳能发电的另一种方式是光—电转换,其基本原理是利用半导体器件的光伏效应原理光生伏效应将太阳辐射能直接转换为电能,所谓光伏效应指光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。它首先是由光子(光波)转化为电子、光能量转化为电能量的过程;其次,是形成电压过程。有了电压,就像筑高了大坝,如果两者之间连通,就会形成电流的回路。完成光电转换的太阳能电池是阳光发电的关键,目前的主要的太阳能电池是硅太阳能电池。

4.3光—化学利用方式

光化利用:这是一种利用太阳辐射能直接分解水制氢的光—化学转换方式。

4.4光—生物利用方式

光生物利用:通过植物的光合作用来实现将太阳能转换成为生物质的过程。主要有速生植物(如薪炭林)、油料作物和巨型海藻。

5.太阳能的新的使用方法

我们知道,通过凸透镜聚光可以使火柴烧着,这里介绍的太阳能的新的使用方法就是用凸透镜聚光来烧水,或提供动力,在一个大大的凸透镜下放置一些导热的铁皮,铁皮浸泡在一个小水箱中使水升温,这种方法主要问题是效率,就是烧水时间和能达到的温度,有实验表明,阳光充足的情况下,焦点温度可达700度,烧开2升水半小时都不到,同时也有人获得了这种发明的国家专利(公告(公布)号:CN 102121460 A卷期号:7-28公告(公布)日:2011-07-13)。

第6篇:生物质发电的缺点范文

【关键词】餐厨垃圾;无害化处理

1.项目建设背景及必要性

1.1项目建设背景

2012年4月19日,国务院办公厅印发了《“十二五”全国城镇生活垃圾无害化处理设施建设规划的通知》([2012]23号),明确了“到2015年,直辖市、省会城市生活垃圾全部实现无害化处理,城市生活垃圾无害化处理率达到90%以上,全国城镇新增生活垃圾无害化处理设施能力58万吨/日”的主要目标,并进一步提出了“在已启动餐厨垃圾处理工作的基础上,继续推动餐厨垃圾单独收集和运输,以适度规模、相对集中为原则,建设餐厨垃圾资源化利用和无害化处理设施”的建设任务。

1.2项目建设必要性

在相当长的一段时期内,国内餐厨垃圾主要作为城市近郊养猪的饲料。由于其来源复杂,极有可能引起疾病的传播,现已被政府明令禁止。城市垃圾处理处置方法通常有焚烧和填埋,如果将城市生活垃圾进行焚烧,由于餐厨垃圾的水份含量常常高达90%左右,发热量为2100~3100kJ/kg,和其它垃圾一起焚烧,不但不能满足垃圾焚烧发电的发热量要求(即5000kJ/kg以上),反而会导致燃烧炉燃烧不充分而产生二英;如果将生活垃圾进行填埋,同样因为混入的餐厨垃圾水分含量高而不宜处理。因此餐厨垃圾有必要进行单独无害化处理。

2.处理工艺确定

2.1XX市餐厨垃圾物理、化学性质分别见表。

以上数据分析表明,XX市餐厨垃圾具有以下特性:

a)含水率高,混合测试样含水率高达87.07%。

b)易腐性,富含有机物,混合测试样有机干物质高达92.8%。

c)油脂及盐分含量高。

2.2餐厨垃圾处理工艺选择

目前,餐厨垃圾处理工艺主要有填埋、焚烧、厌氧消化、好氧堆肥等,各处理方式的优缺点对比分析见表3。

根据表中各种餐厨垃圾处理方式优缺点的比较,结合XX市餐厨垃圾的特性,对XX市餐厨垃圾处理方式的选择做出如下分析:

(1)高含水率的餐厨垃圾,往往成为填埋场垃圾渗滤液的主要来源;餐厨垃圾黏度大,分散性差,也不利于在填埋场摊铺和压实;此外餐厨垃圾有机物含量较高,填埋方式未对其进行有效的资源化利用,因此餐厨垃圾不适宜采取填埋工艺。

(2)高含水率的餐厨垃圾不宜采用焚烧工艺,因为含水率高会增加焚烧燃料的消耗;餐厨垃圾中含有的大量脂类物质在重金属催化条件下生成二英,若处理不当易对环境造成严重的二次污染。

(3)堆肥适合于处理易腐有机质含量较高的垃圾,高含水率的餐厨垃圾在堆肥的过程中易将整个堆垛全部空间填死,空气无法进入内部,致使微生物处于厌氧状态,使降解速度减慢并产生硫化氢等臭气。

(4)结合我国国情及XX市具体情况,相对其它餐厨垃圾处理方式,厌氧消化方式具有突出的优势,主要体现在以下几个方面:

① 厌氧消化后产生的沼气是清洁燃料。

② 固体物质被消化以后,可以得到高质量的有机肥料或土壤改良剂。

③ 在有机物质转变成甲烷的过程中实现了垃圾的减量化。

④ 厌氧消化产生的沼气可以利用进行发电,减少了温室气体的排放量。

⑤可实现分离油脂资源化,厌氧微生物耐盐毒性较强,且节省能耗。

以上分析表明:应用厌氧消化技术处理餐厨垃圾在生态环境方面具有突出的优势,从能量需求、排放产物和运行过程对周围环境卫生影响的角度看,厌氧消化技术能够实现环境、社会和经济效益的协调统一,对环境和经济的可持续发展都具有重要的意义。

基于上述技术分析,推荐XX市餐厨垃圾无害化处理处置工程采用厌氧消化处理技术。

2.3厌氧消化工艺的选择

按照厌氧发酵反应罐的操作条件,餐厨垃圾厌氧消化处理技术可分为以下几类:

(1)按照固体含量可分为:湿式、干式。

(2)按照温度可分为:中温、高温。

湿式厌氧消化和干式厌氧消化的对比分析见表4。

根据以上湿式和干式厌氧消化的对比分析,结合XX市餐厨垃圾含水率较高的特点,本项目适宜采用湿式消化工艺。

中温厌氧消化和高温厌氧消化的对比分析见表5。

第7篇:生物质发电的缺点范文

循环制氢和利用生物质转化制氢等, 不仅对各项技术的基本原理做了介绍, 也对相应

的环境, 经济和安全问题做了探讨. 对可再生氢能系统在香港的应用前景做了展望.

关键词: 可再生能源, 氢能, 电解水, 光伏电池, 太阳能热化学循环, 生物质

引言

技术和经济的发展以及人口的增长, 使得人们对能源的需求越来越大. 目前以石

油, 煤为代表的化石燃料仍然是能源的主要来源. 一方面, 化石燃料的使用带来了严

重的环境污染, 大量的CO2, SO2, NOx气体以及其他污染物, 导致了温室效应的产生和

酸雨的形成. 另一方面, 由于化石燃料的不可再生性和有限的储量, 日益增长的能源

需求带来了严重的能源危机. 据估计, 按照目前的消耗量, 石油仅仅能维持不到50年,

而煤也只能维持200年. Kazim 和 Veziroglu (2001)[1]指出, 做为主要石油输出国的阿拉

伯联合酋长国, 将在2015年无法满足石油的需求. Abdallah 等人(1999)[2]则宣布, 埃

及的化石燃料资源, 在未来的20年内就会耗尽! 而作为能源需求大国的中国, 目前已

经有超过31%的石油需要进口, 而到2010年, 这一数字将会增长到45-55%[3]!

基于以上所述环境污染和能源短缺的双重危机, 发展清洁的, 可再生的新能源的

要求越来越迫切. 太阳能, 风能, 生物质, 地热能, 潮汐能, 具有丰富, 清洁, 可再

生的优点, 今年来受到了国际社会的广泛关注. 尤其以太阳能, 风能以及生物质能,

更被视为未来能源的主力军. 根据简单估算, 太阳能的利用率为20%时, 利用陆地面积

的0.1% 就足以提供满足当前全球的能量需求[4]. 而中国仅仅依靠风力发电, 就足以

使目前的发电量翻一番[5].然而, 这些可再生资源具有间歇性, 地域特性, 并且不易

储存和运输的特点. 氢, 以其清洁无污染, 高效, 可储存和运输等优点, 被视为最理

想的能源载体. 目前各国都投入了大量的研究经费用于发展氢能源系统. 在中国, 清

华大学已经进行了在2008年奥运会使用以氢为燃料的汽车的可行性分析,绿色奥运将成

为2008年北京的一道靓丽的风景线 [6]. 在香港政府和香港中华电力(CLP)的支持和资

助下, 可再生氢能源系统在香港的可行性研究也已经在香港大学机械工程系展开. 本

文属于CLP资助的项目的部分内容, 主要归纳总结了利用可再生资源制氢技术的基本原

理, 分析了各项技术的经济性, 对环境的影响以及安全性等关键问题. 通过对比分析

并结合香港的实际情况, 对于香港发展可再生氢能源系统进行了展望.

基于经济因素的考虑, 目前的氢主要是通过化石燃料的重整来制取, 比如天然气汽

化重整(Natural Gas Steam Reforming), 只有大约5%的氢是通过可再生资源的转换制取.

利用太阳能电池和风力发电驱动的电解水反应, 利用太阳能的热化学反应和利用生物质

制氢是最主要的从可再生能源中制取氢的技术. 其他可再生氢的制取技术, 比如生物制

氢, 光电化学技术, 光催化技术和光化学技术, 虽然具备很大发展前景, 但由于还处于

很早期的发展阶段, 其技术发展, 经济性等都还不明朗, 本文不做详细讨论.

1. 电解水制氢

1.1. 电解水基本原理及分类

电解水制氢是目前最为广泛使用的将可再生资源转换为氢的技术. 当两个电极(阴

极和阳极)分别通上直流电, 并且浸入水中时, 水将会被分解并在阴极和阳极分别产生

氢气和氧气. 这个过程就是电解水. 这样的装置则为电解槽.

电解水由分别发生在阴极和阳极的两个化学反应组成, 如式(1),(2)和(3):

Anode: H2O + electrical energy

2

1 O2 + 2H+ + 2e- (1)

Cathode: 2H+ + 2e- H2 (2)

Overall: H2O + electrical energy H2 +

2

1 O2 (3)

电解水的基本原理见图1. 在催化剂和直流电的作用下, 水分子在阳极失去电子, 被分

解为氧气和氢离子, 氢离子通过电解质和隔膜到达阴极, 与电子结合生成氢气.

O2 H2

Diaphragm Anode Cathode

e-

H+

图1. 电解水的基本原理示意图

Fig.1. Schematics of basic principle of water electrolysis

最早的电解水现象是在1789 年被观测到. 之后, 电解水技术得到了较快的发展. 到

1902 年, 世界上就已经有超过400 台电解槽装置. 目前市场上的电解槽可以分为三种: (1)

碱性电解槽(Alkaline Electrolyzer); (2) 质子交换膜电解槽(Proton Exchange Membrane

Electrolyzer)和(3)固体氧化物电解槽(Solid Oxide Electrolyzer). 表1. 总结和对比了这三

种电解槽技术的特点.

表1. 不同电解槽技术的对比

Table 1. Comparison between different electrolyzer technologies

Electrolyzer Type Electrolyte Operating Temperature (oC) Carriers Efficiency Cost (US$/kW)

Alkaline electrolyzer

20-30% KOH

70-100

OH-

80%

400-600

PEM electrolyzer PEM polymer

50-90 H+ 94% 2000

Solid oxide

electrolyzer

Yttria-stabilized

zirconnia

600-1000 O2- 90% 1000-1500

碱性电解槽是最早商业化的电解槽技术, 虽然其效率是三种电解槽中最低的, 但

由于价格低廉, 目前仍然被广泛使用, 尤其是在大规模制氢工业中. 碱性电解槽的缺

点是效率较低和使用石棉作为隔膜. 石棉具有致癌性, 很多国家已经提出要禁止石棉

在碱性电解槽中的使用. 据报道, PPS(Poly Phenylene Sulfide), PTFE(Poly Tetra

Fluorethylene), PSF(Poly SulFone) [7]以及Zirfon [8]等聚合物在KOH溶液中具有和

石棉类似的特性, 甚至还优于石棉, 将有可能取代石棉而成为碱性电解槽的隔膜材料.

发展新的电极材料, 提高催化反应效率, 是提高电解槽效率的有效途径. 研究表明

Raney Nickel 和 Ni-Mo 等合金作为电极能有效加快水的分解, 提高电解槽的效率

[9,10].

质子交换膜电解槽由于转换效率很高而成为很有发展前景的制氢装置. 由于采用

很薄的固体电解质(PEM), 具有很好的机械强度和化学稳定性, 并且欧姆损失较小. 在

日本, 效率达94.4%的质子交换膜电解槽已经研制成功 [11]. 但由于质子交换膜(目前

常用的是由杜邦公司的Nafion)和使用铂电极催化剂, 价格昂贵, 制约了其广泛使用.

今后研究的重点是降低成本, 和进一步提高其转换效率. 成本的降低主要是通过降低

贵重金属铂在催化层中的含量和寻找廉价的质子交换膜材料. 目前这个两个领域都已

经取得了一定成效. 印度的电化学和能源研究所(CEER)成功将铂的含量在没有影响电

解槽整体性能的情况下从0.4mg/cm2降到了0.1mg/cm2 [12]. 使用喷溅沉积法(Sputter

deposition)制备催化层也同样获得了成功, 并且使铂的含量降到了0.014 mg/cm2

[13,14]. 其他廉价的替代材料, 如Polyphosphazene [15]和Sulfonated Polystyrene

(SPS) [16]等也被证实具有和Nafion类似的特性, 有可能被用到质子交换膜电解槽中用

做电解质. 可以预见, 随着质子交换膜电解槽技术的成熟和价格的降低, PEM电解槽将

成为制氢的主要装置.

固体氧化物电解槽(Solid Oxide Electrolyzer)是另一种新兴的电解槽技术. 这种

电解槽的缺点是工作在高温, 给材料的选择带来了一定限制. 优点是较高的反应温度

使得电化学反应中,部分电能被热能代替, 从而效率较高, 尤其是当余热被汽轮机, 制

冷系统等回收利用时, 系统效率可达90%. 目前的研究重点是寻找在高温下具有对氧离

子良好导电性的电解质材料和适当降低电解槽的工作温度.

1.2. 电解海水制氢

海水是世界上最为丰富的水资源, 同时也是理想的制氢资源. 尤其在沿海的沙漠

地区, 比如中东和非洲, 淡水资源缺乏, 电解海水制氢则成了唯一的选择. 但海水富

含盐份(NaCl)和其他杂质, 并且通常电解槽的电极电势超过了产生氯气所需的电势,

这使得在电解海水时, 往往是氯气从阳极析出, 而非氧气. 虽然氢气的产生不会受此

影响, 但产生的氯气具有强烈的毒性, 需要完全避免. 在所有常用的电极材料中, 只

有锰和锰的氧化物及其化合物在电解海水时可以在阳极产生氧气, 而抑制氯气的产生.

Ghany 等人[17]用Mn1-xMoxO2+x/IrO2Ti作为电极, 氧气的生成率达到了100%, 完全避免

了氯气的产生, 使得电解海水制氢变得可行.

1.3. 利用可再生资源电解水制氢

如前所述, 电解水需要消耗电. 由化石燃料产生电能推动电解槽制氢由于会消耗

大量的不可再生资源, 只能是短期的制氢选择. 由可再生资源产生电能, 比如通过光

伏系列和风机发电, 具有资源丰富, 可再生, 并且整个生命周期影响较小等优点, 是

未来的发展趋势.

光伏电池在吸收太阳光能量后, 被光子激发出的自由电子和带正电的空穴在PN结

的电场力作用下, 分别集中到N型半导体和P型半导体, 在连接外电路的情况下便可对

外提供直流电流. 光伏电池可以分为第一代光伏电池(wafer-based PV)和第二代光伏电

池(thin film PV). 目前市场上多是第一代光伏电池. 第一代电池具有较高的转换效率

(10-15%), 但成本较贵, 限制了其大规模使用. 第二代电池虽然效率较低(6-8%), 但

由于采用了薄膜技术, 使用较少的材料, 并且易于批量生产, 制作成本大大降低, 目

前的研究方向是进一步提高薄膜光伏电池的转换效率[18]. 由于光伏电池产生的是直

流电,可以直接运用于电解水, 但为了保证光伏阵列工作在最大功率状态, 在光伏电池

和电解槽之间往往需要接入一个最大功率跟踪器(MPPT)和相应的控制器.

风能发电由于具有较高的能量利用效率和很好的经济性, 在最近几年得到了很快

发展. 风力发电机组利用风的动能推动发电机而产生交流电. 根据Betz law, 风力发电

的最大效率理论上可达59% [19]. 在风力充足的条件下, 风力发电的规模越大, 其经济

性越好. 因此, 近几年风力发电朝着大规模的方向发展. 另外, 由于海上风力较陆地

大, 并且不占陆地面积, 最近也有将风力发电机组建在海上的趋势. 风能发电只需交

流-直流转换即可与电解槽相接产氢, 经济性较好, 目前不少风力资源充足的国家都将

风能-电解槽系统列为重点发展的方向.

另外, 地热能, 波浪能所发的电都可以作为电解槽的推动力, 但和太阳能与风能

一样, 都受地域的限制.

1.4. 电解水制氢的现状

目前所用到的电解槽多为碱性电解槽. 加拿大的Stuart是目前世界上利用电解水

制氢和开发氢能汽车最为有名的公司. 他们开发的HESfp系统包括一个能日产氢25 千

克的碱性电解槽, 一个能储存60 千克氢的高压储氢罐和氢内燃机车. 他们用于汽车的

氢能系统能每小时产氢3千克, 可以为3辆巴士提供能量. Hamilton是另一个有名的电解

槽开发制造商, 他们的ES系列利用PEM电解槽技术, 可以每小时产氢6-30Nm3, 所制氢

的纯度可达99.999%. 在日本的WE-NET计划中, 氢的制取也是通过PEM电解槽来实现,

并且PEM电解槽在80oC和1A/cm2的工作条件下, 已经以90%的效率连续工作了超过4000小

时 [11].

1.5. 电解水技术的环境, 经济和安全问题

从电解水的整个生命周期来看, 电解水制氢会对环境造成一定的负面影响, 并且

也有一定的危险性. 下面将做定性分析.

对碱性电解槽而言, 由于使用了具有强烈腐蚀性的KOH溶液作为电解液, KOH的渗漏

和用后的处理会造成环境的污染, 对人体健康也是一个威胁. 并且目前的碱性电解槽

多采用石棉作为隔膜, 石棉具有致癌性, 会对人构成严重的危害. PEM电解槽使用质子

交换膜作为电解质, 无须隔膜. 但当PEM电解槽工作温度较高时(比如150oC), PEM将会

发生分解, 产生有毒气体. 固体氧化物电解槽虽然没有上述问题, 但工作在高温, 存

在着在高温下生成的氧气和氢气重新合并发生燃烧甚至爆炸的危险, 需要引起注意.

此外, 电解槽生产, 比如原材料的开采,加工, 以及最终的遗弃或废物处理, 都需要消

耗一定的能量, 并且会释放出CO2等温室气体和其他污染物.

当电解槽由光伏电池驱动时, 光伏电池可能含有有毒物质(比如CdTe PV), 将带来

一定的环境污染和危险性. 尤其当系统发生短路出现火情, 有毒物质将会释放出来,危

害较大. 另外, 光伏阵列的安装会占用较大的土地面积. 这点也需要在设计安装时加

以考虑. 风能-电解槽系统和光伏-电解槽系统相比, 则对环境的影响要小很多, 并且

也相对安全. 但也有需要注意的地方, 比如噪音, 对电磁的干扰, 以及设计时需要考

虑到台风的影响.

尽管电解水制氢具有很高的效率, 由于昂贵的价格, 仍然很难大规模使用. 目前

三种电解槽的成本分别为: 碱性电解槽US$400-600/kW, PEM电解槽约US$2000/kW, 固体

氧化物电解槽约US$1000-1500/kW. 当光伏电池和电解水技术联合制氢时, 制氢成本将

达到约US$41.8/GJ(US$5/kg), 而当风力发电和电解水技术联合制氢时, 制氢成本约为

US$20.2/GJ (US$2.43/kg) [20].

2. 太阳能热化学循环制氢

太阳能热化学循环是另一种利用太阳能制取氢燃料的可行技术. 首先, 由太阳能

聚光集热器收集和汇聚太阳光以产生高温. 然后由这些高温推动产氢的化学反映以制

取氢气. 目前国内外广泛研究的热化学制氢反应有: (1) 水的热分解(thermolysis);

(2) H2S的热分解和(3) 热化学循环水分解.

2.1. 水的热分解制氢

由太阳能聚光器产生的高温可以用于对水进行加热, 直接分解而产生氢气和氧气.

反应式如(4)

2H2O 2H2 + O2 (4)

在这个反应中, 水的分解率随温度的升高而增大. 在压力为0.05bar, 温度为2500K时,

水蒸汽的分解率可以达到25%, 而当温度达到2800K时, 则水蒸汽的分解率可达55%. 可

见提高反应温度, 可以有效产氢量. 然而, 反应所需的高温也带来了一系列的问题.

由于温度极高, 给反应装置材料的选择带来了很大限制. 适合的材料必须在2000K以上

的高温具有很好的机械和热稳定性. Zirconia由于其熔点高达3043K而成为近年来在水

的热分解反应中广泛使用的材料 [21,22]. 其他可选的材料及其熔点见表2.

表2. 作为热化学反应装置备选材料及其熔点 [22]

Table 2 some materials and their melting points [22]

Oxides T oC Carbides T oC

ZrO2 2715 B4C 2450

MgO 2800 TiC 3400-3500

HfO2 2810 HfC 4160

ThO2 3050 hBN 3000 (decomposition)

另一个问题就是氢和氧的分离问题. 由于该反应可逆, 高温下氢和氧可能会重新结合

生成水, 甚至发生爆炸. 常用的分离方法是通过对生成的混合气体进行快速冷却(fast

quenching),再通过Pd或Pd-Ag合金薄膜将氢和氧分离. 这种方法将会导致大量的能量

损失. 近几年有研究人员采用微孔膜(microporous membrane)分离也取得一些成功

[22,23], 使得直接热分解水制氢研究又重新受到广泛关注.

2.2. H2S的热分解

H2S是化学工业广泛存在的副产品. 由于其强烈的毒性, 在工业中往往都要采用

Claus process将其去除, 见式(5)

2H2S + O2 2H2O + S2 (5)

这个过程成本昂贵, 还将氢和氧和结合生成水和废热, 从而浪费了能源. 对H2S的直接

热分解可以将有毒气体转化为有用的氢能源, 变废为宝, 一举两得. H2S的热分解制氢反

应式见(6)

2H2S 2H2 + S2 (6)

该反应的转化率受温度和压力的影响. 温度越高, 压力越低, 越有利H2S的分解. 据报

道, 在温度1200K,压力1 bar时, H2S的转化率为14%, 而当温度为1800K, 压力为0.33bar

时, 转化率可达70% [24]. 由于反应在1000K以上的高温进行, 硫单质呈气态, 需要与氢

气进行有效的分离. 氢与硫的分离往往通过快速冷却使硫单质以固态形式析出. 同样,

这种方法也会导致大量的能量损失.

2.3. 热化学循环分解水制氢

水的直接热分解制氢具有反应温度要求极高, 氢气分离困难, 以及由快速冷却带

来的效率降低等缺点. 而在水的热化学分解过程中, 氧气和氢气分别在不同的反应阶

段产生, 因而跨过了氢气分离这一步. 并且, 由于引入了金属和对应的金属氧化物,

还大大降低了反应温度. 当对于水直接热分解的2500K, 水的热化学循环反应温度只有

1000K左右, 也大大减轻了对反应器材料的限制. 典型的2步热化学循环反应式见

(7)-(10).

2 y x O

2

y xM O M + (7)

2 y x 2 yH O M O yH xM + + (8)

或者 2 O O M O M y x y x + ′ ′ (9)

2 y x 2 y x H O M O H O M + + ′ ′ (10)

其中M 为金属单质, MxOy 或1 1 y x O M 则分别为相应的金属氧化物. 适合用做水的热化学

循环反应的金属氧化物有TiO2, ZnO, Fe3O4, MgO, Al2O3, 和 SiO2等. ZnO/Zn 反应温度较

低, 在近几年研究较多 [24-29]. Fe3O4/FeO 是另一对广泛用于热化学分解水制氢的金属

氧化物. 该循环中, Fe3O4 首先在1875K 的高温下被还原生成FeO 和 O2, 然后, 在573K

的温度下, FeO 被水蒸汽氧化, 生成Fe3O4 和 H2. 经研究发现, 用Mn, Mg, 或Co 代替

部分Fe3O4 而形成的氧化物(Fe1-xMx)3O4 可以进一步降低反应温度 [4], 因而更具发展

前景.

除了以上所述2 步水分解循环外, 3 步和4 步循环分解水也是有效的制氢方式.

IS(iodine/sulfur)循环是典型的3 步水分解循环, 该循环的反应式见(11)-(13):

4 2 x 2 2 2 SO H HI 2 O H 2 SO xI + + + at 293-373K (11)

2 2 I H HI 2 + at 473-973K (12)

2 2 2 4 2 O

2

1 SO O H SO H + + at 1073-1173K (13)

在IS 循环中,影响制氢的主要因素就是单质硫或硫化氢气体的产生等副反应的发生. 为

尽量避免副反应的发生, x 的值往往设置在4.41 到11.99 之间[30]. UT-3 则是典型的

4 步循环[31]. 其反应式见(14) - (17):

2 2 2 O

2

1 CaBr Br CaO + + at 845 K (14)

HBr 2 CaO O H CaBr 2 2 + + at 1,033 K (15)

2 2 2 4 3 Br O H 4 FeBr 3 HBr 8 O Fe + + + at 493 K (16)

2 4 3 2 2 H HBr 6 O Fe O H 4 FeBr 3 + + + at 833 K (17)

热化学循环分解水虽然跨过了分离氢和氧这一步, 但在2 步循环中, 生成的金属在

高温下为气态并且会和氧气发生氧化还原反应而重新生成金属氧化物, 因此, 需要将

金属单质从产物混合物中分离出来. 金属单质的分离一般采用快速冷却使金属很快凝

固从而实现分离. 同样, 在3 步循环中, 氢和碘也需要及时的分离. 采用的分离技术都

类似.

2.4. 热化学循环分解水制氢的现状

热化学循环制氢在欧洲研究较多, 但由于产物的分离一直是一个比较棘手的问题,

能量损失比较大, 此种制氢方法还没有进入商业化的阶段. 在Swiss Federal Institute of

Technology Zurich,对ZnO/Zn 循环制氢研究已经比较深入. 他们的研究目前主要集中在

产物的分离以及分解水反应的机理方面 [32]. Swiss Federal Office 则已经启动了一个

“SOLZINC”的计划, 通过ZnO/Zn 循环制取氢气以实现对太阳能的储存. 目前正在进行

反应器的设计, 将于2004 年夏季进行测试[33].

2.5.太阳能热化学循环制氢的环境, 经济和安全问题

太阳能热化学循环采用太阳能聚光器聚集太阳能以产生高温, 推动热化学反应的

进行. 在整个生命周期过程中, 聚光器的制造, 最终遗弃, 热化学反应器的加工和最

终的废物遗弃以及金属,金属氧化物的使用都会带来一定的环境污染. 其具体的污染量

需要进行详细的生命周期评价(LCA)研究. 此外, 在H2S 的分解中, 以及在IS 循环和

UT-3 循环中, 都使用了强烈腐蚀性或毒性的物质, 比如H2S, H2SO4. 这些物质的泄漏

和最终的处理会带来环境的污染和危险, 需要在设计和操作过程中加以考虑. 另外, 由

于反应都是在高温下进行, 氢和氧的重新结合在反应器中有引起爆炸的危险, 需要小

心处理.

由于热化学循环制氢尚未商业化, 相关的经济信息都是基于估算. Steinfeld

(2002)[29]经过估算指出, 对于一个大型的热化学制氢工厂(90MW), 制的氢气的成本为

大约US$4.33-5/kg. 相比之下, 由太阳能热电 – 电解水系统制取氢气的成本则约为

US$6.67/kg, 而通过大规模天然气重整制氢的成本约为US$1.267/kg [20]. 可见太阳能热

化学循环制氢和天然气重整制氢相比虽然没有经济优势, 但和其他可再生制氢技术相

比则在经济性方面优于太阳热电-电解水和光伏-电解水技术.

3. 利用生物质制氢

生物质作为能源, 其含氮量和含硫量都比较低, 灰分份额也很小, 并且由于其生

长过程吸收CO2, 使得整个循环的CO2 排放量几乎为零. 目前对于生物质的利用, 尤其

在发展中国家, 比如中国, 印度, 巴西, 还主要停留在对生物质的简单燃烧的低效率

利用上. 除燃烧外, 对生物质的利用还有热裂解和气化, 以及微生物的光解与发酵. 利

用生物质热裂解和气化产氢具有成本低廉, 效率较高的特点, 是有效可行的制氢方式.

3.1. 生物质热裂解制氢

生物质热裂解是在高温和无氧条件下对生物质的热化学过程. 热裂解有慢速裂解

和快速裂解. 快速裂解制取生物油是目前世界上研究比较多的前沿技术. 得到的产物

主要有: (1) 以氢(H2), 甲烷(CH4), 一氧化碳(CO), 二氧化碳(CO2)以及其它有机气

体等气体成分; (2) 以焦油, 丙酮, 甲醇, 乙酸等生物混合油液状成分; (3) 以焦碳为主

的固体产物[34]. 为了最大程度的实现从生物质到氢的转化, 需要尽量减小焦碳的产量.

这需要尽量快的加热速率和传热速率和适中的温度.

热裂解的效率和产物质量除与温度, 加热速率等有关外, 也受反应器及催化剂的

影响. 目前国内外的生物质热裂解决反应器主要有机械接触式反应器, 间接式反应器

和混合式反应器. 其中机械接触式反应器包括烧蚀热裂解反应器, 旋转锥反应器等,

其特点是通过灼热的反应器表面直接与生物质接触, 以导热的形式将热量传递给生物

质而达到快速升温裂解. 这类反应器原理简单, 产油率可达67%, 但易造成反应器表面

的磨损, 并且生物质颗粒受热不易均匀. 间接式反应器主要通过热辐射的方式对生物

质颗粒进行加热, 由于生物质颗粒及产物对热辐射的吸收存在差异, 使得反应效率和

产物质量较差. 混合式反应器主要以对流换热的形式辅以热辐射和导热对生物质进行

加热, 加热速率高, 反应温度比较容易控制均匀, 且流动的气体便于产物的析出, 是

目前国内外广泛采用的反应器, 主要有流化床反应器, 循环流化床反应器等[35]. 这

在国内各科研院所都已经开展了大量的研究, 如广州能源所, 辽宁省能源所等都开发

研制出了固定床, 流化床反应器.

催化剂的使用能加速生物质颗粒的热解速率, 降低焦炭的产量, 达到提高效率和

产物质量的目的. 目前用于生物质热裂解的催化剂主要有以Ni 为基的催化剂, 沸石

[36], K2CO3, Na2CO3, Ca2CO3[37]以及各种金属氧化物比如Al2O3, SiO2, ZrO2, TiO2[38]

等都被证实对于热裂解能起到很好的催化作用.

热裂解得到的产物中含氢和其他碳氢化合物, 可以通过重整和水气置换反应以得

到和提高氢的产量. 如下式所示:

合成气 + H2O H2 + CO (18)

CO + H2O CO2 + H2 (19)

利用生物质热裂解联同重整和水气置换反应制氢具有良好的经济性, 尤其是当反

应物为各种废弃物时, 既为人类提供了能量, 又解决了废弃物的处理问题, 并且技术

上也日益成熟, 逐渐向大规模方向发展. Danz (2003 年)[39]估算了通过生物质热裂解制

氢的成本约为US$3.8/Kg H2 (因氢的热值为120MJ/Kg, 这相当于US$31.1/GJ), 这和石

油燃油的价钱US$4-6/GJ 相比还没有任何优势, 但Carlo 等[40]指出, 当热裂解制氢的规

模达到400MW 时, 氢的成本会大大降低, 达到US$5.1/GJ. 可见实现大规模的利用生物

质制氢, 将会是非常有潜力的发展方向.

3.2. 生物质气化制氢

生物质气化是在高温下(约600-800oC)下对生物质进行加热并部分氧化的热化学过

程. 气化和热裂解的区别就在于裂解决是在无氧条件下进行的, 而气化是在有氧条件

下对生物质的部分氧化过程. 首先, 生物质颗粒通过部分氧化生成气体产物和木碳,

然后, 在高温蒸汽下, 木碳被还原, 生成CO, H2, CH4, CO2 以及其他碳氢化合物.

对于生物质气化技术, 最大的问题就在于焦油含量. 焦油含量过高, 不仅影响气化

产物的质量, 还容易阻塞和粘住气化设备, 严重影响气化系统的可靠性和安全性. 目前

处理焦油主要有三种方法. 一是选择适当的操作参数, 二是选用催化剂加速焦油的分解,

三是对气化炉进行改造. 其中, 温度, 停留时间等对焦油分解有很重要的作用. Milne TA

(1998 年)[41]指出, 在温度高于1000oC 时, 气体中的焦油能被有效分解, 使产出物中的

焦油含量大大减小. 此外, 在气化炉中使用一些添加剂如白云石, 橄榄石以及使用催化

剂如Ni-Ca 等都可以提高焦油的分解, 降低焦油给气化炉带来的危害[42,43]. 此外, 设

计新的气化炉也对焦油的减少起着很重要的作用. 辽宁省能源研究所研制的下吸式固定

床生物质气化炉, 在其喉部采用特殊结构形式的喷嘴设计, 在反应区形成高温旋风动力

场, 保证了焦油含量低于2g/m3.

由气化所得产物经过重整和水气置换反应, 即可得到氢, 这与处理热裂解产物类似.

通过生物质气化技术制氢也具有非常诱人的经济性. David A.Bowen 等人(2003)[44]比较

了生物质气化制氢和天然气重整制氢的经济性, 见图2. 由图可见, 利用甘蔗渣作为原

料, 在供料量为每天2000 吨的情况下, 所产氢气的成本为US$7.76/GJ, 而在这个供料量

下使用柳枝稷(Switchgrass)为原料制得的氢气成本为US$6.67/GJ, 这和使用天然气重整

制氢的成本US$5.85-7.46/GJ 相比, 也是具有一定竞争力的. 如果将环境因素考虑进去,

由于天然气不可再生, 且会产生CO2, 而生物质是可再生资源, 整个循环过程由于光合

作用吸收CO2 而使CO2 的排放量几乎为0, 这样, 利用生物质制氢从经济上和环境上的

综合考虑, 就已经比天然气重整更有优势了.

Biomass feed to gasifier (tonnes/day)

Hydrogen Cost ($/GJ)

500 1000 1500 2000

5

6

7

8

9

10

11

Natural gas $3/GJ

Natural Gas $4.5/GJ

10.23

8.74

7.76

8.76

7.54

6.67

5.85

7.46

Bagasse

Switchgrass

图2. 生物质制氢与天然气制氢经济性的比较

Fig. 2. Comparison of hydrogen cost between biomass

gasification and natural gas steam reforming

以上分析的利用生物质高温裂解和气化制氢适用于含湿量较小的生物质, 含湿量高

于50%的生物质可以通过光合细菌的厌氧消化和发酵作用制氢, 但目前还处于早期研究

阶段, 效率也还比较低. 另一种处理湿度较大的生物质的气化方法是利用超临界水的特

性气化生物质, 从而制得氢气.

3.3. 生物质超临界水气化制氢

流体的临界点在相图上是气-液共存曲线的终点, 在该点气相和液相之间的差别刚

好消失, 成为一均相体系. 水的临界温度是647K, 临界压力为22.1Mpa, 当水的温度和

压力超过临界点是就被称为超临界水.在超临界条件下, 水的性质与常温常压下水的性

质相比有很大的变化.

在超临界状态下进行的化学反应, 通过控制压力, 温度以控制反应环境, 具有增强

反应物和反应产物的溶解度, 提高反应转化率, 加快反应速率等显著优点, 近年来逐渐

得到各国研究者的重视 [45,46]. 在超临界水中进行生物质的催化气化, 生物质的气化

率可达100%, 气体产物中氢的体积百分比含量甚至可以超过50%, 并且反应不生成焦

油, 木碳等副产品, 不会造成二次污染, 具有良好的发展前景. 但由于在超临界水气中

所需温度和压力对设备要求比较高, 这方面的研究还停留在小规模的实验研究阶段. 我

国也只进行了少量的研究, 比如西安交大多相流实验室就研究了以葡萄糖为模型组分在

超临界水中气化产氢, 得到了95%的气化效率 [47]. 中科院山西煤炭化学研究所在间隙

式反应器中以氧化钙为催化剂的超临界水中气化松木锯屑,得到了较好的气化效果.

到目前为止, 超临界水气化的研究重点还是对不同生物质在不同反应条件下进行实

验研究, 得到各种因素对气化过程的影响. 表3 总结了近几年对生物质超临界水气化制

氢的研究情况. 研究表明, 生物质超临界水气化受生物质原料种类, 温度, 压力, 催化剂,

停留时间, 以及反应器形式的影响.

表3. 近年来关于生物质超临界水气化制氢的研究

Table 3

Recent studies on hydrogen production by biomass gasification in supercritical water

conditions

Feedstock Gasifier type Catalyst used Temperature and

pressure

Hydrogen yield References

Glucose Not known Not used 600oC, 34.5Mpa 0.56 mol H2/mol of feed

Glucose Not known Activated carbon 600 oC, 34.5Mpa 2.15 mol H2/mol of feed

Glucose Not known Activated carbon 600 oC, 25.5Mpa 1.74 mol H2/mol of feed

Glucose Not known Activated carbon 550 oC, 25.5Mpa 0.62 mol H2/mol of feed

Glucose Not known Activated carbon 500 oC, 25.5Mpa 0.46 mol H2/mol of feed

[48]

Glycerol Not known Activated carbon 665 oC, 28Mpa 48 vol%

Glycerol/methanol Not known Activated carbon 720 oC, 28Mpa 64 vol%

Corn starch Not known Activated carbon 650 oC, 28Mpa 48 vol%

Sawdust/corn starch

mixture

Not known Activated carbon 690 oC, 28Mpa 57 vol%

[49]

Glucose

Tubular reactor KOH 600 oC, 25Mpa 59.7 vol% (9.1mol

H2/mol glucose)

Catechol Tubular reactor KOH 600 oC, 25Mpa 61.5 vol% (10.6mol

H2/mol Catechol)

Sewage Autoclave K2CO3 450oC, 31.5-35Mpa

47 vol%

[50]

Glucose Tubular reactor Not used 600 oC, 25Mpa 41.8 vol%

Glucose Tubular reactor Not used 500 oC, 30Mpa 32.9 vol%

Glucose Tubular reactor Not used 550 oC, 30Mpa 33.1 vol%

Glucose Tubular reactor Not used 650 oC, 32.5Mpa 40.8 vol%

Glucose Tubular reactor Not used 650 oC, 30Mpa 41.2 vol%

Sawdust Tubular reactor Sodium

carboxymethylcellulose

(CMC)

650 oC, 22.5Mpa 30.5 vol%

[47]

生物质的主要成分是纤维素, 木质素和半纤维素. 纤维素在水的临界点附近可以快

速分解成一葡萄糖为主的液态产品, 而木质素和半纤维素在34.5 Mpa, 200-230oC 下可以

100%完全溶解, 其中90%会生成单糖. 将城市固体废弃物去除无机物后可以形成基本稳

定, 均一的原料, 与木质生物质很相似. 由表可见, 不同的生物质原料, 其气化效率和速

率也有所不同. 温度对生物质超临界水中气化的影响也是很显著的. 随着温度的升高,

气化效率增大. 压力对于气化的影响在临界点附近比较明显, 压力远大于临界点时, 其

影响较小. 停留时间对气化效率也有一定影响, 研究表明, 生物质在超临界水中气化停

留时间与温度相关, 不同的温度下有不同的一个最佳值. 使用催化剂能加快气化反应的

速率. 目前使用的催化剂主要有金属类催化剂, 比如Ru, Rh, Ni, 碱类催化剂, 比如KOH,

K2CO3, 以及碳类催化剂 [51,52]. 反应器的选择也会影响生物质气化过程, 目前的反应

器可以分为间歇式和连续式反应器. 其中间歇式反应器结构简单, 对于淤泥等含固体的

体系有较强适应性, 缺点是生物质物料不易混合均匀, 不易均匀地达到超临界水下所需

的压力和温度, 也不能实现连续生产,. 连续式反应器则可以实现连续生产, 但反应时间

短, 不易得到中间产物, 难以分析反应进行的情况, 因此今后需要进行大量的研究, 研

制出更加有效的反应器以及寻求不同生物质在不同参数下的最佳气化效果, 实现高效,

经济的气化过程.

4. 其他制氢技术

除热化学方法外, 生物质还可以通过发酵的方式转化为氢气和其他产物. 此外,

微藻等水生生物质能够利用氢酶(Hydrogenase)和氮酶(Nitrogenase)将太阳能转化为

化学能-氢. 这些生物制氢技术具有良好的环境性和安全性, 但还处于早期的研究阶段,

制氢基理还未透彻理解, 尚需大量的研究工作.

太阳能半导体光催化反应制氢也是目前广泛研究的制氢技术. TiO2 及过渡金属氧化

物, 层状金属化合物如K4Nb6O17, K2La2Ti3O10, Sr2Ta2O7 等, 以及能利用可见光的催化

材料如CdS, Cu-ZnS 等都经研究发现能够在一定光照条件下催化分解水从而产生氢气.

但由于很多半导体在光催化制氢的同时也会发生光溶作用, 并且目前的光催化制氢效

率太低, 距离大规模制氢还有很长的路要走. 尽管如此, 光催化制氢研究仍然为我们

展开了一片良好的前景.

5. 制氢技术总结以及在香港的应用前景

前面讨论了利用可再生资源制取清洁燃料-氢的各项主要技术. 这些技术的特点,

经济性, 环境和安全方面的特点总结于表4.

表4. 利用可再生资源制氢技术比较

Table 4. Characteristics of candidate hydrogen production technologies

PV-Electrolysis Wind-Electrolysis Solar Thermochemical Cycle Biomass Conversion

Development

status

PV technology almost mature,

electrolysis mature,

Some demonstrations of

PV-electrolysis system been done

Wind system mature, electrolysis mature,

wind-electrolysis demonstration needed

R&D Pyrolysis and gasification R&D, biological

processes at early R&D

Efficiency PV efficiency:

First generation, 11-15%,

Second generation, 6-8%

Solar to hydrogen around 7%

36% from wind to hydrogen, assuming wind

to electricity efficiency of 40% and

electrolyzer 90%

29% for Zn/ZnO cycles Conversion ratio up to 100% can be

achieved for gasification, efficiency of

10% for biological processes

Economic

consideration

Hydrogen cost about US$40-53.73/GJ

depends on the PV type, the size

Hydrogen cost about US$20.2/GJ,

corresponding to 7.3cents/kWh

US$0.13-0.15/kWh, equivalent to

US$36.1-41.67/GJ

US$6.67-17.1/GJ for thermochemical

conversion depends on biomass types,

capacity size, for biological processes,

remain to be demonstrated

Environmental

consideration

Almost no pollution emission during

operation, energy consumption

intensive during construction, disposal

of hazardous materials

No pollution during operation, construction

energy consumption intensive, some noise

during operation

Emission of hydrogen sulfide, use and

disposal of metal oxide, reactors

Whole cycle CO2 neutral, some pollution

emission during the stage of constructing

reactors

Safety

consideration

Handling hazardous materials during

fabrication, short circuit and fire during

operation, but not significant

Relatively safe, a little danger exist during

maintenance

Operating at high temperature, risk of

explosion exists; leakage of hydrogen

sulfide

Operating at high temperature, explosion

may occur

由表可见, 生物质气化技术和风能-电解制氢技术具有良好的经济性. 对于环境的污染

以及危险性也相对较小, 极具发展前景, 可以作为大规模制氢技术. 而光伏-电解水技

术则目前还未显示出经济优势. 但由于太阳能资源丰富, 在地球上分布广泛, 如果光

伏电池的效率能进一步提高, 成本能大幅降低, 则是未来很有潜力的制氢技术. 太阳

能热化学循环也是可行的制氢技术, 今后的发展方向是进一步降低分解产物的能量损

耗以及发展更为经济的循环.

香港地少人多, 没有自己的煤, 石油, 天然气, 也没有大规模的农业, 所有能源

目前都依赖进口. 但香港具有丰富的风力资源和充足的太阳能资源, 利用可再生资源

部分解决香港的能源问题是一条值得探讨的思路.

香港总人口681 万, 总面积2757km2, 其中陆地面积1098 km2, 海洋面积1659 km2.

但香港绝大多数人口集中在港岛, 九龙等面积较小的市区, 而新界很多区域以及周边

岛屿则人口较少. 由于香港地处北回归线以南, 日照充足(13MJ/m2/day), 风力强劲

(>6m/s), 具有很大的发展可再生能源的潜力. 简单计算可知, 如果将香港所有陆地面

积安装上效率为10%的光伏电池, 则年发电量可达144.7TWh, 这相当于香港1999 年电

消耗量35.5TWh 的4 倍! 这说明发展光伏技术在香港有很大潜力. 考虑到香港市区人

口稠密, 可以考虑将光伏电池安装在周边岛屿发电, 通过电解槽制氢. 由于光伏-电解

水成本很高, 这一技术还难以大规模应用, 如果光伏成本能大幅度降低, 则在香港发

展光伏制氢具有非常诱人的前景. 另外, Li(2000)[53]进行了在香港发展海上风力发电

的可行性研究. 研究表明, 利用香港东部海域建立一个11 × 24 km 的风力发电机组, 可

以实现年发电2.1 TWh, 这相当于香港用于交通的能源的10%. 此外, 香港周边岛屿,

如横澜岛等, 平均风力都在6.7 m/s 以上, 在这些岛屿发展大规模的风力机组也是值得

进一步探讨的问题. 除此之外, 香港每年产生的大量有机垃圾, 也可以通过气化或热

解制氢. 这些技术在香港的成功应用还需要更深入的研究, 本文不作深入探讨.

6. 小结

本文综述了目前利用可再生资源制氢的主要技术, 介绍了其基本原理, 也涉及到

了各项技术的经济性和环境以及安全方面的问题. 对各项制氢技术进行了对比分析,

总结出利用风能发电再推动电解水, 以及利用生物质的热化学制氢具有良好的经济性,

对环境的污染较小, 技术成熟, 可以作为大规模制氢的选择. 利用光伏-电解水技术具

有诱人的发展前景, 但目前还未显示出其经济性. 而太阳能热化学制氢则处于研究阶

段, 还难以用于大规模制氢. 香港具有比较丰富的可再生资源, 利用风力发电和有机

废物制氢是可行的制氢技术, 而光伏电池还需要大量研究以进一步降低成本. 尽管还

有大量的研究和更深入的分析要做, 利用可再生资源制氢以同时解决污染和能源问题

已经为我们展开了一个良好的前景.

致谢:

本文属项目, 该课题受香港中华电力公司(CLP)及香港

特别行政区政府资助, 在此表示感谢!

参考文献

[1] Kazim A, Veziroglu TN. Utilization of Solar-Hydrogen Energy in the UAE to Maintain its

Share in the World Energy Market for the 21st Century [J]. Renewable Energy 2001, 24(2):

259-274.

[2] Abdallah MAH, Asfour SS, Veziroglu TN. Solar-Hydrogen Energy System for Egypt [J],

International Journal of Hydrogen Energy 1999, 24(6): 505-517.

[3] Mao.ZQ. Hydrogen---a Future Clean Energy in China [A], Symposium on Hydrogen

Infrastructure Technology for Energy & Fuel Applications, November 18, 2003. The Hong

Kong Polytechnic University, Hong Kong, 27-33.

[4] Steinfeld A, Palumbo R. Solar thermochemical process technology [J], Encyclopedia of

Physical Science & Technology 2001, 15: 237-256.

[5] Middleton P, Larson R, Nicklas M, Collins B. Renewable Hydrogen Forum: A summary

of expert opinions and policy recommendations [Z], National Press Club, Washington DC,

October 1, 2003.

[6] Wen Feng, Shujuan Wang, Weidou Ni, Changhe Chen, The future of hydrogen

infrastructure for fuel cell vehicles in China and a case of application in Beijing [J],

International Journal of Hydrogen Energy 2004, article in press.

[7] Rosa V.M, Santos M.B.F, Silva E.P.D, New materials for water electrolysis diaphragms

[J], International Journal of Hydrogen Energy 1995, 20(9): 697-700.

[8] Vermeiren P, Adriansens W, Moreels J.P, Leysen R. Evaluation of the zirfon separator for

use in alkaline water electrolysis and Ni-H2 batteries [J], International Journal of Hydrogen

Energy 1998, 23(5): 321-324.

[9] Hu W.K, Cao X.J, Wang F.P, Zhang Y.S. Short Communication: a novel cathode for

alkaline water electrolysis [J], International Journal of Hydrogen Energy 1997,22: 441-443.

[10] Schiller G, Henne R, Mohr P, Peinecke V. High performance electrodes for an advanced

intermittently operated 10-kW alkaline water electrolyzer [J], International Journal of

Hydrogen Energy 1998,23: 761-765.

[11] Hijikata T. Research and development of international clean energy network using

hydrogen energy (WE-NET) [J], International Journal of Hydrogen Energy2002, 27(2):

115-129.

[12] Kumar G.S, Raja M, Parthasarathy S. High performance electrodes with very low

platinum loading for polymer electrolyte fuel cells [J], Electrochimica Acta 1995, 40(3):

285-290.

[13] Hirano S, Kim J, Srinivasan S. High performance proton exchange membrane fuel cells

with sputter-deposited Pt layer electrodes [J], Electrochimica Acta 1997, 42(10): 1587-1593.

[14] Hayre R, Lee S.J, Cha S.W, Prinz F.B. A sharp peak in the performance of sputtered

platinum fuel cells at ultra-low platinum loading [J], Journal of Power Sources 2002, 109(2):

483-493.

[15] Guo Q.H, Pintauro P.N, Tang H, Connor S. Sulfonated and crosslinked

polyphosphazene-based proton-exchange membranes [J], Journal of Membrane Science 1999,

154(2): 175-181.

[16] Carretta N, Tricoli V, Picchioni F. Ionomeric membranes based on partially sulfonated

poly(styrene) synthesis, proton conduction and methanol permeation [J], Journal of

Membrane Science 2000, 166(2):189-197.

[17] Ghany N.A.A, Kumagai N, Meguro S, Asami K, Hashimoto K, Oxygen evolution anodes

composed of anodically deposited Mn-Mo-Fe oxides for seawater electrolysis [J],

Electrochimica Acta 2002, 48(1): 21-28.

[18] Green MA, Recent developments in photovoltaics [J], Solar Energy 2004, 76(1): 3-8.

[19] Ackermann T, Soder L, An overview of wind energy-status 2002 [J], Renewable and

Sustainable Energy Reviews 2002, 6(1): 67-128.

[20] Padro C.E.G, Putsche V. Survey of the economics of hydrogen technologies [Z],

NREL/TP-570-27079, September 1999, National Renewable Energy Laboratory, U.S.A.

[21] Kogan A, Direct solar thermal splitting of water and on site separation of the products 1:

theoretical evaluation of hydrogen yield [J], International Journal of Hydrogen Energy 1997,

22(5): 481-486.

[22] Kogan A, Direct solar thermal splitting of water and on-site separation of the products-II:

Experimental feasibility study [J], International Journal of Hydrogen Energy 1998, 23(2):

89-98.

[23] Baykara S.Z, Experimental solar water thermolysis [J], International Journal of

Hydrogen Energy, 2004, article in press.

[24] Harvey, S., Davidson, J.H., Fletcher, E.A, Thermolysis of hydrogen sulfide in the

temperature range 1350 to 1600K [J], Ind. Eng. Chem. Res 1998, 37: 2323-2332.

[25] Steinfeld A, Spiewak I, Economic evaluation of the solar thermal co-production of Zinc

and synthesis gas [J], Energy Conversion and Management 1998, 39(15): 1513-1518.

[26] Steinfeld A, Kuhn P, Reller A, Palumbo R, Murray J. Solar-processed metals as clean

energy carriers and water-splitters [J], International Journal of Hydrogen Energy 1998, 23(9):

767-774.

[27] Haueter P, Moeller S, Palumbo R, Steinfeld A, The production of Zinc by thermal

dissociation of Zinc oxide-solar chemical reactor design [J], Solar Energy 1999, 67(1-3):

161-167.

[28] Lede J, Elorza-Ricart E, Ferrer M, Solar thermal splitting of Zinc oxide: a review of

some of the rate controlling factors [J], Journal of Solar Energy Engineering 2001, 123(2):

91-97.

[29] Steinfeld A, Solar hydrogen production via a two-step water-splitting thermochemical

cycle based on Zn/ZnO redox reactions [J], International Journal of Hydrogen Energy 2002,

27(6): 611-619.

[30] Sakurai, M., Nakajima, H., Amir, R., Onuki, K., Shimizu, S, Experimental study on

side-reaction occurrence condition in the iodine-sulfur thermochemical hydrogen production

process [J], International Journal of Hydrogen Energy 2000, 25(7): 613-619.

[31] Sakurai, M., Gligen, E., Tsutsumi, A., Yoshida K, Solar UT-3 Thermochemical Cycle for

hydrogen production [J], Solar Energy 1996, 57(1): 51-58.

[32] pre.ethz.ch/cgi-bin/main.pl?research?project6

[33] solar.web.psi.ch/daten/projekt/elprod/elprod.html

[34] Babu BV, Chaurasia AS, Parametric Study of Thermal and Thermodynamic Properties on

Pyrolysis of Biomass in Thermally Thick Regime [J], Energy Conversion and Management

2004, 45: 53-72.

[35] Bridgwater AV, Peacocke GVC. Fast Pyrolysis Processes for biomass [J], Renewable and

Sustainable Energy Reviews 2000, 4(1):1-73.

[36] Williams.Paul T., Brindle. Alexander J. Catalytic Pyrolysis of Tyres: Influence of

Catalyst Temperature [J], Fuel 2002;81(18): 2425-2434.

[37] Chen G, Andries J, Spliethoff H. Catalytic Pyrolysis of Biomass for Hydrogen Rich Fuel

Gas Production [J], Energy Conversion and Management 2003; 44(14): 2289-2296.

[38] Sutton.D, Kelleher B, Ross JRH, Catalytic Conditioning of Organic Volatile Products

Produced by Peat Pyrolysis [J], Biomass and Bioenergy 2002; 23(3): 209-216.

[39] eere.energy.gov/hydrogenandfuelcells/hydrogen/pdfs/danz_biomass.pdf

[40] Carlo N.H, Andre P.C.F, Future Prospects for Production of Methanol and Hydrogen

From Biomass [J], Journal of Power Sources 2002, 111(1): 1-22.

[41] Milne TA, Abatzoglou N, Evans RJ. Biomass Gasifier _Tars_: Their Nature, Formation,

and Conversion [Z], NREL/TP- 570-25357, 1998, National Renewable Energy Laboratory,

USA.

[42] Demirbas A, Gaseous products from biomass by pyrolysis and gasification: effects of

catalyst on hydrogen yield [J], Energy Conversion and Management 2002, 43: 897-909.

[43] Zhang RQ, Brown RC, Suby A, Cummer K, Catalytic destruction of tar in biomass

derived producer gas [J], Energy Conversion and Management 2004, article in press.

[44] Bowen. D.A, Lau F, Zabransky R, Remick R, Slimane R, Doong S, Techno-Economic

Analysis of hydrogen production by gasification of biomass [Z], NREL FY 2003 progress

Report, National Renewable Energy Laboratory, USA, 2003.

[45] Adschiri T, Hirose S, Malaluan R, Arai K, Noncatalytic Conversion of Cellulose in

Supercritical and Subcritical Water [J], J Chem Eng 1993,26: 676–80.

[46] Hao Xiaohong, Guo Liejie, A Review on Investigation of Hydrogen Production by

Biomass Catalytic Gasification in Supercritical Water [J], Journal of Chemical Industry and

Engineering (China) 2002, 53: 221-228.

[47] Hao XH, Guo LJ, Mao X, Zhang XM, Chen XJ. Hydrogen Production From Glucose

Used as a Model Compound of Biomass Gasified in Supercritical Water [J], International

Journal of Hydrogen Energy 2003, 28(1): 55-64.

[48] Xiaodong X, Yukihiko M, Jonny S, Michael JA, Jr. Carbon-catalyzed gasification of

organic feedstocks in supercritical water [J]. Industrial & Engineering Chemistry Research

1996, 35(8): 2522-2530.

[49] Antal MJ, Jr, Xu XD, Hydrogen Production From High Moisture Content Biomass in

Supercritical Water [Z], Proceedings of the 1998 U.S.DOE Hydrogen Program Review,

NREL/CP-570-25315, 1998, National Renewable Energy Laboratory, USA.

[50] Schmieder H, Abeln J, Boukis N, Dinjus E, Kruse A, Kluth M, Petrich G, Sadri E,

Schacht M, Hydrothermal gasification of biomass and organic wastes [J], Journal of

Supercritical Fluids 2000, 17(2): 145-153.

[51] Schmieder H, Abeln J, Boukis N, Dinjus E, Kruse A, Kluth M, Petrich G, Sadri E,

Schacht M, Hydrothermal gasification of biomass and organic wastes [J], Journal of

Supercritical Fluids 2000, 17(2): 145-153.

[52] Yoshida T, Matsumura Y, Gasification of Cellulose, Xylan, and Lignin Mixtures in

Supercritical Water [J]. Industrial and Engineering Chemistry Research 2001, 40: 5469–5474.

第8篇:生物质发电的缺点范文

1 中美可再能源政策比较与分析K

1.1强制性政策的比较与分析SAJ:

制定一定的法律、法规或条例,从法律上保证可再生能源(RE)的发展,这是中美两国共同作法,也是两国共同的特点。事实证明这是十分必要的。举例来说,美国所以能在风能、太阳能方面取得世界公认的成就并在生物质能发电技术上进入世界的先进行列,一个重要原因是RE技术的发展很久以来就得到国家法律和政策的技术和保护。如早在1978年美国"公用事业管制政策法"中就规定电力公司必须按可避免成本购买热电联产和可再生能源生产的电力。这一政策为RE发电技术与化石燃料发电技术的公平竞争创造了条件,到1992年,在"能源政策法"中,进一步对RE发展提出了要求,即要求到2010年RE提供的能量应比1988年增加75%;同时规定对RE资源的开发利用给予投资税额减免,并授权能源部资助RE的示范和商业化项目。;d!JE

1995的中国政府颁布了首部"电力法",明确鼓励使用太阳能等可再生能源;与此同时.原电力部还出台了"风力发电并网运行的管理规定"。无疑这些政策措施对促进RE的发展都起到了巨大作用。zU[Ee

但是,相比较而言,两国在强制性政策的规定方面却显示了不同的特点:N

中国的特点是:注重政策的宏观性、重要性和必要性的论述,它的优点是有较大的灵活性,可以有多种选择。缺点是如果没有与之相配合的实施细则(例如就政策如何支持,怎样鼓励,支持到什么程度,鼓励维持到什么时候等问题作出相应的具体规定)。否则这些条文和要求将无法变为现实。UO_

美国的特点是:即有宏观性的论述,又有具体政策的规定,1992年的"能源政策法"即是一例。因而这些政策看起来明确具体、界限清楚、要求严格。EDGP

美国可再生能源政策的另一特点是,联邦政府和州政府的紧密配合,既有联邦政府全国性的统一规定和要求,又有各地区和州政府的特殊、具体的规定和要求。如根据联邦政府的"能源政策法"的精神,有些州政府又制定了"系统效益收费制"和"可再生能源设备通行权"等适用本地区的政策和规定。这样,上下配合,互为补充,从而形成一套完整有力的政策体系。E:$

美国政策的第三个特点是及时审视,随时调整。即根据客观实际需要和形势变化而不断地调整或制定新的政策,这一特点在其他几类政策上亦有体现。如为了适应目前电力工业资产重组和反管制改革所带米的影响和变化,有些地区及时地提出了可再生能源发展的"配额制"(RenewableProtfolioStandard)的政策规定等。}w

1.2经济激励政策的比较与分忻/v.

尽管经济激励政策多种多样,但从中美两国使用的频率和广泛性来看,主要有以下四种:jI1q8

(1) 补贴政策,0kn

这是中国常见的一种激励手段,美国则使用不多。一般而言,补贴有三种形式:G

一是投资补贴,即对投资者进行补贴,如中国政府对地方小水电建设的投资即属于此类。美国过去对风力发电投资者曾实行过15%投资补贴,但现在已停止使用。对投资者进行补贴的优点是可以调动投资者的积极性。增加生产能力。扩大产业规模;缺点是这种补贴与企业生产经营状况无关,不能起到刺激更新技术、降低成本的作用。5o2TZ

第二种是产出补贴,即根据RE设备的产品产时进行补贴。中国目前还没有这种补贴政策。这种补贴的优点是显而易见的,即有利于增加产品产量降低成本。提高企业的经济效益。这也是美国加州目前正在实施的一种激励措施(即对RE产生的电力给予0.6一1.0/kwh的补贴)~`

第三种是对消费者(即用户)进行补贴。这是中国广泛采用的一种刺激措施。除了在推广太阳能设备、微型风力发电设备中广泛采用外.在农村户用沼气池,高效率柴灶和其他生物质能技术试点示范也曾广泛采用。美国加州对购买PV系统的用户也采取了类似的鼓励措施。这一政策的理论依据是:通过刺激消费,达到扩大市场需求的效果,反过来带动生产能力的扩大,进而达到降低成本的目的。但实践证明。这一目标的实现具有很大的不确定性。因为就RE而言,只有当消费市场足够人时,才可能达到目的,而足够大的消费市场需要大量资金,如果仅仅靠补贴则是难以实现的。]dEsbQ

但是,不管怎么说现阶段补贴政策毕竟是一项行之有效的措施。中美两国(特别是中国)可再生能源之所以有今天的规模和水平,同该项政策的作用则是不可低估的。然而,从总结经验角度来看,补贴政策的实施应解决好以下两个问题:^n)

补贴资金来源问题。根据美国和西欧的经验。一是通过系统效益收费来筹;另一个是征收化石燃料税,中国主要由政府财政支付;而中国是个发展中国家,财政收入有限。需要补贴支援的事业很多,所以依赖政府财政的支持不是长久之计。

补贴策略问题,即应给谁予以补贴和以什么样的的运行机制进行补贴,如果对用户进行补贴,正如前述,不一定能达到政策的预期目标:如选择投资者给予补贴,并采取公开招标,公平竞争的机制,则可能取得既扩大生产规模,又能降低成本的双重目的。rb>

(2)税收政策[

这是中美两国(尤其是美国)应用最多的经济政策,实际上有两种不同的税收政策:一种是税收优惠政策,如减免关税、减免形成固定资产税,减免增值税和所得税(企业所得税和个人收入税)等。从理沦上说,减兔税收不需要政府拿出大量资金来进行补贴。只是减少一部分中央或地方的收入;而且,目前RE产业规模小,不会构成对全国税收平衡的影响,因而易于实施。只是由于大多数税种不进入生产成本(关税例外),只影响企业产品的销售价格和企业的经济效益,因而,实际上对鼓励企业改进生产制造技术,提高效率,降低成本没有直接的作用。这就是为什么有些可再生能源技术和产业,一旦这种优惠政策取消企业便生存不下去的原因所在。如美国的太阳能热水器的生产和销售。税收减兔政策取消后,其销售量从1980年的1746000m一下降到1990年1026000m,生产企业减少了近200家,又加世界闻名LUZ太阳能热发电装置也面临着联帮政府和州政府税收优惠取消后破产的威胁。B

另一种税收政策为强制性税收政策。如对城市垃圾和畜禽场排放的污水等物质。实行污染者付费的原则等即属此类。各国的实践证明,这类政策,尤其是高标准,高强度的收费政策,不仅能起到鼓励开发利用这类资源的作用,还能促进企业采用先进技术,提高技术水平的作用。因而也是一种不可或缺的刺激措施.m8Nf

应指出的是,税收减兔政策的目的在于促进技术进步和技术的商业化,因而应对什么企业减免和减免税收后应达到什么样的目标(经济的和技术的目的).则是实施这一政策首先必须明确的问题。cG?0>

(3)价格政策e

由于RE产品成本一般高于常规能源产品,所以世界上许多国家都采取了对RE价格实行优惠的政策。在美国"能源政策法"中规定公用电力公司必须以避免成本收购RE电量,同时美国的一些州还作出按净用量收费的办法。这些实际上都是电价优惠的措施,在中国,原电力部也就风力发电上网电价制定了较优惠的政策。$

但是实际上,两国所制定的政策的法律效力存在明显的差别。一方面美国的电价优惠政策覆盖了所有的可再生能源发电技术,中国仅限于风力发电;另一方面美国的规定是由联邦政府以法律的形式而签发的,而中国的规定尚属部委一级批准实施的计划,而且未经过国务院和人大委员会的审议批准。:tn

理论分析和实践都已证明,价格优惠是一项非常有效的激励措施,只要应用得当,可以起到促进技术进步和降低成本的作用。其关键性的问题有两个:y

一个是差价补贴的资金来源问题。美国、中国和其他国家通常的办法是:政府、电力公司和用户共同承担;或全部由用户承担,如通过电费加价来筹集资金。现阶段由于RE产业规模小,补贴资金需求量小,这种做法是一种比较现实的办法。z|q%转贴于 EN

另一个是价格优惠对象的选择标点其涵意与前述补贴政策基本相同,这里不再重复。r,.0

(4)低息(贴息)贷款政策~P

低息(或贴息)贷款可以减轻企业还本期利息的负担,有利于降低生产成本;缺点是政府需要筹集的一定的资金以支持贴息或减息的补贴,贷款数量越大,贴息量越大,需要筹集的资金也越多。因此,资金供应状况是影响这一政策持续进行的关键性因素。目前美国已没有这类的贷款政策,中国的实施规模也很小,完全在可以承受的范围内。y

为了提高贴息贷款的经济效益,关键性的问题与提高价格政策和补贴政策的实施效应完全相,即要正确地选择贷款对象和实施科学的贷款程序。 :V3ml

1.3研究开发政策的比较和分析*cR{/+

重视可再生能源的研究开发工作是中美两国共同的特点。其主要表现是:s2B3 |

(1)从70年代以来两国部实施了一大批科学研究与开发计划;cZ/

(2)两国政府投入巨额资金用以支持RE的研究和发展;,S)Y

(3)建立并形成了一批国家级的试验室和研究队伍。@}v

但是相比较而言,中美两国这方面政策的差别也是明显的:J~{

(1)资金投入强度相差悬殊。以"九五"(1990-1995)为例,中国政府用于"九五"国家科技攻关项目的经费不足1.0亿元人民币,而美国 政府投入RH研究和开发项目却高达14.56亿美元。两者的差距不言而喻。尽管中美两国经济基础不同,实力不在一个档次上,不能简单地直接相比较,但是从中国可再生能源及研究开发的实际需要和实际上已得到的支持来看,政府的投入是严重不足的。 5j%T>

(2)在RE的研究开发方向,中国只有一个积极性,即中央政府的积极性,地方和工业界基本还没有介人或介人甚少:近年来虽然有所改善,但实际投入RE的人力物力和财力则屈指可数。美国不仅有联邦政府的投入,还有工业界、企业家和个人的投贤,一些州政府还设立了专门的研究开发项目和计划。

应当特别指出的是,目前美国的可再生能源技术整体上己处于世界领先地位并拥有世界最大的规模的风电场。太阳能热发电站和生物质能发电系统,在这种情况下,美国依然对其研究和开发给予极大的关注和支持,提出并实施了一批新的规模宏大的开发计划,这不是偶然的,这跟该国宏伟的社会经济目标、环境目和可再生能源技术的发展现状以及对研究、开发的巨大作用的认识有着深刻的关系 1

1.4市场开拓策略和措施的比较和分析S&:=

中美两国在可再生能源市场开拓方面显然采取了一些措施和策略也取得了一些成就和经验;但是从RE技术商业化发展的需要来说,这些努力还是不够的,特别是在市场运行机制的探索上更显得不足。因为愈来愈多的实践证明,在阻碍可再生能源技术发展的众多因素中,运行机制是一个比技术问题和经济成本更难以解决的问题。从技术来说,目前RE所遇到的各种技术障碍几乎都可以利用现有科学技术而加以解决,经济成本问题也将随着运行机制的改善而得到改善,而机制问题由于涉及国家政治体制。经济体制等更加广泛而复杂的因素而难以解决,因此,市场开拓是中美两国尤其是中国今后应予加强和改善的方面。6cqL`

2 认识和建议 NHLs@F

©清洁能源技术论坛 -- 论坛讨论主要围绕清洁能源技术、位为专业技术论坛。

0"qxJs

综合上述可以得到这样几个认识,即:中美两国为了推动RE技术的进步和发展,已在各自的能力范围内,尽其所能,采取一系列的技术、经济、法律、市场和研究开发的政策和措施,大大推动了可再生能源的发展,并取得显著成效,这己是人所共知的事实。但是,从两国长远的发展目标和现实需要来说,RE技术还必须有一个更大的发展。这样就需要两国政府(特别是中国政府)应在总结过去国内外工作经验的基础上,进一步采取措施,补充、修改、完善己有的可再生能源政策和措施,研究制定新的可再生能源政策和措施。为此目的,结合以上的比较分析,我们愿为中国政府提供以下建议。供在研究、制定可再生能源政策时参考:bvJ

2.1 加强立法,从法律上和政策上保证可再生能源的发展,这一条己是被实践证明了的真理。目前中间的"电力法"和"节能法"都己肯定RE的战略地位,在明了政府热情支持和鼓励的态度。现在关键的问题是,政府的有关部门应立即根据法律上的相关规定,研究、制定具体的实施方案和细则。要进一步明确各地RE发展的合理的比例。明确亨受国家优惠政策的对象应具备的条件以及亨受优惠条件后应达到的经济目标和技术目标。#,

2.2 全面推行还本付息加合理利润的定价原则。1994年,电力部以部发94(461)号文件形式向全国各大电网,省、市、区供电部门发了风力发电并网运行的管理规定。该规定明确提出电网必须就近收购风电场的电量,其上网电价按生产成本加还本利息和合理利润的原则确定。超出电网平均电价的部分,采取均摊方式,由全网共同负担。近几年的实践证明这是一项行之有效的办法。但是,这一规定也有其不足之处,即没有定义全网的范围,由此在如何承担风电差价问题容易产生争论。建议将这规定修改和完善后,上报国务院,进一步明确风电上网电价高出电网平均价格的部分,由区域性电网厅覆盖的地区的电力用户承担,并将这一原则的适用范围扩人到其他类似的可再生能源产品。如沼气发电稻壳发电,生物质发电以及生物质气化集中供气的并网问题,均应按此原则办理。 .WiK

2.3 继续实施现有的减兔税政策,但运作方式应加以改进。具体建议是:;

(1)目前国家己对蔗渣和沼气发电等再生能源利用技术,实行为期5年内免交所得税的政策,建议对其他可再生能源发电技术及非电利用技术也实行类似的政策。%97qdG

(2)现阶段可再生能源发电成本较高,征收增值税后的上网电价将更高,以风力发电为例。通常将超过0.7元/kwh,这是电网难以接受的,另外,可再生能源发电不消耗燃料,没有进项税或进项税少,增值税不能抵扣或抵扣很少。因而可再生能源发电的增值税实际征收额远远高于常规能源发电。按全国统一的增值税率(17%〕征收是不合理的,也不利于与常规能源发电技术的公平竞争。建议实行与小水电一样的增值税税率,即6.0%。Z9^6

(3)制定享受税收优惠政策(含其他优惠政策)的对象应具备的条件,以及享受优惠政策后应达到的目标。2O

2.4 增加财政投入和银行信贷,加速RE技术的进步和国产化。在这方面,美同等先进国家已先行一步,注入了数10亿美元的研究、开发和示范推广经费。中国RE技术基础薄,国产化能力低。要大模地发展风力发电、光伏发电和生物质能的高效利用,某些关键技术的攻关和国产化是不可缺少的。结合中同的条件和需要,建议设立以下扶持政策:G~K

(1)增加RE技术攻关和国产化资金,其财政拨款应随国民经济的快速发展而成倍增加; ~9`M

(2)将RE技术列入国家基本建设和技术改造投资的重点扶持计划;Q!

(3)设立专用于RE技术的信贷资金,其中贴息贷款应在目前每年用于农村能源利可再生能源技术开发贷款1.2亿元的基础上有所增加;5T[;{Z

(4)凡利用国产设备兴建的可再生能源企业,可以优先得到国家政策银行的优惠贷款或贴息的支持;p

(5)凡使用国产可再生能源设备或零部件的企可免征或形成固定资产税,以降低国产可再生能源设备的造价,扩大市场销路,促进国产化。DI&Kp

C

第9篇:生物质发电的缺点范文

关键词:风力发电;现状;技术发展

能源、环境是当今人类生存和发展所要解决的紧迫问题。常规能源以煤、石油、天然气为主,它不仅资源有限,而且造成了严重的大气污染。因此,对可再生能源的开发利用,特别是对风能的开发利用,已受到世界各国的高度重视。风电是可再生、无污染、能量大、前景广的能源,大力发展风电这一清洁能源已成为世界各国的战略选择。我国风能储量很大、分布面广,开发利用潜力巨大。近年来我国风电产业及技术水平发展迅猛,但同时也暴露出一些问题。总结我国风电现状及其技术发展,对进一步推动风电产业及技术的健康可持续发展具有重要的参考价值。

1我国风力发电的现状

2005年2月,我国国家立法机关通过了《可再生能源法》,明确指出风能、太阳能、水能、生物质能及海洋能等为可再生能源,确立了可再生能源开发利用在能源发展中的优先地位。2009年12月,我国政府向世界承诺到2020年单位国内生产总值二氧化碳排放比2005年下降40%~45%,把应对气和变化纳入经济社会发展规划,大力发展包括风电在内的可再生能源与核能,争取到2020年非化石能源占一次能源消费比重达到15%左右。随着新能源产业成为国家战略新兴产业规划的出台,风电产业迅猛发展,有望成为我国国民经济增长的一个新亮点。

我国自上世纪80年代中期引进55kW容量等级的风电机投入商业化运行开始,经过二十几年的发展,我国的风电市场已经获得了长足的发展。到2009年底,我国风电总装机容量达到2601万kW,位居世界第二,2009年新增装机容量1300万kW,占世界新增装机容量的36%,居世界首位[1,2]。可以看出,我国风电产业正步入一个跨越式发展的阶段,预计2010年我国累计装机容量有望突破4000万kW。

从技术发展上来说,我国风电企业经过“引进技术—消化吸收—自主创新”的三步策略也日益发展壮大。随着国内5WM容量等级风电产品的相继下线,以及国内兆瓦级机组在风电市场的普及,标志我国已具备兆瓦级风机的自主研发能力。同时,我国风电装备制造业的产业集中度进一步提高,国产机组的国内市场份额逐年提高。目前我国风电机组整机制造业和关键零部件配套企业已能已能基本满足国内风电发展需求,但是像变流器、主轴轴承等一些技术要求较高的部件仍需大量进口。因此,我国风电装备制造业必须增强技术上的自主创新,加强风电核心技术攻关,尤其是加强风电关键设备和技术的攻关。

2风力发电的技术发展

风力发电技术是涉及空气动力学、自动控制、机械传动、电机学、力学、材料学等多学科的综合性高技术系统工程。目前在风能发电领域,研究难点和热点主要集中在风电机组大型化、风力发电机组的先进控制策略和优化技术等方面。

2.1风力发电机组机型及容量的发展

现代风力发电技术面临的挑战及发展趋势主要在于如何进一步提高效率、提高可靠性和降低成本。作为提高风能利用率和发电效率的有效途径,风力发电机单机容量不断向大型化发展。从20世纪80年代中期的55kW容量等级的风电机组投入商业化运行开始,至1990年达到250kW,1997年突破1MW,1999年即达到2MW。进入21世纪,兆瓦级风力机逐渐成为国际风电市场上的主流产品。2004年德国Repower即研制出第一台5MW风电机,Enercon开发出第二代直驱式6WM风电机,预计2013年单机容量将突破15MW[1,3]。从世界范围来看,1.5MW-2MW的机型占世界机组容量的比例,已从2007年的63.7%飞速上升到80.4%;而在我国,2005年风电场新安装的兆瓦级风电机组占当年新装机容量的21.5%,而2009年比例已经上升到86.86%[4]。这表明容量风电机组已经成为我国风电市场上的主流产品。

2.2风力发电机组控制技术的发展

控制技术是风力发电机组安全高效运行的关键技术[5,6],这是因为:

1)自然风速的大小和方向随着大气的气压、气温和湿度等的活动和风电场地形地貌等因素的随机性和不可控性,这样风力机所获得的风能也是随机和不可控的。

2)为使风能利用率更高,大型风力发电机组的叶片直径大约在60m~100m之间,因此风轮具有较大的转动惯量。

3)自动控制在风力发电机组的并网和脱网、输入功率的优化和限制、风轮的主动对风以及运行过程中故障的检测和保护中都应得到很好的利用。

4)风力资源丰富的地区通常环境较为恶劣,在海岛和边远的地区甚至海上,人们希望分散不均的风力发电机组能够无人值班运行和远程监控。这就对风力发电机组的控制系统可靠性提出了很高的要求。

因此,众多学者都致力于深入研究风力发电的控制技术和控制系统,这些研究工作对于风力发电机组优化运行有极其重要的意义。计算机技术与先进的控制技术应用到风电领域,并网运行的风力发电控制技术得到了较快发展,控制方式从基本单一的定桨距失速控制向变桨距和变速恒频控制方向发展,甚至向智能型控制发展。

定桨距型风力机指桨叶与轮毂的连接是固定的,即桨距角固定不变,当风速变化时,桨叶的迎风角度固定不变。失速型是当风速高于额定风速,利用桨叶翼型本身所具有的失速特性,即气流的攻角增大到失速条件,使桨叶的表面产生涡流,将发电机的功率输出限制在一定范围内。失速调节型的优点是简单可靠,当风速变化引起输出功率变化时,只通过桨叶的被动失速调节而控制系统不做任何控制,使控制系统大为简化。其缺点是叶片重量大,桨叶、轮毂、塔架等部件受力较大,机组的整体效率较低,也使得这些关键部件更容易疲劳磨损。 转贴于

变速恒频风力发电机组是近年来发展起来的一种新型风力发电系统,其转速不受发电机输出功率的限制,而其输出电压的频率、幅值和相位也不受转子转速的影响。与恒速风电机组相比,它的优越性在于:低风速时能够跟踪风速变化,在运行中保持最佳叶尖速比以获得最大风能;高风速时利用风轮转速的变化调节风力机桨距角,在保证风电机组安全稳定运行的同时,使输出功率更加平稳。变速恒频风力发电机组通过励磁控制和变桨距调节来实现最佳运行状态。变桨距是根据风速和发电机转速来调整叶片桨距角,从而控制发电机输出功率,由传动齿轮箱、伺服电机和驱动控制单元组成。随着风电控制技术的发展,当输出功率小于额定功率状态时,变桨距风力发电机组采用OptitiP技术,即根据风速的大小,调整发电机转差率,使其尽量运行在最佳叶尖速比,以得到理想的输出功率。变桨距风力发电机组的优点是:输出功率平稳,在额定点具有较高的风能利用系数,具有更好的起动性能与制动性能,能够确保高风速段的额定功率。

2.3风力发电机组控制策略的发展

风能是一种能量密度低、稳定性较差的能源,由于风速、风向的随机性变化,导致风力机叶片攻角不断变化,使叶尖速比偏离最佳值,风力机的空气动力效率及输入到传动链的功率发生变化,影响了风电系统的发电效率并引起转矩传动链的振荡,会对电能质量及接入的电网产生影响,对于小电网甚至会影响其稳定性。风力发电机组通常采用柔性部件,这有助于减小内部的机械应力,但同时也会使风电系统的动态特性复杂化,且转矩传动模块会有很大振荡。目前,对风力发电机的控制策略研究根据控制器类型可分为两大类:基于数学模型的传统控制方法和现代控制方法。传统控制采用线性控制方法,通过调节发电机电磁转矩或桨叶节距角,使叶尖速比保持最优值,从而实现风能的最大捕获。对于快速变化的风速,其调节相对滞后。同时基于某工作点的线性化模型的方法,对于工作范围较宽、随机扰动大、不确定因素多、非线性严重的风电系统并不适用。

现代控制方法主要包括变结构控制、鲁棒控制、自适应控制、智能控制等[7,8]。变结构控制因具有快速响应、对系统参数变化不敏感、设计简单和易于实现等优点而在风电系统中得到广泛应用。鲁棒控制具有处理多变量问题的能力,对于具有建模误差、参数不准确和干扰位置系统的控制问题,在强稳定性的鲁棒控制中可得到直接解决。模糊控制是一种典型的智能控制方法,其最大的特点是将专家的知识和经验表示为语言规则用于控制,不依赖于被控制对象的精确的数学模型,能够克服非线性因素的影响,对被调节对象有较强的鲁棒性。由于风力发电机的精确数学模型难以建立,模糊控制非常适合于风力发电机组的控制,越来越受到风电研究人员的重视。人工神经网络是以工程技术手段来模拟人脑神经元网络的结构与特征的系统。利用神经元可以构成各种不同的拓扑结构的神经网络,它是生物神经网络的一种模拟和近似。利用神经网络的学习特性,可用于风力机的低风速的节距控制。

3存在的问题及展望

尽管近年来我国风电产业得到了迅猛的发展,但同时也暴露出众多的问题。

首先,我国尚未完全掌握风电机组的核心设计及制造技术。在设计技术方面,我国不仅每年需支付大量的专利、生产许可及技术咨询费用,在一些具有自主研发能力的风电企业中,其设计所需的应用软件、数据库和源代码都需要从国外购买。在风机制造方面,风机控制系统、逆变系统需要大量进口,同时,一些核心零部件如轴承、叶片和齿轮箱等与国外同类产品相比其质量、寿命及可靠性尚有很大差距。其次,我国风电发展规划与电网规划不相协调,上网容量远小于装机容量。风电发展侧重于资源规划,风电场的建设往往没有考虑当地电网的消纳能力,从而造成装机容量大,并网发电少的现状。2009年新增装机容量中1/3未能上网,送电难已经成为制约风电发展的瓶颈。最后,我国风电的技术标准和规范不健全,包括风机制造、检测、调试、关键零部件生产及电场入网等相关标准亟需建立和完善。因此,展望我国未来的风电产业发展,必须加强自主创新掌握核心技术;必须加大电网建设力度,合理规范风电开发;必须加大政策扶持力度,建立健全完善统一的风电标准规范体系。

参考文献

[1] 陈永祥,方征.中国风电发展现状、趋势及建议[J].科技综述,2010(4):14-19.

[2] 张明锋, 邓凯,陈波等.中国风电产业现状与发展[J].机电工程,2010,1(27):1-3.

[3] 党福玲,朝克,贾永.我国风电产业发展现状浅析[J].经济论坛,2010(12):58-60.

[4] 韩永奇,韩晨曦.中国风电产业的发展与前景[J].新材料产业,2010(12):8-10.

[5] 王超,张怀宇,王辛慧等.风力发电技术及其发展方向[J].电站系统工程,2006,22(2):11-13.

[6] 许洪华,郭金东.世界风电技术发展趋势和我国未来风电发展探讨[J].电力设备,2005,6(10):106-108.