公务员期刊网 精选范文 重金属污染土壤处理范文

重金属污染土壤处理精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的重金属污染土壤处理主题范文,仅供参考,欢迎阅读并收藏。

重金属污染土壤处理

第1篇:重金属污染土壤处理范文

关键词:植物-微生物联合修复;重金属污染;底泥/土壤

中图分类号 X53;X820.4 文献标识码 A 文章编号 1007-7731(2016)06-83-04

The Research Progress on Plant-microorganism Combined Remediation of Heavy Metals-contaminated Soil & Sediments

Wen Xiaofeng1 et al.

(1School of Hydraulic Engineering,Changsha University of Science and Technology,Changsha 410004,China)

Abstract:As a kind of persistent toxic,heavy metals pollution has caused a high degree of attention recently in China.As a green technology,plant-microorganism combined remediation are increasingly mature on its application in the oil pollution of soil,so appllying to the restoration of sediment/soil heavy metal pollution has been gradually carried out.This article summarizes the current situation of sediment/soil heavy metal pollution,the processing method and so on.Also the definition,principle about the plant-microorganism combined remediation was expatiated,and the different forms of plant-microorganism combined remediation on plant-microbial was described.Finally,the application foreground of the plant-microorganism combined remediation in sediment/soil heavy metal pollution repair was prospected.

Key words:Plant-microorganism combined remediation;Heavy metals pollution;Sediments & Soils

重金属(Heavy metals)一般是指密度大于5g/cm3,超过一定量后对生物具有明显毒性的金属或者类金属元素,如镉、铬、锌、铜、铅、汞、砷等[1]。这些(类)金属元素及其化合物在环境中只是发生形态或者价态的变化,难以被降解,属于持久性的累积性毒物,对人类有着潜在长久的危害[2]。底泥、土壤是众多底栖生物、陆生生物的栖息觅食生活场所,在底泥/土壤中累积的重金属会通过食物链的放大,最终进入人体,使得人体内的重金属含量逐渐增多,从而出现慢性中毒,对人类的健康造成长久且不可挽回的损害[3]。因此,对底泥/土壤中重金属污染的治理研究有着重要的意义。中国对重金属污染底泥/土壤的治理始于20世纪70年代,对重金属污染底泥/土壤的处理机理分为固定、活化2种,前者降低底泥/土壤中重金属离子的有效性,使其沉淀化从而降低其生物有效性,降低对植物的毒害,后者通过一系列措施提高重金属的生物有效性,再通过植物、微生物等吸附提取从底泥/土壤中去除[4]。目前用于处理重金属污染底泥/土壤的方法可分为原位修复(In-situ Remediation)与异位修复(Ex-situ Remediation)。物理修复法见效快,但工程量大,耗财耗力,且通过物理修复后均难以使底泥/土壤达到要求的标准;化学修复法能在短时间内大幅度去除底泥/土壤中的重金属,但去除一般都不彻底,且治理成本高,人力物力耗费较多,易造成二次污染,化学药剂也会对水生/陆生生态系统构成潜在的威胁[5]。植物-微生物联合修复在进入21世纪后得到了快速发展,近年来由于其在富营养化污废水、石油污染水体/土壤中的良好治理效果而引起了高度关注[6],在重金属污染底泥/土壤的处理中极具潜力,是今后治理重金属污染底泥/土壤着重研究发展的方向。

1 植物-微生物联合修复的定义及原理

植物-微生物联合修复属于生物修复,它通过建立植物-微生物共生体系,通过微生物加强植物富集、固定底泥/土壤中重金属的能力,利用植物-微生物共生体系富集、固定底泥/土壤中的污染物[7]。微生物强化植物修复主要是强化植物富集、固定能力,主要表现在2个方面[8]:(1)活化或固定底泥/土壤中重金属;(2)促进植物生长。用于重金属污染修复的植物-微生物联合修复中的植物与微生物两者是互惠互利的关系,土壤-微生物共存环境中,底泥/土壤中附着在根际的微生物能将土壤有机质、植物根系分泌物转化成自身可吸收的小分子物质,同时通过分泌有机酸、铁载体等螯合物质改变底泥/土壤中重金属的赋存状态或者氧化还原状态,降低重金属的毒性,增加重金属的生物有效性,减少重金属对植物本身的毒害,有利于植物对重金属的吸收、转移、富集,从而增加了累积植物重金属的生长量、富集量[8-9]。体外微生物对土壤中Fe、Mn氧化物进行还原,解析出其中的重金属,也可将硫等氧化成硫酸盐,降低土壤的pH值,进而增加了重金属的活性,转换成易于被植物吸收的形态;活动于植物体内的根内菌则通过分泌一定量的生长促生剂促进宿主植物生长,进而增加宿主植物对重金属的富集量,有利于植物对底泥/土壤中重金属的吸收[6,10]。而植物对微生物修复的强化则体现在植物根际分泌物上,根际的分泌物对根际微生物起着很关键的作用,根系分泌物数量丰富,一般包括糖、蛋白质、氨基酸、有机酸、酚类等,其中有机酸通过螯合、活化作用改变土壤中的重金属化学行为、生态行为,进而改变重金属对植物、微生物生物有效性、毒性[11]。同时,蛋白质、糖等有机质分泌物可以作为根际微生物的营养、能源来源,大大提高了根际微生物的活性,根际微生物活性的增加又反过来作用于植物根际,影响了根的代谢活动和细胞膜的膜透性,并改变了根际养分的生物有效性,促进了根际分泌物的释放[12]。植物-微生物二者的联合对植物、微生物修复法各自处理底泥/土壤中的重金属起到了强化作用,提高了对底泥/土壤中重金属的处理效率,在处理重金属污染底泥/土壤中有着很大的潜力[13]。

2 植物-微生物联合修复技术的几种形式

2.1 植物-土著优势菌联合修复 随着底泥/土壤中重金属污染的加重,某些微生物能对重金属表现出耐受性,从污染底泥/土壤中分离出来的此类微生物即为土著优势菌种[14]。真菌、细菌、放线菌是底泥/土壤中分布广、生物量大的微生物,表面积/体积比很大,表面附着的羧基、磷酰基、羟基等负电荷的功能基团使得它们对重金属阳离子有着很强的吸附作用[15]。土著优势菌强化植物富集重金属的机制主要表现在以下几个方面[16]:(1)微生物分泌胞外聚合物与重金属离子络合解毒,降低重金属毒性;(2)分泌的酸类对重金属起到活化作用,提高重金属的生物有效性,增强了植物对重金属的富集能力;(3)微生物对土壤中金属离子进行氧化还原及甲基化作用,从而对重金属离子产生作用,将重金属转化为低毒、无毒的形式。陈文清等[17]利用盆栽实验研究了鱼腥草与内源根际微生物联合修复镉污染土壤,发现在土壤镉浓度为5mg/kg、10mg/kg时,鱼腥草的富集率分别为2.86%、1.63%,吸收量最高可达培养前自身镉浓度的200倍(种植前鱼腥草镉含量0.114 6mg/kg,富集后最高达24.44mg/kg),根际的细菌、霉菌耐性较弱,培养初期放线菌对镉耐性很强,较高浓度镉可能刺激了放线菌的大量生长,在两者联合下,土壤微生态系统能够保持较好的稳定性。高亚洁等[18]利用草本植物紫花苜蓿-土著微生物对重金属污染的河道底泥进行修复,在经过6个月的PVC箱培养后,底泥中的Ni、Cu、Pb、Cr、Mn、Zn都得到了一定的去除,Ni、Cu、Pb、Cr、Zn均累积在紫花苜蓿根部,其中对Zn的总累积量最大,而Mn则在紫花苜蓿叶片中累积最多,占植物中总累积量的42.47%,而根际微生物也对植物修复起了辅助强化作用,其中的Cu与细菌总数有着相关系数为0.90的相关关系。

2.2 植物-根际菌根真菌联合修复 菌根是一个微生物团,主要包括真菌、放线菌、固氮菌,是在植物根际发现的有助于植物生长的菌丝团,是土壤中的微生物与根系形成的联合体[19-20]。菌根表面微生物形成的菌丝大幅度增加了根系吸收面积,而菌根真菌是处理重金属的主要部分,真菌的酸溶、酶解能力使得它们能为植物提供了一部分营养物质,增加了植物的长势,同时改善根际土壤环境,增加了植物抗虫、抗逆的生存能力[21]。菌根真菌在自然界分布广泛,一般来说,重金属污染区域的菌根植物根际的真菌对重金属会有着强的耐受力,也可从未受重金属污染土壤中分离菌根真菌再进行筛选强化。李芳等[22]选了未受重金属污染的点柄粘盖牛肝菌、卷缘桩菇2种外生菌根真菌,研究二者对Pb、Zn、Cd的耐受性,发现卷缘桩菇比点柄粘盖牛肝菌更耐受Pb、Zn的毒害,点柄粘盖牛肝菌则对Cd有更强的耐受性。

2.3 植物-植物内生菌联合修复 植物内生菌(Endophytes)是指那些在其生活史的一定阶段或全部阶段生活于健康植物的各种组织和器官体内或细胞间隙的真菌和细菌,被感染的宿主植物不表现或暂时不表现外在病症[23]。内生菌通过代谢作用利于宿主植物的生长和抗重金属毒性,可通过沉淀重金属离子、产有机酸和蛋白降低植物毒性、产生促进植物生长的植物激素、抗氧化系统抵御重金属毒性、增强植物对营养元素的吸收能力等来强化植物修复[24]。万勇等[25]通过在龙葵种子中接种来自龙葵的抗性内生菌(S.nematodiphila,LRE07)来处理污染土壤,对龙葵富集镉浓度没有显著影响,但极大地促进了植物的生长量,间接地提高了植物对镉的总富集量,在10μM镉浓度下,植株镉富集量比对照组增长了(72±5)%。Sheng等[26]将来自油菜根部的内生菌P.fluorescens G10、Microbacterium sp.G16接种于铅污染土壤,极大地提高了土壤中可溶态铅的含量,有利于植物对铅的富集吸收。Badu等[27]将从欧洲赤松根部内分离得到的抗性菌苏云金芽孢杆菌(Bacillus thuringiensis,GDB-1)接种于赤杨皮树苗体内,用以处理污染土壤,发现相对对照组赤杨皮树根部重金属浓度分别提高了154%(Ni)、135%(Cd)、120%(Zn)、117%(Pb)、114%(Cu)、113%(As),茎部重金属浓度分别提高了175%(Ni)、160%(Cd)、137%(Zn)、137%(Pb)、161.1%(Cu)、110.1%(As)。

2.4 植物-其他微生物联合修复 除了以上3类联合,可以和植物联合修复底泥/土壤重金属污染的微生物还包括产酸微生物、基因工程菌等。杨卓等[28]利用印度芥菜与能产生有机酸、柠檬酸的巨大芽孢杆菌-胶质芽孢杆菌、黑曲霉混合制剂来修复Cd、Pb、Zn污染的土壤,添加巨大芽孢杆菌-胶质芽孢杆菌混合制剂时,污染土壤中印度芥菜对Cd、Pb、Zn的提取量分别提高了1.18、1.54、0.85倍,污染底泥中印度芥菜对Cd、Pb、Zn的提取量分别提高了4.00、0.64、0.65倍;添加黑曲霉时,污染土壤中印度芥菜对Cd、Pb、Zn的提取量比对照提高了88.82%、129.04%、16.80%,污染底泥中印度芥菜对Cd、Pb、Zn的提取量比对照提高了78.95%、113.63%、33.85%。在基因工程菌的研发方面,Lodewyckx等[29]将植物内生菌的抗性基因ncc-nre耐镍系统接种到Burkholderia cepacia L.S.2.4,再将B.cepacia L.S.2.4接种到羽扇豆(Lupinus luteus),发现根部的镍浓度比对照提高了30%。

3 研究展望

植物-微生物联合修复技术中能用于单一重金属或有机物污染底泥/土壤的植物修复相对较多,多种重金属和重金属与有机物的复合污染的植物修复则相对较少。目前已发现的重金属超积累植物大都为单一重金属的超积累植物。超积累植物存在着个体矮小、生长缓慢、根系扩张深度有限、对重金属有选择性、从根部到茎叶的重金属转移率较低等缺陷。而微生物对影响生长代谢的生物因子均有一定的耐受范围,超出范围微生物易死亡或休眠,因此在联合修复中还应根据微生物的需要,对环境因子做出相应的调整,使微生物的代谢活动处于最佳状态。

在实际利用植物-微生物联合修复重金属污染土壤时,“植物-微生物”联合体的选择至关重要。从目前来看,彻底解决底泥/土壤中的重金属污染问题还需要很长一段时间。为了加速改善这种状况,推进植物-微生物修复在重金属污染底泥/土壤实际修复中的应用,近期应该注重以下几个方面的深入研究:(1)对植物-微生物不同联合形式修复底泥/土壤中重金属吸收、转运、忍耐机制进行深入研究;(2)寻找能缩短修复周期、增强植物生长量、解决植物植株矮小等问题的手段;(3)针对超累积植物处理重金属种类单一的缺点,应加强对能同时修复多种重金属的陆生、水生、湿生植物品种的筛选培育;(4)利用基因工程、分子技术研制适用于植物微生物联合体系的微生物的筛选研发,同时加强对底泥/土壤中土著微生物方面的研究;(5)尽快探索出能解决接种微生物与土著微生物竞争及适应性问题的方案。

参考文献

[1]Brümmer G W.Heavy metal species,mobility and availability in soils[M].Springer,1986.

[2]Nieboer E,Richardson D H S.The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions[J].Environmental Pollution Series B,Chemical and Physical,1980,1(1):3-26.

[3]Adriano D C.Trace elements in terrestrial environments:biogeochemistry,bioavailability,and risks of metals[M].Springer,2001.

[4]Bolan N,Kunhikrishnan A,Thangarajan R,et al.Remediation of heavy metal(loid)s contaminated soils - To mobilize or to immobilize?[J].J.Hazard.Mater.,2014,266C:141-166.

[5]Yao Z,Li J,Xie H,et al.Review on Remediation Technologies of Soil Contaminated by Heavy Metals[J].Procedia Environ.Sci.,2012,16:722-729.

[6]Guo H,Luo S,Chen L,et al.Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp.L14.[J].Bioresour.Technol.,2010,101(22):8599-8605.

[7]Lovley D R.Bioremediation of organic and metal contaminants with dissimilatory metal reduction.[J].Journal of industrial microbiology,1995,14:85-93.

[8]Rajkumar M,Sandhya S,Prasad M N V,et al.Perspectives of plant-associated microbes in heavy metal phytoremediation.[J].Biotechnol.Adv.,2012,30(6):1562-1574.

[9]Niu Z,Sun L,Sun T.Plant-microorganism combined remediation of heavy metals-contaminated soils:Its research progress[J].Chinese Journal of Ecology,2009,11:34.

[10]Zhao F,Mcgrath S P.Biofortification and phytoremediation.[J].Current opinion in plant biology,2009,12:373-380.

[11]Epelde L,Becerril J M,Barrutia O,et al.Interactions between plant and rhizosphere microbial communities in a metalliferous soil.[J].Environmental pollution,2010,158:1576-1583.

[12]Kuffner M,Puschenreiter M,Wieshammer G,et al.Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows[J].Plant and Soil,2008,304:35-44.

[13]Yao Z,Li J,Xie H,et al.Review on Remediation Technologies of Soil Contaminated by Heavy Metals[J].Procedia Environmental Sciences,2012,16:722-729.

[14]Colin V O N L,Villegas L B,Abate C M.Indigenous microorganisms as potential bioremediators for environments contaminated with heavy metals[J].Int.Biodeterior.Biodegradation,2012,69:28-37.

[15]孙嘉龙,肖唐付,周连碧,等.微生物与重金属的相互作用机理研究进展[J].地球与环境,2007,35(4):367-374. (下转183页)

(上接84页)

[16]Rajkumar M,Freitas H.Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard.[J].Bioresource technology,2008,99:3491-3498.

[17]陈文清,侯伶龙,刘琛,等.根际微生物促进下鱼腥草对镉的富集作用[J].四川大学学报(工程科学版),2009,41(2):120-124.

[18]高亚洁,吴卿,李东梅,等.紫花苜蓿对重金属污染河道底泥的修复能力研究[J].农业科学与技术,2011,12(12):1885-1888.

[19]弓明钦,陈应龙,仲崇禄.菌根研究及应用[M].北京:中国林业出版社,1997:51-55.

[20]Malik A.Metal bioremediation through growing cells[J].Environ.Int.,2004,30(2):261-278.

[21]王红新.丛枝菌根真菌在植物修复重金属污染土壤中的作用[J].中国土壤与肥料,2010(5):1-5.

[22]李芳,张俊伶,冯固,等.两种外生菌根真菌对重金属Zn、Cd和Pb耐性的研究[J].环境科学学报,2003,23(6):807-812.

[23]K S J,W B C,F W J.An overview of endophytic microbes:endophytism defined[J].Microbial endophytes,2000,3:29-33.

[24]Rajkumar M,Ae N,Freitas H.Endophytic bacteria and their potential to enhance heavy metal phytoextraction[J].Chemosphere,2009,77(2):153-160.

[25]万勇.内生细菌在重金属植物修复中的作用机理及应用研究[D].长沙:湖南大学,2013.

[26]Sheng X,Xia J,Jiang C,et al.Characterization of heavy metal-resistant endophytic bacteria from rape(Brassica napus)roots and their potential in promoting the growth and lead accumulation of rape[J].Environmental Pollution,2008,156(3):1164-1170.

[27]Babu A G,Kim J,Oh B.Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1.[J].Journal of hazardous materials,2013,250-251:477-483.

第2篇:重金属污染土壤处理范文

现有主要重金属含量检测支撑技术

目前重金属的定量分析和检测方法主要有光谱法、电化学方法以及新型检测技术等。光谱法是比较传统的方法,主要有原子吸收法(AAS)、原子荧光法(AFS)、电感耦合等离子体法(ICP)、X荧光光谱(XRF)、电感耦合等离子质谱法(ICP-MS)、紫外可见分光光度法(UV)等。日本和欧盟国家部分采用电感耦合等离子质谱法(ICP-MS)进行标准检测,但对国内用户而言,仪器成本过高,很难推广。也有部分采用X荧光光谱(XRF)分析,优点是无损检测,可直接分析成品,但检测精度和重复性不好。电化学检测方法是目前比较流行的检测方法,包括极谱法、电位分析法、伏安法等,检测速度较快,精度较高,但在其他离子的抗干扰测量方面有待提高。另外,一些比较新的检测技术,如酶抑制法、免疫分析法、生物传感器法和太赫兹光谱法等,相关学者也展开了探索研究。在《中国土壤环境质量标准》(GB15618-1995)[16]中,国家规定了用于土壤重金属含量检测的标准方法,如表1内容所示,该方法主要是采用强酸消解后,运用光谱法进行重金属含量的定性定量检测。光谱法是比较传统的检测方法,它能以较高灵敏度对样品中的重金属离子含量进行有效分析,但大多需要大型仪器设备,分析方法成本高。样品前处理过程中需要经过消解,操作复杂,分析时间长,很难用于土壤重金属的现场快速检测。光谱法较为成熟,这里只对其原理及优、缺点做简单介绍。原子吸收光谱法(AtomicAbsorptionSpectrometry,AAS)是基于气态的基态原子外层电子对紫外光、可见光范围的对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法[17-18]。具有检出限低(可达μg/cm–3级)、准确度高(相对误差小于1%),选择性好、分析速度快、应用范围广等优点。缺点主要表现在,不能多元素同时分析,测定元素不同时必须更换光源灯。而且标准工作曲线的线性范围较窄,在低含量样品测定任务中,测量精度下降。如何进一步提高检测灵敏度和降低干扰,是今后原子吸收光谱分析工作者研究的重要课题。3.1.2原子发射光谱法原子发射光谱法(AtomicEmissionSpectrometry,AES)是依据各种元素的原子或离子在热激发或电激发下,发射特征的电磁辐射,而进行元素的定性与定量分析的方法[19-20]。由于各种元素的原子结构不同,在光源的激发作用下,样品中每种元素都发射自己的特征光谱,根据特征光谱的谱线强度进行定量分析。优点是分析速度快、选择性好,可同时检测一个样品中的多种元素。缺点是成套仪器设备昂贵,被测元素含量较大时,准确度较差。在经典分析中,影响谱线强度的因素较多,尤其是试样组分的影响较为显著,所以对标准参比的组分要求较高。3.1.3电感藕合等离子体-原子发射法电感藕合等离子体光源(InductivelyCoupledPlasma,ICP)可以产生稳定的光源,是目前应用最为广泛的AES光源之一[21-23]。相较于其他方法,ICP-AES分析速度快,干扰低,可同时读出多种元素的特征光谱并进行定性、定量分析。该方法的缺点是设备较为昂贵,操作费用也高。原子荧光光谱法(AtomicFluorescenceSpectrometry,AFS)[24-26]是介于原子发射光谱(AES)和原子吸收光谱(AAS)之间的光谱分析技术。原子蒸汽吸收一定波长的光辐射后被激发,随之发射出一定波长的光辐射,即为原子荧光,在一定的试验条件下,荧光辐射强度与分析物的原子浓度成正比,根据荧光波长分布可进行定性分析。此方法具有较高的灵敏度,校正曲线线性范围宽,能进行多元素的同时测定。但许多物质,包括金属在内,本身不会产生荧光,需要加入某种试剂才能达到荧光分析的目的,所以其应用范围不够广泛。质谱法(MassSpectrometry,MS)是用电场和磁场将运动的离子按质荷比分离后进行检测的方法。测出离子准确质量即可确定离子的化合物组成[27-28]。二十世纪八十年代痕量元素及同位素分析的一项重要进展就是等离子体质谱法(ICP-MS)的应用。ICP-MS检测限低,分析精度高,速度快,干扰少,可同时测定多种元素并获得精确的同位素信息。但仪器造价高,预处理过程繁琐,仪器自动化实现比较困难。紫外可见分光光度法(Ultravioletandvisiblespectrophotometer,UV)检测原理是:显色剂通常为有机化合物,通过特殊化学键,与重金属发生络合反应,生成有色分子团,溶液颜色深浅与浓度成正比[29-30]。在特定波长下,通过比色检测。大多数有机显色剂本身为有色化合物,与金属离子反应生成的化合物一般是稳定的螯合物。分光光度分析有两种,一种是利用物质本身对紫外及可见光的吸收进行测定;另一种是生成有色化合物,即“显色”,然后测定。虽然不少无机离子在紫外和可见光区有吸收,但因一般强度较弱,所以直接用于定量分析的较少。加入显色剂使待测物质转化为在紫外和可见光区有吸收的化合物来进行光度测定,这是目前应用最广泛的测试手段。该方法具有较好的重金属检测应用前景。X射线荧光光谱法(X-rayfluorescencespectrometry,XRF)是利用样品对X射线的吸收随样品中的成分及其多少变化而变化来定性、定量测定组成成分的方法[31]。具有分析速度快、样品前处理简单、可分析元素种类广、光谱干扰少,样品测定时的非破坏性等特点。它可用于常量元素和微量元素的测定,其检出限可达10-6数量级。多通道分析设备可在几分钟之内同时测出20多种元素的含量。但X射线的使用会给操作者和样品带来电离辐射危险。激光诱导击穿光谱技术(LaserInducedBreakdownSpectroscopy,LIBS)是利用高功率脉冲激光聚焦到待测样表面激发等离子体,通过直接观察等离子体中的原子或离子光谱来实现对样品中元素的分析[32-33]。与目前常见的X-ray,AAS、ICP-AES等检测手段相比,其优势在于无须对样品预先处理,可对多种成分并行快速分析,实现对微量污染物无接触在线探测,是一种具有良好发展前景的元素分析技术。电化学分析法是基于物质在溶液中和电极上的电化学性质建立起来的分析方法。电化学分析的测量信号是电量、电位、电流、电导等电信号,不需信号转化就能直接记录。其仪器装置比光分析、核化分析仪器装置小而且简单,便于连续分析,易于实现自动化。电化学方法应用于水环境重金属污染分析目前已有相关报道[34],但将其应用在土壤重金属快速检测中还面临着很多关键问题需要解决。从1976年电化学溶出分析法开始用于环境、临床样品的痕量检测,具有较好的灵敏度[35];Baumbach[36]于1981年将丝网印刷技术应用于电化学传感器的制作过程;JosephWang[37]于1992年采用汞膜修饰丝网印刷电极,在水环境中对重金属离子进行检测;由于汞本身就是一种危害很大的重金属成分,R.O.Kadara[38]在2005年提出采用氧化铋修饰丝网印刷电极进行重金属离子的检测;浙江大学平剑锋等[39]利用铋膜制作丝网印刷电极进行了水中的铅和镉检测研究,取得了较好的检测结果。电化学分析法在进行土壤重金属离子检测方面具有一定的应用研究潜力,但是土壤体系复杂,检测时采用普通浆料的电极极易受到诸如表面活性剂、有机物、大分子颗粒等污染物的影响,灵敏度高、抗干扰能力强的电化学传感器有待于进一步研发。

近年来,一些结合生物学的检测方法也被应用于重金属的检测研究中,这些新的检测方法还在深入研究中。其工作原理是金属离子与固定在电极材料上的特异性蛋白结合后,使蛋白构象发生变化,通过灵敏的电容信号传感器定量检测这种变化。近年来,人们不断开发多种生物传感器用于测定水溶液中的毒性化合物(包括重金属络合物),如特异性蛋白生物传感器[40]等。生物传感器寿命主要取决于生物活性,受环境、时间限制较大,一般寿命很短,制约了其应用和发展。酶抑制法是重金属离子与形成酶活性中心的甲琉基或琉基结合后,改变其结构、性质,引起酶的活力下降,从而使显色剂的颜色、电导率和吸光度等发生变化,然后借助光电信号放大、显示,建立重金属浓度与酶系统变化对应数学关系。该方法可用于环境、食品、水和蔬菜中重金属的定性检测。柳畅先等[41-42]通过镉离子对醇脱氢酶的抑制作用检测Cd2+,检出限为2.00μg/L,可应用于蔬菜中Cd2+的分析,进行了这方面的初步探索。酶抑制法具有方便、快速、经济等优点,可用于现场快速检测,但是它的灵敏度和准确性低于传统检测技术。免疫分析法是一种具有高度特异性和灵敏度的分析方法,用免疫分析法对重金属离子进行分析,首先必须进行两方面的工作:第一是选用合适的络合物与金属离子结合,使其获得一定空间结构,从而产生反应原性;第二是将结合了金属离子的化合物连接到载体蛋白上,产生免疫原性,其中与金属离子结合的化合物的选择是能否制备出特异性抗体的关键。Johnson[43]和Darwish[44]应用该方法实现了对Cd2+离子的有效检测。筛选特异性好的新型螯合剂、单克隆抗体将是今后的发展方向。免疫分析法检测速度快、灵敏度高、选择性强,在重金属快速检测方面有一定的研究前景。太赫兹光谱是近年来发展起来的一种国际前沿科技,它可用来探测分子间或分子内部介于氢键和微弱的内部相互作用(范德华力等)之间的激励带来的振动引起的能量吸收特性,对重金属络合物的分子振动特性有一定的探测作用。本文作者于2010年在美国俄克拉荷马州立大学公派留学期间,开展了太赫兹光谱技术用于土壤重金属污染检测问题的初步研究,通过设计大量的实验,获取数据进行建模分析,初步探索到土壤样品主要重金属含量与对应的太赫兹吸收谱之间存在一定的对应关系,得出利用太赫兹光谱技术进行土壤主要重金属含量检测具有可行性的结论,目前正在进一步研究中[45-46]。

农产品产地土壤重金属污染检测主要问题分析及结论