公务员期刊网 精选范文 高分子材料的光学性能范文

高分子材料的光学性能精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的高分子材料的光学性能主题范文,仅供参考,欢迎阅读并收藏。

高分子材料的光学性能

第1篇:高分子材料的光学性能范文

1.何为高分子化学

顾名思义,高分子就是相对分子质量很高的分子,它是高分子化合物的简称。高分子化合物,又称聚合物或高聚物,是结构上由重复单元(低分子化合物—单体)连接而成的高相对分子质量化合物。高分子的相对分子质量非常的大,小到几千,大到几百万、上千万的都有。我们有时将相对分子质量较低的高分子化合物叫低聚物。高分子化学作为化学的一个分支,同样也是从事制造和研究分子的科学,但其制造和研究的对象都是大分子,即由若干个原子按一定规律重复地连接成具有成千上万甚至上百万质量的、最大伸直长度可达毫米量级的长链分子,称为高分子、大分子或聚合物。

2.高相对分子质量与高强度

相对分子质量和物质的性质是密切相关的,是决定物质性质的一个重要因素。只有相对分子质量高的化合物才有一定的机械力学性能,才能作为材料使用。例如乙烷、辛烷、廿烷、聚乙烯、超高分子量聚乙烯,都是直链的烷烃化合物,但是分子量变化很大,其机械力学性能因而也有极大的区别。

3.高分子科学的主要内容

既然高分子化学是制造和研究大分子的科学,对大分子的反应和方法的研究,显然是高分子化学最基本的研究内容。高分子科学不仅是研究化学问题,也是一门系统的科学。高分子科学的主要内容有:如何将低分子化合物连

接成高分子化合物,即聚合反应的研究。高分子化合物的结构与性质关系。不同性质的高分子,其结构必然是不同的。为了得到不同性质的高分子,就要去合成具有特殊结构的高分子。

二、高分子材料化学的应用

材料是人类社会文明发展阶段的标志,是人类赖以生存和发展的物质基础。它是指经过某种加工,具有一定结构、组分和性能,并可应用于一定用途的物质。上世纪半导体硅、高集成芯片、高分子材料的出现和广泛应用,把人类由工业社会推向信息和知识经济社会。可以说某一种新材料的问世及其应用,往往会引起人类社会的重大变革,材料是人类文明的重要标志。如果说现在人人离不开高分子材料,家家离不开高分子材料,处处离不开高分子材料,是一点也不过分的。高分子化合物的最主要的应用是以高分子材料的形式出现的,高分子材料包括了塑料、纤维、橡胶三大传统合成材料,另外许多精细化工材料也都是高分子材料。

第一,塑料:一类是通用塑料,如容器、管道、家具、薄膜、鞋底与泡沫塑料等等;另一类叫工程塑料,其强度大,如汽车零部件、保险杠、洗衣机内的滚筒、电器的外壳等。

第二,纤维:人们开发出聚酯、尼龙、腈纶、维尼纶等高分子化合物,通过不同的加工,生产出了各种纤维制品,极大地满足着人类的需要。

第三,橡胶:天然橡胶的种类和品质都受到很大的限制,于是科学家们不断开发出了各种人造橡胶,如丁苯橡胶、丁腈橡胶、乙丙橡胶、氟橡胶、硅橡胶等。

第四,精细化工:比如使得我们的世界变得丰富多彩的各种涂料产品,如家具漆、内外墙乳胶漆、汽车漆、飞机漆等。女孩子用的指甲油,使牙齿变白的增白剂也都是涂料。还有万能胶、建筑用胶、医用胶、结构胶等黏合剂,以及各种吸水树脂等都是高分子产品。

三、高分子化学与高科技的结合

当今社会,人们将能源、信息和材料并列为新科技革命的三大支柱,而材料又是能源和信息发展的物质基础。自从合成有机高分子材料的那一天起,人们始终在不断地研究、开发性能更优异、应用更广泛的新型材料,来满足计算机、光导纤维、激光、生物工程、海洋工程、空间工程和机械工业等尖端技术发展的需要。高分子材料向高性能化、功能化和生物化方向发展,出现了许多产量低、价格高、性能优异的新型高分子材料。

随着生产和科学技术的发展,许多具有特殊功能的高分子材料也不断涌现出来,如分离材料、光电材料、磁性材料、生物医用材料、光敏材料、非线性光学材料等等。功能高分子材料是高分子材料中最活跃的领域,下面简单介绍特种高分子材料:功能高分子是指当有外部刺激时,能通过化学或物理的方法做出相应反应的高分子材料;高性能高分子则是对外力有特别强的抵抗能力的高分子材料。它们都属于特种高分子材料的范畴;特种高分子材料是指带有特殊物理、力学、化学性质和功能的高分子材料,其性能和特征都大大超出了原有通用高分子材料(化学纤维、塑料、橡胶、油漆涂料、粘合剂)的范畴。

第一,力学功能材料:强化功能材料,如超高强材料、高结晶材料等;)弹材料,如热塑性弹性体等。

第二,化学功能材料:分离功能材料,如分离膜、离子交换树脂、高分子络合物等;反应功能材料,如高分子催化剂、高分子试剂;生物功能材料,如固定化酶、生物反应器等。

第三,生物化学功能材料:人工脏器用材料,如人工肾、人工心肺等;高分子药物,如药物活性高分子、缓释性高分子药物、高分子农药等;生物分解材料,如可降解性高分子材料等。

可以预计,在今后很长的历史时期中,特种与功能高分子材料研究将代表了高分子材料发展的主要方向。

四、高分子化学的可持续发展

研究高分子合成材料的环境同化,增加循环使用和再生使用,减少对环境的污染乃至用高分子合成材料治理环境污染,也是21世纪中高分子材料能否得到长足发展的关键问题之一。比如利用植物或微生物进行有实用价值的高分子的合成,在环境友好的水或二氧化碳等化学介质中进行化学合成,探索用前面提到的化学或物理合成的方法合成新概念上的可生物降解高分子,以及用合成高分子来处理污水和毒物,研究合成高分子与生态的相互作用,达到高分子材料与生态环境的和谐等。显然这些都是属于21世纪应当开展的绿色化学过程和材料的研究范畴。

参考文献:

[1]冯新德.展望21世纪的高分子化学与工业[J].科学中国人,1997,(11)

[2]王守德,刘福田,程新.智能材料及其应用进展[J].济南大学学报(自然科学版,2002,(01).

第2篇:高分子材料的光学性能范文

【关键词】高分子;化学;发展;方向

中图分类号: F407 文献标识码: A

一、前言

我国高分子化学一直都是我国发展的重点,这项技术对于很多相关产业非常有帮助,高分子化学是高分子材料的研究基础,已经涉及到了机械行业,建筑行业等多个行业,因此发展高分子化学对于我国高分子材料行业是非常有帮助的。

二、现如今高分子化学的发展情况和应用范围

自从20世纪到现在,随着工业技术的快速发展,天然资源已经露出了疲态,科学家们已经开始使用高分子化学进行材料的合成。有数字表明,在之前的40年中,使用材料的速度正在以每10年五倍增长,人类三大合成材料,其中包括塑料、橡胶、纤维,在使用过程中表现出了令人惊讶的增长速度。新型的材料,特别表现在合成材料,在工业、建筑、农业、电子技术方面都被广泛使用,极大的支撑着人类的日常生活,是使国民经济持续发展的必要动力源泉。

相对分子质量和物质的性质是密切相关的,是决定物质性质的一个重要因素。只有相对分子质量高的化合物才有一定的机械力学性能,才能作为材料使用。例如乙烷、辛烷、廿烷、聚乙烯、超高分子量聚乙烯,都是直链的烷烃化合物,但是分子量变化很大,其机械力学性能因而也有极大的区别。

三、高分子化学与高科技的结合

当今社会,人们将能源、信息和材料并列为新科技革命的三大支柱,而材料又是能源和信息发展的物质基础。自从合成有机高分子材料的那一天起,人们始终在不断地研究、开发性能更优异、应用更广泛的新型材料,来满足计算机、光导纤维、激光、生物工程、海洋工程、空间工程和机械工业等尖端技术发展的需要。高分子材料向高性能化、功能化和生物化方向发展,出现了许多产量低、价格高、性能优异的新型高分子材料。

随着生产和科学技术的发展,许多具有特殊功能的高分子材料也不断涌现出来,如分离材料、光电材料、磁性材料、生物医用材料、光敏材料、非线性光学材料等等。功能高分子材料是高分子材料中最活跃的领域,下面简单介绍特种高分子材料:功能高分子是指当有外部刺激时,能通过化学或物理的方法做出相应反应的高分子材料;高性能高分子则是对外力有特别强的抵抗能力的高分子材料。它们都属于特种高分子材料的范畴;特种高分子材料是指带有特殊物理、力学、化学性质和功能的高分子材料,其性能和特征都大大超出了原有通用高分子材料(化学纤维、塑料、橡胶、油漆涂料、粘合剂)的范畴。

第一,力学功能材料:强化功能材料,如超高强材料、高结晶材料等;)弹材料,如热塑性弹性体等。

第二,化学功能材料:分离功能材料,如分离膜、离子交换树脂、高分子络合物等;反应功能材料,如高分子催化剂、高分子试剂;生物功能材料,如固定化酶、生物反应器等。

第三,生物化学功能材料:人工脏器用材料,如人工肾、人工心肺等;高分子药物,如药物活性高分子、缓释性高分子药物、高分子农药等;生物分解材料,如可降解性高分子材料等。

可以预计,在今后很长的历史时期中,特种与功能高分子材料研究将代表了高分子材料发展的主要方向。

四、高分子材料化学的应用

材料是人类社会文明发展阶段的标志,是人类赖以生存和发展的物质基础。它是指经过某种加工,具有一定结构、组分和性能,并可应用于一定用途的物质。上世纪半导体硅、高集成芯片、高分子材料的出现和广泛应用,把人类由工业社会推向信息和知识经济社会。可以说某一种新材料的问世及其应用,往往会引起人类社会的重大变革,材料是人类文明的重要标志。如果说现在人人离不开高分子材料,家家离不开高分子材料,处处离不开高分子材料,是一点也不过分的。高分子化合物的最主要的应用是以高分子材料的形式出现的,高分子材料包括了塑料、纤维、橡胶三大传统合成材料,另外许多精细化工材料也都是高分子材料。

第一,塑料:一类是通用塑料,如容器、管道、家具、薄膜、鞋底与泡沫塑料等等;另一类叫工程塑料,其强度大,如汽车零部件、保险杠、洗衣机内的滚筒、电器的外壳等。

第二,纤维:人们开发出聚酯、尼龙、腈纶、维尼纶等高分子化合物,通过不同的加工,生产出了各种纤维制品,极大地满足着人类的需要。

第三,橡胶:天然橡胶的种类和品质都受到很大的限制,于是科学家们不断开发出了各种人造橡胶,如丁苯橡胶、丁腈橡胶、乙丙橡胶、氟橡胶、硅橡胶等。

第四,精细化工:比如使得我们的世界变得丰富多彩的各种涂料产品,如家具漆、内外墙乳胶漆、汽车漆、飞机漆等。女孩子用的指甲油,使牙齿变白的增白剂也都是涂料。还有万能胶、建筑用胶、医用胶、结构胶等黏合剂,以及各种吸水树脂等都是高分子产品。

五、高分子化学的发展方向

1、使地球更加绿色化

在现在很多工业发达的城市,天空中都会飘着非常浓郁的黑烟,对人们的日常生活有非常严重的污染。绿色,在现在被认为是没有污染、再生性或者可以循环使用。在没有污染方面,我们需要做的就是减少工业废弃物的排放、相对的减少污染源。现在的情况表明,化学行业中具有污染和治理两个方面的性质,可以对绿色使用材料进行研究,也可以继续对环境造成恶化。例如:在研制的过程中使用的催化剂、溶解剂、中间物品等,在生产过程中产生的废气、废渣、废弃液体等都是对环境造成影响的主要元凶,若长期的进行排放,会对环境造成严重的影响,甚至会导致不可逆转的事情发生。

2、减少的自然资源的使用依赖

目前研究的高分子合成材料对石油具有很强的依赖性,众所周知,石油是经过地球非常漫长孕育才出现的,另外,石油也是现如今人类社会非常重要的能源,石油资源现在正在快速的减少,而且不能快速的进行补充,所以人们现在非常急切的找到可以代替石油使用的资源,这已经成为现在高分子化学研究中非常重要的课题。在对物质中原子和分子的比率进行调节,对物质的微观特性、宏观特性以及表面性质进行加强控制,也许这种物质就会满足一些行业的使用要求,当这种情况出现的时候就可以把这种物质作为材料使用。所以,在对材料进行配置的时候就会减少对不可再生资源的依赖程度,并对使用材料和环境进行相互协调,这是现如今化学研究当中非常重要的领域。现在很多高分子合成材料都非常依赖石油资源。想要解决目前的情况,可以对天然高分子进行利用,这其中也应该包含对无机高分子的不断探索和研究。

现在由石油合成的高分子材料,主要因为原子中以碳为主要元素,其中还含有少量的氮、氧等原子,所以被称为有机高分子。无机高分子是因为主链上的组成原子中不含碳。根据元素的性质进行判断,大约有40~50种元素可以成为长链分子。现在引起科学家高度重视的一种无机高分子,它的主链上都是硅原子,并且含有有机侧链的聚硅烷。

3、使高分子材料不断纳米化

现在很多高分子化学反应中的原子经过重新排列组合之后的反应空间要比原子的大小大出很多,所以,化学反应的研究要在一个受限空间之中进行。若在有限的空间中,像纳米量级的片层当中,小型分子由于和片层分子相互作用而且还在一个比较受限的空间内进行排列,之后产生单体聚合,聚合之后的产物的拓扑结构不会再受限的空间内进行全部的复制,这种情况和自由空间的结果完全不同。我们也许会在受限制空间内进行聚合反应的分子中提炼出高分子纳米化学的定义。化学的研究对象基本都是纳米量级的分子和原子,但是因为没有精细的方式,没有达到可以在纳米尺度上精确控制分子或者原子的程度,所以现如今很难做到对分子的精准设计,使化学的合成让人感觉非常的粗放。高分子化学在纳米程度上精要精确的按照分子设计,在此基础上确定分子链中的原子配比位置以及相互结合的方式,通过纳米技术对分子、原子和分子链进行非常精确的控制,达到对高分子各级结构的位置确定。这样就可以精确的控制新合成材料的功能和特性。

4、面向智能材料的高分子化学研究路线

20世纪的人类社会是以合成材料为标志的,在21世纪人类社会的标志将会是智能材料。高分子化学仍然是进入智能材料时期非常重要的组成部分。材料自身具有的功能可以根据外部条件的变化,有意识的进行调节和修复等一系列措施,这就是智能材料的基本定义。现在科学家已经了解高分子有软物质这一特征,简单说就是可以对外场具有反应。

六、结束语

综上所述,高分子化学已经发展到了非常不错的方向,在很多方面都有非常广阔的运用,目前高分子化学会朝着绿色以及环保方面进行发展,随着高分子化学不断取得突破,未来使用高分子材料的前景会更加的广阔。

参考文献

[1]王立艳.《高分子化学》理论与实践教学的整体优化研究[J].广州化工,2012,40(4):108-109.

[2]张宏刚.新型高分子化学注浆材料在碱沟煤矿的应用[J].中国高新技术企业,2011(34):63-64.

[3]何冰晶,王庆丰,刘维均,等.能量最低原理在高分子化学教学中的应用探索[J].高分子通报,2011(12):141-144.

[4]董建华.从高分子化学与衣食住行到高科技发展[J].化学通报,2012,74(8):675-682.

第3篇:高分子材料的光学性能范文

关键词:可降解高分子材料;光降解;生物降解;光-生物降解

随着经济的发展和人们生活节奏的加快,塑料饭盒、塑料袋等一次性产品开始频繁出现在人们的日常生活中,它们在给人们的生活带来便利的同时,也因其非自然降解性造成了极大的环境问题,即“白色污染”。“白色污染”既是一种视觉污染,也会影响土壤、空气、水体等的质量,因此努力合成并推广使用可降解高分子材料成为当务之急。按照降解机理,可降解高分子材料可分为光降解高分子材料、生物降解高分子材料和光-生物双降解高分析材料三大类。

1.光降解高分子材料

光降解高分子材料的特征是含有光敏基团,可吸收紫外线发生光化学反应,在太阳光的照射下,发生分子链的断裂和分解,由大分子变成小分子。

向塑料基体中加入光敏剂是目前使用比较多的制备光降解塑料的方法。光降解引发剂可以是过渡金属的各种化合物,如:卤化物、脂肪酸盐、酯、多核芳香族化合物等。很多学者都发现TiO2对聚丙烯的光降解有明显的催化作用,等人[1]分析了加有锐钛矿型纳米二氧化钛的聚丙烯纤维在人工加速紫外光降解和自然光降解过程中拉伸断裂伸长率和表面形态的变化情况,得出锐钛矿型纳米TiO2可作为聚丙烯的一种高效光敏剂的结论。除了TiO2,还有很多其它光敏剂,如硬脂酸铈、硬脂酸铁、N,N-二丁基二硫代氨基甲酸铁、硬脂酸锰等均对聚乙烯薄膜有显著的光敏化作用效果。

在高分子中添加光敏剂制得改性高分子虽然能降解,但只是部分降解,而化学合成的羰基聚合物、Et/CO等,则能完全降解。一氧化碳和烯烃的交替共聚产物——聚酮,因为分子链中含有大量以酮形式存在的羰基,容易在紫外光的照射下发生光降解,羰基键附近的碳链断裂生成酮类、烯类及一氧化碳等低分子物质并返回到物质循环圈中,不存在环境污染,是一种新型的环境友好材料[2]。且有实验证明,分子量大、结晶度低的聚酮光降解性能更好。

2.生物降解高分子

生物降解材料包含完全生物降解高分子和生物破坏性高分子,前者是指在微生物作用下,在一定时间内能完全分解成二氧化碳和水的化合物;而后者在微生物作用下,仅能被分解成散落碎片。

2.1 淀粉降解塑料

淀粉是天然高分子化合物,具有可再生、价格便宜、生物降解性等优点,成为近年来研究的热点。淀粉降解塑料泛指组成中含有淀粉或其衍生物的塑料,发展至今已经过了四个时期:填充型淀粉塑料,光/生物双降解型塑料,共混型塑料和全淀粉热塑性塑料。

填充型淀粉塑料一般是烯烃类聚合物中加入廉价的淀粉作为填充剂,其中淀粉含量在10%30%,仅淀粉能降解,被填充的PE、PVC等塑料需要几百年才能达到完全生物降解。光/生物双降解型是由光敏剂、淀粉、合成树脂及少量助剂等制成,其降解机理是先降解的淀粉可使高聚物母体变得疏松,增大表面/体积比,同时光敏剂、促氧剂等物质被光、热、氧引发,发生光氧化和自氧化作用,导致高聚物分子量下降并被微生物消化[3]。接下来人们发现,通过共混能解决淀粉粘性高、抗湿性低及与一些聚合物不相容等缺点,于是开始将淀粉与聚烯烃类等一些不可降解聚合物混合来提高淀粉的强度,但这类产品不能完全降解;后来便试图将其与PCL、PEG等可降解聚合物共混,制得了很多可完全降解材料。全淀粉热塑性塑料含淀粉70%-90%,其余组成是一些可光降解的加工助剂,使用后能在环境中完全降解,但天然淀粉不具有热塑性,必须先利用物理场作用使其分子结构无序化后才能在塑料机械中加工成型。

2.2 化学合成型生物降解高分子[4]

酯基在自然界中容易被微生物或酶分解,所以常采用含有酯基结构的脂肪族聚酯来合成生物降解高分子材料,工业化的有聚乳酸和聚己内酯。

聚乳酸是以淀粉、糖蜜等为原料,发酵制得的易生物降解的热塑性材料,因乳酸存在一个羟基和一个羧基,可通过缩聚反应直接转换成低分子量聚酯,再通过选择适宜的聚合条件来合成目标分子量的聚合物。聚乳酸具有良好的生物可降解性、相容性、透明性、机械性能及物理性能等,被视为新世纪最有发展前途的新型包装材料。聚己内酯也是脂肪族聚酯中应用较为广泛的一种可降解高分子材料,通过己内酯的开环聚合制得,是一种半结晶型聚合物,室温下为橡胶态,具有很好的柔韧性、加工性和生物相容性,土壤中掩埋一年后能被微生物降解掉95%左右,降解产物是二氧化碳和水,被认为是环境友好包装材料。

2.3微生物合成的完全生物降解高分子[21-26]

微生物合成高分子材料是通过用葡萄糖或淀粉类喂养,微生物在体内发酵合成的一类有机高分子材料,主要包括微生物多糖、微生物聚酯和聚氨基酸等。

γ-聚谷氨酸就是利用微生物发酵生成的一种多功能生物高分子,具有生物相容性、可降解、无毒副作用等特性,可用于制备高吸水性树脂,作为一种治疗骨质疏松的重要载体、药物缓释材料,吸附重金属等,具有广泛的应用前景[5]。聚羟基脂肪酸酯是一类由很多细菌在非平衡生长条件(如缺氧、磷等)下合成的线性聚酯,可作为碳源和能源的贮藏性物质,增强细菌的生存能力,在自然界中可被微生物和特定的酶降解为二氧化碳和水,并且具有热可塑性、生物可再生、生物相容性、光学异构性等,可作为生物医用材料、日常消费用塑料制品、生物可降解包装材料、生物能源,已成为可降解生物材料领域研究的热点。

3.光/生物双降解高分子材料

顾名思义,光/生物双降解高分子材料同时具有光、生物双降解功能,将光降解机理与生物降解机理结合起来,可以使二者优缺点互补,达到更好的降解效果。其制备方法主要是在通用高分子材料中添加光敏剂、自动氧化剂、抗氧剂和生物降解助剂等。目前研究比较多的有淀粉和光敏剂光降解树脂合成的光/生物双降解淀粉塑料及可控降解剂共混改性法制得的改性可控光/生物双降解聚丙烯纤维制品等。光/生物双降解淀粉塑料前面已提过,此处不再赘述,而可控双降解聚丙烯纤维制品凭借着其可控降解性、存放性、无毒性等众多优点,必将具有巨大的发展前景。

4.结语

随着“白色污染”的日益加重和石油资源的日益枯竭,加大对高分子废弃物的回收利用率和研制出高效的降解技术都是有效的解决途径,但只有研究出可自然降解的高分子材料才能从根本上解决这些问题,且光-生物双降解高分子材料凭借着其独特的优势将会成为今后的研究重点之一。(作者单位:郑州大学材料科学与工程学院)

参考文献:

[1] ,严玉蓉,赵耀明.纳米二氧化钛催化光降解聚丙烯纤维的研究[J].合成材料老化与应用,2005,34(1):8-12.

[2] 邹丽萍.绿色高分子材料聚酮的合成研究[D].昆明:昆明理工大学,2007:1-5.

[3] 范良兵.淀粉降解塑料的制备及性能的研究[D].广东:华南理工大学,2010:1-8.

第4篇:高分子材料的光学性能范文

关键词:3D打印机;复杂性零件;成型原理;打印流程

0引言

3D打印机的加工方式以低速静态为主,随着现代制造技术的发展,对加工材料提出了更高的精度和速度要求。随着科学技术的发展,制造业生产领域技术不断提高,生产产品的竞争越来越激烈,如果能缩短产品的开发周期,加速产品的设计速度,将成为制造业这一行业的一大优势。在生产产品的设计与研发中主要应用计算机辅助技术,如CAD(计算机輔助设计)、CAM(计算机辅助制造)、(CAE)计算机辅助工程、并行工程(ConCurrentEngineering)等,随着这些技术的应用,使得生产产品开发周期大量的缩短。然而,由于在计算机辅助技术设计和加工产品时,加工设备自身的局限性,零件设计与产品加工有很强的关联性,有时因工艺、材料、设备等因素影响零件的功能。

3D打印机的应用,使得这些问题得到了一定程度的改善,其特点在于独特的增加材料加工技术降低了零件的加工难度,而且便于去除支撑材料,解决了许多传统加工方法无法解决的问题。

3D打印机的发展不仅成为未来世界新的创造性科技,更是掀起了世界性制造业革命的热潮,不仅改变了多年来制造业的生产方式,也进入到我们的日常生活。3D打印机作为一种高科技设备,综合应用了CAD技术、CAM技术、激光学、光化学及材料科学等诸多方面的科学与技术。它使得产品设计、工业设计、建筑设计及医疗用品设计等领域的研发者,能够快捷方便地获得三维实物模型,方便后期的设计。所以材料在3D打印中占关键作用。

1高分子材料背景

3D打印技术是快速成型技术的一种。它是一种以数字模型文件为基础,运用高分子材料或金属粉末材料的可粘合特点,通过逐层打印的加工方式来制造产品。日常中常用的3D打印材料有三大类:无机非金属材料、金属材料和高分子材料。其中用量最大、应用范围最广、成型方式最多的材料为高分子材料。其中主要包括以下几种:

1)光敏树脂

2)高分子丝材

3)高分子粉末

目前光敏树脂则是SLA(光固化立体成型技术)的主要打印材料。

2SLA成型原理

光敏树脂是UV(UltravioletRays)树脂,由聚合物单体与预聚体组成,其中加有光(紫外光)引发剂(或称为光敏剂)。在一定波长的紫外光(l00-400nm,介于X射线与可见光之间的电磁波)照射下能立刻引起聚合反应完成固化。光敏树脂一般为液态,可用于制作高强度、耐高温、防水材料。如图1所示。

我们现在常用的3D打印光敏树脂材料大多为环氧树脂。

目前,研究光敏材料机构主要有美国3DSystems公司和以色列Ohject公司。常见的光敏树脂有UVPlus材料、UV-Pure树脂和环氧树脂。

UVPlus树脂材料为白色,塑性、韧性都非常好,基本可达到加工的尼龙材料所要求的性能,而且表面粗糙度和精度较好。制造的部件拥有良好的塑性和韧性,同时保持了光固化立体造型材料做工精致、尺寸精确和外观漂亮的优点,主要应用于汽车、家电、电子消费品等领域。

UV-Pure材料看上去更像是真实透明的塑料,具有优秀的防水和尺寸稳定性,能提供包括ABS和PBT在内的多种类似T程塑料的特性,这些特性使它很适合用在汽车、医疗以及电子类产品领域。

光固化(Stereolithography,简写SLA)该技术利用液态光敏树脂为基础材料,液态树脂在一定的光源照射下产生凝固,生产产品精度和表面粗糙度是目前所有3D打印技术中精度最高的;其工作原理是利用一定波长与强烈的紫外激光(355纳米)透过透镜、偏振镜聚焦到指定的固化位置,凝固顺序由点到线,再由线到面,形成一个平面的产品,再由升降台在Z垂直方向上下移动形成一层一层面的高度,最后固化到另外一个层面,层层叠加,加工为一个三维实体。

多喷头打印所实现的高分辨边角锐化分明,实现多材料复合打印。

3主要设备

打印设备主要参数如表1:

激光系统LASERSYSTEM

激光类型:二极管泵浦同体激光器Nd:YV04

波长:354.7mn

最低功率:300mW

重涂系统RECOATINSYSTEM

涂铺方式:智能定位真空吸附涂层

正常层厚:O.1mm

快速制作层厚:0.1~0.15mm

精密制作层厚:0.05—O.lmm

光学扫描系统OPTICAL&SCANNINC

光斑(直径@I/e2):0.10—0.16mm

扫捕振镜:SCANLAB

零件扫描速度:推荐6.Om/s

零件跳跨速度:推荐lO.Om/s

参考制作重量:30—lOOg/h

4实际应用范例

透明的石英玻璃部件,原料:可光固化二氧化硅纳米复合材料,工艺:SLA,性能:打印出的熔融石英玻璃是无孔的,并且具有几纳米粗糙度的光滑表面,在宏观和微观尺度都高度透明,耐高温,耐化学腐蚀。并且通过在里面掺杂金属盐,还可以产生有色玻璃。实验操作图a,与阿米替林纳米粉末}昆合的紫外线固化单体在立体光刻系统中构成。所得到的聚合复合材料通过热脱脂和烧结(比例尺,7mm)变成熔融石英玻璃.b,c。印刷和烧结玻璃结构的实例:卡尔斯鲁厄理丁学院(h;比例尺,Smm)和椒盐卷饼(c;比例尺,Smm)。d,证明印刷石英玻璃(比例尺,1厘米)的高耐热性。火焰的温度约为800℃,实体图形如图5。

最小层厚16μm,保证精度lOO%REALWAX材料,铸造无残留,每年生产透明的牙齿矫正器-1700万,已有世界知名品牌

5结束语

第5篇:高分子材料的光学性能范文

关键词:纳米材料;涂料;应用

纳米材料作为新材料的创新以及科技创新的成果,随着纳米材料的应用,其在我国当前社会各领域中的作用越来越突出。现阶段,纳米材料在高分子材料领域、催化领域、医学领域、电子信息领域方面得到了广泛的应用。而涂料作为一种有机化高分子材料,纳米材料的应用在涂料中得到了较好的应用,以纳米材料作为涂料的助剂,可以改善涂料的流变性,提高土层的粘附力、涂料表面的光滑度以及抗老化性能。

1.纳米材料的概述

所谓纳米材料就是在三维空间中至少有一维的尺寸在0.1~100纳米范围内的材料。换句话说就是用化学、物理、生物等方法把普通物质变成纳米级的微细颗粒后形成的材料,纳米材料是技术高速发展的产物,在现代社会里,其应用范围也越来越广,在我国现代社会发展过程中有着举足轻重的作用。

2.纳米材料在涂料中的应用意义

涂料是指涂布于物体表面在一定的条件下能形成薄膜而其保护、装饰或者其他功能的一类液体或者固体材料。按照现代通行的化工产品的分类,涂料属于精细化工产品。现代的涂料正在逐步成为一类多功能性的工程材料,是化学工业中的一个重要行业。作为一种产品,其质量和性能的高低直接影响到了其市场竞争力。涂料有着保护、装饰的作用,而随着社会的发展,涂料在使用过程中也出现了一些问题,这些问题的存在使得涂料性能受到了挑战。面对市场环境,提高涂料性能和质量是其在这个竞争激烈的市场环境下立足的保障。而纳米材料的应用为涂料性能提供了技术保障。在涂料中加入纳米材料,如纳米级Ti02、ZnO、CaCO2、SiO2及炭黑,这些材料可以作为涂料的助剂,从而提高涂料的机械强度、附着力、防腐性能、耐光性,使得涂料的整体性能得到提升,从而更好地满足实际需要。

3.纳米材料在涂料中的应用

3.1力学性能的改善

涂料力学性能主要表现在强度、硬度、耐磨性等方面,涂料力学性能的好坏直接关系到涂料的使用寿命。在涂料实际应用过程中,受多种因素的影响,会出现力学性能的变化,从而难以发挥涂料应有的作用。而纳米材料的应用能够有效地改善涂料的力学性能。纳米材料中的纳米粒子比表面积要大,能够与有机树脂基质之间存在良好的界面结合力,大颗粒与成膜物之间的空隙非常小,能够有效地减少毛细作用,从而提高涂层的强度、硬度以及耐磨性。

3.2光学性能的改善

涂料主要是涂在物体表面,而在物体表面,涂料很容易腐化、脱落,而出现这种问题的根源就在于涂料的光学性能比较差,涂料在太阳的照射下快速地发生反应。而纳米材料具备大颗粒所不具备的光学性能。当纳米级微粒掺和进母体材料时,可以提高母体材料的透明性,从而直接散射紫外光,同时,能够将紫外光纤带出散射区域,从而大大的增强涂料的曝光、保色及抗老化性能。

3.3提高光催化效率

就纳米材料而言,纳米粒子尺寸小,比表面积要大,表面原子配位不全,从而使得表面活性点增多,由于表面活性点比较多,反应接触面就比较大,催化效率就要高。对于涂料这种产品而言,纳米材料的可以作为涂料的光催化剂,因纳米粒子的粒径小,粒子吸收光能后,激发出的极子所到达表面的数量就会增多,从而加速催化,提高涂料的光催化性能。如二氧化钛的光催化性能,这种光催化剂集广泛应用于废水处理、有害气体净化、日用品等领域,同时还可以环境保护涂料自己杀菌涂料。

4.纳米材料在涂料中应用的关键问题

纳米材料作为科技产物,它的作用毋庸置疑,但是就纳米材料在涂料中的应用来看,还处于初级阶段,在实际应用过程中出现了一些问题,纳米材料在涂料中的应用还有待于深入研究。

4.1纳米微粒比表面积以及表面张力大,纳米微粒容易吸附而发生团聚,而这种易团聚的粒子很难分散开来,如果这些团聚的粒子没有良好的分散,就难以发挥纳米材料在涂料中应有的作用。因此,针对纳米粒子团聚问题,就必须深入研究纳米粒子团聚后的分散,要加大研究,以科学、先进的方法来讲这些团聚的粒子来分散。

4.2纳米材料属于该科技产品,纳米材料在涂料中的应用与其他材料在涂料中的应用情况有着一定的区别,纳米材料在应用过程需要根据涂料的特性来进行,但是就目前来看,纳米材料对涂料的作用研究还不够深入,以至于纳米涂料技术水平不够高,涂料性能与国外相比存在着一定的差距。因此,加大科技的研究是纳米材料普及应用的保障。一方面,要继续深入研究纳米材料科技,不断提高纳米材料技术含量,另一方面,要加强国际合作,学习国外先进的技术理念,从而更好地发挥纳米材料在涂料中的作用,不断能提高涂料的性能。

第6篇:高分子材料的光学性能范文

1111总体上,逐次拉伸法是将挤出的pp片材先经过纵向拉伸、后横向拉伸来完成二次取向过程。生产过程中主要控制的工艺参数有生产线速度、温度、拉伸比等。   1111bopp薄膜质量控制指标包括弹性模量,纵、横向的抗张强度、断裂伸长率、热收缩率,摩擦系数,浊度,光泽度等,这些指标主要体现薄膜的力学性能和光学性能,它们与pp高分子链的聚集状态如取向、结晶等有密不可分的联系。   2 取向 1111由于聚合物分子具有长链的结构特点,聚合物成型加工过程中,在外力场的作用下,高分子链、链段或微晶会沿着外力方向有序排列,产生不同程度的取向,形成一种新的聚集态结构-取向态结构,致使材料在不同方向上的机械力学、光学和热力学性能发生显著变化。   1111bopp薄膜生产中的取向主要包括流动取向和拉伸取向。   2.1 流动取向[3]   1111流动取向发生在挤出口模中,bopp薄膜生产通常使用衣架型模头,pp熔体在口模中成型段的流动近似为狭缝流道中的流动,在靠近流道壁面处熔体流动速度梯度大,特别是模唇处温度较低,在拉伸力、剪切应力的作用下,高分子链沿流动方向伸展取向;熔体挤出时,由于温度很高,分子热运动剧烈,也存在强烈解取向作用。因此流动取向对bopp薄膜性能的影响相对较小。   2.2拉伸取向   1111bopp薄膜生产过程中的取向主要发生纵向拉伸和横向拉伸过程,在经过纵向拉伸后,高分子链单轴纵向取向,大大提高了片材的纵向机械性能,而横向性能恶化;进一步横拉之后,高分子链呈双轴取向状态如图2所示,因此可以综合改善bopp薄膜的性能,并且随分子链取向度提高,薄膜中伸直链段数目增多,折叠链段数目减少,晶片之间的连接链段增加,材料的密度和强度都相应提高,而伸长率降低[4]。但在横拉伸预热及横拉伸时,由于温度升高,分子链松弛时间缩短,利于解取向,加上横向拉伸力的作用,会在一定程度上损害分子链的纵向取向度,导致薄膜的纵向热收缩率减小。    

1111为了制得理想的强化薄膜,拉伸取向过程中,温度、拉伸比、拉伸速度等工艺参数的控制非常重要[5]。bopp双向拉伸通常在玻璃化转变温度tg至熔融温度tm之间进行,如纵向拉伸温度一般为80-110℃,横向拉伸温度为120-150℃,在给定的拉伸比和拉伸速度下,适当降低拉伸温度,分子伸展形变会增大,粘性变形就会减小,有助于提高取向度;但过低的温度会降低了分子链段的活动能力,不利于取向;在热拉伸取向的同时,也存在着解取向的趋势,因此拉伸之后应迅速降低温度,以保持高分子链的定向程度。一般来说,在正常的生产温度下,取向程度随拉伸比的增大而增加,而随拉伸速度的增加,拉伸应力作用的时间缩短,从而影响取向的效果。   3 结晶   1111晶态结构是高聚物中三维有序的最规整的聚集态结构,结晶是bopp生产加工过程中不可回避的问题,pp结晶的速度、结晶的完善程度、结晶的形态、晶体的大小等对生产工艺、薄膜性能都有非常重要的影响。   3.1结晶对生产工艺调整的影响   1111均聚pp有α、β、γ、δ和拟六方共五种晶系,其中α晶系属单斜晶系,是最常见、最稳定的结晶。pp结晶贯穿着从熔体挤出到时效处理等bopp生产的整个过程。为了提高成膜性,pp挤出时采用骤冷铸片,以控制结晶的生成,降低结晶度;在双向拉伸时要求结晶速度较慢,以利于拉伸取向,较早、较快的结晶和较大的结晶颗粒都有可能导致破膜[6];在横拉后热处理定型阶段,为了提高刚性和强度,要求产生并加速结晶。   1111pp的最大结晶速率的温度大约为0.85tm(也可以根据dsc测定的结果确定),温度越高或越低如在tm或tg附近,越难结晶,在拉伸过程中要防止预热、拉伸时结晶度急剧增加,因此不要在pp最大结晶速度的温度区域内选择拉伸温度,最好在结晶开始熔融、分子链能够运动的温度下进行拉伸,即最大结晶速度的温度到熔点之间。实际生产时应根据pp的热力学特性来相应地调整生产工艺。   3.2结晶对bopp性能的影响   1111薄膜中pp的结晶度和晶体尺寸对bopp薄膜的机械力学性能和光学性能有重要影响。结晶度高则强度高,韧性差;晶体尺寸小而均匀,有利于提高薄膜的力学强度,耐磨性、耐热性,提高薄膜的透明度和表面光泽度。   1111双向拉伸过程中的结晶有着高聚物聚集态结构特殊性的一面,存在取向与结晶互生现象,即取向导致结晶,结晶中有取向。拉伸取向引起晶片倾斜、滑移延展,原有的晶片被拉伸细化,重排为取向态,形成取向的折叠链晶片、伸直链晶或球晶转变为微纤晶状结构等。因此薄膜的综合性能进一步得到强化。   1111如研究表明,拉伸取向导致分子链规则排列,产生均相晶核,诱导拉伸结晶,形成串晶互锁结构,可以大大提高取向方向pp的力学性能[7];双向拉伸也可以使pp中可能产生的较大颗粒晶体破碎,从而减小晶体尺寸,提高透光率,降低雾度。如pp经双向拉伸后,雾度下降50%[8]。   1111从结晶的角度来看,要生产高质量的bopp薄膜,应尽量减小pp晶体的尺寸,一般可以从两个方面考虑,其一,工艺调整,如各段的冷却速度、温度、拉伸比、拉伸速度等;其二是配方,如主料pp的选择、成核剂的使用等。   1111在pp高性能工程化和透明改性方面,如何使pp结晶微细化、均质化也是重要改性途径之一。   参考文献 [1] 朱新远,我国bopp薄膜现状及专用料的开发,广州化工,2000,28(1):28

[2] 中国包装技术协会塑料包装委员会第六届委员会年会暨塑料包装新技术研讨会论文集2002年3月,苏州

[3] 尹燕平,双向拉伸塑料薄膜,北京:化学工业出版社,1999

[4] 金日光,华幼卿,高分子物理,北京:化学工业出版社,1991

[5] 吴耀根,郑少华,王云等,专利,cn1169911a

[6] 汤明,王亚辉,秦学军,bopp专用料结构表征及性能研究,塑料加工应用,1999,(2):1

[7] 申开智,胡文江,向子上等,聚丙烯在单向拉伸力场中形成双向自增强片材及其结构与性能的研究,高分子材料科学与工程,2002,18(1):145

[8] 李军,王文广,高雯,塑料透明改性,塑料科技,1999,129(1):21

  吴增青,男,1958年3月出生,高级工程师,长期从事塑料成型加工研究。

第7篇:高分子材料的光学性能范文

论文摘要:目前应用于生物医学中的纳米材料的主要类型有纳米碳材料、纳米高分子材料、纳米复合材料等。纳米材料在生物医学的许多方面都有广泛的应用前景。

1应用于生物医学中的纳米材料的主要类型及其特性

1.1纳米碳材料

纳米碳材料主要包括碳纳米管、气相生长碳纤维也称为纳米碳纤维、类金刚石碳等。

碳纳米管有独特的孔状结构[1],利用这一结构特性,将药物储存在碳纳米管中并通过一定的机制激发药物的释放,使可控药物变为现实。此外,碳纳米管还可用于复合材料的增强剂、电子探针(如观察蛋白质结构的AFM探针等)或显示针尖和场发射。纳米碳纤维通常是以过渡金属Fe、Co、Ni及其合金为催化剂,以低碳烃类化合物为碳源,氢气为载体,在873 K~1473 K的温度下生成,具有超常特性和良好的生物相溶性,在医学领域中有广泛的应用前景。类金刚石碳(简称DLC)是一种具有大量金刚石结构C—C键的碳氢聚合物,可以通过等离子体或离子束技术沉积在物体的表面形成纳米结构的薄膜,具有优秀的生物相溶性,尤其是血液相溶性。资料报道,与其他材料相比,类金刚石碳表面对纤维蛋白原的吸附程度降低,对白蛋白的吸附增强,血管内膜增生减少,因而类金刚石碳薄膜在心血管临床医学方面有重要的应用价值。

1.2纳米高分子材料

纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1 nm~1000 nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传递和药物控释载体,以及免疫分析、介入性诊疗等方面。

1.3纳米复合材料

目前,研究和开发无机—无机、有机—无机、有机—有机及生物活性—非生物活性的纳米结构复合材料是获得性能优异的新一代功能复合材料的新途径,并逐步向智能化方向发展,在光、热、磁、力、声[2]等方面具有奇异的特性,因而在组织修复和移植等许多方面具有广阔的应用前景。国外已制备出纳米ZrO2增韧的氧化铝复合材料,用这种材料制成的人工髋骨和膝盖植入物的寿命可达30年之久[3]。研究表明,纳米羟基磷灰石胶原材料也是一种构建组织工程骨较好的支架材料[4]。此外,纳米羟基磷灰石粒子制成纳米抗癌药,还可杀死癌细胞,有效抑制肿瘤生长,而对正常细胞组织丝毫无损,这一研究成果引起国际的关注。北京医科大学等权威机构通过生物学试验证明,这种粒子可杀死人的肺癌、肝癌、食道癌等多种肿瘤细胞。

此外,在临床医学中,具有较高应用价值的还有纳米陶瓷材料,微乳液等等。

2纳米材料在生物医学应用中的前景

2.1用纳米材料进行细胞分离

利用纳米复合体性能稳定,一般不与胶体溶液和生物溶液反应的特性进行细胞分离在医疗临床诊断上有广阔的应用前景。20世纪80年代后,人们便将纳米SiO2包覆粒子均匀分散到含有多种细胞的聚乙烯吡咯烷酮胶体溶液中,使所需要的细胞很快分离出来。目前,生物芯片材料已成功运用于单细胞分离、基因突变分析、基因扩增与免疫分析(如在癌症等临床诊断中作为细胞内部信号的传感器[5])。伦敦的儿科医院、挪威工科大学和美国喷气推进研究所利用纳米磁性粒子成功地进行了人体骨骼液中癌细胞的分离来治疗病患者[6]。美国科学家正在研究用这种技术在肿瘤早期的血液中检查癌细胞,实现癌症的早期诊断和治疗。

2.2用纳米材料进行细胞内部染色

比利时的De Mey博士等人利用乙醚的黄磷饱和溶液、抗坏血酸或柠檬酸钠把金从氯化金酸(HAuCl4)水溶液中还原出来形成金纳米粒子,(粒径的尺寸范围是3 nm~40 nm),将金纳米粒子与预先精制的抗体或单克隆抗体混合,利用不同抗体对细胞和骨骼内组织的敏感程度和亲和力的差异,选择抗体种类,制成多种金纳米粒子—抗体复合物。借助复合粒子分别与细胞内各种器官和骨骼系统结合而形成的复合物,在白光或单色光照射下呈现某种特征颜色(如10 nm的金粒子在光学显微镜下呈红色),从而给各种组织“贴上”了不同颜色的标签,为提高细胞内组织分辨率提供了各种急需的染色技术。

2.3纳米材料在医药方面的应用

2.3.1纳米粒子用作药物载体

一般来说,血液中红血球的大小为6000 nm~9000 nm,一般细菌的长度为2000 nm~3000 nm[7],引起人体发病的病毒尺寸为80 nm~100 nm,而纳米包覆体尺寸约30 nm[8],细胞尺寸更大,因而可利用纳米微粒制成特殊药物载体或新型抗体进行局部的定向治疗等。专利和文献资料的统计分析表明,作为药物载体的材料主要有金属纳米颗粒、无机非金属纳米颗粒、生物降解性高分子纳米颗粒和生物活性纳米颗粒。

磁性纳米颗粒作为药物载体,在外磁场的引导下集中于病患部位,进行定位病变治疗,利于提高药效,减少副作用。如采用金纳米颗粒制成金溶液,接上抗原或抗体,就能进行免疫学的间接凝聚实验,用于快速诊断[9]。生物降解性高分子纳米材料作为药物载体还可以植入到人体的某些特定组织部位,如子宫、阴道、口(颊、舌、齿)、上下呼吸道(鼻、肺)、以及眼、耳等[10]。这种给药方式避免了药物直接被消化系统和肝脏分解而代谢掉,并防止药物对全身的作用。如美国麻省理工学院的科学家已研制成以用生物降解性聚乳酸(PLA)制的微芯片为基础,能长时间配选精确剂量药物的药物投送系统,并已被批准用于人体。近年来生物可降解性高分子纳米粒子(NPs)在基因治疗中的DNA载体以及半衰期较短的大分子药物如蛋白质、多肽、基因等活性物质的口服释放载体方面具有广阔的应用前景。药物纳米载体技术将给恶性肿瘤、糖尿病和老年痴呆症的治疗带来变革。

2.3.2纳米抗菌药及创伤敷料

Ag+可使细胞膜上蛋白失去活性从而杀死细菌,添加纳米银粒子制成的医用敷料对诸如黄色葡萄球菌、大肠杆菌、绿浓杆菌等临床常见的40余种外科感染细菌有较好抑制作用。

2.3.3智能—靶向药物

在超临界高压下细胞会“变软”,而纳米生化材料微小易渗透,使医药家能改变细胞基因,因而纳米生化材料最有前景的应用是基因药物的开发。德国柏林医疗中心将铁氧体纳米粒子用葡萄糖分子包裹,在水中溶解后注入肿瘤部位,使癌细胞部位完全被磁场封闭,通电加热时温度达到47℃,慢慢杀死癌细胞。这种方法已在老鼠身上进行的实验中获得了初步成功[11]。美国密歇根大学正在研制一种仅20 nm的微型智能炸弹,能够通过识别癌细胞化学特征攻击癌细胞,甚至可钻入单个细胞内将它炸毁。

2.4纳米材料用于介入性诊疗

日本科学家利用纳米材料,开发出一种可测人或动物体内物质的新技术。科研人员使用的是一种纳米级微粒子,它可以同人或动物体内的物质反应产生光,研究人员用深入血管的光导纤维来检测反应所产生的光,经光谱分析就可以了解是何种物质及其特性和状态,初步实验已成功地检测出放进溶液中的神经传达物质乙酰胆碱。利用这一技术可以辨别身体内物质的特性,可以用来检测神经传递信号物质和测量人体内的血糖值及表示身体疲劳程度的乳酸值,并有助于糖尿病的诊断和治疗。

2.5纳米材料在人体组织方面的应用

纳米材料在生物医学领域的应用相当广泛,除上面所述内容外还有如基因治疗、细胞移植、人造皮肤和血管以及实现人工移植动物器官的可能。

目前,首次提出纳米医学的科学家之一詹姆斯贝克和他的同事已研制出一种树形分子的多聚物作为DNA导入细胞的有效载体,在大鼠实验中已取得初步成效,为基因治疗提供了一种更微观的新思路。

纳米生物学的设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。纳米机器人是纳米生物学中最具有诱惑力的内容,第一代纳米机器人是生物系统和机械系统的有机结合体,这种纳米机器人可注入人体血管内,进行健康检查和疾病治疗(疏通脑血管中的血栓,清除心脏脂肪沉积物,吞噬病菌,杀死癌细胞,监视体内的病变等)[12];还可以用来进行人体器官的修复工作,比如作整容手术、从基因中除去有害的DNA,或把正常的DNA安装在基因中,使机体正常运行或使引起癌症的DNA突变发生逆转从而延长人的寿命。将由硅晶片制成的存储器(ROM)微型设备植入大脑中,与神经通路相连,可用以治疗帕金森氏症或其他神经性疾病。第二代纳米机器人是直接从原子或分子装配成具有特定功能的纳米尺度的分子装置,可以用其吞噬病毒,杀死癌细胞。第三代纳米机器人将包含有纳米计算机,是一种可以进行人机对话的装置。这种纳米机器人一旦问世将彻底改变人类的劳动和生活方式。

瑞典正在用多层聚合物和黄金制成医用微型机器人,目前实验已进入能让机器人捡起和移动肉眼看不见的玻璃珠的阶段[13]。

纳米材料所展示出的优异性能预示着它在生物医学工程领域,尤其在组织工程支架、人工器官材料、介入性诊疗器械、控制释放药物载体、血液净化、生物大分子分离等众多方面具有广泛的和诱人的应用前景。随着纳米技术在医学领域中的应用,临床医疗将变得节奏更快,效率更高,诊断检查更准确,治疗更有效。

参考文献

[1]Philippe P,Nang Z L et al.Science,1999,283:1513

[2]孙晓丽等.材料科学与工艺,2002,(4):436-441

[3]赖高惠编译.化工新型材料,2002,(5):40

[4]苗宗宁等.实用临床医药杂志,2003,(3):212-214

[5]崔大祥等.中国科学学院院刊,2003,(1):20-24

[6]顾宁,付德刚等.纳米技术与应用.北京:人民邮电出版社,2002:131-133

[7]胥保华等.生物医学工程学杂志,2004,(2):333-336

[8]张立德,牟季美.纳米材料和结构.北京:科学出版社,2001:510

[9]刘新云.安徽化工,2002,(5):27-29

[10]姚康德,成国祥.智能材料.北京:化学工业出版社,2002:71

[11]李沐纯等.中国现代医学杂志,2003,13:140-141

第8篇:高分子材料的光学性能范文

关键词 聚酰亚胺;研究进展;性能;合成;改性

中图分类号TQ323.7 文献标识码A 文章编号 1674-6708(2010)30-0087-03

0 引言

聚酰亚胺(PI)是指主链含有酰亚胺环的一类聚合物,刚性酰亚胺结构赋予聚酰亚胺独特的性能,使它具有很好的耐热性及优异的力学、电、耐辐照、耐溶剂等性能。在高温下具备的卓越性能能够与某些金属相媲美,此外,它还具有优良的化学稳定性、坚韧性、耐磨性、阻燃性、电绝缘性以及其它机械性能,已被广泛应用于航空航天、核电和微电子领域[1]。

材料与我们日常生活紧密相关,对材料的研究主要是开发新材料和对材料的改性,前者已经快要走到尽头了,要开发一种新材料已经是很困能的事了,所以对材料的改性显得尤为重要。聚酰亚胺以其独特的优点而得到广泛的应用,为了不断适应当今科技日新月异的发展,对其进行改性研究已势在必行,本文主要介绍了聚酰亚胺在改性方面的研究现状。

1 聚酰亚胺的性能

聚酰亚胺由于其分子中含有的芳杂环结构单元,因此,聚酰亚胺具有其他高分子材料无法比拟优越性能:1)优良的耐温性能;2)优异的机械性能;3)优异的介电性能和电性能;4)化学性质稳定;5)无毒性及环境友好性等等。

2 聚酰亚胺的合成

聚酰亚胺在合成上具有多种途径,根据分子中酰亚胺环的形成方式,主要分为两大类:第一类合成方法是在聚合反应或大分子反应中形成酰亚胺环;第二类合成方法是以含有酰亚胺环的单体合成聚酰亚胺。根据酰亚胺环的形成方式,第一类合成方法又可以分为以下4种合成路线[2]。

1)一步法合成法:二酐和二胺在高沸点溶剂中直接聚合生成聚酰亚胺,如下式:

2)两步合成法:先由二酐和二胺获得聚酰胺酸,再通过加热或化学方法使分子内脱水,闭环生成聚酰亚胺,如下式:

3)三步合成法:该方法是经聚异酰亚胺得到聚酰亚胺的方法,是聚酰胺酸在脱水剂的作用下脱水成环先生成聚异酰亚胺,然后再在催化剂的作用下异构化成聚酰亚胺。聚异酰亚胺作为聚酰亚胺的前躯体,结构稳定且热处理时不会产生水等低分子物质,能够得到性能优良的聚酰亚胺。

4)气相沉积法:主要用于制备聚酰亚胺薄膜,在高温下将二酸酐与二胺直接以气流的形式输送到混炼机内进行混炼后制成薄膜,这是由单体直接合成聚酰亚胺涂层的方法。

3 聚酰亚胺的改性

由于聚酰亚胺大分子的刚性,使材料加工存在一定困难。未经改性的聚酰亚胺材料也存在一些缺点,如粘结性能不理想、固化温度高,合成工艺要求高。为了克服这些缺点,不断提高聚酰亚胺材料的性能及应用领域,人们在聚酰亚胺改性研究上主要进行了以下工作:

3.1 共混改性

共混改性是聚合物改性常用的方法,它在聚酰亚胺的改性中也得到了应用。聚酰亚胺可与其他有机物或无机物共混复合,把不同材料的优异性能进行组合,使其具有一些新的功能[3]。常采用的共混改性物有环氧树脂(EP)、热塑性聚氨酯(TPUR)、聚四氟乙烯(PTFE)、聚醚醚酮(PEEK)等。

PI与PTFE共混改性:黄丽等[4]用聚四氟乙烯作为热固性聚酰亚胺的减摩增韧材料,采用简单的机械、溶液、胶体磨及气流粉碎共混4种方法制备了共混物,并对聚四氟乙烯在共混过程中粒径的变化、对共混材料摩擦磨损性能和微观结构的影响进行了研究与探讨。研究结果表明,气流共混法制备的共混物中聚四氟乙烯粒径变小,共混材料的冲击强度有所提高;同时聚四氟乙烯粒径的减小、数量的增多均有利于向摩擦面转移,缩短材料达到摩擦动态平衡的时间,从而提高了共混材料的摩擦磨损性能。

PI与EP共混改性:环氧树脂具有优异的粘结性、良好的热性能和力学性能,将其与聚酰亚胺共混,能使改性产物在耐热、粘结强度和剪切强度方面得到提高,如缩合型聚酰亚胺的中间体聚酰胺酸(PAA)与环氧树脂共混获得一种性能优异的胶粘剂,该共混物不仅保持了聚酰亚胺的高耐热性,同时提高了聚酰亚胺的粘附性[5]。

PI与PEEK共混改性:来育梅等[6]采用机械共混方式,以聚醚醚酮为改性剂对聚酰亚胺进行改性,制备了热塑性聚酰亚胺/聚醚醚酮(TPI/PEEK)共混物。研究结果表明,制备的共混物的结晶温度和熔点与TPI的含量有关,随着TPI含量的减少,共混物的结晶温度和熔点均有所升高,与未经改性的TPI相比,在高温时的力学性能得到了改善,材料的加工性能也得到了改善。

3.2 共聚改性

在两步法合成中,当加入第三种单体组合成两种二酐和一种二胺或是两种二胺一种二酐时, 制得的聚合物性能会发生改变。如:全部用全芳香族的二酐或二胺,合成材料的耐热性和强度有所提高;若使用脂肪族的二酐或二胺,溶解性会适当增加,再加入某些特殊性能的嵌段后,便能合成所需特殊性能的聚酰亚胺共聚物。

刘蓉[7]等中采用双酚A二酐作为第三单体,与含氟二胺单体6FHP、二酐单体6FDA缩聚,合成了新型三单体共聚型含氟聚酰亚胺材料,三单体缩聚后得到的FAPI重均分子量高达1973.2,分散度最低达到1.2735;共聚物具有高热稳定性,柔韧性好,断裂伸长率高达152.5%,机械强度高达1280 MPa。与二单体含氟聚酰亚胺(FPI)相比,FAPI的热稳定性更高、力学性能显著提高,而传输损耗仍较低,但综合性能优异。

3.3 结构改性

此类改性是在聚酰亚胺大分子链上引进柔性基团,如醚键、酮键、烷基等,在侧链上引入大的基团,如苯基、正丁基、三氟甲基等,设计合成不对称或扭曲非共平面结构等,将这些方法结合起来可得到具有独特性能的聚酰亚胺,具体如下:

1)主链上引入柔性基团

在主链中引入柔性结构单元,如醚键、酮键、烷基等,例如含硅氧烷的柔性链段的硅氧烷嵌段共聚物,由于Si―O键键能高、热稳定性好,且键的旋转自由性较大,可以便于材料的加工成型,提高柔韧性及粘附性能。

刘金刚[8]等对砜基取代高折射、高透明聚酰亚胺材料的合成及性能进行了研究。在研究中,首先合成了含有砜基和硫醚键的二胺单体BADPS(如图1),再采用BADPS分别与4种二酐单体(BPDA、ODPA、3SDEA、CBDA)采用两步聚合工艺制备了一系列聚酰亚胺(如图2)。改性的聚酰亚胺薄膜具有良好的热稳定性、可见光波长范围内有优良的透明性(10 mm厚的聚酰亚胺薄膜在450 nm处的透光率超过80%)、高折射率与低双折射等综合性能。

2)功能性侧基的引入

引入的功能性侧基一般为有机硅氧烷侧基、生色侧基、含炔侧基等。引入降低分子间作用力的功能性侧基后,不会破坏分子链的刚性,不仅提高了聚酰亚胺的溶解性和加工性,而且保持了其耐高温性能,获得的是功能化高分子材料。

王大明等[9]以双酚A二醚二酐(BPADA)和3-乙炔苯胺(APA)为原料,先合成一种热固性可交联的聚酰亚胺预聚体,再分别与不同结构的热塑性聚酰亚胺共混,对其进行增韧改性,通过调节热塑性聚酰亚胺添加量,引入结构相似且含有更多柔性基团的热塑性聚酰亚胺,得到了热固/热塑性聚酰亚胺复合膜,研究结果表明,其相分离结构使体系的机械性能得到改善,同时也保持了原有的优异热性能。

近年来,报道较多的是将含氟取代基引入到聚酰亚胺的结构中。氟原子的引入可以在保持聚酰亚胺优良综合性能的同时,又赋予制品其他独特性能,如降低制品颜色、吸湿率等等。由于含氟聚酰亚胺材料性能优于未经改性的材料,含氟聚酰亚胺已经成为研究热点课题[10]。鲁云华等[11]利用利用含氟二胺单体分别与四种二酐单体制备出五种聚酰亚胺薄膜,该类含氟聚酰亚胺薄膜在可见光波长范围内具有优异的光学透明性,450nm 处的透光率为84.6%,且5种含氟聚酰亚胺薄膜在光通讯波段1.30μm 和1.55 μm均无明显吸收,且这五种含氟聚酰亚胺薄膜的玻璃化转变温度(Tg)均在200 ℃以上。张丽娟等[12]制备了一种无色透明的含氟聚酰亚胺薄膜,对该薄膜性能进行研究的结果表明,含氟取代基及间位取代结构是制备无色透明聚酰亚胺的一条颇具前途的路线,且不会牺牲材料的耐热稳定性及力学性能。

3)引入扭曲和非共平面结构

全芳香型的聚酰亚胺分子链刚性大,分子间存在强烈的相互作用,导致成型加工困难。要克服这个缺点的方法之一就是制备可溶解的聚酰亚胺,在其分子链中引入可扭曲和非平面结构,从而降低了分子间作用力,提高了溶解性能。Fuming Li等人[13]采用了4,4’-二氨基-2,2’-双取代联苯类化合物与6FDA通过一步法生成一系列的含氟聚酰亚胺,既可溶于常用有机溶剂,又具有极佳的成膜能力,同时使聚酰亚胺的耐热性、热氧化稳定性和光学性能得以保持;由于在联苯二胺的2,2’位引入双取代基,形成扭曲的非共平面,使聚酰亚胺的结晶度可降低至无定形状态。

3.4 超支化结构改性

将超支化结构引入聚酰亚胺分子链中,可以合成可溶性的超支化聚酰亚胺(HBPIs)[14]。HBPIs同时具有高支化和酰亚胺结构,使其不仅具有超支化聚合物的良好溶解性能和低熔融粘度等特征,而且还具有聚酰亚胺的耐热性和介电性质优良等优点,加工性能也得到了很大的改善。

2000年,Kakimoto [15] 研究小组年完成了真正意义上的超支化聚酰亚胺的合成,并成功地制备出一种变形AB2型单体―3,5 -(4-氨基苯氧基)- 二苯醚3’,4’-二羧酸甲酯。在催化剂2,3-二氢-2-硫-3-苯丙唑基磷酸酯(DBOP)的作用下,该单体先通过聚合得到预聚体,再对预聚体进行封端、改性和亚胺化得到HBPIs。

虽然HBPIs正逐渐地应用到各个领域中,但是由于HBPIs是一个全新的研究领域,仍然普遍存在合成方法相对单一、表征和功能化手段欠缺、应用还不成熟等不足等缺点。

4 聚酰亚胺材料的应用

由于聚酰亚胺在合成上工艺上的不断提高,在聚合物中像聚酰亚胺这样应用如此广泛、且在许多方面都显示优异性能的材料并不多见,所以受到了极大的重视。从其产生发展至今,已经广泛用于薄膜、涂料、先进复合材料、纤维、泡沫材料、工程塑料、胶粘剂、分离膜、光刻胶等多个领域。如聚酰亚胺泡沫材料以其优异的隔热、隔声及阻燃性能,被广泛用于石油钻井、航空航天领域。

5 结论

随着航空、航天科技及微电子行业的发展,聚酰亚胺材料将会越来越受到重视,根据应用的需要合成出各种性能优异的聚酰亚胺材料将得到大力发展;同时,不同结构和性能的聚酰亚胺材料的出现,也会不断地扩大其应用领域。

参考文献

[1]丁孟贤.聚酰亚胺化学、结构与性能的关系及材料[M].北京科学出版社,2006.

[2]曹红癸.聚酰亚胺性能及合成方法[J].化学推进剂与高分子材料,2008,6(3):24-25.

[3]吴小军,刘西强.聚酰亚胺共混和复合改性的研究进展[J],2009,37(2):76-79.

[4]黄丽,徐定宇.聚酰亚胺/聚四氟乙烯合金共混工艺的研究[J].高分子材料科学与工程,1999,15(3):81-84.

[5]赵石林,秦传香.聚酰亚胺/环氧树脂共混胶粘剂的热性能分析[J].粘结,2000,21(4):7-9.

[6]来育梅,王伟.热塑性聚酰亚胺/聚醚醚酮机械共混物的研究[J].机械工程材料,2006,30(7):25-28.

[7]刘蓉,周钰明.三单体共聚型含氟聚酰亚胺的研究[J].功能材料,2008,39(8):1249-1252.

[8]刘金刚,张秀敏.砜基取代高折射率高透明性聚酰亚胺的合成与性能[J].功能材料,2008,39(3):460-464.

[9]王大明,党国栋.乙炔基封端聚酰亚胺增韧改性的相结构[N].高等学校化学学报,2010,31(5):1051-1055.

[10]张丽娟,虞鑫海.含氟聚酰亚胺的研究进展[J].绝缘材料.2009,42(3):14-19.

[11]鲁云华,李伟.6FAPE基含氟聚酰亚胺的结构与性能研究[N].材料导报,2010,24(5):37-43.

[12]张丽娟,虞鑫海.1,3-双(4-氨基-2-三氟甲基苯氧基) 苯及其无色透明聚酰亚胺薄膜的制备与性能研究[J].绝缘材料,2010,43(1):4-13.

[13]F Li,S Fang,Diamine Architectural Effects on Glass Transitions, Relaxation Processes and Other Material Properties in Organo-Soluble Aromatic Polyimide Films[J].Polymer,1999,40(16):4571-4583.

第9篇:高分子材料的光学性能范文

1.用“直观手段”展现知识。

传统化学课堂的“实验、模型、图表、多媒体”等直观教学手段,在处理微观化学教学时很不给力,要么是条件不具备,要么是情境不真实,给学生理解知识带来了很大的困惑。“酸碱中和滴定”是高中化学有限的定量实验。通过传统的化学实验,学生能认识中和滴定原理,学会中和滴定实验操作,但学生很难理解“滴定过程中的PH值突跃、指示剂的选择”。

我们把“化学探究实验室”的数据采集器、PH值传感器、磁力搅拌器、电脑等先进仪器引进课堂,在先进技术设备的支持下,向学生展示滴定过程中溶液PH值的变化,帮助学生理解知识。

2.用“项目包装”再现知识。

传统的高三课堂,知识梳理如“快速新课”、习题训练像“子弹飞”,学生参与课堂教学的热情不高,能力发展有限,课堂效率低下。原因是熟悉的知识、熟悉的场景很难激发学生的兴趣。

应用项目教学思想,用项目包装知识,创设别样的教学情境,以项目引领、任务驱动组织课堂教学,改变知识的呈现方式,能有效改变这一现状。

如“铝及其化合物的性质”的教学,以“阿尔兹海默病”、“铝制的容器腌制咸菜”创设情境;以实验“铝条分别与3mol・L-1的H2SO4溶液、6mol・L-1的HCl溶液反应”的不同现象形成认知冲突,引发研究欲望;以两组对比实验“盐酸中加入少量硫酸钠与盐酸两种溶液分别同时插入铝条”、“硫酸中加入少量氯化钠固体与硫酸溶液两种溶液中分别同时插入铝条”,引导学生探究问题本质;以建构“铝及其化合物的转化关系图”引导学生自主梳理知识,通过合作交流完善知识结构,形成系统知识;以铝及化合物的用途、制备,引导学生运用知识解决问题、形成能力。

二、改变学生获取知识的方式

1.从生产生活中获取知识。

为帮助学生全面掌握高分子材料的种类、性能、用途和制备方法,我们根据学科知识和化学科技社团学生的特点,选择了学校附近专业生产特种环氧树脂、复合材料用树脂、聚酯树脂、丙烯酸树脂以及光学级聚合物材料用树脂的无锡阿科力化工有限公司,组织学生走进工厂参观学习。在产品陈列室,学生直观感受了各种各样的高分子材料及其用途;在产品研发室,学生听工程师讲、动手操作,接触了别样的学科思维方式,体验了别样的实验环境和仪器;在生产车间实地考察生产过程,体验了工业生产流程,对“学以致用”有了真正的认识。学生不仅学得了知识,而且开阔了视野,有效改变了他们获取知识的方式。

2.从跨学科学习中获取知识。

电解是重要的化学反应原理,传统的化学实验很难观察到电解时溶液中离子的运动过程,也不易判断电极产物。我们给化学科技社团的学生开设了一个没有时间限定的研究项目“电解时溶液中离子在磁场内的运动”,让学生自己组织学习小组,通过互联网查阅资料,向本校物理教师、外籍科学教师咨询,设计研究方案,借助传统物理、化学实验室的设备进行研究,学生反反复复,耗时大半学期,用电源、安培计、滑动电阻器、强力U形磁铁、铝箔、培养皿、塑胶电板碎片、10%CuSO4溶液等物理仪器、化学试剂成功观察到了现象。