公务员期刊网 精选范文 环境重金属污染现状范文

环境重金属污染现状精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的环境重金属污染现状主题范文,仅供参考,欢迎阅读并收藏。

环境重金属污染现状

第1篇:环境重金属污染现状范文

关键词:铜陵市 重金属污染 研究进展

中图分类号:X5 文献标识码:A 文章编号:1672-3791(2013)07(c)-0137-03

随着我国工业化的不断加速,开发利用的重金属种类、数量和方式越来越多,涉及重金属的行业越来越多,再加上一些污染企业的违法开采、超标排污等问题突出,使重金属污染呈蔓延趋势,污染事件出现高发态势,表现出长期积累和近期集中爆发、历史遗留问题和新出现问题相交织的特点[1]。2011年2月,国务院批复了《重金属污染综合防治“十二五”规划》。体现了我国对重金属污染防治的高度重视。

铜陵市是一个有着三千多年开采历史的极具特色的有色多金属矿区,是我国重要的有色金属工业基地,有着悠久的采冶铜历史[2]。目前已形成以采、选、炼、加工为一体的“铜”产业链,对推动铜陵地区社会经济发展发挥了巨大作用.但也带来了一系列的重金属环境污染和生态破坏问题,对公众身体健康构成了潜在或现实的危害。铜陵县、铜官山区是国家60个重金属砷控制区之一,46家企业被列为环保部重点监控企业,重金属污染防治任务十分艰巨[3]。

1 铜陵重金属污染研究分布

目前有关铜陵重金属污染的研究,主要集中在矿区土壤、尾矿库、水及水体沉积物污染、大气沉降物及城区表土与灰尘和潜在生态风险的评估。

1.1 矿区土壤

土壤中的重金属,在自然情况下,主要来源于成土母岩和残落的生物物质。但是近代以来,工农业的快速发展,人类活动加剧了土壤重金属的污染,污染程度越来越重,范围越来越广。胡圆圆等[4]对铜陵铜官山铜矿区土壤重金属含量进行了研究。研究结果表明,铜官山铜矿区土壤Cu、Zn、As、Hg平均含量高于铜陵市土壤背景值,土壤已受Cu、Zn、As重污染,受Hg轻污染。

杨西飞[5]运用Matlab软件模糊推理系统(FIS)对铜陵矿区农田表层土壤重金属污染进行了评价,发现该矿区农田表层土壤普遍受到了重金属不同程度的污染,其中Cd污染最严重,其次是Cu,其它各元素依次为Pb>As>Zn>Hg。土壤中Hg、Cd、Cu和Pb元素在表层明显富集,各元素总量在不同深度均明显高于土壤自然背景值,Hg、Cd、Cu、Pb和Zn在垂向上呈递减趋势,且在横向上主要以洋河、顺安河和新桥河为中心向四周递减。不同形态重金属在总量中的百分含量随深度变化明显不同。

王嘉[6]对铜陵的两个矿区(狮子山区朝山金矿主井和铜陵县顺安镇新桥矿业公司主井)土壤重金属污染问题进行了较详细的研究,运用内梅罗指数法和地质累积指数法对研究区进行了现状评价,研究表明,As和Cd为严重超标污染物;As的致癌风险和非致癌风险都大,Cr的致癌风险最大;Cd、Hg、As对生态危害的潜在风险很大;所研究的两矿区均存在很高的致癌风险和生态风险,朝山金矿区相对更高些。

白晓宇等[7]运用地统计学分析手段对铜陵矿区土壤中若干重金属元素进行空间变异分析及空间插值和污染分析,结果表明,As、Cd、Pb、Zn元素的变异函数表现为各向异性,其方向性可能主要受矿床分布控制;Hg元素因受小尺度因子影响较大而呈现块金效应较大。As元素污染的主要是由于铜矿、铅锌矿、褐铁矿矿床及其开发;Cd元素的污染与铅锌矿床及其开发,以及农业污灌有关;Pb、Zn元素的污染与铅锌矿床及其开发密切相关。

1.2 尾矿库

铜陵市是安徽省境内重要的铜生产基地。在铜矿生产的同时,产出了大量尾矿堆存于附近的尾砂库中。尾矿库多建于山间谷地、河流上游地区,其下游是经济、农业发达地区。近几年来,随着经济发展和城市的扩容,部分郊区的尾矿库已经进入市区,尾矿库的环境效应及其安全性令人关注。徐晓春等[8]对安徽铜陵林冲尾矿库复垦土壤采样检测的结果表明复垦土壤中Cu的污染极其严重,As、Zn、Pb的污染较轻。徐晓春[9]还对铜陵凤凰山矿林冲尾矿库中重金属元素的空间分布特征及相关土壤、水系沉积物和植物中重金属元素含量变化进行了研究,发现长期堆存的尾矿会发生元素的次生淋滤与富集。

惠勇[10]等对铜陵市凤凰山尾矿库三个不同凤丹种植地进行了研究,结果表明,尾矿土壤中的Cu、Zn、Cd含量均较高,其中Cu、Cd的含量分别是国家土壤环境质量二级标准的1.04~1.30倍和6.58~9.34倍。矿区近年来种植的作物对重金属的吸收富集作用不明显。

王少华[11]等采集了铜陵市杨山冲尾矿库、尾矿库周边及较远距离土壤、水、植物样品,测定了其中的重金属含量,发现所采集的土壤、水和植物中都存在不同程度的As,Hg,Cu,Zn和Pb等元素的富集现象,且不同元素之间的富集程度也有所差异;重金属元素含量随着远离尾矿库,有逐渐递减的趋势。周元祥[12]等对杨山冲尾矿库尾砂重金属元素的迁移规律进行了研究,发现在自然风化条件下,Cu、As、Hg、Cd和Pb的淋滤迁移速度相对较快,Zn略慢;Zn、Pb、Hg和Cd在50~60 cm深处会发生二次富集;风化后尾砂中Cu、Pb、As和Hg以残渣态为主要赋存形式,其次为铁锰氧化态,其中Zn和Cd以铁锰氧化态含量在表层最高。

1.3 水及水体沉积物

水体及沉积物因其独特的环境特点,往往会成为重金属元素的“源”和“汇”,学者们也因此对其进行了众多研究。张敏[13]等通过测定长江铜陵段枯、丰水期江水中Cu、Pb、Zn和Cd不同形态的含量,分析了四种金属在江水中的存在形态分布,不同水期含量变化,水中悬浮物对金属吸附能力大小,以及近20年来含量的变化情况。发现长江铜陵段江水中各重金属总量丰水期时大于枯水期,重金属各形态含量之间均有差异。与近20年江水中的重金属背景值比较,长江铜陵段重金属含量有普遍升高的趋势。

徐晓春[14]等对相思河的重金属污染情况进行了调查和研究,采用潜在危害指数法对沉积物中重金属进行了评价。研究表明,相思河中下游受到的重金属污染明显比上游严重,Cu和Cd的富集系数和生态危害高。

李如忠[15]等对惠溪河滨岸带土壤重金属形态分布及风险评估进行了研究,研究表明,惠溪河滨岸带土壤中Cd和As达到极高风险等级,Cu为中等风险等级;根据综合污染及潜在生态风险贡献率水平,初步判定As和Cd为惠溪河滨岸土壤重金属污染治理和修复的优先控制对象。

王岚[16]等对长江水系表层沉积物重金属污染特征及生态风险性评价的研究中表明,安徽顺安河位点为极强生态危害范畴。

叶宏萌[17]对铜陵矿区的新桥至顺安河沉积物中五种重金属的全量和形态进行了研究,并结合环境条件分析了它们的横向和纵向迁移变化特征,研究表明该区域沉积物重金属中Cu、Zn、Pb、Cd的均值皆远超长江下游沉积物背景值,其中以Cu和Cd最显著。对重金属横向迁移分析发现,矿山重金属会随着沉积物的距离增加而显著降低,新桥河沉积物的迁移变化显著高于顺安河沉积物。在迁移过程中,Cu、Zn、Cr残渣态逐步增加,毒性减弱,Pb、Cd的活性态比例增大。重金属的纵向迁移分析结果表明,离矿山的位置远近对沉积柱金属的总量和形态起决定作用,矿区下游河流沉积物既受尾矿的影响,也受河流流域物质本身的影响。

1.4 大气沉降物及城区表土与灰尘

随着城市化进程的加快,而带来的交通污染以及其他方面的污染使得大气环境质量越来越差,大气环境污染问题越来越引起人们的注意。李如忠[18]利用美国国家环保局(US EPA)推荐的健康风险评价模型对铜陵市区表土与灰尘重金属污染健康风险进行了研究。研究表明,铜陵城区土壤和地表灰尘已遭受较为严重的重金属污染;不同功能用地的致癌风险均显著超过US EPA推荐的可接受风险阈值范围和国际辐射防护委员会(ICRP)推荐的最大可接受风险值;铜陵市表土与地表灰尘已对公众身体健康构成危害;其中主导致癌与非致癌风险效应的主要污染因子是As,主要暴露途径是手-口摄入途径。

吴开明[19]用藓袋法对铜陵市大气重金属污染进行了研究,发现铜陵市Cu污染最严重,有色金属冶炼工业是铜陵市最主要的污染源,交通运输对大气重金属污染也日趋严重。

殷汉琴[20]对铜陵市大气降尘中铜元素的污染特征进行了研究,采用富集因子法定性地判断各采样点铜元素的来源,研究表明,铜陵市大气降尘中铜元素污染严重并且形成了以铜开采和冶炼企业为中心的污染区域。研究发现铜矿石的开采和冶炼对大气降尘中的铜元素污染贡献较大, 是主要的污染源。

2 重金属污染修复技术与控制措施研究

重金属在土壤、水体、大气、生物体中广泛分布。由于大气和生物体中重金属的特殊性及其主要直接或间接来源于土壤和水体,所以对于重金属的污染修复技术主要集中在对土壤和水体中的重金属污染进行修复。

重金属在土壤中不易随水淋溶,不能被微生物分解,具有明显的生物富集作用且土壤污染具有较长潜伏期;由于土壤、污染物及地域的复杂性,土壤一旦受到污染,其治理不仅见效慢、费用高,而且受到多种因素的制约。目前,治理土壤重金属污染的途径主要有两种:(1)改变重金属在土壤中的存在形态、使其固定,降低其在环境中的迁移性和生物可利用性;(2)从土壤中去除重金属[21]。围绕这两种途径展开的土壤重金属治理措施有物理及物化措施、化学措施、农业生态措施、生物修复等[21~23]。

王华等[24]对我国底泥重金属污染防治研究做了相应综述,提出目前我国底泥重金属污染治理的常用方法有工程治理方法、生物治理方法和化学治理方法。

重金属污染物进入水生生态系统后对水生植物和动物均产生影响,并通过食物链发生富集,引起人体病变,危害人类。目前水体重金属污染治理修复方法主要有物理方法、化学方法、物理化学方法、集成技术、生物方法等[25]。

为控制铜陵市重金属污染、提高环境质量,铜陵市环保局组织编制了《铜陵市重金属污染综合防治“十二五”规划》,该规划以国家《重金属污染综合防治“十二五”规划》为指导,落实源头预防、过程阻断、清洁生产、末端治理的全过程综合防治理念,提出了一系列重金属污染防治措施,以求能遏制重金属污染趋势,改善区域环境质量,保护人民身体健康和环境权益。

3 结语

对铜陵市重金属污染研究情况进行了介绍,对重金属污染防治措施与修复技术经行了总结。根据目前研究结果表明,铜陵市重金属污染已比较严重。Cd、As、Cu和Pb为主要的污染元素,Hg虽然含量较低,但因为其毒性较大,亦当引起足够的重视。矿石的开采和冶炼以及尾矿的堆积成为铜陵市重金属污染的主要来源,所以首先应控制源头,治理矿石的开采和冶炼,清理尾矿的堆积。由于植被等生物体对重金属具有良好的吸附阻拦作用,可在采矿厂四周设置重金属吸收强防护带,阻止污染向更远扩散。对于已经受到污染的土壤,可以采用生物方法、物理或化学方法去除。

健全重金属污染防治法律体系、做好污染综合防治规划和强化行政管理是防治重金属污染的重要管理手段。《铜陵市重金属污染综合防治“十二五”规划》的提出对铜陵市重金属污染防治具有重要的指导和实践意义。健全重金属污染防治法律体系,实施清洁生产,监督实施环境影响评价验收工作,开发研究重金属污染防治技术等是目前重金属污染防治的重要任务。

参考文献

[1]罗吉.我国重金属污染防治立法现状及改进对策[J].环境保护,2012(18):24-26.

[2]张鑫.安徽铜陵矿区重金属元素释放迁移地球化学特征及其环境效应研究[D].合肥工业大学博士学位论文,2005.

[3]铜陵市重金属污染综合防治“十二五”规划[R].

[4]胡园园,陈发扬,杨霞,等.铜陵铜官山矿区土壤重金属污染状况研究[J].资源开发与市场,2009,25(4):342-344.

[5]杨西飞.铜陵矿区农田土壤及水稻的重金属污染现状研究[D].合肥:合肥工业大学,2007.

[6]王嘉.铜陵矿区土壤重金属污染现状评价与风险评估[D].合肥工业大学,2010.

[7]白晓宇,袁峰,李湘凌,等.铜陵矿区土壤重金属元素的空间变异及污染分析[J].地学前缘,2008,15(5):256-263.

[8]陈莉薇,徐晓春,黄界颖,等.铜陵林冲尾矿库复垦土壤重金属含量及污染评价[J].合肥工业大学学报:自然科学版,2011,34(10):1540-1544.

[9]徐晓春,王军,李援,等.安徽铜陵林冲尾矿库重金属元素分布与迁移及其环境影响[J].岩石矿物学杂志,2003,22(4):433-436.

[10]惠勇,张凤美,王友保,等.铜陵市凤凰山尾矿区重金属污染研究[J].安徽农业科学,2011,39(23):1426-1426.

[11]王少华,杨劫,刘苏明.铜陵狮子山杨山冲尾矿库重金属元素释放的环境效应[J].高校地质学报,2011,17(1):93-100.

[12]周元祥,岳书仓,周涛发.安徽铜陵杨山冲尾矿库尾砂重金属元素的迁移规律[J].环境科学研究,2010(4):497-503.

[13]张敏,王德淑.长江铜陵段表层水中重金属含量及存在形态分布研究[J].安全与环境学报,2003,3(6):61-64.

[14]徐晓春,牛杏杏,王美琴,等.铜陵相思河重金属污染的潜在生态危害评价[J].合肥工业大学学报:自然科学版,2011(1):128-131.

[15]李如忠,徐晶晶,姜艳敏,等.铜陵市惠溪河滨岸带土壤重金属形态分布及风险评估[J].环境科学研究,2013,26(1):88-96.

[16]王岚,王亚平,许春雪,等.长江水系表层沉积物重金属污染特征及生态风险性评价[J].环境科学,2012,33(8):2599-2606.

[17]叶宏萌,袁旭音,赵静.铜陵矿区河流沉积物重金属的迁移及环境效应[J].中国环境科学,2012,32(10):1853-1859.

[18]李如忠,潘成荣,陈婧,等.铜陵市区表土与灰尘重金属污染健康风险评估[J].中国环境科学,2012,32(12):2261-2270.

[19]吴明开,曹同,张小平.藓袋法监测铜陵市大气重金属污染的研究[J].激光生物学报,2008,17(4):554-558.

[20]殷汉琴,周涛发,张鑫,等.铜陵市大气降尘中铜元素的污染特征[J].吉林大学学报:地球科学版,2009,39(4):734-738.

[21]夏星辉,陈静生.土壤重金属污染治理方法研究进展[J].环境科学,1997(3):72-76.

[22]佟洪金,涂仕华,赵秀兰.土壤重金属污染的治理措施[J].西南农业学报,2003 (S1):37-41.

[23]顾红,李建东,赵煊赫.土壤重金属污染防治技术研究进展[J].中国农学通报, 2005,21(8):397-408.

第2篇:环境重金属污染现状范文

关键词:农田土壤;重金属污染;修复技术;环境保护

中图分类号:S153 文献标识码:A DOI:10.11974/nyyjs.20170432024

1 我国农田重金属污染现状

1.1 重金属普遍超标

农田重金属污染主要是指Pb、Cu、Hg、Zn、Cr、Cd等重金属元素在农田土壤中的含量超过土壤背景值,根据农田部、环保部等部门近年来报告数据显示,全国有300多个重点污染区重金属超标,占农田污染的80%,抽取数据显示,我国农田平均重金属超标率在2010年前就已经高达12%,在一些大城市,例如北京、上海、深圳等地,各类重金属元素在农田土壤中的含量尤其高,城市发展对于农田重金属污染影响极为严重,目前我国农田重金属污染形势严峻,污染情况已经得到重视,各类措施也在紧急筹备和实施之中。我国农田重金属污染现状具有范围大,种类多,相对集中,分布不均,普遍严重的特点。虽然污染依然严重,但随着环保力度的增强和范围的扩大,污染情况正在逐步改善。

1.2 污染主要来源

农田重金属污染修复,关键在防、治二字,要做到对重金属污染的防治,需要了解农田中重金属的来源,污染来源主要有4类,分别是:污水、大气、农业废弃物以及固体垃圾。空气污染是我国环境保护的一大难题给农田也带来了极大的影响,空气中夹杂着来自工业、交通、矿山等的污染物中,不乏各类重金属物质,在大气沉降过程中,重金属便进入了农田土壤之中。大量数据实例表明,在工业区、道路旁,土壤中含重金属量较其他地区明显高出数倍,环保部研究青藏铁路沿线两侧、北京等城市道路旁农田土质以及种植物,发现不仅土壤重金属含量高,植物中也含有较高的重金属元素。含重金属的污水一旦进入农田并沉淀,就容易造成农田重金属含量的增加,农业材料,如农药、农肥等,在大面积、长期使用之下,重金属会慢慢渗入土壤之中,而一些固体堆积物更是含有大量重金属,在堆积中容易渗入地下。

2 农田重金属污染修复技术

2.1 物理、化学修复技术

物理修复技术主要有换土、深耕翻土、填土以及加热法,前3种方法原理一致,皆是使浅层土壤以旧换新,这些方法工程量大,效果稳定,修复彻底,但是不仅换土需要大量工程,集中处理土壤的耗损也非常大,因此并不适合大规模应用。加热法是利用加热使挥发性重金属从土壤中挥发析出,虽然有一定作用,但是容易导致一些元素酸化或者相互反应,产生更为严重的后果,且析出气体的收集也很棘手。化学修复方法也是如此,无论是电动修复还是淋洗修复,都容易导致严重的污染,电动修复是通过土壤两侧通电以电场作用将重金属带到电极,在两极集中收集并进行处理,淋洗是将水或者其他制剂放入土壤之中进行冲洗,制剂的选择和二次污染的防治成为淋洗的重点,物理、化学方法虽然效果好,但是成本高且对环境极可能造成二次污染,因此实践中应用甚少,相关部门正在加紧研究改善重金属污染治理之中。

2.2 生物修复技术

生物修复技术成本较低,有利于规模化操作,并且生物法的优势在于其环境有益性,不仅能够有效处理农田土壤重金属污染,更重要的是,生物修复有助于修复自然界的正常循环,有利于全面改善环境,目前的环境保护实践对于生物方法也极为推崇。生物修复法主要是利用植物和微生物、动物进行土壤修复,利用植物根系固定重金属,减少扩散,植物还能够从土壤中吸收重金属,储存在植物体内,我国已经发现大量对重金属具有吸收能力的植物,在实践中也有一定研究和应用,植物修复是较为推崇的方法,绿色植物的大量种植能够固定土壤、防风固沙、净化空气,大量种植能够吸收重金属的植物,则一举数得,值得注意的是,植物吸收重金属存于体内,势必导致重金属含量过高,这些植物一定不能作为食品销售。微生物、动物与植物修复法类似,生物修复技术容易破坏生态平衡,尤其是微生物、动物修复,因此也需要进一步研究,目前而言,选取植物进行大规模种植修复土壤似乎是于环境保护最有益处的方法。

3 结语

环境于人类而言重如生命,l展中的破坏已经造成,如何修复才是关键,农田土壤重金属污染,重在防治,切断污染源的同时改良污染土壤方为可行之路。

参考文献

第3篇:环境重金属污染现状范文

关键词:矿区;重金属污染;修复;土壤

中图分类号:F124.5 文献标志码:A 文章编号:1673-291X(2013)18-0286-02

引言

中国是世界上重要的重金属矿区之一,分布着大量的优质重金属矿,丰富的重金属资源为中国国民经济的健康稳定发展提供了资源保障。然而,长期以来在重金属矿区开采的过程中,由于开采技术、资金缺乏及管理方面等原因,对矿区周围的土壤与环境造成了严重影响,从而引发了大量的生态环境问题。

矿业废弃地一般都含有大量的重金属,这些废弃地以尾矿和废弃的低品位矿石的重金属含量最高。重金属通过地表生物地球化学作用释放和迁移到土壤及河流中,而这些受重金属污染的水又通过灌溉方式进入农田,并通过食物链进入人体,从而对矿区附近居民的健康和生存环境构成严重威胁 [1]。通常情况下,有色金属矿区附近的土壤中,铅、铜、锌含量分别为正常土壤中含量的 10~40倍、5~200倍、5~10 倍 [2]。

一、矿区土壤重金属污染现状

铅锌矿区重金属污染现状越来越严重,已经损害了人民的群众健康。如在20世纪60年代,日本曾发生的第二公害病―骨痛病,便是由于食用被镉废水污染了土壤生产的“镉米”所致。王新等对辽宁省铁岭柴河Pb―Zn矿区的土壤一岩石界面的重金属行为特性进行了研究,结果表明该矿区土壤Cd、Pb、Zn元素含量分别是当地背景含量的11倍、4.5倍、3倍,大大超过了当地背景含量水平;Cd作为制约当地农业用地的限制性元素,超过国家土壤环境质量标准5.8倍;矿区附近玉米中Pb、Cd含量分别是国家食品卫生标准16~21倍、5.7~9.7倍[3]。湖南省由于有色金属矿山开采引起的Pb、Cd、Hg、As等重金属污染,受污染面积达2.8万km2,占全省总面积的13%。部分地区土壤中Pb、Cd、Hg、As高出正常值数倍至数百倍,从而出现了地方病。王莹以上虞某废弃铅锌尾矿山为研究对象,研究了土壤中重金属含量及污染状况,结果表明:尾矿山周边各采样点土壤 As、Zn、Pb 和 Cu 平均含量为 328 mg.kg-1、1 760 mg.kg-1、2 708 mg.kg-1和 287 mg.kg-1,均超过土壤环境背景值,各元素含量变异强度为:As>Pb>Cu>Zn[4]。

二、矿区土壤重金属修复技术

重金属是农业环境和农产品的一个重要污染物质。对土壤重金属污染的修复技术常用的有物理修复和化学修复。物理修复主要包括客土、换土和深耕翻土等措施。通过客土、换土和深耕翻土与污土混合,可以降低土壤中重金属的含量,减少重金属对土壤―植物系统产生的毒害。化学修复就是向土壤投入改良剂,通过对重金属的吸附、氧化还原、沉淀作用,以降低重金属的生物有效性。但由于重金属元素在环境中具有相对稳定性和难降解性,至今仍未找到可供大面积应用的重金属污染治理方法。

近年来出现的植物修复,具有投资和维护成本低、操作简便、不造成二次污染、具有潜在或显在经济效益等优点,并且其更适应环境保护的要求,因此越来越受到高度重视。植物修复是一种经济、有效且非破坏性的修复技术,主要利用自然生长或遗传培育植物对土壤中的污染物进行固定和吸收。通常包括:植物提取,即植物对重金属的吸收。目前已发现有400 多种植物能够超积累各种重金属,一些超积累植物能同时积累多种重金属,如羊蕨属植物和具有富重金属性的苋科植物对土壤中重金属的吸收率达到 100%。蒋先军等的研究发现,印度芥菜对Cu、Zn、Pb 等中等污染土壤具有良好的修复效果[5]。有证据表明,柳树和白杨能从土壤中去除一定量的重金属,净化低污染的土壤;植物挥发,即通过植物使土壤中的某些重金属(如Hg2+)转化成气态(HgO)而挥发出来;根际过滤,即利用植物根系过滤积淀水体中的重金属;植物稳定,即利用植物根际的一些特殊物质使土壤中的污染物转化为相对无害的物质。有研究发现,树木可以存活并生长于含有较高浓度的多种重金属污染的土壤上。经监测,桦树和柳树的一些树种可以耐受铅和锌[6]。

结论与展望

矿区土壤的重金属污染是矿区所面临的重大生态环境问题,具有自己独有的特征,在治理的过程中应因地制宜地选择恰当的治理方式。

物理、化学等方法对于矿山土壤的修复存在耗能、耗钱、对土壤结构损害较大等缺点,从保护生态环境出发,这些方法均对矿山生态环境的恢复作用不明显,而植物修复成本较低,可以稳定土壤、控制污染、改善景观、减轻污染对人类的健康威胁,所以在修复矿山土壤重金属污染的过程中,越来越多的国家选择使用植物修复技术。近年来,中国金属矿业迅速发展,所造成的重金属污染日益加剧,植物修复技术的研究更具有广阔的市场,并逐步走向商业化,同时中国有广袤的国土、丰富的资源、复杂多样的地理条件,蕴藏着大量超富集植物,为中国开展有关植物修复技术的研究提供了良好的基础。

参考文献:

[1] 郑奎,李林.中国铅锌矿区的重金属污染现状及治理[J].安徽农业科学,2009,(30).

[2] 薛强,梁冰,刘晓丽.有机污染物在土壤中迁移转化的研究进展[J].土壤与环境,2002,(1):90-93.

[3] 王新,周启星,任丽萍.矿区农产品质量及土壤─岩石界面重金属行为特性的研究[J].农业环境科学学报,2004,(3):459-463.

[4] 王莹,赵全利,胡莹,等.上虞某铅锌矿区周边土壤植物重金属含量及其污染评价[J].环境化学,2011,(7).

第4篇:环境重金属污染现状范文

关键词:土壤重金属; 污染特点; 治理策略

1 引言

在环保领域对重金属污染的定义是能够使生物遭受显著毒性的金属,这些物质包括汞元素、铅元素、锌元素、钴元素、镍元素、钡元素等,有时候也包括锂元素与铝元素等等。一项来自研究机构的调查统计数据表明,近年来全球汞排放量达每年1.5万吨,铅排放量达每年500万吨,这些元素进入农田和城市,为所经地区的土壤带来严重的重金属污染,这些污染一方面能够影响地下水和农作物的品质,另一方面也通过食物链对当地居民产生不容忽视的影响。当前,如何进行土壤重金属污染的分析、评估、预防和治理,是一个世界性的问题,本文首先从土壤重金属的主要来源和土壤重金属污染的危害两个方面分析了重金属污染的现状,在此基础上进一步阐述了土壤重金属污染的空间差异以及污染整体的形态特征,最后深入论述了土壤重金属污染的预防以及修复策略。本文的成果对于环境保护和土地利用均有着比较好的理论价值和实践意义。

2 土壤重金属污染现状分析

2.1重金属来源分析

(1)交通运输

我国正在进行着大规模的城镇化建设,各类交通工具的数量近年来一直呈现出大幅攀升的态势,因此其排放的废气也逐年增加,导致土壤里重金属元素逐步累积,形成污染。以汽车为例,污染源包括尾气排放、汽油燃烧、轮胎磨损等,会逐渐排放出铅、汞、铜、锌等重金属元素,一方面对大气质量造成破坏,另一方面也导致土壤重金属超标。

(2)工业和矿产业

工业生产会排放出重金属元素,以烟尘或者废气废水的形式进入大气与土壤,而大气中的重金属则会逐渐沉降入土。工业生产中的废渣是更加主要的重金属污染来源,比如金属冶炼企业、电解铝企业、电镀企业等,在其日常生产排放的废渣中含有大量的重金属元素,如果在不经处理的情况下随意露天堆放,或者直接倾倒进土壤中,会为土壤带来极大的污染。

(3)燃煤释放

煤的燃烧会向大气中排放大量的污染物质,并逐渐沉降入土壤中。我国的燃煤企业,包括火力发电厂和钢铁企业等,会排放大量的汞金属,其中约三分之一的汞元素最终进入土壤。一些经济发达的大城市,汞元素的排放有其严重,这些污染能够为城市的环境质量和生态系统带来致命的影响。

(4)居民垃圾

居民如果将大量垃圾不加分类地堆放在户外,由于垃圾中存在不少未经处理的废弃物,例如电池等,将会使其中的重金属逐步渗透和扩散至周围的环境中,逐步导致土壤的重金属污染。

3 土壤重金属的污染治理策略

土壤重金属的污染的治理,可以从预防和修复两方面进行着手。

3.1重金属污染预防策略

控制污染,应从源头做起。因此在农村地区,应注重灌溉用水的质量,谨慎使用污水灌溉。在农田使用杀虫剂和肥料时也应合理用量,并且坚决杜绝汞含量超标的农药,也应禁止使用含镉化肥等对环境带来危害的农药和杀虫剂。对于城市地区的工业企业,则应严格控制对三废的排放。而居民区则应对废弃垃圾进行再回收利用或者分类处理。对于日益增多的交通工具,则应改善燃油质量、并积极鼓励以新型环保燃料代替传统燃油,从而减少废弃物的排放。

此外还应以完善的法规控制重金属排放。土壤污染已经被国际相关领域视为化学炸弹,是一个极其严峻而棘手的问题。只有通过立法的方式才能使污染的防范和治理进入可持续发展的轨道。而我国的环保法治进程目前尚需加速。举例来讲,当前有不少养殖户所购买的饲料里往往含有铜、铅等重金属,而禽类和畜类一旦食用并排出体外,便会对土壤形成污染,而我国当前并未将重金属列在畜禽养殖业污染物排放标准里,形成管理的漏洞。因此,亟需制定切合我国实际的法律法规进行重金属污染的防范。

3.2重金属污染治理策略

随着国际上对于土壤重金属污染的重视以及研究成果的和应用,在重金属污染治理方面有许多值得借鉴的策略,下面分别进行简述:

3.2.1 基于物理法的重金属污染治理

物理法治理又可以进一步分为以下几种方法:

一是热解吸法,这种方法以加热来把一些具有较强会发特性的重金属进行解吸和收集,再妥善处理或者合理利用。以汞元素为例,美国已经形成了比较成熟的基于热解析法的汞元素回收,并在现场治理中取得了较好的效果,使用此项处理方法的地域已经在汞含量方面达标。

二是电化法,这种方法以电解原理进行污染土壤的处理。在受到污染的土壤里设置石磨电极,并以1~5毫安的电流进行激励,从而在阴极收集到金属阳离子,并进行处理或者再利用。这种方法对于铅元素和二甲苯等物质的处理效果比较好。

三是洗土法,这种方法通过试剂与土壤里所含有的重金属物质发生反应,并最终生成可溶于水的金属离子,通过对提取液进行处理,得到重金属,再进行处理或者回收利用。这种方法非常适合于对铜金属、镍金属、铅金属和铂金属的回收处理。

四是玻璃化法,这种方法以电极对受到污染的土壤进行加热,从而使之进入熔化状态,在其最后冷却时,便会变成玻璃状态。这种方法尚在实验中,其成本较高,目前尚未得到的面积推广。

3.2.2基于化学法的重金属污染治理

这种方法在受到污染的土壤中按比例注入一定的化学试剂,从而改良土壤本身的性质,达到减轻重金属活性的作用,可以降低作物对土壤里重金属的富集效应。化学法治理主要指的是土壤添加物法,把一定充分的有机物料或者改良剂加入受污染的土壤之中,能够通过化学作用而使重金属离子沉淀,再对其进行收集,从而减轻污染;还可以通过化学试剂中的酸性物质与重金属元素反应,生成难溶于水的物质,从而使土壤污染得到减轻。这种方法适用于镍离子、锌离子等重金属物质的治理。

3.2.3基于生态工程的重金属污染治理

这种方法可以是在已经被重金属污染的土壤之上加厚一层正常土壤,或者把受到重金属污染的土壤全部挖除,也可以通过灌溉的方式,逐渐使受污染土壤中的重金属物质渐渐迁移到地层深处等,也能对土壤污染起到一定的作用。

3.2.4基于生物的重金属污染治理

这种方法可以通过植物或者微生物等来修复土壤质量。某些植物的根系可以吸收被污染土壤中的重金属,例如蜈蚣草被证实可以有效降低土壤中砷的含量;微生物则可以通过细胞转化作用使被污染土壤中的重金属沉淀或者氧化,从而使其对土壤的影响显著降低。

4 结束语

在世界各地,尤其是经济较为发达的地区均存在着较为严重的土壤重金属污染,重金属的来源是多方面的,当前,学界和环保组织对重金属的污染一般聚焦于污染程度的定性描述和分析。事实上怎样才能实现对重金属污染源进行量化分析,同样对治理逐渐严重的土壤污染有着不容忽视的作用,因此量化分析将是重金属污染研究的发展方向。当前,我国尚未构建完善的城市和农村地区土壤重金属污染的监控网络,因此并不能及时准确地检测土壤重金属污染状况,也难以为土壤重金属污染的治理提供必要的依据。只有制定出严格而适用的土壤重金属评价标准,才能有利于土壤的保护,从而推动经济的可持续发展。■

参考文献

[1]高晓宁.土壤重金属污染现状及修复技术研究进展[J].现代农业科技.2013(09)

[2]郭翠花,黄淑萍,原洪波,等.太原市地表土中五种重金属元素的污染检测及评价[J].山西大学学报(自然科学版),2010,18(2):222-226.

[3]史贵涛,陈振楼,李海雯,王利,许世远.城市土壤重金属污染研究现状与趋势[J].环境监测管理与技术,2012,18(6):9-12.

[4]凌辉,谢水波,唐振平,刘岳林,周帅.重金属污染土壤的修复方法及其在几类典型土壤修复中的应用[J].四川环境.2012(01)

第5篇:环境重金属污染现状范文

关键词:重金属;土壤污染;土壤修复

中图分类号: X131.3 文献标识码: A

据农业部数据显示,在全国140万公顷污水灌区中,有64.8%的灌区受重金属污染,其中,轻度污染46.7%,中度9.7%,严重8.4%。重金属污染土壤,污染物滞留时间长、移动性差、不能被降解,并可经水、植物等最终影响人类,治理和恢复难度相当大。

一、该地区污染状况及成因

1、概况

该地区位于某大型冶炼厂的西部,距厂区最近500米,存在引工业废水灌溉现象。该地区土地多为抛荒地。

2、样品采集与测定

1.2.1样品采集

采样人员由环科所、环保局、冶炼厂和当地群众代表等组成,遵照环境样品采集技术规范,按面积随机设采样点。

(1)土壤样品:每个采样点采集表层0-20cm土壤样,部分样点采集亚表层(20-40cm)土壤。

(2)水样样品:采集土壤同时,采集田间及井水、河沟水等。

(3)稻米样品:水稻成熟时采集1个本区稻米样品。

1.2.2监测项目及测定方法

(1)测定项目

必测项目: Pb、 Zn、Cu、 Cd、As、PH

选择项目:Ni、 Cr、氟化物、 Hg

(2)测定方法

采用国标法和美国环保局推荐分析方法。

3、土壤环境质量状况

1.3.1调查区土壤监测结果

调查区土壤样品测定结果见表1-1

表1-1调查区农田表层土壤监测结果

对照国家《食用农产品产地环境质量评价标准》,该地区土壤铜元素超标100%,镉元素超标87.5%,一个样品的砷超标。

4、土壤污染成因

1.4.1用污水灌溉。经污水灌溉进入土壤的重金属以不同方式被土壤截留固定。冶炼厂废水虽有处理,但曾有过超标排放,不符合农灌标准,用该工业废水灌溉是土壤重金属污染的主因;

1.4.2气中重金属来自运输、能源、冶金和建材生产而造成的粉尘和气体。除汞外,重金属大多是以气溶胶形态进入大气,经降水和自然沉降进入土壤。结合实际,冶炼厂废气重金属沉降污染不容忽视。

二、土壤重金属污染修复技术

1、工程措施

工程措施主要有换土、客土及深耕翻土等,通过与污土的相混合,降低土壤所含有的重金属,减轻重金属对植物-土壤系统的毒害,进而让农产品符合国家食卫标准。换土和客土用于重污染区,深耕翻土则在轻污染土壤应用。工程措施具有稳定、彻底等优点,但其投资高、工程量大,破坏土体结构,造成土壤肥力下降。此外,还需要对所换污土做处理。

2、物理修复技术

2.2.1 电动修复

在电场作用下,经电渗透、电迁移或者电泳,把土壤污物带到电极两端,通过收集系统将重金属元素收集起来集中处理。此技术能够有效地去掉重金属,并步入商业化发展。因为电流可以打破所有金属-土壤键,其对于铅、镉、砷、铜等极为有效。影响电动修复的关键是土壤PH值,可控制PH值改善修复。

2.2.2 电热修复

通过高频电压产生的电磁波对土壤加热,从土壤颗粒中把污物吸出来,促进易挥发重金属从土壤分离。该技术用来修复被Se和Hg等污染的土地。此外,将重金属污染土壤放到高温高压下,出现玻璃态物质,从根本上消除污染。

2.2.3 土壤淋洗

用淋沅液淋洗土壤,让吸附在土壤上的重金属形成溶解性的金属试剂络合物或离子,再收集淋洗液回收重金属,并循环。选择提取剂是此法的关键,提取剂能选水、化学剂或其他液体,甚至气体。此法适于轻质土壤,有较好的修复重金属污染土壤的效果,但投资巨大,限制商业了化淋洗液。此外,其也容易造成地下水的污染、土壤变性、土壤养分流失等。今后此种方法的重点是开发易被生物降解、对环境污染小、专一性生物表面活性剂。

3、化学修复

向土壤中加化学试剂、有机质、固化剂、天然矿物等改变土壤PH值等,经氧化还原、沉淀、吸附等降低重金属生物有效性。此种方法关键是改良剂的选择,常用沸石、石灰、磷酸盐、碳酸钙等,对重金属作用机理不同改良剂不同。碳酸钙或石灰主要是用来提高土壤 pH值,促进Hg、Zn、Cd、Cu等元素形成碳酸盐结合态盐类或氢氧化物沉淀。如果土壤pH>6.5,则Hg就可成碳酸盐或氢氧化物沉淀。向土壤投放硅酸盐钢渣,对 Cd、Ni、Zn等有吸附沉淀作用。水田Cd为磷酸镉沉淀,磷酸汞溶解度也小。沸石通过离子交换降低重金属有效性。有机物让重金属形成硫化物而沉淀,而有机物腐殖酸可与重金属离子形成螯合或络合物。

化学修复简单易行,其在土壤原位进行,但非永久措施,因为其只单纯改变土壤中重金属形态,金属仍在土壤中,易再度活化。

4、生物修复

2.4.1 植物修复技术

(1)植物提取

通过重金属超积累植物从土壤中吸收污物,转至地上部分再收割集中处理,让土壤中重金属降到可接受水平。一般来说,植物提取是最有效的方式,但是其在技术上也是最难实施的修复技术。现在已经有了提取不同金属植物种类和改进植物提取性能的方法,并得到了逐步的商业推广。

(2)植物挥发

经植物根系分泌特殊物或微生物,让土壤某些重金属转变成挥发形态,有的植物将污物吸到体转为气态释放到大气中。植物挥发技术无须处理污物植物,既经济有效又潜力巨大,但将污物转到大气中,则会对人类和生物有不小风险。

(3)植物稳定

利用超累积植物或耐重金属植物降低重金属活性,减少被淋洗到地下水或经空气进一步扩散污染的可能。通过金属根部积累、沉淀或根表吸收固化土壤重金属。如植物根系分泌物可改变土壤根际环境,改变多价态Hg、Cr、As价态和形态。此外,植物根毛也能直接从土壤交换吸附重金属增加根表固定。

2.4.2 微生物修复技术

利用微生物对金属的沉淀、氧化、吸收、还原功效,降低土壤中金属毒性。某些微生物嗜重金属,用其净化重金属污染土壤有独特功效。在长时间受镍胁迫的土壤中,有微生物产生抗性机制来降低镍毒害,并经吸收、沉淀、络合等来减少重金属迁移和生物毒性。同时,微生物细胞内金属硫蛋白对Zn、 Cd 、Hg、 Cu等有强烈亲和性,有富集和抑制重金属毒。但是,微生物修复土壤能力有限,只可以适用在小范围。

5、农业生态修复

主要有两方面:一是农艺修复,有调整作物品种、改变耕作制度、种植非食物链植物、使用可降低土壤重金属的化肥、增施固重金属有机肥等;二是生态修复。调节如土壤养分、水分、pH值及氧化还原状况和外界的气温、湿度等,调控污染物所处环境介质。

6、组合修复技术

修复重金属污染土壤可谓是系统性工程,修复技术多,各有一定效果,但也有局限性;单一技术效率不高,预期目标实现困难。所以,需要应用2种以上技术加以综合才能达到预期效果。

三、结论

土壤作为我们生存的主要条件,是生态环境的重要组成。我国亟需解决重金属土壤污染问题。本文监测分析项目区土壤重金属污染的基础上,评述土壤重金属污染修复技术,旨在推动重金属污染土壤有效修复与综合治理。

参考文献:

第6篇:环境重金属污染现状范文

关键词:土壤;重金属污染;危害;防治

引言

由于人类活动致使土壤中的微量金属元素超过土壤环境质量的标准值或土壤背景值的上限值[1],导致生态环境质量下降和土壤环境恶化,从而对人体健康、其他生物、水体噪声危害的现象[2],称之为土壤重金属污染。2013年年底中国国土资源部副部长王世元在土地调查新闻会上指出,中国内地中重度污染耕地大约为5000万亩;宋伟等对全国138个典型区域土壤污染案例的分析表明,我国耕地土壤重金属污染的比重占耕地总量的1/6左右[3-5],造成国家经济效益的损失达200亿左右,可见我国土壤重金属污染形势并不乐观。文章结合我国土壤污染的现状,系统的提出防治措施,为今后土壤修复、治理等工作提供参考性建议。

1 我国土壤重金属污染现状

1.1 土壤重金属污染成因

土壤中的重金属元素主要指的是汞(Hg)、镉(Cd)、铅(Pb)、铬(Cr)、锌(Zn)、铜(Cu)、镍(Ni)、砷(As)、锑(Sb)和铋(Bi)这十种元素。影响土壤中重金属元素含量发生变化的原因有两个:一方面是在自然环境的作用,成土母质风化过程中自然积累的含量(本底值),之后在风、水等外力作用,经过物理和化学过程而改变其含量;另一方面,也是影响最大的方面,就是人类活动,随着工业化、城市化的发展,化学工业制造、金属矿山开采、生活废水排放、农药化肥不科学施用及污水灌溉等是重金属污染的主要来源途径。

1.2 土壤重金属污染的特点

隐蔽性:土壤污染需要人为对土样进行采集,检测并分析才能够得出是否存在隐患;不可逆性:重金属对土壤的污染基本上是一个不可逆转的过程,受污染的土壤可能需要花费上百年的时间才能够慢慢消除;长期性:将重金属存于土壤中,往往是呈垂直递减分布;难治理性:土壤污染需要通过物理、化学、生物等各种修复方法进行综合治理,才能达到比较好的治理效果。

1.3 土壤重金属污染的危害

土壤中的重金属虽然能够被作物自身吸收,但这并不会影响到作物的生长和发育,但经过食物链的富集作用,进入人体对人体健康存在极大的威胁;我国本来土地利用资源紧张,加之现在又受污染,使原有的形势更加紧迫,更威胁了子孙后代的生存;由于土壤污染具有长期性和不可逆转性,严重危及农业可持续发展和国民经济水平的持续增长。

2 土壤重金属污染的防治措施

要想对土壤重金属污染得到有效的修复,应从两个方面入手,一是预防,采取各种政策措施、制定法律法规切断污染源;二是治理,面对已经存在重金属污染的土壤,采用科学友好环境的方法综合治理。

2.1 土壤重金属污染的预防措施

2.1.1 加大环境监管和治理力度。首先政府部门应该组织相关科研单位和技术人员筛选出有助于治理环境的修复技术,选择具有代表性的污染地进行修复技术的应用,为治理更大范围的重金属污染区积累经验;其次监督部门应加大环境监管力度,从污染源入手,杜绝重金属对土壤产生污染,严格控制城市生产生活废水直接进入农田,杜绝污水灌溉农田;再者加强农业环境的监测,尤其是土壤污水灌溉区的动态监测,充分了解土壤中金属成分、含量的变化,做好预防工作。

2.1.2 倡导科学的农业生产种植。农业生产过程中的主体就是农民,他们对一方土地进行管理与规划。政府部门应该积极引导农业管理者科学的管理农药、化肥及除草剂等农用化学品。提倡有机化肥与无机化肥的并施,同时采取积极的预防措施,不仅能够有效减小土壤污染,还能够促使作物茁壮成长。大力发展低毒、高效、环境友好型的农药,严格控制农药的使用量、使用次数及使用时间,杜绝高残留高重金属农药的使用,因此发挥农药的积极作用。倡导地膜使用后,要积极及时的回收,防止其残留对土壤造成进一步的污染。

2.2 土壤重金属污染的治理措施

2.2.1 土壤物理修复技术。土壤物理修复技术主要是根据土壤自身理化性质及重金属性质,通过物理方法治理土壤中的重金属污染。最常见的方法,第一种就是客土、换土、深耕翻土,但是需要耗费较大的人力、物力及财力,并没有从根本实现重金属污染的治理;第二种是电动修复法,其利用电池原理,在电场作用下重金属离子开始迁移,使重金属离子富集到电极处在土壤表层就得以去除;第三种是固定/稳定化修复,常用来清除无机污染物质,使用成本低、设备易移动、稳定性强,但是因为许多技术的联合应用可能会致使土壤污染面积增大。

2.2.2 土壤化学修复技术。化学修复是将修复剂加入到污染物,其发生一定化学反应,实现土壤的毒性被去除或降低的效果。化学修复法有很多如土壤淋法、原位化学氧化修复技术、溶剂浸提法等。土壤淋洗能够用于大面积的轻质土和砂质土重金属污染治理,但是对于渗透系数较低的效果不好,也会造成植物必需营养元素的缺失;原位化学氧化修复技术是利用化学氧化剂(双氧水、高锰酸钾等)与污染物发生氧化反应,迫使污染物浓度降低,但是其不利影响就是可能产生气体,有毒副产物。

2.2.3 土壤生物修复技术。土壤生物修复技术是利用生物的生命代谢活动减少土壤环境有毒有害物的浓度,治理过程中花费成本较低、管理技术简单。生物修复技术包括微生物修复、植物修复及动物修复。近年来主要放在动物修复的研究上,对土壤动物蚯蚓进行了相关研究[6],蚯蚓对重金属有一定忍耐和富集能力,通过不断吞食有机质土壤,经过其自身酶系统的作用,产生利于土壤环境的有机无机复合肥,促进了土壤重金属形态的转化,加速了土壤养分的循环。

2.2.4 农业修复技术。农业修复技术指的是改变耕作制度或利用农艺措施调节重金属对土壤的危害。改变耕作运行模式需要根据当地的具体情况,选择能够抵抗土壤污染的作物或植被。利用合理的农业措施进行修复,主要是通过合理的深耕措施及增施有机肥调节土壤的理化性质,从而调控污染物所处的污染环境。

3 结束语

土壤重金属污染的防治是环境监测的重要任务,是保障我国广大人民群众身体健康的根本,是促进国家经济快速发展的主要推力。采取科学有效的土壤污染防治措施,能够有效改善土壤结构,提高土壤肥力,降低土壤环境的污染。在未来的环境监测和农业生产中,政府和人民更应该携起手,爱护我们共有的生存土地,让重金属污染事件不再发生,远离人民群众,实现环境友好型的生存环境。

参考文献

[1]高锦卿.土壤重金属污染及防治措施[J].现代农业科技,2013,1:220+225.

[2]郭笑笑,刘丛强,朱兆洲,等.土壤重金属污染评价方法[J].生态学杂志,2011,5:889-896.

[3]宋伟,陈百明,刘琳.中国耕地土壤重金属污染概况[J].水土保持研究,2013,2:293-298.

[4]樊霆,叶文玲,陈海燕,等.农田土壤重金属污染状况及修复技术研究[J].生态环境学报,2013,10:1727-1736.

[5]黄益宗,郝晓伟,雷鸣,等.重金属污染土壤修复技术及其修复实践[J].农业环境科学学报,2013,3:409-417.

第7篇:环境重金属污染现状范文

【Key words】Electroplating industry soil remediation bioremediation combined remediation plants and microorganisms

1 前言

土壤重金属污染是我国亟待解决的环境问题。电镀行业是产生重金属污染的主要行业之一。由于电镀行业使用了大量强酸、强碱、重金属等有毒有害化学品,在工艺过程中排放了高毒物质和危害人类健康的废水、废气和废渣,对人类的生存环境产生了巨大危害。尤其是重金属镍污染后果相当严重,镍可引起接触性皮炎,直接进入血液的镍盐毒性较高,胶体镍或氯化镍毒性较大,可引起中枢性循环和呼吸紊乱,使心肌、脑、肺、肾出现水肿、出血和变性,长期接触、吸入或注射镍化物均有致癌作用。电镀企业关闭后遗留的重金属污染土壤对环境构成严重威胁。然而如何针对性地有效进行修复治理,是人类面临的又一大问题。电镀厂污染场地属于重污染行业污染场地,急需进行环境综合治理与土壤修复[1]。

本文通过对某电镀厂厂区土壤样品监测结果的分析研究和修复治理方法的探讨,为进一步开展污染土壤修复工作以及合理规划和利用该场地提供科学的理论依据,同时,对于改善和提高当地城镇环境质量、保障人体健康和维护社会稳定也将具有重大意义。

2 企业基本情况

该电镀厂于2003年3月投产,厂区面积约3500m2,主要从事各种五金件产品的来料电镀加工。全厂共3个电镀车间,8条电镀生产线,其中7条半自动电镀生产线、1条全自动电镀生产线。主要镀种为镀锡、镀镍、镀铬、镀锌。电镀加工产品方案见表1。

使用的主要原辅料有金属镍板、硫酸镍、氯化镍、电解铜、硫酸铜、硫酸、盐酸、铬酐、氰化钠、氰化亚铜、氰化钾等。产生的电镀废水经废水处理站处理达标后排放。根据当地电镀行业环境整治要求,该电镀厂已停产待迁。

3 土壤污染现状及成因分析

为了解该电镀厂所在地土壤污染现状,委托澳实分析检测(上海)有限公司对其厂区土壤进行了监测。

3.1 监测项目

pH值、总氰化物、锑、砷、铍、镉、铬、铜、铅、镍、硒、银、铊、锌、汞等。

3.2 监测地点

厂区废水处理站边和电镀车间旁各设一个采样点,编号分别为Z1、Z2。按0~20cm、40~60cm、80~100cm采样深度各采一个样品,对应样品编号Z1-1~Z1-3和Z2-1~Z2-3。

3.3 监测结果

厂区土壤样品监测结果见表2和图1。

表2 厂区土壤监测结果

图1 土壤监测结果对比分析图

土壤样品监测结果表明,除镍指标外,其余指标监测值均符合《浙江省污染场地风险评估技术导则》(DB33/T892-2013)表A.1部分关注污染物的土壤风险评估筛选值中的住宅及公共用地筛选值。

土壤监测结果镍超标原因主要为企业生产过程中涉及到镀镍等工序,生产废水和废气中含有镍等重金属。车间地面、排水沟渠等没有按规范进行防渗处理,镀镍废水没有进行有效收集容易渗漏到地面,等等,各种因素导致土壤受到重金属污染。根据《浙江省污染场地风险评估技术导则》(DB33/T892-2013)以及有关文件要求,企业场地需要进行土壤污染修复治理。

4 土壤重金属污染治理方法

目前针对土壤重金属污染修复方法较多,主要包括物理方法、化学方法和生物方法[3]。生物修复方法因其效果好、投资省、费用低、易于管理和操作、不产生二次污染等被公认为是生态友好型原位绿色修复技术[4]。生物修复方法主要有植物修复、微生物修复、植物与微生物联合修复。

4.1 植物修复

植物修复技术主要有植物稳定、植物提取、植物挥发等类型[5]。植物稳定是利用植物来降低重金属在土壤中的迁移,但是随着时间或环境的改变,可能仍会发生渗漏和扩散,这种方法并没有减少重金属的含量,只是改变了重金属的存在形态;植物提取是指利用对重金属富集能力强的超积累植物吸收土壤中的重金属,并将重金属转运储存在地上部分,然后通过收获地上部分进行焚烧,来达到去除重金属的目的;植物挥发是指利用植物吸收、转运、积累、挥发来去除土壤中一些挥发性的重金属[6]。

4.2 微生物修复

微生物修复技术是利用土壤中某些微生物对重金属的吸收、沉淀、氧化还原等作用,以达到降低土壤重金属的毒性。某些微生物能代谢产生柠檬酸、草酸等物质[7]。这些代谢产物能与重金属产生螯合或形成草酸盐沉淀,从而减轻重金属的伤害。Siegel等研究表明,真菌可以通过分泌氨基酸、有机酸以及其他代谢产物来溶解重金属以及含重金属的矿物[8]。微生物修复的局限性在于:微生物有些情况下不能将污染物全部去除;微生物对环境的变化响应比较强烈,环境条件的改变能大大影响微生物修复效果。

4.3 植物与微生物联合修复

鉴于植物修复和微生物修复各自在重金属污染修复中的不足,植物与微生物联合技术通过发挥植物和微生物各自的优点,最大限度弥补其在重金属污染修复中的不足,有效提高植物修复的效果。土壤中许多细菌不仅能够刺激并保护植物的生长,而且还具有活化土壤中重金属污染物的能力。最近俄罗斯科学家培育出一种耐重金属污染并保护植物生长的细菌,这种细菌能够在Zn、Ni、Cd和Co存在的条件下产生抗生素细菌的细胞不具备稳定的基因,但是位于染色体外能够自动复制的环状DNA分子,可以有效阻止重金属离子进入细胞,同时能够刺激并保护植物的生长[9];Ma等成功地从Ni污染土壤中分离得到耐受重金属污染的细菌,并发现这些细菌在较高水平重金属污染的土壤中能够促进植物生长;Idris等在遏蓝菜属植物Thlaspigoesingense根际分离出大量对Ni耐受性较强细菌,包括Cytophaga、F lexibacter、Bacte2roides等,这些细菌可以明显提高Thlaspigoesingense对Ni的富集能力[10]。虽然菌根化植物抗逆性强、吸收降解能力强,但不容易获得,因此,菌根与植物修复体系的选择与建立有非常广阔的应用价值,也是重金属污染土壤生态恢复的一个新的研究方向[11]。

5 结论与展望

第8篇:环境重金属污染现状范文

关键词:重金属;土壤污染现状;分析方法

1 引言

重金属污染已成为全球性环境问题,尤其是重金属对土壤的污染,因其隐蔽性、不可逆性和长期性的特点,不但能直接影响生态环境,还能通过皮肤接触、呼吸吸入和通过食物链影响人体或动物的健康,所以造成的后果是非常严重的。土壤重金属污染具有污染物在土壤中移动性差、滞留时间长、毒性大等特点,并可经水、植物等介质最终影响人类健康。在我国通常被优先关注和控制排放的重金属有镉(Cd),铬(Cr)、砷(As)、铅(Pb)和汞(Hg)。

根据我国的可持续发展战略,“国民经济和社会发展第十二个五年规划纲要”(2011~2015年)已将预防和控制重金属污染作为一个重要的目标,2011年国务院批复了《重金属污染综合防治“十二五”规划》,由于“重金属”范围包括大量的金属和准金属,所以对重金属污染很难有一个全面的认识。因此,笔者对我国五个优先控制重金属的来源、毒性、污染现状进行了阐述。提出了一些防治策略及未来发展和管理的方向。

2 重金属的来源

在自然因素中,成土母质和成土过程对土壤重金属含量的影响很大[1]。自然来源包括火山、降解矿物、森林火灾、土壤和水的表面蒸发。每年火山喷发的As量是1.72×107 kg,地壳含As量大约是4.01×1016 kg,海底火山喷发4.87×106 kg[2]。在我国的一些地区,由于特殊的地质环境,地壳中的重金属含量本身就高,如山西省和As含量,这对该地区相关的重金属高浓度有直接贡献。

与自然来源相比,人为来源被认为是环境中重金属污染的主要原因:①重金属杂质的释放,采矿和其他冶金活动,如火力发电和热生产是大气汞排放的最大来源;②有意提取重金属和使用过程中的释放,如重金属矿开采,制革,电镀生产,和含重金属产品品制造;③垃圾焚烧与填埋过程中释放。Wu Y,Streets D G等[3]认为,2003年我国汞的总排放量达695.6 t,其中大部分是来自于有色金属冶炼、煤炭消费。1970年联合国的调查表明,18050 t的铅被释放到大气中,大多数都是由石油消费,粉尘排放和汽油添加剂使用释放的。

3 重金属污染现状

我国的重金属污染状况严重,如在城市土壤、河口和沿海环境中[4],食用重金属污染的食物或饮用未经净化的地下水可能会导致重金属中毒的高风险,许多事故是由于金属非法或不安全的开采、冶炼和使用造成的。

3.1 镉

我国近年来镉污染事件时有发生,唐贞等[5]对湘潭工业园区水稻土镉污染及其潜在风险做了调查,结果表明,土壤中镉的浓度1.27~4.22 mg/kg,表明这些土壤遭受严重镉污染。郑袁明等[6]人研究了北京不同地区的土样的镉浓度,包括菜地、水田、果园、绿地、玉米田,土壤和自然土壤595个土壤样品,与背景浓度相比,镉在蔬菜、稻田和果园积累显著,这表明工业活动、交通和垃圾填埋场可以影响土壤中镉的浓度。

3.2 铬

我国是铬渣产生最多的国家,对周围环境和人类健康构成高风险。Cr(Ⅵ)的土壤淋溶液的浓度与铬渣距离成反比关系,而垃圾能影响下风侧约350 m处。除了迁移到周边地区,Cr(Ⅵ)会污染地下水。陈璐璐,周北海等[7]分析了太湖水中的铬含量和相关的生态风险评估,结果表明,在所有水样品中都可以检测到铬,浓度31.76~75.50 ng/mL,平均浓度为40.04 ng/mL。铬已对太湖水生生物造成一定的生态风险。王玉强等[8]研究了渭河Cr(Ⅵ)的分布及其迁移特征,结果表明沿河流方向Cr(Ⅵ)浓度呈先上升后下降,Cr(Ⅵ)浓度可能受排污口的影响,沉积物对Cr浓度的降低起到了重要的作用。

3.3 砷

过去的几十年里经常报道地方性慢性砷中毒,尤其是在新疆维吾尔自治区、、宁夏回族自治区和山西省。地下水受影响最严重的省份,砷浓度在220~2000 ng/mL,而最高浓度可达4440 ng/mL[9]。慢性砷中毒是新型的公共卫生问题,我国约有300万高风险人口来源于饮用水暴露,而他们中的大多数是集中在农村地区。

目前我国已成为世界上最大的煤炭生产国和消费国,能源消费构成中煤炭占75%。东北煤矿、我国东部和北部主要煤矿中砷的浓度为55.7~156.7 mg/kg[10]。当地居民普遍使用炭的明火以及开放式炉灶进行烹调和取暖,这会污染室内空气和增加食物中砷的浓度。厨房的空气,干燥的玉米和辣椒中砷的浓度分别为160~760 μg/m3,1.52~11.3 mg/kg,52.5~1090 mg/kg。

3.4 铅

最近几年由于无铅汽油的使用城市大气中铅的浓度在下降,但是大气中铅含量(100~180 ng-3)仍于高水平。由于交通排放、污水灌溉,公路两侧土壤和农田易受铅污染,如果土壤和公路之间距离小于50 m则可能受到铅的危害,而距离超过150 m,铅的浓度水平一样[11]。除了土壤自身性质,交通流、地形,绿化带和天气条件也影响路边土壤铅的分布。

一般来说,在路边土壤铅浓度要显著高于公园,而工业区的铅水平比住宅区和风景名胜区高得多。研究表明,污水灌区农田下层土壤铅浓度显著升高[12],约是背景环境中的4.53倍。戚其平等[13]人研究了生活在城市地区6502名儿童(3~5岁)血液中铅水平,结果表明,与美国疾病控制和预防咨询委员会中心规定的儿童血液平均铅安全浓度88.3 mg/L高了29.9%,超过100 mg/L。

3.5 汞

2013年我国人为排放汞的总量约占全球排放量的40%,向大气中排放的汞约占全球大气汞排放的1/3。在我国贵州、广东、山西和辽宁省的一些地方是汞污染最严重地区。贵州省是世界上最大的汞生产区域,贵州朱砂矿储量中金属汞储量达到80000 t,占汞总量80%,地表水汞浓度高达10580 ng/L,在采空区的河岸土壤总汞和甲基汞的浓度范围分别是5.1~790 mg/kg和0.13~15 ng/g[14]。水稻籽粒中汞总浓度可达到569 ng/g,其中145 ng/g是甲基汞。这表明,摄入汞污染的大米是人类甲基汞暴露的一个重要来源。

贵州省一些地方气态汞浓度为1.70~146.75 ng/m3,平均浓度为7.39 ng/m3,显著高于世界水平的1.5~2.0 ng/m3。季节和天气明显影响汞在大气中的含量。一般来说,由于煤燃烧气态汞总量冬季比夏季高得多。

土壤是汞的重要的源和汇,土壤中的汞主要来自土壤母质、大气沉降、化肥和农药的使用、污水灌溉及含汞废物。1990年我国国家环境监测中心进行了一项调查,在我国表层土壤汞平均浓度为0.065 mg/kg。因为对水环境没有系统的调查,且汞在水中时空分布不断变化,很难在水系统中的汞浓度作总体评价,但大型河流中的汞浓度普遍高[15],而汞储量相对影响较小。

3.6 锡

目前,我国海水和淡水环境中有机锡的污染比较严重,尤以近岸水域、港口以及内河码头污染最为严重。我国大陆水样中三丁基锡(TBT)的浓度最高达到977ng(Sn)/L。由于减少了输入、水流量和稀释,丁基锡的浓度(BTS)随海岸距离的增加降低。相对高含量的二丁基锡(DBT)和技术性贸易壁垒在渤海湾沿海水域出现,东南沿海的三个港口(厦门,汕头,和惠阳)的积累量为0.3~174.7ng/g[16]。

4 重金属污染的监测分析方法

4.1 重金属的总浓度

在环境和生物样品中开发和应用的重金属测定方法很多,如火焰原子吸收光谱法,石墨炉原子吸收光谱法,原子荧光光谱法等。由于其能多元素同时检测、分析时间短、高通量和样品用量少的优点,电感耦合等离子体质谱和电感耦合等离子体原子发射光谱法被越来越多地应用在这一领域,特别是ICP-MS(电感耦合等离子体质谱仪)具有更多的优点,如灵敏度高,线性范围宽、抗干扰能力强。

4.2 重金属形态

重金属的毒性取决于其化学形式,由于其不同的性质和毒性,有必要区分重金属种类。研究表明,有机汞化合物尤其是甲基汞比无机汞的毒性更强,相反,有机砷化合物比无机砷毒性低。有机锡化合物的毒性取决于性质和烷基侧链数的长度。重金属形态可以用电分析、光谱分析、仪器中子活化分析、色谱分析联用技术。联用技术已被广泛应用于汞、铬、砷、锡的形态分析,以及其他环境样品中的重金属形态分析,具有广阔发展前景。

4.3 重金属生物监测

生物监测是监测环境和生物圈中重金属污染和毒性的一N有效方法。环境矩阵化学分析是揭示重金属污染状况的最直接方法,虽然对生物和生态系统的综合影响和可能毒性提供证据不足。基于个体生物组织和液体抽样分析的生物监测是化学分析的有效补充。通过与国际卫生组织(WHO)规定暂定每周可耐受摄入量重金属量比较,认为长期食用当地大米可能会造成对人体重金属高危害风险。血液、尿液、唾液、指甲和头发通常是化验重金属对人体健康潜在风险评估的生物材料。

5 毒性

重金属易通过食物链而生物富集产生生物放大作用,构成对生物和人体健康的严重威胁,主要通过空气、水、食物和直接接触体表进入人体,这些方面的重金属暴露是人类中毒的主要途径,对人类健康产生各种威胁。根据靶器官重金属毒性可分为以下几类。

5.1 胃肠道(消化系统)的影响

重金属摄入能刺激消化系统,伴随症状如恶心、呕吐、腹泻、腹痛等。铅可能通过抑制胃肠功能紊乱胰腺、唾液腺和胃腺体分泌,甚至引起顽固性便秘。

5.2 肾功能的影响

肾脏是积累重金属的重要器官,高水平铅暴露可损伤肾近端小管和肾小球,肾小管重吸收障碍,甚至引起铅中毒性肾病,如肾性高血压。元素汞可在人体组织中的氧化为无机二价的形式,肾脏积累更多的二价汞比其他组织,高水平汞暴露可能导致肾小球肾炎蛋白尿、肾病综合征,最早发现低水平汞暴露对肾小管的影响,增加低分子蛋白的排泄。

5.3 神经系统的影响

有研究报道,无论是偶然的或长期暴露于高浓度的汞蒸气中可显著影响人类的感官、认知、个性和运动功能。一般来说,去除暴露后这些症状消退。通过各种人类和动物的研究表明,甲基汞的毒性比无机汞更高,其作用于尚未出生的胎儿和新生儿的神经系统的发育。这种影响可以发生在汞暴露保持健康的母亲(通过她们的孩子受到Hg)或与汞暴露有轻微症状的母亲。一项关于父母接触甲基汞,主要来自食用领航鲸肉的法罗群岛约900个儿童的研究表明,产前甲基汞暴露会导致7岁儿童神经心理障碍。注意力、记忆力和语言似乎是影响较大的大脑功能,而视觉功能和执行力受汞增加的暴露影响较小。

5.4 癌症

大量的研究集中在高风险人群甲基汞水俣病的死亡原因。肝癌和食道癌的风险增加,慢性肝病和肝硬化导致的超额死亡率是报道率最高的事件。在长期遭受慢性砷暴露地区皮肤癌、肺癌和膀胱癌的患病机率会增加。

5.5 其他影响

暴露的高浓度的重金属可引起呼吸系统、心血管系统、免疫系统和生殖系统的功能障碍。尤其是小孩,摄入铅可能通过抑制血红蛋白的生成导致贫血。对那些长期接触铬(Ⅵ)的人群来说,患口腔炎,牙龈炎的风险,鼻中隔穿孔,皮肤溃疡的风险比其他人高多了。有关调查表明,铬电镀车间的工人从事电镀操作的一半受到了严重的铬鼻病[17]。从事镀铬作业的电镀厂工人长期接触到铬酸雾,容易发生职业性铬鼻病。

6 结论与展望

除了自然来源,有意和无意的人为排放是重金属的重要来源,过量重金属暴露可能通过影响消化系统、神经系统、心血管系统和免疫系统,增加人类的健康风险,或增加患癌症的风险。

为了充分了解重金属污染现状,我国应综合调金属问题,将重金属潜在风险作为详细的流行病学进行研究。相比其他污染控制,更理想的策略是使重金属污染的最小化和消除。这些目标可以通过减少含重金属物品的使用来实现,或回收对环境污染的排放物,同时,各种管末处理技术可以减少煤燃烧、垃圾填埋场和其他人为来源的重金属排放,虽然在实际应用中有很多优点,但生物修复,特别是植物修复和微生物修复,由于其效率高、成本低应该受到更多的关注。重金属原位钝化修复方法可改变重金属在土壤中的赋存状态,降低土壤中重金属的有效浓度、迁移性和生物有效性,并且因其成本较低、操作简单、见效快且适合大面积推广,在重金属污染土壤修复中有着不可替代的作用。2015年,随着《凹晶材料对重金属污染土壤治理与修复的集成技术研究》项目通过甘肃省科技厅鉴定,并在白银试验成功,一项新的凹凸棒吸附技术将会逐渐推广。

参考文献:

[1]郑喜|,鲁安怀,高 翔.土壤重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79~84.

[2]Matschullat J. Arsenic in the geosphere-A review[J].Sci Total Environ,2000,249(13):297~312.

[3]Wu Y,Wang S X,Streets D G,et al.Trends in anthropogenic mercury emissions in China from 1995 to 2003[J].Environ Sci Technol,2006,40(17):5312~5318.

[4]Luo X S, Yu S, Zhu Y G, et al.Trace metal contamination in urban soils of China[J].Sci Total Environ,2012,4(21):17~30.

[5]唐贞,杨仁斌,雷 鸣,等.湘潭某工业园周边稻田土壤及稻米镉污染的风险评价[J].湖南农业大学学报,2012,(1):92~95.

[6]郑袁明,罗金发,陈同斌,等.北京市不同土地利用类型的土壤镉含量特征[J].地理研究,2005,(4):542~548.

[7]陈璐璐,周北海.太湖水体典型重金属镉和铬含量及其生态风险[J].生态学杂志,2011,30(10):2290~2296 .

[8]王玉强,和留宪.渭河中下游铬(Ⅵ)的分布及迁移规律[J].西北农林科技大学学报,2012, 40(1):129~134.

[9]Mandal B K, Suzuki K T. Arsenic round the world: A review[J].Talanta,2002,58(13):201~235.

[10]吴 君,罗田永.砷对肝脏毒性及发生机制[J].世界华人消化杂志,2007,15(21):226~227.

[11]Warren R S, Birch P.Heavy metal levels in atmospheric particulates, roadside dust and soil along a major urban highway[J].Sci Total Environ,1987,59(13):253~256.

[12]胡 文,王海燕,查同,等.北京市凉水河污灌区土壤重金属累积和形态分析[J].生态环境,2008,17(4):1491~1497.

[13]戚其平,杨艳伟,姚孝元,等.中国城市儿童血铅水平调查[J].中华流行病学杂志,2002,23(3):162~166.

[14]张 刚,王 宁,艾建超,等.积融雪控制下土壤大气间汞交换通量特征[J].环境科学, 2007,41(4):5584~5594.

[15]Zhang Z S, Sun X J, Wang Q C, et al. Recovery from mercury contamination in the second Songhua river, China[J].Water Air Soil Poll,2010,211(4):219~229.

[16]黄长江,董巧香,雷 瓒,等.我国东南沿海3港口有机锡污染的调查[J].海洋学报,2005,27(1):57~63.

[17]刘星和,王永义,夏安丽.某厂镀铬作业重度铬鼻病调查[J].中国工业医学杂志,2011,24(2):137~138.

Research Progressand Analyzing Methods of Heavy Metal Pollution

Gong Jianjun

(Wuwei Occupational College, Wuwei,Gansu 733000, China)

第9篇:环境重金属污染现状范文

1.土壤重金属污染的现状

重金属一般指密度在4.5g/cm3以上的45种元素。常见的对土壤造成污染的重金属包括锌、铜、铬、镍、铅、镉、汞等元素,它们不仅导致土壤退化、农作物产量和品质下降,还会通过径流和淋洗作用污染地表水和地下水,并通过直接接触、食物链等途径危及人类的生命和健康。据不完全调查,目前全国受污染的耕地约0.1亿ha,占全国耕地的1/10以上;而在土壤污染中,受镉、砷、铬、铅等重金属污染的耕地面积近2000万ha,约占总耕地面积的1/5,其中工业“三废”污染耕地1000万ha,污水灌溉农田面积达330多万ha,据估算,全国每年因重金属污染而减产粮食1000多万吨,造成的直接经济损失超过200亿元。

2.土壤重金属污染的生物修复技术

2. 1 植物修复 植物修复是一种利用自然生长植物或遗传培育植物修复重金属污染土壤的技术总称,采用植物对重金属的忍耐和超量积累能力并结合共生的微生物体系来实现对重金属污染环境的修复。植物修复技术主要是包括了植物萃取技术;根际过滤技术;植物稳定技术;植物挥发技术。植物萃取是利用重金属积累植物或超积累植物将土壤中的重金属萃取出来,富集并运送到植物根部的可收割部分或植物的地上枝条部位;根际过滤是利用重金属超积累植物或耐重金属植物从污水中吸收、沉淀和富集重金属;植物稳定是利用耐重金属植物或重金属超积累植物降低重金属的活性,从而减少重金属被浸淋到地下水或通过空气载体扩散进一步污染环境的可能性;植物挥发是指利用植物把土壤中的重金属转化为气体排出土壤,然后在集中起来处理。利用植物修复技术修复土壤重金属的焦点主要集中在对超富集植物的研究,超富集植物是指能超量吸收重金属并将其运移到地上部分的植物。

2. 2 微生物修复 微生物可以降低土壤中重金属的毒性,吸附积累重金属,改变根际微环境,从而提高植物对重金属的吸收,挥发或固定效率。如硫酸还原菌、蓝细菌、动胶菌及一些藻类,它们能够产生胞外聚合物,这些胞外聚合物能与重金属离子形成络合物。微生物重金属修复的机理包括表面生物大分子吸收转运、细胞代谢、空泡吞饮、生物吸附和氧化还原反应等。利用微生物(包括细菌、藻类和酵母等)来减轻或消除重金属污染,国内外已有许多报道。相关研究表明微生物可使还原态重金属氧化,如无色杆菌、假单胞菌能使亚砷酸盐氧化为砷酸盐,从而降低砷的转移和毒性。菌根真菌能极大地提高铜在玉米根系中的浓度和吸收量,而玉米地上部分的铜浓度和吸收量变化不显著,这表明丛枝菌根有助于消减铜由玉米根系向地上部分的运输。许友泽等研究表明未灭菌土壤中土著微生物对Cr(Ⅵ)进行了修复,使溶出的Cr(Ⅵ)明显减少。通过7天的淋溶,培养基中未检测到Cr(Ⅵ)的存在,即铬污染土壤中Cr(Ⅵ)在7天内基本得到完全修复。但目前,大部分微生物修复技术还局限在科研和实验室水平,实例研究还不多,无法大面积推广,对于微修复技术还需做更深入探索。

3.展望