前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的量子力学知识点主题范文,仅供参考,欢迎阅读并收藏。
[关键词] 地方院校;量子力学;精品课程建设
[中图分类号] G642.3 [文献标识码] A [文章编号] 1005-4634(2014)01-0057-04
0 引言
我国本科高校按隶属对象不同,分为部委属和省属两大类别,省属高校又分为省属国家“211”重点高校、省部共建高校、地方性直属高校三类,本文“地方院校”指省属高校中的地方性直属本科高校,这些院校大多采取省市共建、以市为主的管理体制,多数建校时间短或由专科升格。
随着我国高等教育大众化进程的不断深入,生源质量降低,教学资源日趋紧张,高等院校的教学压力逐渐加大,引发了社会对高等教育质量的担忧。2003年4月《教育部关于启动高等学校教学质量与教学改革工程精品课程建设工作的通知》(教高[2003]1号),引起了全国范围内建设国家、省、校三级精品课程的热潮。量子力学精品课程也同其他课程一样,经历了精品课程建设的热潮,截至2013年9月,共有四校建成国家精品课程,分别是兰州大学(2004年)、复旦大学(2004年)、清华大学(2007年)、北京大学(2008年);两校建成湖北省精品课程,分别是华中师范大学(2003年)和湖北大学(2003年);两校建成湖北省地方院校校级精品课程,分别是黄冈师范学院(2007年)、湖北师范学院(2011年)。可见,量子力学国家精品课程全部由985重点大学建设,湖北省精品课程也由211重点大学和省属重点大学建设,地方院校只有两校建成校级精品课程,只占湖北省27所地方院校的7.4%,大多数地方院校并未开展量子力学精品课程建设,这与量子力学课程的重要地位极不相称。量子力学是近代物理学的两大支柱之一,也是现代工业技术的重要理论基础,其教学质量的重要性不言而喻,但量子力学又是一门高度抽象的理论物理课程,远离日常经验,教与学都有一定的难度。地方院校由于师资力量薄弱,学术资源匮乏,生源素质不理想,教学与科研脱节,导致这些院校的量子力学精品课程大多处于有心无力、举步维艰的状态。
地方院校占我国高校总数的90%左右,担负着服务地方社会经济建设、培养千百万专门人才的重任。地方院校是我国高等教育金字塔的塔基,塔基不稳,必然影响我国高等教育的健康发展,因此研究地方院校量子力学精品课程建设,提高人才培养质量是迫在眉睫的重要问题,令人惋惜的是这方面的研究成果太少,难以指导地方院校量子力学精品课程的建设。
1 地方院校视角下量子力学精品课程建设 的内涵
精品课程的评价标准是“五个一流”,即一流教师队伍、一流教学内容、一流教学方法、一流教材、一流教学管理。精品课程建设研究大多围绕“五个一流”展开,但精品课程建设应该是分层次的,不同类型的高校应有不同的标准。每个学校都是在自己的层次上、自己的类型上来办出最高水平的课程,各个学校是不一样的,精品课定位不一样,寻找精品课群体也不一样[1]。地方高校应从自己的办学定位、培养规格和生源情况来考虑量子力学精品课程建设,基于地方院校视角来理解“五个一流”,扬长避短,不盲目攀比,也不妄自菲薄。
1.1 一流教师队伍
地方院校普遍存在教师整体水平不高的问题,教师的学历、职称、学术水平和重点大学相比有较大差距,教学任务重,技术应用能力不强。重点大学承担培养拔尖人才的任务,必然要求教师具有较高的学术水平和科研能力,地方院校承担培养千百万专门人才,即应用型技能型人才的任务,对教师的学术水平要求不是太高,但要求教师具有较强的技术应用能力。地方院校教师不宜与重点大学的教师比学术水平,但要关注学科前沿,尽快掌握与本学科相关的最新技术,提高重点大学教师并不擅长的技术应用能力,体现地方院校“双师”型师资的鲜明特色。
地方院校量子力学精品课程的一流教师队伍,就是要建设一支与应用型人才培养相适应的,具有一定的学术水平、较高的教学水平、较强的技术应用能力的“双师型”教师队伍。
1.2 一流教学内容
应用型人才培养的定位,决定了量子力学精品课程的教学内容有别于重点大学,教学内容的核心是量子力学的基本理论、基本知识、基本技能,不求教学内容的高度完整性,适当降低内容的深度和应用数学解题的难度,保持教学内容的前沿性和时代性,满足学生了解学科发展前沿及其技术应用的强烈愿望。前沿知识不仅可以开阔学生的眼界,而且能够潜移默化地影响学生未来的发展。
地方院校量子力学精品课程的一流教学内容可以理解为,量子力学基本理论、基本知识、基本技能等学科有效知识与专业发展密切相关的前沿知识及其技术应用的有机整合。有效知识,就是今后能对在该领域继续学习、继续研究、开辟新的领域、学习新的知识发挥作用的、最关键、最基础性的东西[1]。
1.3 一流教学方法
重点大学普遍重视讨论式、研究式教学方法,基于量子力学学科特点和地方院校学生水平,讨论式和研究式的教学方法要慎重使用,如果准备不充分,极有可能出现学生讨论时言之无物和研究时无从着手的难堪局面,反而挫伤学生的学习积极性。采用讨论式和研究式教学方法,一要内容难度适宜,二要前期准备充分,三要教师循循善诱。量子力学内容高度抽象,学生自学困难较大,因此对教学方法和手段的要求较高。无论选择什么样的教学方法,采用什么样的教学手段,都是为了学生能够更好地理解和掌握知识,都要适合学生的实际认知水平,不能为了讨论而讨论,为了研究而研究,应以实际教学效果来评价教学方法的优劣。
地方院校量子力学精品课程的一流教学方法,即以启发式讲授为主,结合课程内容适当采取讨论式和研究式教学,传统教学手段与多媒体技术手段有机结合,集多种方法与手段于一体的教学方法体系。
1.4 一流教材
量子力学教材的选用,国内一般主要选用曾谨言版(重点大学)和周世勋版(地方院校),另有苏汝铿版、张永德版、钱伯初版、关洪版等多种教材,也有多种国外优秀教材。鉴于量子力学的某些基本问题至今仍有争议,甚至国内权威教材中的部分内容仍受质疑,地方院校不宜盲目自编教材,避免对某些问题的不当阐述误导学生,宜选用国内经典的简明教材,辅以优秀教材作为参考书,以满足不同学生的学习要求,通过立体化、一体化教材建设,补充量子力学的最新进展和实际应用,更好地为地方院校培养应用型人才服务。
地方院校量子力学精品课程的一流教材,即在选用国内经典简明教材的基础上,选择国内外优秀教材作参考书,着力打造包括电子教案、PPT、习题答案、试题库、仿真实验、网络课堂等资源在内的立体化、一体化教材。
1.5 一流教学管理
精品课程需要通过科学的管理为其提供制度保证。科学的教学管理和规范的管理机制,是精品课程的重要条件。精品课程的教学管理既包括对课堂教学的组织、实践教学的安排、学习成绩的评定等教学环节的管理,还包括师资队伍的配备、课程建设过程的管理、教学保证条件的建设等[2]。
地方院校作为教学型大学,科研上处于劣势,教学管理上更应加强,应将一流教学管理作为量子力学精品课程的重要特色来建设。
地方院校量子力学精品课程的一流教学管理,即建立健全与应用型人才培养目标相适应的教学管理制度,包括编、备、教、辅、改、考各教学环节的管理制度,以及经费投入、师资配备、用人机制和激励机制、课程评价等教学质量保障制度,认真落实各项教学管理制度并切实做好教学质量监控,保证课程建设的可持续发展。
2 地方院校视角下量子力学精品课程建设 的对策
2.1 建设一支与应用型人才培养适应的师资队伍
地方院校培养应用型人才的定位,客观上要求教师应具有教师和工程师(或技能师)的双重身份。量子力学精品课程的师资队伍建设,除引进高层次人才、抓好现有教师的转型提升、开展与课程相关的教研和科研等常规措施之外,尤其要重视师资队伍的技术水平和能力的培养,通过产学研用结合切实提高教师的技术操作能力、应用能力和转化能力。加强学校与科研机构、企业的合作,聘请经验丰富的科研人员和工程师作为兼职教师,提高教师队伍整体的科研水平和技术实力。
2.2 精选课程有效知识构建学科基础,实现理论 与应用、基础与前沿的完美结合
夯实基础、关注前沿、了解应用、激发兴趣是一流教学内容的必然要求。在教学内容的选择和安排上,要注意与知识的实际应用相联系,找准最佳结合点,融入学科前沿的理论知识和学科发展的最新成果。
量子力学的有效知识包括量子力学的发展历史、量子力学的五大公设、定态问题求解、表象变换理论、微扰理论、电子自旋等,有效知识构成课程的核心知识;学科前沿知识、量子力学在现代科技和其它学科中的应用等内容构成课程的补充知识;散射等相对困难的内容构成课程的知识。核心知识具有相对稳定性,要求熟练掌握;补充知识具有时代性,要求学生了解而不求掌握;知识具有可选性,建议有能力的学生选学。核心知识和补充知识属于第一层次的教学内容,面向全体学生;知识属第二层次的教学内容,面向部分学生。教学内容的分类既有利于实现教学的层次化,又有利于实现理论与应用、基础与前沿的有机结合。
2.3 构建教学理念先进、与学生水平相适应的教 学方法体系
以教师为主导,以学生为主体。变单一教学方式为多样化教学方式构成的有机体系,变以教为主为以学为主或学教并重,变传统课堂教学为传统课堂教学和网络课堂教学相结合。基于量子力学的抽象性,讲授仍是主要的教学方法,但应注重启发学生积极思考,采取课内、课外、网络等多种形式增强师生互动,结合适当的内容开展讨论和研究。
可以组织学生讨论如量子力学相关实验的解释、量子力学基本原理的各种理解、一维定态问题的求解方法等;也可讨论量子力学的某些新进展和新的技术应用,要求学生就“量子纠缠”、“EPR佯谬”、“量子计算机原理”等内容展开调研,撰写文献综述报告,将讨论和初步的研究结合起来,培养学生从事科学研究的基本素质;也可建议能力较强的学生对“密度矩阵表示量子态”、“路径积分量子化”、“自由粒子的狄拉克方程”等较新的内容进行一些初级的理论探讨,通过写小论文的方式总结研究结果等。
讨论和探究的关键在于培养学生的参与意识、问题意识和批判意识,不奢望毕其功于一役,长期坚持一定会有收获。
2.4 选择适宜的教材和教学参考书,建设立体化、 一体化教材
选择周世勋版《量子力学教程》作为教材,因为它比较简明,适合初学者和地方院校生源的实际水平;选择曾谨言版《量子力学教程》作为主要参考书,因为它是全国大多数高校指定的考研参考用书,要照顾部分考研学生的需要;还可选择其他国内外优秀教材作为参考书,以兼收并蓄、博采众长。
教材是教学内容的载体,一流教材必然要展现一流教学内容。立体化、一体化教材不是简单的教材和教参搬家,应将学科最新的研究成果、成功的教改经验和教师自己的教科研成果及时地反映出来。一流教材除电子教案、PPT、全程教学录像、习题解答、试题库、网络互动答疑、在线测试等内容外,还要自编学习辅导用书,内容大致可包括学习内容辅导、考研辅导、阅读材料三大部分。学习内容辅导应梳理各章知识点及联系、重点难点的学习经验,补充典型习题;考研辅导可提供各类院校近年来的量子力学考研试卷,分析考试内容涵盖的知识点和相关的考核要求;阅读材料可介绍量子力学的最新进展、与量子力学有关的各交叉学科、量子力学的发展历史以及逸闻趣事等。
2.5 抓紧抓实全方位全过程的教学管理
精品课程建设是一个综合系统工程,只有扎扎实实、认认真真、持之以恒地努力工作,才能把事情做好[3]。一流教学管理是精品课程建设的重要方面,建章立制是基础,教学各环节的过程管理是纵线,教学保障条件建设管理是横线,教学质量监控、反馈和改进是保障。教学管理不必标新立异,抓紧、抓实、抓细、抓出成效,就是教学管理的最大特色。
教学各环节的管理制度中,重点要改变学业成绩评价标准,变结果评价为过程评价,正确把握考试导向,降低期末考试比重,加大平时考核比重,将考勤、作业、提问、小论文、课程设计纳入平时考核。
教学质量保障制度的建设和落实要抓好以下几个方面:学校要加大对精品课程建设的经费投入;选择学术水平较高、教学效果得到师生公认的优秀教师担任课程负责人,组建由课程负责人负总责、主讲教师分工与合作的教学队伍;对参与精品课程建设的教师,在评优评先、晋升职称等方面优先考虑;抓实教学过程的质量监控,完善同行评教、学生评教、毕业生评教和评教意见的及时反馈及改进制度;抓住一切校内外的交流机会,博采众长,不断更新充实网上资源,确保精品课程建设的可持续发展。
3 地方院校视角下量子力学精品课程建设 的初步成果
2011年起,荆楚理工学院应用物理学专业开设量子力学课程。三年来,量子力学教学团队坚持以建设校级精品课程为目标,始终追求精品境界,目前量子力学精品课程的基本资料已准备就绪,拟申报校级精品课程,并计划在校级精品课程基础上,力争申报省级及以上精品课程,最终转型升级成为精品资源共享课。
教学团队坚持教学和科研相结合,重视研究解决教学过程中存在的突出问题,以教科研水平的提高带动教学水平的提高。三年共主持完成湖北省教育科学“十一五”规划课题“理工类本科生物理学习障碍归因及对策研究”一项,此课题于2013年5月被湖北省教科规划办批准结题,鉴定结论为:课题研究整体设计规范,研究路线科学,课题组成员分工合理,研究成果丰富且有实效;正主持湖北省教育科学“十二五”规划课题一项:“地方院校应用物理学专业人才培养模式研究”。在学术研究方面,教学团队围绕量子纠缠态、量子点、反应微分截面等方向进行了比较深入地研究,取得了一些成果,近几年在国外英文期刊和国际学术会议上发表了6篇英文学术论文,其中4篇被EI收录,2篇被INSPECT收录,并在原子与分子物理学报、重庆大学学报、量子光学学报等中文核心期刊上发表了8篇学术论文。
科学研究提高了教师的学术水平,加深了对量子力学课程内容的深刻理解,促进了教学的深入浅出,实现了理论与应用、基础与前沿的有机结合,量子力学课程教学质量逐年稳步提高:三年来师生评教均分都在95分以上,教学效果得到师生认可;学生学习量子力学的积极性明显提高,学业成绩的统计结果表明,大部分学生较好地掌握了量子力学的基本理论、基本知识和基本技能,并对量子力学知识的有关应用和学科发展前沿产生了浓厚兴趣,越来越多的学生开始选择以量子力学的有关研究作为毕业论文选题,其中2009级两名学生的毕业论文荣获学校优秀毕业论文;不少学生考研时量子力学科目也取得了135分以上的较好成绩。荆楚理工学院量子力学精品课程建设取得的初步成效,从理论和实践两方面证明了建设具有地方院校特色的量子力学精品课程是可行的。
4 结束语
精品课程不应千课一面,不同类型的院校应该有不同类型的精品课程,量子力学精品课程建设也不应该成为重点大学的专利,地方院校完全可以根据自己的培养目标、培养规格、生源状况,正确地理解“一流教师队伍、一流教学内容、一流教学方法、一流教材、一流教学管理”,建设具有应用型人才培养特色的量子力学精品课程,在精品课程建设上实现与重点大学的错位发展。
参考文献
[1]袁德宁.精品课建设及课程支撑理念的转变[J].清华大学教育研究,2004,25(3):53-57.
关键词:交互式电子白板;交互功能;提高课堂教学效率
中图分类号:G632 文献标识码:B 文章编号:1002-7661(2013)27-104-01
目前,最先进的教育技术交互式电子白板已经走进课堂。交互式电子白板技术具有丰富的资源平台,具备现代多媒体教学的各种优势和交互性强、使用灵活便捷等特点。利用交互式电子白板整合英语课堂教学,可丰富课堂上教育教学资源,通过互动,创造了一个生机勃勃的学习环境,充分展示教师教学的设计意图,全面优化课堂教学结构,使学生保持积极活跃的思维,深刻体验英语学习的快乐及成就感。本人在具体的英语教学过程中,深刻认识到交互式电子白板的强大功能及对教学效果提升的促进作用,敢于应用,灵活使用,收获颇丰。
一、发挥交互式电子白板强大的交互功能,做好“三个互动”
交互式电子白板技术本身具备强大的交互功能和易操作等特点,在整合英语教学中,必须要充分发挥好这一功功能,通盘考虑、有机整合好“师生互动、同学互动、师生与资源互动”三大互动,有针对性开展和促进互动式、启发式课堂教学。
1、教师与学生互动
在传统的英语课堂中,教师往往只是从问与答或游戏这几方面与学生进行互动,这些在一定意义上起到了一定互动效果,但实质很难使学生真正的与教师交流并参加到教学中来。但交互式电子白板不同,白板可借助其在外观和操作上接近黑板和触模屏特点,具备可随时书写、绘画、拖放组合等优势,老师和学生无须严格的专业训练的特点,可以在白板上面亲自操作,随时在计算机界面、网页上和光盘播放界面上进行书写,展现知识形成的过程,学生能与老师进行讨论,可以及时修改错题,从而在课堂教学中实现师生同步。对于学生在学习过程中提出的问题,教师可以调换不同颜色的笔,随写随划,随时进行归纳,随时给予解决,师生间教与学的互动时时可开展,课堂教学的有效性将大大提高。
2、同学间互动
当然白板不仅仅是属于教师的,同时也是属于学生的。这一点让学生非常自豪和快乐。课堂上,很多学生通过观察教师上课使用示范和课余同学间相互尝试,能较快掌握白板的各种学习功能,其掌握度、熟练度甚至比教师还快、还精。基于以上认识,在课堂中,我大胆地将同学间互动完全放手交给学生,上台的同学可以通过白板成为同学间的小老师,自己去设计问题,主动向其他的同学提问,相互间解答问题。通过让学生当同学小教师的尝试,本人既可以了解学生对问题的理解,又可以从解答问题的同学身上及时掌握学生对知识上的掌握程度。
3、师生与资源互动
基于交互式电子白板的教学,补充了从演示性多媒体教学到网络条件下的个别教学之间的空白,在强调学生的参与和师生、互动基础上,有利于推动信息技术与学科教学的整合,注重师生与教育教学资源的互动。本人在运用互动电子白板上课时,非常注重师生与教育教学资源的互动功能。在充分准备教学用的素材基础上,课堂上还根据教学的需要,利用资源即时生成,随时补充在课堂教学中瞬间迸发的教学灵感,对重点难点内容勾勾划划,而同学们亦可以更改、充实教师原先的素材内容。另外,由于电子白板具有强大的储存功能,课堂上师生与教育教学资源的互动、新资源的生成,只要在白板上操作过,白板系统会自动储存这些宝贵的资料,从而生成每个教师每堂课的个性化的“课件”,成为教师及学校以后教学的重要资源。
二、发挥交互式电子白板的辅助功能,多方面激发学生自主学习
1、巧用链接和资源库功能,激发学生学习英语的兴趣
电子白板暨可以利用互联网中的各类教育资源,也可以直接利用电子白板内置的多种教育资源。交互式电子白板为英语学科教学准备了大量的学科素材,教师可以根据自己的教学设计和目标,应用资源库中的素材形成自己的教案,保存自己的图片,可以在使用时从图库中简单地一拖就显示在交互式电子白板上,形象直接。电子白板将使教师非常方便地、较简单地应用资源库中的资源生成数字化教案。互联网的链接和资源库的应用,不仅给予教师提供便利,同学们通过查找资源、参加资源优化与生成等,产生学习英语的深厚兴趣,常常是课堂上笑声不断,学习凝聚度高。
2、巧用聚光灯功能,突破教学重点和难点
学生对某些英语知识,特别是抽象的语法知识的理解是英语教学中的难点。可以利用电子白板中的“探照灯”功能来放大页面的某一部分,以此来刺激学生的眼球,加深印象,帮助他们突破教学重点和难点。
3、巧用幕布功能 ,激发学生的好奇心
使用幕布能激起人的心理期待,引起人的好奇心。电子白板中的幕布功能,既能横着拉,也能竖着拉。教学中可充分利用幕布来迅速集中学生注意力,引发他们的好奇心,进而充分调动他们的学习积极性。
4、巧用透视镜功能,激发学生的求知欲
利用电子白板的透视镜功能,不仅可以激发学生的学习兴趣,而且有利于激发学生的求知欲。
三、发挥交互式电子白板容量大的功能,提高课堂利用时空率
交互式电子白板技术相对于传统的教学模式,扩大课堂容量、提高时间利用率是轻而易举之事。交互式电子白板教学,能任意把文本、图形、图表、语言、音乐、静止图像、动态图像有机地结合在一起,又能进行数据处理、编辑、存储、播放演示,将打破时间和空间的制约,延伸和拓宽教学的时空。在具体教学过程中,对通过图像、声音、色彩、动画来传递教学信息,优化教学课堂结构,比较容易解决因时间和空间的限制造成的教学难点,将扩大课堂教育教学的容量,将极大提升课堂上的时空的利用率,学习内容变得易于理解和掌握。但不是任何一节课均要扩充容量,就初中英语科教学而言,对于语法归纳、试卷讲评、训练题型等课型尤其适合扩充容量,英语教师只需要把所需内容制作成原始课件,在课堂上根据需要展示答案,对讲解某一问题时随便对该题的考查点、重难点进行标注,还可以让学生上台书写答案,既扩大练习量、强化精讲,又激发学生积极参与性,从而提高课堂教学效率。 随着社会进步和信息技术高速发展,交叉式电子白板将会替代原有黑板成为课堂教学的新平台。我们要充分发掘这个新技术平台中所蕴涵的教学策略和途径,将现代教育技术手段真正整合到英语课堂教学中,对打造高效课堂和全面提高学生英语听说写用、考试成绩起到巨大推进作用。
参考文献:
[1] 丁兴富,蒋国珍.白板终将替代黑板成为课堂教学的主流技术.2004.
[2] 李新宇.课堂教学中交互白板的应用层次分析.中国电化教育.2005.3.
过去十多年,做物理学研究的同时,我还做科普。开始的时候兴趣就不小,可是,讲得很专I。随着时间推移,我的兴趣没有减退,不论做科普讲座,还是写科普文章,着力点却越来越通俗。这个世界上,没有我们不能理解的事物,也没有不能传授给大众的知识。我们每一个人每一天都在学习,同时都在将自己的知识传递给别人。
我是从研究物理中最基本的理论――弦论开始的,1999年回国,慢慢转向宇宙学研究。人类区别于其他动物最根本的地方在于,我们不仅会通过语言交流,还对这个世界充满好奇心,对万事万物背后的驱动力量感兴趣。大自然对我们好奇心的报答相当丰厚,我们可以通过努力找到那些驱动力,同时还利用这些驱动力改变我们的生存环境和生活质量,结果我们占据了食物链的顶端,成为地球的主宰。
我们要保持好奇,勇敢地去追问,一旦心智的大门被打开,一个人就会一发不可收拾。我就是这样,上了北京大学的天体物理专业还不够,还要去中国科学技术大学读研究生,进而出国。
在发表了数十篇物理学论文之后,我回国开始做科普了,才慢慢发现,将自己研究的东西讲给别人听是一件多么愉快的事。开始的时候,我还脱不了自己的专业背景,喜欢用专业名词讲专业的事,于是就有了《超弦史话》。三年半前来到中山大学组建新的学院,我开始向科学管理转型,同时给大学生讲一门课,叫做《人与宇宙的物理学》,这门课是用讲故事的方式将日常的、眼前发生的和未来有可能发生的不可思议的事情讲给大学生,这门课在中山大学很有名,以至于一直讲了三年学生还继续要我讲。同时,我出版了《三体中的物理学》,这本书从去年年底到今年年初得了十几项奖。
今年年初在博雅小学堂给孩子们讲量子力学,是我做科普的一个转折点。现在,我有一种自信,我能够将学到的知识讲给任何人听。用有趣的方式讲知识并不容易,但我们能够做到。博雅小学堂的这门课只有四节,但内容足够丰富,基于讲课内容我最近出版了《给孩子讲量子力学》,销量真不错。
随着计算机的普及和利用,多媒体教室普遍存在,并被广泛使用。多媒体教学手段的利用,有助于学生对固体微观结构的理解。例如,可以通过视频或PowerPoint文件,可以直观地展示晶体的微观结构、原胞的选取、原胞的形状等。与传统板书相比,利用多媒体呈现并分析固体的微观结构以及晶体的结构特征,对教师而言,更加省时、省力;几何关系的表达也更为准确,便于学生的理解。此外,若能结合三维的原子实物模型,那么,固体的微观结构将能更为直观地展现在学生眼前。多媒体与三维模型的应用对于学生理解固体的微观结构、晶格的周期性、原胞、晶体的对称性等基础概念很有好处。当然,多媒体教学也存在着一定的局限性。例如,在公式的推导、基础概念的讲解等方面,板书其实更受学生的欢迎。与多媒体教学相比,板书的节奏慢,师生间可以有较多的互动;学生相对容易跟上教师思考问题、解决问题的步伐,学生也能有较充分的时间来理解各个知识点、梳理要点以及做笔记等。因此,多媒体教学还需适当地与传统板书相结合才能达到较好的教学效果。
二、教学内容的取舍
由于固体物理学融合了普通物理、热力学与统计物理、量子力学、晶体学等多学科的知识,其知识面广、量大,在有限的学时里,不可能面面俱到地讨论固体物理学所涉及的所有知识点。因此,实际教学中可以结合本专业的特色,有选择地取舍部分教学内容。例如,侧重固体热学性质的专业可以考虑以晶格振动等内容为主;而侧重微电子的专业则可以考虑以能带理论、半导体中的电子等内容为主。当然,一些多个领域都涉及到的基础知识也应是这门课程不可缺少的一部分内容。固体的微观结构和结合方式是固体物理学的基础,因此,晶体的结构和晶体的结合等知识点应是这门课程的基础知识之一。考虑到理想晶格由原子实和电子组成,晶格的运动主要在晶格振动等部分讨论;而电子的运动主要在能带理论等部分讨论,具体还可以分为金属中电子的运动和半导体中电子的运动等部分。尽管这原子实和电子的运动实际上相互联系,但很多时候,可以分别侧重讨论。此外,实际晶体也并非理想晶体;实际晶体除了有边界之外,也常含有缺陷。但在许多情况下,晶格的振动、电子的运动和缺陷的影响依然可以依据实际情况分别讨论,并得到与实际较为符合的理论结果。因此,晶格振动、能带理论和缺陷等知识点之间相对独立,或可根据各专业的实际情况取舍部分教学内容。在许多固体物理学的教材中,例如黄昆等的《固体物理学》教材和阎守胜的《固体物理基础》教材,密度泛函理论并没有被提到。事实上,密度泛函理论是一个被广泛使用的基础理论,它是凝聚态物理前言研究的有效手段之一,也是材料设计的一种有效方法。教学过程中,教师可以结合各专业的实际情况介绍一些密度泛函理论的基础知识。同时,还可以介绍一些最新的相关研究进展,以拓展学生的知识面、提高学生的学习兴趣。
三、模块化的教学形式
如前所述,固体物理学中的许多知识点间相对独立;基于这门课程的特征,教师在教学过程中可以考虑模块化的教学形式,以子课题的形式将相应内容呈现给学生。可能的模块如:讨论晶体的结构和晶体的结合方式的基础模块———晶体的结构与结合;讨论晶体中原子实运动的模块———晶格振动;讨论晶体中电子运动的模块———能带理论;讨论实际晶体中可能存在的缺陷的模块———晶体的缺陷等;其中,能带理论部分还可分为:近自由电子模型、紧束缚模型、赝势方法等数个部分。这样做首先有利于教学内容的取舍;其次,有利于学生对各知识点的理解、有利于学生梳理清楚各个知识点之间的关系。此外,固体物理学是凝聚态物理前沿研究的基础之一;其基础知识、理论推导、实验背景以及处理问题的方式方法等,都是开展凝聚态物理研究的基础。而模块化教学,以课题研究的形式提出问题、解决问题,将教学内容以问题为导向呈现给学生,这有助于培养学生的学习能力和解决实际问题的能力。而且,课题研究的教学模式,既是在教授学生知识,也是在开展科研,有助于提高学生对科研的认识、有助于培养学生的科研能力。这种课题研究的模块化教学形式还可以结合基于原始问题的教学来开展。
四、基于原始问题的教学
所谓原始问题,可简单理解为:现实生活中实际存在的、未被抽象加工或简化的问题。于克明教授、邢教授等人详细探讨了原始物理问题的诸多方面;此外,周武雷教授等人还讨论了原始物理问题含义的界定等相关问题,并呼吁将基于原始物理问题的教学实践引入大学物理的教学中。这应是个值得提倡的建议,毕竟现实生活中遇到的具体问题都是原始问题。与传统的习题不同,原始问题未被抽象、加工或简化。学生处理实际问题的第一步便是将问题适当简化,这也是学生需要学习的一种能力。事实上,合理的模型简化是各种理论的基础,也是实际应用或科研必不可少的一种能力。例如,讨论晶格热容的爱因斯坦模型和德拜模型,尽管模型简单,但它们数十年来是我们讨论、分析相应问题的基础。今天,那些被写进教科书的基础理论,在当时、在理论刚被提出时,都是为了原始问题的解决。下面以晶体热容为例,稍加详述。问题的背景:根据经典的热力学理论,晶体的定体摩尔热容是个与温度无关的常数。实验发现晶体的热容在高温下确实接近于常数,但是晶体的热容在低温下并不是个常数,其与温度的三次方成比例关系。问题的提出:理论预言与实验观测为何不相符?如何解释实验现象?20世纪初刚刚发展起来的量子力学是否能解释这个实验现象?这些问题在爱因斯坦的年代应该都是前言的科研问题。问题的简化:(1)不考虑边界、缺陷、杂质等的影响,将实际晶体抽象为理想晶体;(2)基于绝热近似,不考虑电子的具体空间分布,将原子当作一个整体,原子—原子间存在相互作用;(3)基于近邻近似,只考虑近邻原子间的相互作用;(4)基于简谐近似,将原子间的相互作用势在原子的平衡位置作泰勒级数展开,并保留到二阶项。问题的解决:基于上面的模型简化,写出描述原子运动的牛顿第二定律,并求解方程组,这些方程组与相互独立的简谐振子的运动方程组相对应。结合量子力学,得到体系的能量本征值;写出晶格振动总能的表达式,继而给出由晶格振动贡献的晶格热容的表达式。由于晶格热容的表达式复杂,很难直接与实验结果对比,因此引入进一步的简化和近似———爱因斯坦模型或德拜模型。这种提出问题、分析问题、解决问题的方式与做前言科学研究的方式相接近,既能提高学生对科研的认识、培养学生的科研能力,又能培养学生理论联系实际、解决实际问题的能力。
五、小结
关键词:科学活动观;结构化学;课程教学
一、问题的提出
“结构化学”是高等院校化学专业的主干基础课程。它从微观视角阐明原子、分子和晶体的结构、性能和应用,主要包括量子力学基本原理及其在原子与分子体系中的应用和原子、分子与晶体结构的实验表征两大部分。后者又可根据被表征物质的形态及理论基础的不同,划分为谱学和晶体学两个不同体系[1]。
由于“结构化学”课程涉及面广、内容抽象、理论性强,要求学生具备较强的空间思维能力,严密的逻辑推理能力和扎实的数理功底;同时由于“结构化学”通常不作为考研基础科目,因此许多教师对教学有效性缺乏足够重视,大量采用灌输式教学或简化教学内容。这样看似在短时间内完成了课程内容的教学,但实际上产生了诸多问题,这些问题恰恰制约着课程目标的达成。
(1)学生难以形成对知识的整体性认识。教师将结构化学知识作为一种结果和定论传授给学生,从表面上看,学生能够机械记忆基本知识,能进行简单的运用和拓展。但由于没有经历和体验知识获得的过程,无法从本质上、整体上理解结构化学的知识体系的来龙去脉、因果关系。
(2)学生关于理论与计算化学的学习和研究能力非常欠缺。由于结构化学涉及许多微观物质的结构和抽象的概念,如果没有科学的方法支撑去解决问题、发现规律,学生难以理解理论与计算化学的核心观念并运用理论与计算化学的核心方法。
(3)学生的情感体验不足。由于结构化学本身具备较高的难度,学生容易产生抵触、焦虑等一系列不良情绪。仅仅将知识作为一种工具和经验传授给学生,他们将无法体验和感受在知识形成中的愉悦感和合作、会话、交流的过程,进而难以得到需要的满足和被尊重、被接纳的情感体验。
基于以上“结构化学”教学的问题,有必要探索、建立新的教学观念以改革“结构化学”课程教学。由于科学知识从本源来讲恰恰是在科学活动中产生的,因此将“结构化学”的教学活动和科学活动做适当的融合,通过深入探索化学科学活动的基本特点和形式,研究科学活动与“结构化学”教学的相互关系,进而探索以科学活动为中心的“结构化学”课程教学途径,不失为一种恰如其分的改革视角。
二、科学活动观——“结构化学”课程教学的新理念
人们对科学本质的认识是一个不断深化的过程。从动态的和生成性的观点看,科学作为“系统化的实证知识”的观点引起了人们高度反思。有人认为科学的本质是获得知识的活动,例如,保加利亚学者T. H. 伏尔科夫曾提到,科学的本质,不在于已经认识的真理,而在于探索真理;科学本身不是知识,而是产生知识的社会活动,是一种科学生产[2]。我国学者刘大椿曾将科学更多地看成是活动的过程,指出科学是人类特有的活动形式,是人类特定的社会活动成果;虽离不开独特的物质手段,但本质上是精神的、智力的活动[3]。这种以动态的角度认识科学本质的思想,能够使人们对科学的理解更加丰富、深刻和全面。
对科学本质的理解,决定着科学教育实践价值取向。以科学活动观指导“结构化学”课程改革,对于提高教学质量,让学生建立自己的“结构化学”乃至整个化学一级学科的知识框架体系,培养学生终身学习、自主学习的能力,引导学生掌握分子模拟研究的初步技能,有着显著的优势。
(1)科学活动观视角下的“结构化学”教学是为科学知识的获得服务的。学生获得的系统性的、基础性的结构化学知识大多是结构化学已有的成果,是科学家多年来积累的理论与计算化学的经验、概念、理论、技能和方法。将知识的获得过程还原于科学活动,符合结构化学教学活动和科学活动在知识形成过程中的本质共同性,有利于学生建立并巩固系统的结构化学知识体系。
(2)科学活动观视角下的“结构化学”教学为学生能力的培养带来了良机。体验结构化学研究过程、掌握结构化学研究方法,对学生走入结构化学研究、形成理论与计算化学的研究能力并进而发展对整个化学一级学科的研究能力都有着重要的意义。学生在以科学活动为背景的学习中感受科学研究的全过程,习得科学研究方法,感受科研的意义和价值,在获得结构化学知识的同时形成与提高科研能力。
(3)科学活动观视角下的“结构化学”教学给予学生体验科研情感的平台。科学活动创造了真实的结构化学科研情境,而科学情感等隐性目标都是在情境中通过感悟获得的。学生在对结构化学问题的研究过程中提高学习兴趣、产生学习热情、发扬团队精神,这就有效解决了因知识灌输式教学而带来的学生情感体验不足的问题。
三、“结构化学”课程教学——“知识学习与能力培养”并重
1.以挑战性问题为学习驱动,构建“结构化学”学习活动
基于挑战性问题的探究式教学方法是为了设计合理的科学活动、有效实施“结构化学”教学而设计的。所谓的挑战性问题是指教师提出的一些与教学内容相关的、具有探索意义和探究价值的问题,供学生小组根据自己的兴趣和思维特点进行选择,以此作为科学活动的一个驱动性引导。在学习过程中,学生通过查找资料、相互讨论、动手实践等多种形式,采用合理的结构化学研究方法对这个问题进行深入研究,完成研究报告。
在“量子力学基本原理及其在平动、振动、转动、原子与分子轨道理论中的应用”模块的教学过程中,教师选择了从简单到复杂的系列自主学习内容,组织学生开展了以挑战性问题为驱动的自主研究性学习。
例如,教师在过去的教学过程中发现,学生对类氢原子结构的球谐波函数和径向波函数的图像理解有难度,不清楚图像的来源和图像节点的性质。为此,教师向学生介绍matlab软件,并提出挑战性问题:如何利用matlab软件编写程序语言作图,帮助理解原子与分子轨道图像。并根据这个问题,分别提出了一套由简入深的系列问题:(1)利用matlab 软件将谐振子振动波函数数字图形化,并与教材上的图形进行对比分析,以此为例说明表层理解信息(naming something)和深层理解信息(knowing something)的区别。(2)利用matlab软件将粒子围绕球面转动的球谐波函数Y及其|Y|2数字图形化。(3)利用matlab软件将类氢原子的径向函数、径向分布函数、原子轨道(径向函数R与球谐函数Y之积)数字图形化并讨论其节点问题。(4)利用matlab软件将氢分子离子的分子轨道(分子轨道理论框架下的单电子波函数近似解)数字图形化并讨论其节点与成键与反键性质。(5)设计一个程序将矩阵对角化,为共轭体系的休克尔经验分子轨道理论的近似解提供一套矩阵算法(HC=SCE在休克尔近似下变为HC=CE),并重点理解分子轨道理论的核心在于变分原理——将不可能完成的精确求解多体薛定谔方程的任务转化为近似求解体系能量函数(尝试波函数的线性组合系数为变量)的条件极值问题。
该系列挑战性问题由若干不同难度的小问题组成,根据学生的认知特点和水平逐渐提高,既防止问题太宽泛而无从下手,又逐渐向学生发出挑战以激发学生求知欲。另外,该问题的解决方法不固定,解答结果也不唯一。它允许学生运用不同的方法来解决问题,并且将分子模拟技术融入理论课程之中,通过体验编写程序的过程,获得结构化学研究的思路,深化对理论知识的理解和掌握。在学习过程中,教师作为学生学习的主导者,对学生学习过程进行观察、把握和调配,当学生学习出现困难时,提供必要的指导和点拨。
学生通过分工合作、查找资料、熟悉软件、编写程序、运行程序、优化程序,逐渐解决了每一个子问题。在这个过程中,学生在原有知识经验基础上主动构建对知识的理解,充分将知识内化为自己的认知。比如对球谐函数图像的认识,不再是机械地“记忆”每一个函数对应的图像,而是充分理解其本质,将原理融入图像的绘制过程,整体把握“数-形”关系,在理解的层面上深刻记忆图像的性质和形状。不仅如此,学生在学习过程中熟悉了结构化学学习与研究的基本方法,充分将结构化学的理论知识与分子模拟实践相结合,体验了以科研的视角去分析问题、解决问题、获得新知的过程。更加难能可贵的是,有学生通过自己绘制一维谐振子振动波函数示意图,发现了教材附图中的一处印刷错误[4]。
科学的发展是建立在继承前人的研究结果,并在科学实践过程中不断地对已有认识形成批判而发展的。例如,原子结构理论模型正是一代又一代科学家在继承、借鉴、批判前人研究成果,并在孜孜不倦地分析与探索过程中逐步建立的。这种科学精神和科学意识的形成必须依赖于科学活动。如果仅仅是读书、聆听教师的讲授,思维往往会被局限,实证意识往往会变得淡漠;相反,学生通过审慎地思考、缜密地分析、严谨的践行,不仅能够让学生认识到科学的学习不能唯书唯上,还需自己亲历躬行。
2.以知识框架图为学习工具,建立“结构化学”学科网络
要具备良好的理论与计算化学的学习与研究能力,必须具备系统化的结构化学基础知识和基本技能,从整体上、宏观上驾驭整个学科体系。学生需要将自己在科学活动中所获得的知识与经验加以总结、提炼与提升,构建自己的知识网络。在以教师讲授为主的“结构化学”教学过程中,这一点做得很不够,不是忽视知识的系统化处理过程,就是将教师自我头脑中已经构建好的体系直接传递给学生,供学生直接借鉴、吸取,而缺乏探索和整理的过程,缺失个性。
在“结构化学”的课程教学过程中,通过学生自主根据自己的知识理解状况绘制知识框架图(Schema),以图形而非文字的形式将结构化学知识加以梳理。在具体的实施过程中,教师要求学生将结构化学知识进行梳理、归类,根据具体的内容绘制相应的知识框架图,不仅仅要全面涵盖该内容内所有的知识点,同时要呈现出各知识点之间的逻辑关系,清晰地表明知识的结构属性和形成方式,使知识逐渐从“点”向“线、面”过渡。学生在绘制知识框架图的时候,不需要根据课本上的章节顺序来设计,也没有固定的思路,更希望学生能够呈现出自己对知识结构的理解。
以量子力学基本原理一章为例,学生绘制了该章的知识框架图,展现出了量子力学基本原理所包括五方面内容。这种教学方式不仅有助于帮助学生梳理结构化学知识的来龙去脉,建立科学的结构化学知识体系,形成全面的关于结构化学基本学科逻辑结构和基本学习与研究思路的认识;更有助于学生反思科学研究活动过程和结果,总结开展科学学习与研究的视角和途径,探索有待进一步学习和研究的盲点和解决策略,最终建立起清晰的化学学科体系框架,并在具体知识基础上形成化学观念。
3.以多种形式呈现学习结果,提升能力同时以评促学
所谓“研而不发则囿”,在科学活动中,通过书面报告(论文)和口头汇报(学术报告)等形式,科学生动地、多样化地展示科学活动成果,是科学工作者必须具备的能力和素质。学生在实践中解决了挑战性问题,绘制了知识框架图之后,需要完成关于学习与研究过程与结果的书面报告,同时在课堂中将自己的学习与研究过程与结果通过口头汇报的形式向教师和同学展示。这样能够让教师了解学生的学习研究过程,让同学学习与借鉴研究方法和研究结果,同时也能够接受教师与同学的批评指正,认识到自己的研究不足之处,为今后开展深入的结构化学学习与研究工作启迪思维、创设条件、打好基础。
利用书面报告和口头汇报等形式表达学习和研究过程与结果,在提高学生的基本科学研究素养的同时,也有助于从过程的角度、从个性化的角度、从个人全面发展的角度来开展并落实过程评价、全员评价,将过程评价与终结性评价相结合。传统的以平时成绩和期末考试成绩为唯一评价指标的评价方式,过多地局限于知识点的掌握,却不能很好地考查学生的个性化学习能力和学习方式,更难以评价学生的科学研究基本素养。利用书面报告和口头汇报则有效地弥补了单一评价方式的不足之处,最终达到以评促学的根本目的。这种以多个评价者从多个角度对学习者进行评价的机制,关注学习者学习过程中所表现出来的各方面能力和素质而并非简单的学习结果,有效促进了学习者学习的积极性,体现了过程评价与终结性评价相结合的现代教育评价理念。
通过“活动-提炼-总结”方式的“结构化学”课程学习,学生能够在科学活动中找到自己的长处,发现自己的潜能,体验到相互合作的乐趣以及自己的想法被他人肯定和接纳时的成功愉悦感。学生在自主学习过程中收获的不仅仅是知识和能力,还有对自我的肯定,对他人的赞许,以及对学习、对科学研究的积极态度。同时,最难能可贵的是学生的学习能力普遍得到了提高,自主学习意识明显增强,为他们今后更好地开展分子模拟研究乃至从事化学理论与实验相结合的研究打下了良好的基础。
参考文献:
[1] 万坚等. “结构化学”课程内容体系与教学方法的研究与实践[A]//大学化学化工基础课程报告论坛论文集[C]. 北京:高等教育出版社,2007:264-267.
[2] 夏禹龙. 科学学基础[M]. 北京:科学出版社,1983:45.
【关键词】课程设置;物理教学;融合与渗透
有人说:“数学是物理学的工具,物理则是附加了灵魂的数学。”也有人说:“物理是自然科学的皇帝,而数学是自然科学的皇后。”这些描述都说明物理与数学的不可分。因此对物理专业的学生来说,数学是他们学好专业课的基础和保障。在某种程度上说,学生数学水平的高低决定了其在物理专业上所能达到的高度,对今后从事理论物理研究的学生尤其如此。我们在多年的教学实践中深深感受到学生数学水平或应用能力的不足成了其专业课学习的羁绊。
从表面上看,物理专业的学生所学的数学已经足够,如高等数学、线性代数、概率论、数学物理方法等已经成了物理专业的标配课程,所占课时约占总课时的五分之一。数学的学时不可谓不多。那么学了这么多数学为什么还满足不了物理学习需要呢?实际上物理学中所遇到的数学知识均已在高等数学中学过,关键是如何用的问题。
如何将所掌握的数学方法应用到解决物理问题中去,或者说如何将所研究的物理对象简化成数学计算模型,是我们在教学中存在的主要问题。造成这一问题的原因之一是教材,之二是教师。
现在物理专业用的教材大多是数学专业的教师编写的,几乎就是数学专业所用教材的翻版,没有体现物理特色,只不过是稍微降低了数学定理证明题的难度。对于数学如何在物理中应用,范例很少、讲解不透彻。另外,几乎所有的高等数学教师不具有物理专业背景,他们不清楚哪些数学知识要在物理中经常用、如何用,导致教师教学的侧重点在于计算和证明而不在物理的应用上。这样表面上看学生学的数学知识很多,却不知道如何在物理中应用,造成了物理和数学的脱节。这就是我们学校开设《物理中的数学》课程的原因。
一、开设《物理中的数学》的尝试
大学一年级的学生处于高中与大学两个学习阶段的转型期。这两个阶段从教学内容、教学方法、学生管理到学生的学习方法、生活环境和生活方式等各个方面均有很大的差异。学生进入大学后会有一段适应期。在这段时间适应能力强的同学会取得较好的成绩,适应能力差的同学成绩会较差。这段适应期的长短基本上决定了学生大学四年成绩的走向。这也是有的同学入学成绩高却经常挂科,而有的同学入学成绩不突出却能在大学中取得很好成绩的原因。
在国内的大部分高校,物理专业的高等数学和力学课大多在大学一年级的第一学期开设,高等数学的教学进度往往滞后于力学教学的需要,因此力学课的教师经常要提前讲一点微积分等数学知识以满足教学的需要。但由于课时有限,很难全面透彻地讲解力学中所用到的数学内容,造成了学生学习的障碍。同时,由于物理专业学的高等数学,其数学性太强、物理应用偏弱,导致大部分同学不能将所学的数学知识灵活地运用到物理中去,认为数学与物理是截然不同的两个学科。这是多年来我们在力学教学中遇到的问题,一直也没有找到很好的方法解决。
为解决这一问题,去年我们在2014级物理专业新生中第一次开设了《物理中的数学》作为物理专业新生都必须选的选修课,共48课时,由物理专业的教师讲授。为了满足力学教学的需要,该门课的教学进度需领先于力学。因此在新生入校的第一个星期的军训期间,我们利用晚上的时间开始上课。这样在学生军训结束正式上课时,我们已经讲了五次《物理中的数学》课。这样学生在上力学课之前已经熟悉了矢量的运算和导数与微分的相关内容,并通过《物理中的数学》中的例题与习题,了解了力学题目的求解方法。这样在整个力学的教学过程中,力学所用到的数学知识均已在《物理中的数学》中学过,保障了力学课的教学,很好地解决了困扰我们多年的问题,取得了良好的效果。
二、《物理中的数学》讲什么
据我们了解,国内很少有高校开设该门课程或类似课程,也没有相应的教材,没有现成的经验可以借鉴。要确定这门课讲什么,首先要对它定位。我们开设这门课的目的不是要取代高等数学课、抢数学教师的饭碗,更不是泛泛地讲物理问题。我们目的是要在数学和物理之间搭建一座桥梁,使学生能够将复杂的物理问题简化成清晰的数学计算模型。也就是说,绝对不能将物理中的数学讲成另一门数学课,更不能讲成多门物理课的混搭。根据此设想,我们以北京师范大学漆安慎先生编写的《力学》教材为蓝本[1],根据力学中所用到的数学知识的先后次序将高等数学内容分成若干个相对独立的知识单元,如矢量运算、导数与微分、积分、微分方程和矩阵等,并参考高等数学中的相关内容编制了课件[2]。在讲课过程中,我们不强求数学知识体系的完整性、连续性和证明严格性,而是本着实用的原则,力求讲清数学的思想、定义和定理,着力数学方法在物理中的具体运用。因此,该门课的例题和习题的选择也紧紧围绕课程的定位进行,绝大部分的题目与高等数学的题目有明显的不同,这些题目都是根据授课内容而精选的物理题(绝大部分是力学题目)。这些题目既不能包含过多的物理知识又要充分体现出数学知识在物理中的应用。例题讲解的重点不在题目中的物理而在数学在物理中是如何运用的,解题步骤也以物理中的解题步骤为准,以免对今后的物理教学造成困难。同时,对物理中经常用到的数学知识点也是重点讲解、多次练习,达到熟能生巧、学以致用的程度。
三、 数学方法如何向物理中渗透
如何将数学方法应用到物理中去是本门课的教学目标之一。为达到此目标,我们在讲透数学方法的基础上大量增加在物理上的应用练习,通过练习提高学生的应用水平。例如微元法源于高等数学中的微积分,它是微积分思想的核心。可以说,微元法的应用贯穿于物理学的始终,它是处理非均匀物理问题最基本、最有效的方法。如果学生能充分理解微元法的本质,那么他就能在计算变力的功、转动惯量等需要用积分计算的物理问题时灵活运用。因此,我们在讲解微元法时首先明确什么是微元,把为什么要用微元、如何选择微元等问题讲透。然后以变力的功、转动惯量、磁通量等为例,详细讲解其在实际计算中的具体应用。但学生还没有学习的物理概念如磁通量等,讲解过程中仅给出定义,其在物理中的意义不作重点讲解。又例如在讲矩阵的线性变换、特征值、特征向量时,我们选用的所有的例题和练习题均来自量子矩阵力学,并将矩阵的特征值、特征向量与量子力学中力学量的本征值和本征态对应;将矩阵的对角化与量子力学中的表象变换对应。又如v解定积分定义时,明确定积分就是对无穷多项求和, 着重强调定积分不仅仅代表曲线下的面积,被积函数不同,它还可代表其他的物理意义。我们选择的定积分大部分例题看似是纯数学的题目,实则不然,而是我们从物理中提炼出的、今后物理上经常用到的积分。就这样在整个教学过程中,时时刻刻将数学知识与物理问题联系在一起,重点讲解数学方法是如何在物理中实现应用的。
熟练地将数学方法运用到物理问题中去是一个长期的过程,也是物理专业的学生所必须掌握的一项技能。只有长期地训练才能达到熟能生巧、灵活运用的程度。
四、教学效果与存在的问题
由于该课是第一次开设,没有现成的教材、没有教学课件,也没有经验可循,整个的教学过程是在摸索中进行,不可避免地存在这样或那样的问题。不过从课程目标来看,该课达到了预期的教学目标,取得了较好的效果。通过该门课的学习,该年级的学生在期末的力学考试中不及格率低于10%,达到近些年的最低点;高等数学的成绩也有明显的提高,在全校非数学专业的高等数学和线性代数考试中名列第二,不及格率也低于10%, 这也是物理专业的学生以前没有达到过的成绩,教学效果达到了我们的预期目标。但由于该课刚刚开设了一次,学生的成绩不具有统计性,因此尚不能对该课的教学效果作有力说明。
当然,该门课的开设还存在一些有待进一步探索的问题,主要有以下几点。第一,开课时间与力学课的协调问题。 为了实现如期的教学效果,要求该课的进度应该比力学的进度快,但该课与力学课同时开设,教学进度差不多,因此该课的授课教师应该与力学教师充分协调,以保证该课的授课内容领先于力学的教学需要。 第二,授课内容的选择与整合问题。如前所述,该课的授课内容是根据力学教材的需要编写的,各校采用的力学教材不同,其中用到的数学知识在教材中出现的先后次序也不尽相同,因此应尽量将不同的数学知识整合成相对独立的知识单元,以便于教学调整。 第三,例题与练习题的筛选问题。例题的配备与练习题的筛选是训练学生熟练地将数学知识应用到物理问题中去的关键。 我们的课件中尚有部分题目的数学性较强,没有充分体现出物理中数学的特点,需要更换;有些题目的物理过程过于物理化。由于学生物理知识不足导致学生尚不能理解其中的物理内涵,也需要简化。
以上问题有待在以后的教学过程中进一步探讨。我院已决定在以后的物理专业新生中,连续开设该门课程,探索该课设置的利弊,为我国高校物理专业的课程设置继续摸索积累经验。
【参考文献】
历史悠久的传统课堂教学模式普遍采用板书的方式,近年来,这种教学模式常常与启发式教学和讨论式教学相结合,达到提高学生学习兴趣、提高学生思辩能力的效果。这种教学模式能使上课教学内容条理清晰,重点突出,便于课堂的复习与总结,在教学过程中发挥中重要作用。但是,在这一种教学模式中,由于在板书过程中需要大量的时间,特别是一些图形、图表等复杂结构的板书,导致上课讲授内容太少,跟不上上课内容增加的步伐,同时,由于板书浪费了太多的时间,从而导致与学生的互动与交流减少,导致上课效率降低,不利于高素质人才的培养。而随着科学技术的发展,幻灯片、投影仪、计算机、以及相对应的各种教学软件相继研发出来并在高校中广泛使用,这些设备和相对应软件结合,能够将图画、文字、语言、可视电影、动画等有效结合,从而导致上课内容生动、有趣,而且导致上课的知识容量增加;同时,能节省大量由于板书浪费的时间,进而导致上课时能腾出更多的时间来和学生交流和沟通,从而导致上课效率大大提高。
目前,多媒体教学模式已经在高校中大量应用,大有完全代替传统教学模式的趋势。诚然,合理使用多媒体教学,确实可以大大大学物理的教学效率。研究表明,合理利用现代化教学媒体,能使学生学到比目前多三倍的知识。但是,现在的高校教学中,很多老师过度依赖多媒体教学,忽略传统教学以及板书的作用,板书随意书写,有的老师甚至一节课没有一个字符板书在黑板上,仅仅照PPT过一遍。
经过一段时间实践表明,完全利用多媒体教学,忽略传统的板书教学模式,教学效果并不明显,甚至会打击学生的学习积极性,主要表现在教学速度过快,前面的还没听懂,后面的新知识就来了;从而导致虽然上课的内容丰富了,但是学生对知识点的掌握不扎实;或者前面的只是刚刚掌握好,过一会儿后就忘记了。在本期的大学物理教学过程中,我们对传统板书教学与多媒体技术的结合进行了多种模式的探索,我们的探索表明,在大学物理的教学中,要把每节课的重点,特别是公式、定理、定律等详细地列举在黑板上,特别是一些重要公式的推理过程能在黑板上详细地带领学生一起推一遍,这对公式的理解特别有用。同时,每节课的重点知识板书到黑板上之后,在本节课中一定要保持不被抹掉,以便学生在后面新知识的学习时忘记前面学的知识点时能及时回过头来随时复习。而对于一些具体的例题、模型、物理实验、历史物理典故等可以通过多媒体展示出来,以丰富上课内容,激发学生学习兴趣。通过传统上课模式和多媒体技术的有效结合,经过一段时间的时间后,学生的反馈很好,包括对大学物理知识的理解,对大学物理的学习热情等有了显著提高。
二、基础知识的传授与前沿科学研究探讨相结合,培养学生的综合素质和创造能力
长期以来,中国的传统的教育以“传道、授业、解惑”为主,特别注重于知识的传递与记忆,注重于知识的理解。在大学物理教育方面也传承了许多历史积累下来的惯性思维,例如基本公式、基本定义的讲解,然后大量题型的训练。诚然,这些训练对于大学物理基础知识的理解和巩固,对于培养学生扎实的大学物理功底有着非常重要的意义。然而,在当代社会,除了要培养学生扎实的基本功外,还需要特别注重创造性思维的培养。对大学生进行创新思维的培养的途径有很多,而在大学物理教学中把大学物理与科技前沿相结合,把反映当代科学技术发展的重要成果和新的科学思想引入大学物理课堂,同时,老师在自身的科研经历和研究过程中鼓励和引导学生参与,这对培养学生的思辩能力、带动学生的学习爱好、提高学生自主学习能力、培养学生的学习热情,特别对于培养学生的创造性思维能力,有着非常重要的现实意义。
从2010年秋季开始,我们在机械设计制造及其自动化、汽车服务工程、信息与计算科学、物流工程、生物工程、高分子、林产化工等各理工科专业的教学中将最新的科研动态渗透到相关的大学物理知识教学中,例如,在讲到《大学物理》第16章量子力学基础时,我们把最新的前沿科学低维结构中量子热导、量子电导知识渗透到其中,并将我们正在进行的科学研究,包括目前低维量子体系中热、电输运需要解决的理论问题、我们的研究方法、研究内容、正在主持的课题介绍给大家,同时,把正在研究的问题中急需解决的关键核心问题介绍给大家,引导学生思考,在这些问题的引导下,开展撰写“小论文”的教学课外活动,引导学生开展第二课堂。通过学生课后查资料,自主参与调研,主导思索,把自己的想法和构建的解决方案在一段时间后集中在课堂讨论。通过这种教学模式的实践,结果表明,学生的学习积极性得到了提高,激发了学生对新知识的求知欲,特别是通过这种与前沿科学研究相结合的教学模式,提高了学生研究问题、解决问题的能力,从而提高了学生的创造能力。
三、结束语
【关键词】 激光原理与技术课程;教学内容;教学方法;实验教学
【中图分类号】G632.010 【文献标识码】A 【文章编号】2095-3089(2013)29-00-01
一、教学现状
“激光原理与技术”是应用物理学本科专业的专业课,是一门理论性很强的专业基础课。通过本课程的学习可以为学生今后从事激光技术、光通信、信息处理、红外探测、环境检测、激光医疗诊断和材料加工等方面的相关光学工程研究打下基础。由于该课程物理概念抽象并且理论性强,基础知识面广,不易理解,感到难学,畏难情绪严重,学习这门课程时的兴趣就不如其它普通物理课程;此外,由于学生对激光应用方面的知识了解较少,往往因缺乏感性认识,不能充分体会到该课程的重要性,导致学生在学习中没有一个积极的态度;再次,“激光原理与技术”需要讲授激光的基本原理、基本技术以及激光的应用三部分内容,知识点多,逻辑关系也不像力学、电磁学等那么明显,再加上该课程总的学时数只有32学时,所以大部分学生在学习中会感觉到有些凌乱,理不清头绪,最终导致不能巩固和深化所有的知识点。基于以上问题,如何在教学中合理的处理教学内容以及采取合理的教学方法,做到重点突、详略得当,既要让学生掌握基本原理和基本技术,又要了解激光的具体应用是目前教学过程中急待解决的主要问题。
二、对教学内容适当删减
《激光原理与技术》是一门理论性很强的专业基础课,该课程涉及的基础知识面广,需要应用原子物理、量子力学、热力学统计物理、光学和高等数学等课程的结论和基础,公式繁多、推导复杂、理论抽象,具有较大的难度和深度。要在32学时内完成教学任务,就必须选择合适的教材并且合理的安排教学内容。在教学中我们选择的是上海理工大学陈家璧教授编写的《激光原理及应用》(电子工业出版社)作为教材。这本教材的特点在于内容章节安排合理,知识点覆盖面广,理论体系较为完整,避免过多的理论公式推导和计算,而把重点放在阐明物理概念以及激光输出特性与激光器的参数之问的关系,帮助学生了解和掌握最基本的激光原理和技术,学会如何根据不同应用范围选择合适的激光器。因此这本教材的内容很对工科类的学生的胃口,尤其是具有一定物理基础的应用物理系学生来说所讲授的内容比较容易掌握。我们根据教材的安排将教学内容主要分为三个大的部分:激光的基本原理包括激光的产生条件、激光器的工作原理和激光器的输出特性;激光技术部分包括激光的选模技术、稳频技术、激光束的光束变换,调Q、锁模技术以及激光的内调制、外调制等技术;激光的应用部分主要包括各种常见激光器介绍和激光在不同领域内的应用。关于激光的其他方面的知识将不再安排进课堂教学,主要供学生自学。
三、教学手段多样化
激光原理与技术内容繁多并且教材中包含大量图片,只靠“一支粉笔一张嘴”的教学手段很难在有限的课时内完成教学任务。因此在科技发展的今天,我们必须借助现代化的多媒体教学手段。在教学中通过PPT、Flash以及小电影等多中形式,使学生获得对激光更为直观、感性的认识,增强课程的趣味性和直观性。例如在激光的应用方面,我们通过小电影播放激光雕刻、汽车车身的激光焊接以及激光的医学应用等视频,可以很直接引起学生的兴趣和好奇心,充分调动学生的积极性。在此基础上,教师再具体介绍在不同应用背景下激光器的选择、各项技术参数等知识,这样可以在感性认识的基础之上更好的掌握激光器的主要知识点。
此外,在教学中将部分教学内容以专题的形式提供给学生,学生通过自己的探索和实践过程中掌握科学研究的方法,在研究中获得知识。例如可以在讲授谐振腔结构对激光输出特性的影响时,在学习了开放式光腔与高斯光束、激光振荡特性章节内容后,结合具体的激光器He―Ne气体激光器,让学生探索腔型结构对He―Ne气体激光器激光输出性能的影响和高斯光束聚焦特性的研究以及振腔设计和激光输出特性测试等工作。通过专题研究,有效地促进了在教学活动中培养学生具有能从物理学的角度对激光有深入的理解的能力,使学生对“激光原理”的学习有了感性认识,将被动的接受变为主动的获取,并启发他们做一些创新性科学研究,培养本科生敢于开辟激光应用新领域的开拓精神,解决学生对激光物理知识内容的深入理解与创新思维之间的联系。在此基础上,还可以选拔出优秀的学生,让他们参与到教师的科研项目和研究中,开展初步的科学研究和探索,以此提高优秀本科生的创新思维发展、理论学习和实践相结合的能力。
四、注重实验教学
激光原理实验是“激光原理与技术”教学的重要组成部分,让学生接触真正的激光器,并在实验中通过练习掌握调试、测试激光器的各种方法,可以帮助学生真正理解激光理论、认识和应用激光器,在教学过程中必须两者兼顾,不可偏废。可见激光原理实验对于帮助学生真正掌握这门课程无疑是有重要意义。因此在教学中必须开设能够涵盖理论课涉及到的主要原理、技术和应用方面的基础性实验,如激光器谐振腔设计、调整、横模观察、发散角测量、纵模间隔测量(He―Ne)和半导体激光器特性(GaAs)以及半导体激光器在通讯领域内的应用等实验。通过这些实验的教学,提高了学生的学习兴趣,进而增加了学生的学习积极性,培养了学生观察问题、思考问题、解决问题的能力,也促进了理论教学质量的提高。在实验条件允许的条件下,还可以开展一些设计性、研究性实验,如研究激光与原子、分子的相互作用、激光在化学反应动力学的应用等方面的实验。当然,这要根据学校自身条件和教师科研情况自行决定,总的目标是培养学生的创新思维和分析、解决问题的能力以及初步的科研能力。
五、结语
根据对《激光原理与技术》课程教学现状的分析,从教学内容、教学方法和实验教学三个方面探讨了“激光原理与技术”课程改革的一些想法和体会。在教学内容上要合理删减,突出重点,将最基本的原理和技术传授给学生;在教学方法上要结合多媒体教学,利用生动的动画、影视等使课程形象、生动,并且激发学生的学习兴趣和学习的主动性;实验教学是该课程的重要一环,既要加强基础实验教学也要开设一些设计研究型实验,培养学生的探索精神和创新能力。
参考文献
[1]陈家璧,彭润玲主编.激光原理及应用[M].北京:电子工业出版社,2008.
[2]周炳琨,高以智,陈倜嵘等.激光原理(第6版)[M].北京:国防工业出版社,2009
关键词:结构化学;教学;模拟
中图分类号:G42 文献标识码:A
文章编号:1009-0118(2012)09-0141-02
《结构化学》是一门化学专业的必修课,也是材料等专业的重要基础课,已成为从事化学、材料和物理专业深入研究材料特性的一把钥匙。但由于该门课是从微观结构研究原子、分子和晶体的结构及其与性能的关系,与宏观世界对物质的认识有很大差异,进而使学生感觉该门课抽象、复杂甚至混乱。因此,本文将主要对该门课的特点及其存在的问题进行教学方式、方法上的探讨。
一、课程特点及难点
《结构化学》课程包含两个核心内容:一是描述微观粒子运动规律的波函数,即原子轨道和分子轨道,通过轨道的相互作用了解化学键的本质;二是分子和晶体中原子的空间排布,了解分子和晶体的立体结构。与其它化学课程不同,该门课看物质的角度不同,涵盖的相关知识多,内容涉及面广,如需具备高等数学、无机化学、有机化学、物理化学及量子力学等知识,同时包含的新概念比较多,如波函数,杂化轨道,点阵。在教学过程中发现,学生普遍感到这门课很难,有的同学在学习过程中很快跟不上老师讲解的速度,相当一部分学生死记硬背,甚至有个别学生由于太难太抽象而放弃对该门课程的继续学习。事实上,这个问题的源头在于学生对该门课基础知识理解的不足,具体来讲,很多学生不明白什么是波函数,什么是晶体。因此,如何更好地理解与数学和量子力学有关的波函数概念和不同于分子的固体的晶体结构成为学生学习的两大难点。
二、教学中存在的问题
(一)学生学习兴趣低
造成学生学习兴趣低的原因很多。从学生角度来看,部分学生学习态度不端正,学习的目的只是为了应付考试,并且由于课程本身的特点造成学生对该门课产生误解,从心理上学生觉得该门课抽象、难学、难懂,导致学习非常被动,最终学习效果较差;从教师的角度看,教学方法必须要求多元化,如果不同的教学内容使用同一种教学方式,尤其对该门课难懂的波函数,如果使用文字的方法来讲解,势必会使教学效果差,学生学习兴趣低下。如何提高学生学习的积极性和主动性,是值得授课老师深入思考和探讨的重要课题。
(二)教学方法
目前,对该门课的教学方法主要使用板书和多媒体形式讲解。这些方法有如下几个缺点:1、缺少学生的参与,课题气氛呆板;2、对具有立体空间结构的可观性差,学生理解受到限制;3、对数字化的波函数缺乏形象化的表示,成为学习该门课其它知识的瓶颈。这些将阻碍学生学习的积极性和对所学知识的理解。因此,授课教师需要在教学方法上根据课程内容进行个性化的调整。
三、解决措施
该门课不像有机和分析等化学课程,没有实验教学部分,因此,学生对所学知识的理解消化受到很大限制。为了提高教学质量,提高学生的综合素质,提出以下措施。
(一)引入实验教学
由于高等教育教学改革的不断深化,该门课程的课时数明显减少,即使采取板书、多媒体和演示相结合的讲述方式完成该课程系统的教学也已经变得较为困难。因此,在教学方式上,我们需要做进一步的改进。通过教学,发现采用一种新型方法,即类似实验教学的方式对该门课的教学效果能达到事半功倍的效果。为了清晰地阐述这一方法,本文通过举例的方式来说明。现以二氧化碳分子中存在的两个离域π键为例来说明。在使用板书或多媒体教学中,老师的分析可能如下:
假设二氧化碳分子在直角坐标系的x轴上,碳原子有4个价电子,氧原子有6个价电子,分子中的两个氧原子分别表示为O1和O2。碳和氧原子采用spx杂化,碳和每个氧原子形成σ键,每个氧原子的另一个spx杂化轨道被其上的一对孤对电子占据。碳原子剩余的两个电子,分别占据在py和pz轨道上。氧原子剩余的三个电子中,如果O1原子中一对孤对电子占据在py轨道上,另一个电子必将占据在pz轨道上,它的pz电子将会与碳原子的pz电子形成πz键,那么碳原子的另一个py电子必将与O2原子的一个py电子形成πy键,此时,在O2原子中pz轨道上必须安排一对孤对电子,那么,O2中由孤对电子占据的pz轨道将会与碳和O1原子形成的πz轨道重叠,形成π4z3离域键,O1中由孤对电子占据的py轨道将会与碳和O2原子形成的πy轨道重叠,形成π4y3离域键。此时老师可能会将这两个离域π键的图片放在多媒体中。但大部分学生听完之后,由于不能看到一个三维的直观图像,而且讲起来描述语言颇多,最终教学效果不佳。
如果我们利用一种软件,如Chem 3D和Dmol3,通过计算得到二氧化碳分子的各个σ和离域π键的三维空间构象,通过空间旋转可以让学生清晰看到碳与氧原子之间的σ键和两个不同方向的离域π键,且通过查看计算结果文件得到这些轨道的波函数。在这里学生还可以学到如下几点:1、通过简单的类实验计算,学生获得来自书本上与波函数、杂化轨道和分子轨道等相关理论知识;2、能获得由原子轨道波函数线性组合成分子轨道波函数的明确数学表达式,并能与轨道图一一对应,解决了学生关于分子轨道理论复杂的薛定谔方程,能从图像上理解书本上的纯理论内容,进而达到实践教学的效果;3、对杂化轨道理论,很多学生从书本上仅仅知道杂化的原因、目的和杂化后的原子轨道,但大多不明白杂化后这些轨道形成什么样的键。通过这个实验的教学,学生可以从轨道上清晰看到碳和氧原子的sp杂化轨道相互重叠形成的π键,同时也能看到氧原子的一对孤对电子占据在氧的2p轨道上的分子轨道图。
通过比较上面两种教学方法,我们发现,由于该门课的教学内容偏重纯理论,学生经常感觉晕晕乎乎,似懂非懂,因此,引入类实验教学部分,可通过一个简单的实验例子,让学生深刻理解来自书本的较多知识点,同时,可以让学生清楚各个知识点间的区别和联系,从而对教学达到较好的效果。
(二)提高学生的学习兴趣
兴趣是最好的老师,因此,在教学中怎样提高学生的学习兴趣是每个教学工作者一直思考的问题。就该门课的课堂教学来说,将教学内容与其它化学课程及日常生活现象相结合,让化学专业学生感到该门课非常有意思或对学生学好其它课程起到重要作用,如有机化学和物理化学中,关于乙烯加氢气反应活化能大或反应速率慢等现象,离不开该门课关于前线轨道理论知识的理解。再如,在实践中,我们看到的物体表面总是一个宏观的结构,如果额外引入晶体表面结构的教学内容,学生将了解到肉眼看到或感觉光滑的物体表面其实有很多原子缺陷,让学生对常规认识有新的视觉和认识,进而提高了学生的好奇感,激发了学生的求知欲望。
(三)改革考核方式
在考核方面,采用多种考核方式综合评定学生的最终成绩,有助于促进学生注重过程学习,进而提高了学生分析问题和解决问题能力的培养。目前,该门课常用的考核是由平时成绩+期末考试成绩构成,其中,平时成绩主要来自出勤、书面作业和期中考试。如果在平时成绩中引入课外作业,学生通过查阅资料或类似于实验设计的材料模拟,不仅能加深学生对理论部分的理解,而且也能提高学生应用所学知识解决实际问题的能力。
四、结语
在《结构化学》课程教学中,针对“教”与“学”双方存在的不足,在教学方式、方法及教学手段上主要引入实验教学部分,以期提高教学质量。在今后的教学过程中,作为教学主体的教师应结合课程特点和实际教学,充分研究教学中的方式方法手段的最佳组合,以获得更好的教学效果。
参考文献:
[1]周公度,段连运.结构化学基础(第4版)[M].北京大学出版社,2008.