前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的建筑结构抗震设计规范主题范文,仅供参考,欢迎阅读并收藏。
关键词:建筑抗震设计;发展与背景;最新修订;注意的方面
中图分类号:TU2文献标识码: A
引言
继唐山大地震,近年来我国陆续又发生大规模的严重地震,不断在敲响建筑抗震的警钟,《建筑抗震设计规范》也在我过建筑科技科研人员的精心研究下,做出了一次又一次的改动变更。随着科技的进步与经济的发展,在人民政府的带动下,越来越多的高层住宅,高层办公用楼等高层建筑陆续出现在了我们的视线中。所以为了人民更安全的生活,我们需要在高层建筑的设计上响应规范的微调,做出一些变化。本文结合了《建筑抗震设计规范》的发展进程与最新的修改,对于高层建筑的抗震设计给出了一些新的见解。
1 《建筑抗震设计规范》的发展与背景
我国最早期的建筑工程抗震设计主要参考苏联的《地震区建筑抗震设计规范》。1959年和1964年,我国曾两次起草并拟定了包括各类工程结构的《地震区建筑抗震设计规范》(草案),虽然未正式颁布,但对以后的工程抗震设计仍起了重要的作用[1]。而后,随着国力的发展与技术的提高,我国于1974年正式颁布了第一本工程抗震设计规范――TJ11―74《工业与民用建筑抗震设计规范》(试行)。1978年,TJ11―78《工业与民用建筑抗震设计规范》(简称《78规范》)[2],国家建委批准颁布。1989年,GBJ11―89《建筑抗震设计规范》(简称《89规范》)[3],建设部批准颁布。1990年开始实施,并于1993年作局部修订。2001年,GB50011―2001《建筑抗震设计规范》(简称《2001规范》)[4],建设部和国家质检总局联合。于2008年5・12汶川地震后作了局部修订,成为GB50011―2001《建筑抗震设计规范》(2008版本)[5]。2010年,GB50011―2010《建筑抗震设计规范》,目前已完成报批手续。我国在建筑工程抗震设计领域的规范基本成型。
2 建筑抗震设计规范的最新修订
修订主要依据住房和城乡建设部建标[2006]77号文件通知进行的。于2007年7月对《2001规范》开始修订,2008年4成初稿。而2008年5月12日发生了汶川地震,面向全国征求意见的修订计划工作暂时中断,但是编制组成员迅速进入灾区开展震害调查,取得大量的建筑破坏资料数据,为规范修订提供宝贵而珍重的参考。震害资料显示,建设规划选址应充分考虑各种地质情况影响,中、小学校舍和医院等重要建筑应提高抗震设防类别,各类结构的重要部位和薄弱部位、例如楼梯间等应予加强,结构防止连续倒塌和强柱弱梁设计问题应予重视等等。根据住房和城乡建设部落实国务院《汶川地震灾后恢复重建条例》的要求,在认真总结建筑震害经验的基础上,对《2001规范》作了应急的局部修订,于2008年7月30日颁布了GB50011―2001(2008版)《建筑抗震设计规范》。局部修订的修订内容有:
(1)依据地震动参数区划图的局部修订,对四川、陕西、甘肃地震灾区的设防烈度予以变更;
(2)增加山区场地建筑抗震设计的专门要求;
(3)从概念设计的角度,提出建筑结构体系需要注意和改进之处;
(4)提高楼梯间抗震安全性的对策;
(5)抗震结构材料性能和施工要求的局部调整;
(6)增加一定数量的强制性条文。
在完成2008版局部修订之后,《2001规范》的修订工作步入正轨,认真吸取汶川地震的震害经验,按要求于2009年12月完成审查并报批。2008版和2009年修订基本延续了《2001规范》的主要抗震设计理念和方法。
3 高层建筑抗震设计中应该注意的方面
3.1结构体系与材料的选用
在地震常发区,建筑结构体系或材料的选用是否合理是人们特别关注的事情。在我国,低于150 米的建筑采用的结构体系主要有三种:筒中筒、框―筒和框架―支撑体系。其它国家的高层建筑也常采用这些体系。但国外建筑大多都是钢结构建筑,而我国钢筋混凝土建筑的比例高达9 成。如此高的钢筋混凝土结构及混合结构,国内外对如此高比例的钢筋混凝土建筑的抗地震作用并没有很好的经验。混式结构的钢筋混凝土内筒常常要承受70%至90%的震层剪力。采用钢筋混凝土核心筒结构,则应将钢筋混凝土结构的位移限值作为变形控制的基准;但因为此结构的弯曲变形侧移比较大,采用刚度较小的钢框架协助减小侧移的方式,不仅效果不明显,而且会使钢结构负担显著增大,有时必须通过设置伸臂结构或增加混凝土筒的刚度的方式产生加强层才能达到规范的侧移限值;如果柱距或结构体系发生变化时,就应设置结构转换层。转换层和加强层产生的大刚度容易造成结构刚度的突变,往往会造成柱构件剪力的突然加大,外框架柱连接处与转换层构件或加强层伸臂之间很难保证强柱弱梁。因此要慎重选择转换层和加强层的结构模式,尽可能降低它们的刚度,避免其造成的不利影响
3.2场地和地基的选择
建筑的场地以及地基的选择对于高层建筑的抗震能力具有直接的影响,是建筑抗震设计的基础,在进行建筑场地以及地基的选择时,应该充分了解当地的地震活动情况,对当地的地质情况进行有效性、科学性的勘察,在收集丰富资料的基础之上对场地进行综合的分析和评价,评估当地的抗震设计等级,对一些不利于抗震设计的场地应该尽可能的进行规避,而实在无法规避的应该有针对性的做好相应的处理措施,在高层建筑地基选择过程当中应该尽可能的选择岩石或是其它具有较高密实度的基土,从而提高建筑地基的抗震能力,尽可能的避开不利于抗震的软性地基土,对于一些达不到抗震要求的地基应该采取相应的措施进行加固和改造,使其能够符合相应的标准。
3.3建筑结构的规则性
在进行建筑结构设计的过程当中,应该尽可能的按照规则来,尤其是抗侧力结构应该尽可能的简单化,从而保证可靠性和承载力分布的均匀性;建筑结构的平面布置应该选择形状比较规则的图形,这样在发生地震的时候能够确保建筑整体的承载力均匀分布;应该尽可能的避免不规则的结构平面,造成建筑结构质心和刚心出现交错,这样一旦出现地震;一些和刚心距离比较大,刚度不足的构件就会发生侧移,受到较大的地震力的影响,有可能因为承受不住而发生损坏,最终导致建筑由于某个构件的损坏而发生倾斜和倒塌,为了防止抗侧力结构横向刚度突然出现变化,应该使垂直方向的抗侧力的截面积从上到下逐渐的递减。
3.4楼梯间设计的加强
楼梯的结构是直接或间接与主体结构相连的,例如,对于框架结构房屋,楼梯事实上是主体框架结构的一部分,在地震作用下,斜向构件梯段板也要承受剪力,这有可能导致梯段板断裂。梯段板通常有半个层高,两个标高处的水平位移有差值,容易使梯段板拉裂。另外,其各跑段梯段板的振型不一定相同和同步,容易导致梯段板底部受力钢筋与梯段板分离,钢筋断裂,还可能导致平台梁受扭破坏。在框架结构楼梯中由于存在休息平台,易形成短柱*除此以外,楼梯间高度相当于1.5个层高,这也会对楼梯间的稳定性造成影响.施工缝的留置也可能会影响楼梯的稳定性。多层民用房屋结构中,楼梯多为现浇板式结构,楼梯的施工应与楼房其他主体结构的施工同步进行,才能保证房屋的主体结构安全和抗震效果。这样,在楼梯中就不可避免地留置一定数量的施工缝,施工缝的留置位置和支模方法直接关系到主体工程质量和施工难易程度。
为加强楼梯间的整体性及墙体的稳定性,以增强其空间刚度,应加强纵横墙体之间的可靠连以限制墙体裂缝的产生,发展及倒塌。
(1)顶层楼梯间墙体应沿墙高每隔500mm设2Φ6通长钢和Φ4分布短钢筋平面内点焊组成的拉结网片或Φ4点焊网片;7~9度时,其他各层楼梯间墙体在休息平台或楼层半高处设置60mm厚、纵向钢筋不应少于2Φ10的钢筋混凝土带或配筋砖带;配筋砖带不少于3皮,每皮的配筋不少于2Φ6,砂浆强度等级不应低于M7.5且不低于同层墙体的浆强度等级。
(2) 楼梯间及门厅内墙阳角处的主梁支承长度不应小于500mm并应与圈梁连接。
(3)突出屋顶的楼梯间,除其构造柱应伸到顶部!并与顶部圈梁连接外,所有墙体应沿墙高隔2Φ6通长钢和Φ4分布短钢筋平面内点焊组成的拉结网片或Φ4点焊网片。
4 结语
我国的《建筑抗震设计规范》还会在今后的实践中吸取更多的经验,从而成长的更加成熟,而高层建筑的成熟也将称为这我国走向小康社会的鲜明符号。在高层建筑的设计上积极响应《建筑抗震设计规范》是对人民群众安全的责任。从长远角度看,开发各种合理的实用可行抗震设计策略,是一件非常重要且有意义的事情。
参考文献
[1]TJ11-74 工业与民用建筑抗震设计
[2]GB 50011-2001 建筑抗震设计规范[S].2008版
[3]王亚勇 《建筑抗震设计规范》的发展沿革和最新修订 《建筑结构学报》 2010年6月
关键词:建筑结构;抗震设计;发展现状
中图分类号:TU3文献标识码:A
2008年,汶川地震的惨痛事件让我们清醒的认识到建筑物抗震的重要性。2010年,我国的相关部门结合国内建筑特点,颁布了《建筑抗震设计规范》,其中,对地震多发区的建筑物抗震等级以及抗震结构施工都做出了严格规定。有效地提升了国内建筑物的抗震标准,但是,在实际的工作当中,仍然存在着一定的不足。本文重点对建筑物抗震结构设计进行分析。
一、建筑抗震的主要影响因素
(一) 抗震设计标准
目前,国内在不同地区设定的基本设防烈度,主要是根据该地区以及具体建筑在一段时间内遭受地震以及地震强度的概率而定的。如果是一般建筑,则执行基本烈度设防,如果是重要的建筑物,则相应地提升设防烈度,但是,随着烈度的提升建筑的造价会有所增加。
(二) 建筑结构形式
为了有效地保证建筑物“小震不坏,大震不倒”,在最新的设计规范中,砖混内框架结构被严格取缔了。目前,主要采用的是剪刀墙结构、框架结构等。尽管单纯的框架结构造价低,但是,抗震性能较差,因此,普遍适用于一些地震发生概率地、级别小的地区。
(三) 抗震措施
抗震措施主要是根据建筑的重要性决定的。在确定建筑等级及场地类型之后,将先进的抗震理念和系统的分析计算纳入到抗震措施设计中,即可改善建筑抗震设计,提高建筑抗震效果。
二、结构抗震设计中概念设计
所谓“建筑抗震概念设计”是指根据地震灾害和工程经验等所形成的基本设计原则和设计思想,是进行建筑和结构总体布置并确定细部构造的过程。地震动是一种随机振动,有难于把握的复杂性和不确定性,要准确预测建筑物所遭遇的特性和参数,目前尚难做到。在结构分析方面,由于未能充分考虑结构的空间作用、非弹性性质、材料时效、阻尼变化等诸多因素,也存在着不确定性。因此抗震问题不能完全依赖计算结果。而是应该立足于工程抗震基本理论及长期工程抗震经验总结的工程抗震基本概念,往往是构造良好结构性能的决定性因素。抗震概念设计主要有如下几点:
(一) 建筑选址
避免抗震危险地段,选择对抗震有利的场地、地基和基础在进行设计时,应根据工程需要,掌握地震活动情况和工程地质的有关资料,做出综合评价,宜选择坚硬土或开阔平坦密实均匀的中硬土等有利地段;避开软弱土、液化土、河岸和边坡边缘,平面分布上成因、岩性、状态明显不均匀的土层等不利地段;同一结构单元不宜设置在性质截然不同的地基土上,也不宜部分采用天然地基,部分用桩基,当地基有软弱黏性土、液化土、新近填土或严重
不均匀土层时,宜加强基础的整体性和刚度。
(二) 合理的平立面布置
建筑物的动力性能基本上取决于它的建筑布局和结构布置。建筑布局简单合理,结构布置符合抗震原则,从而确保房屋具有良好的抗震性能。建筑物的平、立面布置宜规则、对称,质量和刚度变化均匀,避免楼层错层。但事实上,由于城市规划、建筑艺术和使用功能等多方面的要求,建筑不可能都设计成方形或圆形。我国《高层建筑混凝土结构技术规程》,对地震区高层建筑平面形状作了明确规定;并提出对平面的凹角处应采取加强措施。对体形复杂的建筑物合理设置变形缝,在结构设计时要进行水平地震作用计算和内力调整,并应对薄弱部位采取有效的抗震构造措施,严格控制建筑物的高度和高宽比。
(三)结构选型和结构布置
结构选型根据建筑的重要性、设防烈度、房屋高度、场地、地基、基础、材料和施工等因素,经技术、经济条件比较综合确定。单从抗震角度考虑,作为一种好的结构形式,应
具备下列性能:延性系数高;匀质性好;正交各向同性;构件的连接具有整体性、连续性和较好的延性,并能发挥材料的全部强度。结构布置遵循的原则是平面布置力求对称,使构件分配的力均匀;竖向布置力求均匀,尽可能使其竖向刚度、强度变化均匀,避免出现薄弱
层,并应尽可能降低房屋的重心。
三、建筑结构消能减震与隔震设计
通常情况下,传统的建筑结构抗震主要是对建筑结构本身的抗震性进行加强,从而达到抗震能力提升的目的,这种抗震设计较为消极。而消能减震隔震设计是指在结构体系中设置隔震层以隔离地震能量,或在抗侧力结构中设置消能器吸收地震能量,从而达到减轻震害的目的,是积极主动的抗震对策。我国已经在《建筑抗震设计规范》中纳入了隔震与消耗减震的内容,并制定了《建筑隔震橡胶支座标准》、《夹层橡胶垫隔震技术规程》。但由于它是一种新型的结构体系,且隔震层以上结构部分的使用要求高于非隔震建筑,因此,在目前的设计中应用较少。其主要原理为:在房屋底部设置橡胶隔震支座和阻尼器等,以延长构件的自振周期、增大阻尼,或在结构中设置消能装置,通过局部变形提供附加阻尼,消耗地震能力,而达到保护上部结构的目的。
四、结论
近年来,我国在建筑抗震设计方面取得了很多进步,并形成了一套较为完整的建筑抗震设计方案。但是,由于经验以及资金投入等诸多因素,导致设计上还存在一定的不足,尚需要进一步完善。总而言之,要想真正确保建筑结构抗震设计的高效、科学,就必须严格遵守相关的规范、原则,并结合国内外先进理念,制定出科学合理的建筑结构抗震设计方案,只有这样,才能有效地确保我国的建筑结构抗震水平更上一层楼。
参考文献:
[1] 刘欣. 由汶川地震引发对建筑结构抗震设计的思考[J]. 中国新技术新产品. 2010(08).
[2] 吴智,李贵男,段壮志. 民房建筑结构抗震能力分析与抗震措施探讨[J]. 山西建筑. 2009(29).
[3] 叶列平,曲哲,陆新征,冯鹏. 提高建筑结构抗地震倒塌能力的设计思想与方法[J]. 建筑结构学报. 2008(04).
关键词:抗震设计;高层建筑;结构安全
中图分类号:TU2 文献标识号:A 文章编号:2306-1499(2014)10-
1.结构抗震设计内容
地震是一种随机振动,有着难以把握的复杂性和不确定性,要准确地预测建筑物遭遇地震的特性和参数,尚难以做到。在建筑抗震理论未达到科学严密的今天,单靠计算很难使建筑具备良好的抗震能力。因此,结构工程师必须重视建筑总体抗震能力的概念设计。
1.1避免抗震危险地段
选择对抗震有利的场地、地基和基础。在进行设计时,应根据工程需要,掌握地震活动情况和工程地质的有关资料,作出综合评价,宜选择坚硬土或开阔平坦密实均匀的中硬土等有利地段;避开软弱土、液化土、河岸和边坡边缘,平面分布上成因、岩性、状态明显不均匀的土层等不利地段;同一结构单元不宜设置在性质截然不同的地基土上,也不宜部分采用天然地基,部分用桩基,当地基有软弱黏性土、液化土、新近填土或严重不均匀土层时,宜加强基础的整体性和刚度。
1.2合理的平立面布置
建筑物的动力性能基本上取决于它的建筑布局和结构布置。建筑布局简单合理,结构布置符合抗震原则,从而确保房屋具有良好的抗震性能。建筑物的平、立面布置宜规则、对称,质量和刚度变化均匀,避免楼层错层。对体形复杂的建筑物合理设置变形缝,在结构设计时要进行水平地震作用计算和内力调整,并应对薄弱部位采取有效的抗震构造措施,严格控制建筑物的高度和高宽比。
1.3多道抗震防线的设置
多道设防就是人为加强某些竖向抗侧力结构,提高部分的可靠度;并且有意识地设置一些薄弱环节,使其在强震作用下退出工作。将建筑物自振周期与地震动卓越周期错开,使建筑物的共振现象得以缓解,减轻地震的破坏作用。
抗震防线的设置原则如下:(1)优先选择不负担或少负担重力荷载的竖向支撑或填充墙,或者选用轴压比较小的抗震墙、实墙筒体之类构件,作为第一道抗震防线的抗侧力构件。(2)建筑物采用双重抗侧力体系,在建筑物中设置赘余杆件。当建筑物受到强烈地震动作用时,一方面利用结构中增设的赘余杆件的屈服和变形,来消耗输入的地震能量;另一方面利用赘余杆件的破坏和退出工作,实现结构周期的变化,避开地震卓越周期长时间持续作用所引起的共振效应。
1.4刚度、承载力和延性的匹配
当结构具有较高的抗力时,其总体延性的要求可有所降低;反之,较低的抗力需要较高的延性要求相配合。提出综合抗震能力的概念,即综合考虑整个结构的承载力和构造等因素来衡量结构具有的抵抗地震作用的能力。地震时建筑物所受地震作用的大小与其动力特性密切相关,具有合理的刚度和承载力分布以及与之匹配的延性。提高结构的抗侧刚度,往往是以提高工程造价及降低结构延性指标为代价的。要使建筑物具有很强的抗倒塌能力,最理想的是使结构中的所有构件都具有较高的延性,然而实际工程中很难做到。有选择地提高结构中的重要构件以及关键杆件的延性是比较经济有效的办法。因此,在确定建筑结构体系时,需要在结构刚度、承载力及延性之间寻找一种较好的匹配关系。
2.基于性能的结构抗震设计理论的框架
与传统的结构抗震设计相比,基于性能的结构抗震设计在内容和形式上有了实质性变化,几乎每个从事性能设计研究的国家都构造了这种最新抗震设计的理论框架,尽管细节存在差异,但基本内容相同,以下给出的性能设计总框图。
从设计流程图来看,基于性能的结构抗震设计涉及工程地震、岩土工程、结构工程、建筑学及社会经济等诸多科学,每一个过程均涉及了一个广泛的研究领域,基于性能设计的挑战在于要明确每一个过程的关键技术,并展开研究,在不断的探索与进步中使基于性能的设计更加接近现实。
3.高层建筑结构抗震的具体设计
3.1高层建筑结构抗震设计应重视建筑结构的规则性
(1)高层建筑主体抗侧力结构两个主轴方向的刚度要比较接近、变形特性要比较相近。(2)高层建筑主体抗侧力结构沿竖向断面、构成变化比较均匀,不要突变。(3)高层建筑主体抗侧力结构的平面布置,应注意同一主轴方向各片抗侧力结构刚度尽量均匀,应避免在主体结构的布置中设置一、二片刚度特别大而延性较差的结构,如长窄的实体剪力墙。
3.2合理的建筑结构体系选择
(1)结构体系应具有明确的计算简图和合理的地震作用传递途径。(2)结构体系宜有多道抗震防线。(3)结构体系宜具有合理的刚度。
3.3抗侧力结构和构件的延性设计
(1)钢筋混凝土框架结构应设置为“强柱弱梁”。(2)剪压比限制。(3)钢筋混凝土框架的梁、柱应避免剪切破坏,即形成“强剪弱弯”。(4)轴压比限制。轴压比是控制偏心受拉边钢筋先到抗拉强度,还是受压区混凝土边缘失达到其极限压应变的主要指标。
基于性能抗震设计还处于初级研究阶段,为了实现多级抗震进而使得结构在整个生命周期内费用达到最小,还有很多工作要做,如合理的目标性能水平的划分与确定、不确定因素的合理考虑、更加细致的结构非线性分析、结构自身抗震性能的确定、合理的设计方法、结构与地基之间的相互作用等一系列问题还要具体深入地研究。只有这些基本问题解决了,才能很好做到基于性能的抗震设计。
关键词:抗震概念设计;抗震计算方法;提高结构抗震性能的措施
中图分类号:TU37 文献标识码:A
1 抗震概念设计及思路
抗震设防的基本目的是在一定的经济条件下,最大限度地限制和减轻建筑物的地震破坏,保障人民生命财产的安全。为了实现这一目的,抗震设计规范以“小震不坏,中震可修,大震不倒”,即三水准的抗震设防要求作为建筑抗震设计的基本原则。
一般来说,建筑抗震设计包括三个方面的内容与要求:概念设计、抗震计算与构造措施。概念设计在整体上把握抗震设计的主要原则,减少由于建筑结构自身带来地震作用及结构地震反映的复杂性而造成抗震计算不准确;抗震计算为结构抗震设计提供定量依据;构造措施则是抗震概念设计与抗震计算的有效保障。结构抗震设计三个方面的内容是一个不可分割的整体,忽略其中任何一部分都可能造成抗震设计的失效。
建筑结构抗震概念设计的目标是使整体结构能发挥耗散地震能量的作用,从而避免结构出现比较敏感的薄弱部位,导致结构过早的破坏。假定整个结构能发挥耗散地震能量的作用是抗震设计方法的前提之一,在此前提下才能以多遇地震作用进行结构计算与构造措施。
建筑结构抗震设计的基本原则包括:(1)结构的简单性,即结构在地震作用下具有比较明确的传力途径,结构的计算、内力及位移分析都易于把握。(2)结构的规则及均匀性,造型和结构布置比较均匀可以避免刚度、承载能力与传力途径的突变,以限制结构在竖向出现敏感的薄弱部位,建筑平面比较规则可以使建筑物质量分布与结构刚度分布协调,限制质量与刚度之间的偏心。(3)结构的刚度与抗震能力,结构布置应使结构在两个主轴方向具有足够的刚度和抗震能力、足够的抗扭刚度和抵抗扭转振动的能力。
2 结构抗震计算方法及抗震验算
结构抗震计算可分为地震作用计算和结构抗震验算两部分。进行结构抗震设计时,在确定结构方案后,首先应计算地震作用,然后计算结构和构件的地震作用效应,最后再将地震作用效应与其他荷载效应进行组合,验算结构和构件的承载力与变形,以满足“小震不坏、中震可修、大震不倒”的抗震设防要求。
结构抗震计算的方法包括:(1)底部剪力法,特点是忽略高振型的影响,假定结构地震反应以基本振型为主,将基本振型简化为倒三角形进行计算,但是计算精度稍差。(2)振型分解反应谱法,利用振型分解的原理和反应谱理论进行结构最大地震反应分析,计算精度稍高。(3)时程分析法,选用一定的地震波直接输入到所设计的结构,然后对结构的运动微分方程进行逐步数值积分,求得结构在整个地震时程范围内的地震反应,计算精度高。
为了满足“小震不坏、中震可修、大震不倒”的抗震设防标准,《建筑抗震设计规范》规定进行下列内容的抗震验算:(1)多遇地震下结构允许弹性变形验算,防止非结构构件的破坏,如隔墙、幕墙、建筑装饰等的破坏。(2)多遇地震下结构强度验算,防止结构构件因承载力不足而破坏。(3)罕遇地震下结构弹塑性变形验算,以防止结构因过大变形发生倒塌。
3 提高结构抗震性能的措施
结构的抗震性能决定于结构的整体性、延性,而结构的整体性和延性与结构布置、结构整体刚度、结构节点和构件的延性和强度密切相关。
结构布置时宜考虑多道抗震防线,一个抗震结构应由若干延性较好的分体系组成,通过构件的链接协同作用,有意识地在结构内部、外部建立一系列分布的屈服区,使结构在先屈服的部分耗散大量的地震能量,而使最后的“防线”得以保存,便于结构修复。即通常所说的“小震不坏,中震可修,大震不倒”,同时设计中应做到的“强柱弱梁”、“强剪弱弯”、“强节点弱构件”。
如框架结构抗震设计原则为强柱弱梁设计,梁屈服后柱仍能保持稳定;框架--剪力墙结构抗震设计原则为连梁首先屈服,然后是墙肢,框架作为第三道防线;剪力墙结构抗震设计原则为通过构造措施保证连梁首先屈服,并通过空间整体性形成高次超静定。
结构应具有合理的刚度和承载力分布,建筑物的侧移刚度越大,则自振周期越短,地震作用也越大,要求结构构件具有较高的承载力。提高结构的抗侧刚度,往往以提高造价和降低结构变形能力为代价,因此在确定结构体系时,需要在刚度、承载力之间寻求较好的匹配关系。
垦利县育才华都工程为高层剪力墙结构,结构地上一层的侧向刚度小于相关范围地下一层侧向刚度的0.5倍,故采用地下室顶板作为上部结构的嵌固部位。在进行初步整体计算时,地震作用下局部X向最大层间位移角为1/900,超过了规范规定的1/1000。受地块限制,没有足够的场地布置车位,规划设计条件又要求车位比为1:1,所以地下二层必须设计为车库。受限于车库门最小净宽的要求,该部分剪力墙的长度无法再加长,经过多次试算,通过增加剪力墙连梁的高度提高了该部位的抗侧刚度,从而使层间位移角得到改善,满足了规范要求。
结构应采取的构造措施,对于多层砖砌体结构,在构造上应采取设置构造柱、现浇混凝土圈梁、在砖砌体内配置横向和竖向钢筋等措施。对于多层砌块结构在构造上应采取设置钢筋混凝土芯柱、圈梁等措施。对于钢筋混凝土结构,应通过混凝土材料、截面尺寸、纵向和横向的配筋来避免剪切破坏先于弯曲破坏、混凝土的压碎先于钢筋的屈服、钢筋的锚固黏结破坏先于构件的破坏。
山东威迪车轮有限公司倒班宿舍工程为四层砌体结构,依据《建筑抗震设计规范》在纵横墙相交处及楼梯间四角分别设置了现浇钢筋混凝土构造柱,并在每层楼面或屋面处设置现浇钢筋混凝土圈梁,使得构造柱、圈梁及钢筋混凝土楼板现浇为一空间整体,增强了结构整体稳定性,从而提高了该工程的抗震能力。
4 结束语
近几年,四川汶川、雅安及青海玉树等多地发生地震,且震害较严重,因此做好抗震设计是十分必要的,不仅要掌握好结构的抗震计算及抗震措施,更要注重结构的抗震概念设计。
参考文献
[1] 混凝土结构设计规范 GB 50010-2010 中国建筑工业出版社
[2] 建筑抗震设计规范 GB50011-2010 中国建筑工业出版社
[3] 高层建筑混凝土结构技术规程JGJ3-2010 中国建筑工业出版社
[4] 高层建筑钢筋混凝土结构概念设计方鄂华编著,机械工业出版社
关键词建筑结构,结构抗震设计理论,抗震设防水准,抗震验算理论
中图分类号: TU318 文献标识码: A 文章编号:
1前言
中国是世界上地震灾害最严重的国家之一,2008年的汶川地震震碎了无数家庭、吞噬了数万生灵,使中国人民蒙受了巨大损失。最大限度地减轻地震灾害造成的人员和经济损失是政府和每一个工程技术人员的迫切目标。在中国经济突飞猛进的基础上,我们应该总结国内外先进的抗震设防思想,发展出台适应我国我国情的抗震设计规范,使地震灾害对人民群众的人身财产安全造成的损失降到最低。
2抗震设计的发展概况
结构抗震设计理论的理论框架由地震设防水准、结构抗震设计内容和建筑结构抗震性能目标三部分组成。这个框架的形成伴随着人类对地震和结构动力特性理解的深入,是一个循序渐进的发展和自我完善过程,总共经历了四个发展阶段:(1)静力理论阶段(1910-1940);(2)反应谱理论阶段(1940-1960);(3)动力理论阶段(1970-1980);(4)基于结构性能的抗震设计理论阶段(1990至今)。每一个阶段的理论成果都标志着当时人类对抗震设计的认识,每一个新阶段的诞生都意味着人类对抗震设计理论的创新和突破。是一个漫长的逐步深化过程。
3抗震设防水准
在现实中,我们通过使用一些参数来反映地震作用,它由很多因素决定。当地震作用函数确定已知时,我们把作用于现场的地震作用的大小定义为抗震设防水准。因为抗震设防水准直接决定了现在设计建筑结构在未来的抗震能力,所以在结构抗震设计理论中占有重要地位。
美国没有以国家名义公布的抗震设防标准,只有一些具有官方性质的研究机构或者非盈利机构提出的推荐性标准。但近来有很多美国学者在关于结构性能设计的研究报告中指出了地震等级划分标准的必要性。我国现行的抗震设计规范中关于震级的划分方法也经历过评议和修正,现阶段的抗震设防水准采用基于概率分析的三种设防级别:小震、中震和大震,这种划分是比较合理的,它充分考虑到了地震发生的随机性。
中国现行规范采用的抗震设防烈度和设计基本地震加速度的双重指标是值得探讨的。这种设防水准侧重对震后灾害结果的宏观描述,充分考虑了居民的生命安全,却在很大程度上忽略了经济指标。适应于现代经济的抗震设防目标应该要同时考虑到震中、震后建筑物的失效问题和经济损失问题。现行规范已采用的“小震不坏,中震可修,大震不倒”的三级设防目标缺乏灵活性。随着超高层、大跨度以及地下工程等复杂的工程结构逐渐成为主流,当今的工程结构同过去相比已经有了翻天覆地的变化。同时,城市化使得人口和社会财富大量聚集,地震损失表现出很多新的特点,不能仅以人员伤亡作为设防标准,经济损失应该得到兼顾。我们考虑到地震可能会在建筑使用周期中的任何时候发生,地震强度的大小也不可知,所以针对不同地震,根据建筑物的用途和重要性,采用不同基准的设防目标应该有其合理性(比如高地震危险性地区的重要建筑可采取“中震不坏,大震可修”的高级别设防目标)。未来的设防水准应该表现出对时代和社会发展的适应性,应该采用基于地震动态参数的灵活设防指标。
4抗震设计内容
抗震设计内容包含建筑物的总体结构体系设计和抗震验算理论两部分。前者是为了应对建筑物所在场地、材料及结构抗力的不确定性和地震产生的随机性。在现实活动中,人们很难预测地震对建筑结构造成的破坏程度,为了确保安全经济,选择合理的抗震结构体系非常重要。后者是保障所设计的结构符合抗震设防水准的关键步骤,是结构抗震设计内容的重要环节。
4.1总体结构体系设计
(1)抗震结构体系
结构的规则性在现行的抗震设计规范中有明确体现。在选取抗震设计方案时,应该优先选取那些规则设计方案,尽量避免抗震性能较差的不规则方案,彻底杜绝抗震性能差的严重不规则方案。在进行建筑设计时,应尽量采用对称规则的布局设置、变化均匀的质量和刚度结构。对平面或立面不规则的建筑结构要进行水平地震作用计算和内力调整;对那些结构复杂、很难满足结构规则性的建筑物,可以考虑采取提高变形能力的措施和加强措施。
(2)场地地基
根据不同场地土的分类以及其特征周期值,针对场地地基对地震动的影响可以有一个判断。现行规范采用20米深度以内的折算剪切波速和80米以内的授盖层厚度来划分场地类型。这里需要指出的是,通过剪切波速和场地土覆盖层厚度虽然实现了对场地土的分类并对不同场地应用不同的地震反应谱,但这种方法还是有其局限性,无法全面反映土层对地震动强度和特性的影响。为了使得到的不同场地土对震动的影响更合理,我们将承载力、标准贯入基数和地下水位等参数作为场地土的附加特征参与分类划分,并且这种影响需要在计算方法、抗震结构体系及构造措施上综合体现出来。
4.2抗震验算理论
抗震验算应该包括地震作用计算与结构抗震验算两部分。
首先,在地震作用计算方面,现行规范为了发挥最大的加成优势,同时采纳了静力理论的底部剪力法、动力理论的振型分解反应谱法和时程分析法作为地震作用计算方法。针对设防三水准,依照我国规范进行设计时采用了两阶段设计。第一阶段要实现设防三水准中的前两个目标:小震不坏和中震可修。前者通过在小震下进行弹性承载力验算和弹性层间位移验算保障;后者通过在中震下增加相应的抗震措施以保障结构发生部分屈服后仍能承担地震作用来实现。第二阶段要实现大震不倒的目标。除了采用抗震措施保证结构抗震所需的塑性耗能外(与实现中震可修时采用的方法一致),还需进行结构的弹塑性位移验算来控制结构的变形以及保证结构的抗倒塌性。现实应用中,应根据建筑的高度、结构的复杂性和规则性等因素灵活选取抗震计算方法。对于那些质量和刚度沿高度分布比较均匀变化的建筑,宜采取底部剪力法;对于地震高发区(如日本、印尼)的建筑结构进行地震作用计算时,应该在正常计算外进行补充计算;对于地震低发区的建筑结构进行地震作用计算时,应该进行弹塑性时程分析验算;对于其它结构,采用振型分解反应谱法即可。
其次,结构抗震验算中的截面验算我们使用内力值,而结构抗震验算中的变形验算我采用弹性变形值。前者以相关处理后的内力值必须低于承载力的极限状态为通过验算。后者以弹性变形值所对应的弹性层间位移必须低于计算楼层的层高乘以弹性层间位移角限值后的数值为通过验算。
综上所述,我们分别通过选择底部剪力法、振型分解反应谱法和时程分析法来应对结构特性不同条件下的水平地震作用。而根据我国经济发展水平及不同地区的结构物特点和用途来决定竖向地震动的结构范围是当下抗震验算理论的发展趋势和研究重点。
5建筑结构抗震性能目标
经过几十年的发展,国内的工程学者们总结得到了有关建筑结构抗震设计的实践经验,这些经验是建立在对许多地震震害实例分析的基础之上的,有很宝贵的实际应用价值。为了有效提高建筑结构抗震性能目标,需从以下几方面着手:首先,要尽量保证支柱、墙和梁的轴线处于同一平面,尽量形成构件双向抗侧力体系,使地震外力的能量传递吸收途径合理。其次,需要根据抗震等级对建筑的脆弱部位采取加强措以满足抗震设防水准。最后,建筑的抗震性能目标要实现构件的依次屈服,即设置多道抗震防线。在地震作用下,担负起第一道抗震防线的构件(延性较好)会首先屈服。其他构件则形成更多道的抗震防线,其作用是在第一道防线屈服后再依次屈服。
6结束语
结构抗震设计理论是建筑抗震设计的依据,涉及多个学科。我国投入了大量的人力、物力对其进行研究,并已取得了一些成果。但在具体应用中,现行的结构抗震设计理论还存在一定的局限性,例如忽略了一些经济指标、对建筑功能和地区差异没有进行细致区分、量化的评判标准还不够全面等,需要进行进一步的深入研究。当然,这将是一个漫长的过程。
参考文献
[1]梁栋. 浅谈结构的基本抗震思想和设计方法[J]. 山西建筑,2009,35 (5)
[2]艾树生. 建筑抗震工程设防“小震不坏”的研讨[J]. 华北地震科学,2005, 23(3)
[3]倪广林. 对建筑结构抗震设计的若干思[J]. 山西建筑, 2010, (9)
【关键词】抗震设防目标;两阶段设计方法;抗震设防标准
1 抗震设防目标
抗震设防的目标很大程度上依赖于经济政策和技术水平,既要使震前用于抗震设防的经济投入不超过当前的经济能力,又要使震后经过抗震设计的建筑的破坏程度在可以承受的范围内,达到合理使用建设投资、确保建筑抗震安全。
现行抗震设计规范的抗震设计主要致力于保证结构本身具有一定的强度、刚度和足够的延性,使所设计的结构“小震不坏、中震可修、大震不倒”。我国1976年唐山大地震的惨痛教训是由于房屋大量倒毁,顷刻间数十万人丧失生命。之后修订抗震设计规范时,将“大震不倒”作为结构抗震设计的主要目标。
《建筑抗震设计规范》(GB50011-2001)第1章总则第1.0.1条对建筑的抗震设防目标是这样规定的:“当遭受低于本地区抗震设防烈度的多遇地震影响时,一般不受损坏或不需修理可继续使用;当遭受相当于本地区抗震设防烈度的地震影响时,可能损坏,经一般修理或不需修理仍可继续使用,当遭受高于本地区抗震设防烈度预估的罕遇地震影响时,不致倒塌或发生危及生命的严重破坏。”就是说,建筑结构抗震有三个烈度水准:第一水准,众值烈度(小震);第二水准,基本烈度(中震);第三水准,罕遇烈度(大震)。
小震是指发生在该地区的多遇地震,其超越概率为63.2%,地震烈度为概率密度分布图上的众值烈度。中震则是指设防烈度或称基本烈度,其超越概率为10%,烈度值比小震大1.55度。大震则指罕遇地震,其超越概率为2~3%,其烈度值比中震大1度。
按照“三水准设计思想,通过二阶段设计方法设防的建筑应满足:当该建筑遭受与三个烈度水准相对应,遭遇第一水准烈度(小震)时,一般情况下(不是所有情况下),建筑处于正常使用状态,抗震分析时,结构可以视为弹性体系,采用反应谱进行弹性地震反应分析;遭遇第二水准烈度(中震)时,结构进入一定程度的非弹性工作阶段,但非弹性的变形或结构体系的损坏控制在可修复的范围内;遭遇第三水准烈度(大震)时,结构有较大的非弹性变形,但应控制在不倒塌的范围内。严重破坏但不倒塌的房屋,虽然没有修理价值,但可以避免人员和设备的严重损失。规范规定的这个三级设防标准可大致概括为“小震不坏,中震可修,大震不倒”。
三水准设计思想中最重要的是抗震建筑能否满足第三水准即“大震不倒”的要求,这是事关人民生命的问题。第三水准的核心和实质就是既要充分估计到大震带来的危害,从而采取有力而又适当的措施和手段,使地震灾害减轻到不致对人民生命造成危害的程度;同时也要考虑到发生大震的可能性甚小且重现期长,以及国家经济情况和财力的承受能力,不能仅仅为了防御这样罕遇的大震在建筑设计中耗费过多的材料,投入大量资金,使建筑物长期在正常使用荷载下处于十分保守和过分安全的状态。因此,新规范规定,地震力的计算仍然按设防烈度考虑,更多措施则着力于“概念设计”,以提高抗大震的能力,并对一些容易倒塌的薄弱层和部位按大震进行变形验算,在构造上采取一些加固措施。
2 两阶段设计方法
在建筑抗震设计中如何贯彻“三水准”思想?新规范明确规定必须采取二阶段的设计方法,其具体要求和步骤是:
第一阶段设计是承载力验算和弹性变形验算。取第一水准烈度(小震)的地震动参数,用弹性反应谱计算结构的弹性地震作用,然后将地震作用效应和其它荷载效应相组合,并采用《建筑结构可靠度设计统一标准》(GB50068)规定的分项系数设计表达式对构件截面进行承载力验算,以保证必要的强度可靠度要求。
为实现第一水准下的设防要求,要求对各类钢筋混凝土结构和钢结构进行多遇地震作用下的弹性变形验算。结构在第二水准烈度下的抗震验算根本上应该是弹塑性变形验算,但为减少工作量并符合设计习惯,对大部分结构,将变形验算转换为众值烈度地震作用下构件承载能力验算的形式来表现。经过分析研究表明,对多数结构可只进行第一阶段设计,而通过概念设计和抗震构造措施来满足第三水准的设计要求。
第二阶段设计是弹塑性变形验算。对有特殊要求的建筑、地震时易倒塌的结构以及有明显薄弱层的不规则结构,除进行第一阶段设计外,还要进行结构薄弱部位的弹塑性层间变形验算并采取相应的抗震构造措施,实现第三水准的设防要求。
需要进行抗震变形验算的建筑有:
1)8度Ⅱ、Ⅳ类场地和9度时,高大的单层钢筋混凝土柱厂房;
2)7~9度时楼层屈服强度系数小于0.5的框架结构、底层框架砖房;
3)甲类建筑中的钢筋混凝土结构。
结构薄弱部位应按下列原则确定:
1)楼层屈服强度系数沿高度分布均匀的结构可取底层;
2)楼层屈服强度系数沿高度分布不均匀的结构,可取该系数小的楼层和相对较小的楼层,一般不宜超过2~3处;
3)单层厂房可取上柱。
3 抗震设防标准
建筑抗震设防类别划分,应根据下列因素的综合分析确定:
1)建筑破坏造成的人员伤亡、直接和间接经济损失及社会影响的大小。
2)城镇的大小、行业的特点、工矿企业的规模。
3)建筑使用功能失效后,对全局的影响范围大小、抗震救灾影响及恢复的难易程度。
4)建筑各区段的重要性有显著不同时,可按区段划分抗震设防类别。下部区段的类别不应低于上部区段。
5)不同行业的相同建筑,当所处地位及地震破坏所产生的后果和影响不同时,其抗震设防类别可不相同。
实际设计中建筑工程应分为以下四个抗震设防类别:
1)特殊设防类:指使用上有特殊设施,涉及国家公共安全的重大建筑工程和地震时可能发生严重次生灾害等特别重大灾害后果,需要进行特殊设防的建筑。简称甲类。
2)重点设防类:指地震时使用功能不能中断或需尽快恢复的生命线相关建筑,以及地震时可能导致大量人员伤亡等重大灾害后果,需要提高设防标准的建筑。简称乙类。
3)标准设防类:指大量的除1、2、4款以外按标准要求进行设防的建筑。简称丙类。
4)适度设防类:指使用上人员稀少且震损不致产生次生灾害,允许在一定条件下适度降低要求的建筑。简称丁类。
4 结语
综上所述,抗震“三水准”设计思想和二阶段设计要求较之原规范在思路上其物理概念更明确,设计工作的步骤更具体,这既是学习和吸收先进国家抗震设计工作经验的结果,也是对防震抗震工作认识上的新飞跃。今后只要大家严格执行抗震设防标准,坚持“三水准”设计思想,严格按二阶段的设计方法和步骤去工作,无疑,防震抗震的建筑设计工作必将迈上一个新台阶。
参考文献
[1]建筑抗震设计规范GB50011-2010
关键词:混凝土结构;抗震;设计
中图分类号:S611 文献标识码: A
一、抗震设计的目标
《建筑抗震设计规范》(GB50011-2001)中规定了三个水准设防为按规范进行建筑抗震设计的设防目标,即“当遭受低于本地区抗震设防烈度的多遇地震影响时,一般不受损坏或不需修理可继续使用;当遭受相当于本地区抗震设防烈度的地震影响时,可能损坏,经一般修理或不需修理仍可继续使用;当遭受高于本地区设防烈度的地震影响时,不致倒塌或发生危及生命的严重破坏。”简称“小震不坏,中震可修,大震不倒”。
“小震不坏”要求建筑结构满足多遇地震作用下的承载力极限状态验算要求及建筑的弹性变形不超过规定的弹性变形限值。
“中震可修”要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。
“大震不倒”要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。
另外,为实现该设防目标,在设计验算时须遵守两个阶段的设计步骤。首先要对绝大多数的结构进行多遇地震作用下的结构及构件承载力验算和结构弹性变形验算,对各类结构按规范要求采取抗震措施。其次要对规范所规定的部分结构进行罕遇地震下的弹塑性变形验算。
二、建筑抗震概念设计的基本内容
建筑抗震概念设计的基本内容大致有三部分。一是建筑设计应重视建筑的规则性;二是应合理的选择建筑结构体系;三是对抗侧力结构和构件的延性设计。
1、建筑结构的合理布置,对建筑结构在地震反应中,能够起到重要的作用。为减小地震作用对建筑结构的不利影响,建筑平面形状宜规正,避免过大的外伸或内收。规范规定,若房屋平面的凹凸角不大于该方向总长度的30%,可认为建筑外形是规则的,否则即为凹凸不规则。
2、合理选择结构体系。对于钢筋混凝土结构,一般来说纯框架结构抗震能力有限;框架-剪力墙性能较好;剪力墙结构和筒体结构具有良好的空间整体性,刚度也较大。对于结构体系来说,首先应具有明确的计算简图和合理的地震作用传递途径。结构平面布置力求简单、规则、对称,避免凹角和狭长的缩颈部位;避免因局部结构或构件破坏而导致整个结构体系丧失抗震能力。如框架为强柱弱梁,梁屈服后柱仍能保持稳定;剪力墙结构的连梁先屈服;框架-剪力墙的连梁首先屈服,然后才是墙肢、框架破坏等。其次结构应有足够的刚度,控制结构顶点总位移和层间位移。在小震时,应防止过大的变形使结构或非结构构件开裂,影响正常使用;在强震下,结构应不发生倒塌、失稳或倾覆现象。另外,结构应有足够的结构承载力、变形能力以及耗能能力,具有较均匀的刚度和承载力分布、局部强度、刚度太大会使其他部位形成相对薄弱的环节。主体结构或者非结构构件的不规则、不连续布置也可能引起结构刚度的突变。
3、结构构件的延性。结构的变形能力取决于组成结构的构件及其连接的延性水平。可以采取如下抗震措施,以提高结构构件的延性水平。
1)采用水平向(圈梁)和竖向(构造柱、组合柱)钢筋混凝土构件,加强对气体结构的约束,或采用配筋砌体;使砌体在发生裂缝后不致坍塌和散落,地震时不致丧失对重力荷载的承载能力。
2)应防止构件脆性破坏,保证构件有足够的延性。如采取提高抗剪能力、加强约束箍筋等措施。
3)避免钢结构构件的整体和局部失稳,保证节点焊接部位(焊缝和母材)在地震时不致开裂。
4)突出屋面的塔楼必须具有足够的承载力和延性,以承受鞭梢效应影响。
三、高层建筑抗震设计应遵循的几点原则
1、选择有利场地,避开不利的场地,采取措施保证地基的稳定性。危险场地不宜兴建高层建筑,如基岩有活动性断层和破坏带、不稳定的滑坡地带等等;而为不利场地时,高层建筑要采取相应措施以减轻震害,如场地冲积层过厚、沙土有液化危险、湿陷性黄土等等。
2、保证地基基础的承载力、刚度,以及足够的抗滑移、抗倾覆能力,使整个高层建筑形成稳定的结构体系,防止在外荷载作用下产生过大的不均匀沉降、倾覆和局部开裂等。
3、合理设置防震缝。一般情况下宜采取调整平面形状与尺寸,加强构造措施,设置后浇带等方法,尽量不设缝、少设缝。设缝时必须保证有足够的缝宽。
4、节点的承载力应大于构件的承载力。要从构造上采取措施防止地震作用下节点的承载力和刚度过早退化。
5、减轻结构自重,最大限度降低地震的作用,积极采用轻质高强材料。
四、高层混凝土结构抗震设计中的几点优化措施
1.优化场地选择
在地震灾害发生时,不同地质环境下的建筑遭受的地震破坏的程度有较大的差别,建筑场地的优化选择对于建筑抗震尤为重要。掌握工程的地质、地震等相关资料,掌握地震的活动情况,合理选择建筑场地。对地震危险地段进行综合评估,对于地震多发地段应主动避开,无法避开时应采取相关补救措施措施,选取具有良好的抗震能力的地质环境,岩石、半岩石和密实的地基土有利于建筑抗震,松软的粘性土不利于建筑抗震。同一结构单元的基础应该设置在性质相同的地基上,同一结构单元应该采取相同的地基。建筑场地选择还应该远离有其他重大威胁的场地,例如核电站、大型石油保存设施等等,防止地震引发的核泄漏、石油泄露等其他灾害带来的安全隐患。
2.优化结构参数
优化高层钢筋混凝土建筑结构的震动周期、扭转角度、相关刚度比例等相关参数。运用剪摩理论(砌块结构)和主拉应力理论(砖砌体结构)等力学模型,对建筑结构进行地震作用下内力和变形的分析,计算弹性状态下的建筑结构的地震作用效应,与风荷载效应、重力荷载效应组合,引入相关地承载力抗震调整系数,进行构件截面的优化设计。运用计算机对结构参数进行反复计算和优化,对计算结构进行调查研究,在保证结构的抗震性能的前提下,确定结构的相关参数。
3.优化结构设计
高层钢筋混凝土建筑要满足国家规定的建筑抗震能力的标准,保证主体结构有具备变形调节能力,结构在强大延性作用下,可以恢复到正常状态,削弱主体结构变形对整个建筑结构造成的伤害,保证结构长期稳固。合理布局结构构件,注意协调高层混凝土建筑结构构件之间的受力,按照规整、对称、均匀的原则进行布置,尽可能减小地震发生时结构的弯曲变形、剪切变形、整体平移和整体转动,有条理地设计结构,增加建筑结构的整体抗震能力。注意记录地震灾害信息,根据地震引发的结构变形采取相关的防震措施,对于关键性的微小部位进行处理,维护建筑结构受力的整体一致性,削弱水平方向和竖直方向的不规则的地震力带来的破坏,达到相应的抗震效果。
4.优化抗震防线设置
一般情况下,强烈的地震会伴随着多次余震,有些高层混凝土建筑由于刚度过于柔和,所以在搜到强震破坏之后,主体结构受到损毁,继而在余震破坏下持续破坏直至坍塌,因此高层建筑的防震,出改善建筑结构本身的防震性能之外还要注重设置多道防线,减少第一次强震破坏之后余震带了的持续破坏。建筑的破坏程度主要取决于钢筋混凝土结构的变形程度,因此地震多发地区的高层钢筋混凝土建筑应该按照延性结构进行设计,设置多道抗震防线,进行极限状态的验算避免出现薄弱环节,尽可能减少地震的破坏性,提高了高层钢筋混凝土建筑的抗震性能。
5.优化扭转效应的控制
地震的破坏作用包括水平作用、竖向作用以及扭转作用等,多种力综合作用,产生巨大的破坏效应。建筑结构特别是平面不规则结构的扭转效应会加剧结构在地震中的震害,高层混凝土建筑结构的抗震设计应该注重对于扭转效应的控制。高层钢筋混凝土结构扭转效应的控制措施:优化墙肢布置,减小刚心质心的偏心率;加大周边构建的截面,加长结构四周脚部墙肢,增加平面抗扭刚度;在平面不规则处加设拉梁,增设拉接楼板,增强结构的整体性和抗扭刚度;设置钢骨外框架,在外框架的角部或四边设置钢骨混凝土柱,形成钢骨框架,增加外框架的抗扭刚度和延性。
结语
结构工程师在设计过程中,必须遵守规范要求进行结构设计。混凝土结构的抗震设计就是在结构相对应的地震设防烈度下,合理地确定结构的选型、布置,进行抗震计算,并通过进一步的抗震措施,满足抗震等级的要求,使结构具有足够的强度、刚度和延性,从而保证结构实现抗震设防的目标,真正的使建筑物实现“小震不坏,中震可修,大震不倒”,尽量减少人员伤亡,经济财产的损失。
参考文献:
[1]高小旺,龚思礼,苏经宇,易方民.《建筑抗震设计规范理解与应用》.中国建筑工业出版社.
[2] 《建筑抗震设计规范》(GB50011-2001). 中国建筑工业出版社.
[3] 吕西林.《高层建筑结构》. 武汉理工大学出版社.
关键词:抗震概念设计;建筑结构;工程设计;抗震性
对于高层建筑结构设计,要遵守抗震设计规范,从抗震概念设计应用入手,结合工程实际情况,提出定量控制要求。值得注意的是,开展高层建筑结构抗震设计,要在概念清晰且技术可靠的基础上,合理的设计建筑结构,以确保建筑的抗震性能。通常情况下,高层建筑结构抗震设计,需要从概念设计、抗震计算、抗震措施等方面加以把控,以确保设计的合理性。
1高层建筑结构抗震性设计的意义
贵州省位于我国南北地震带南段的东侧,省内西部部分区域位于地震带上。贵州地震的频度与强度为中等水平,地震平面分布不均。若发生地震,会造成极大的损失,以尼泊尔大地震为例,涉及到多个多家,地震造成近4000人死亡,约7000人受伤,对尼泊尔国造成超过50亿美元的经济损失,由此可见地震的损失性。在地震中,建筑既是人们的保护工具,也是威胁人们安全的物体,若能够提升建筑的抗震性,对保护人们的财产与安全,有着积极的作用,因此加强高层建筑结构抗震性设计研究,有着必要性。
2抗震概念设计应用的基本要点
2.1合理选择建筑结构
高层建筑结构抗震性设计,最为重要的是建筑体形和结构设计,占据着重要地位,多数倒塌建筑主要是因为规划不合理造成的,所以要科学的选择水平面与垂直面,提升建筑的抗震性能。一般来说,建筑平面形状规则,直接影响着建筑的抗震性,平面形状平整度越高,则建筑的抗震性能就越强,图1为水平地震作用。规则平面能够承担荷载作用,建筑结构的整体性较为突出。在高层建筑结构设计中,于高度方向,需要保证结构布置的连续性,实现侧向刚度保持连续,以免出现薄弱层。
2.2合理选择传力路线
高层建筑结构抗震设计多利用计算机程序,来确保计算的准确性,建筑结构设计人员只需要掌握简单的计算方法即可。利用计算机,在获取受力状态下,形成建筑结构件计算简图。接着利用力学模型和数学模型,从地震反应入手,做好详细的分析,明确计算结果,合理选择建筑结构路径,提高传力路线选择的效率。
2.3合理选择建筑位置
通过相关研究发现,建筑物损毁与建筑所处的地形,有着直接的关系。除此之外,建筑损坏和地基、断层等,也有着紧密关系。以覆盖土因素为例,建筑破坏率和此因素呈现的是正相关,覆盖土层厚度小,证明土质偏硬,具有较强的稳定性,当遇到地震时,不易发生倒塌情况,因此在设计高层建筑时,要选择硬质地基,降低地震效应,确保建筑结构的稳定性[1]。
2.4设置多条抗震防线
高层建筑结构抗震设计时,需要设置多条抗震防线。考虑到地震时间存在差异,伴随多次余震,受到地震反复冲击,会给建筑结构的稳定性造成损坏,若高层建筑物设置一道防线,当建筑受到一次破坏后,难以抗衡后续破坏,因此需要设置多道保护,确保高层建筑结构的稳定性。
3抗震概念设计在高层建筑抗震设计中的具体应用
3.1提升结构延性
高层建筑抗震设计水平低于地震等级,极易因为脆性破坏,造成建筑倒塌,所以在建筑结构抗震设计中,要提高结构延性,增强建筑结构抵抗能力。可以从以下方面入手:①材料。选择延性材料,此类材料的应用,当发生非弹性变形,或者发生反复弹性变形时,其延性不会明显下降。②杆件。通过控制杆件的延性,包括塑性变形与能量收纳与耗散等,提高结构延性,通常从墙肢与框架的柱等方面捂手。③构件。构件的延性指的是某个构件的塑性变形与能量消耗的能力,通过控制墙体或者框架延性,来提高建筑结构整体延性。总得来说,建筑结构延性指的是抗倒塌能力与塑性变形能力。在设计时,可以采取以下措施:①在平面上,增强突变处与转角处等构件的延性;②对于竖向,则可以加强薄弱楼层的延性,比如体型突变处、主楼与裙房相接的楼层等;③增强首道抗震防线部分的构件延性[2]。
3.2提升结构的整体性
高层建筑结构的整体性较强,能够确保建筑结构在地震力的作用下,处于协调运行的状态,可避免建筑倒塌。采取以下措施:①选用钢结构支撑结构。钢结构作为建筑行业的新技术,其市场份额不断扩大,贵州地区已经逐步引入钢结构,比如贵州钢结构发展中心楼,楼层高24层,建筑面积为26000m2,建筑承板使用的是钢筋线桁架工艺,建筑整体性较好,抗震性能较好。高层建筑结构设计中,采取钢结构支撑体系,对提升高层建筑框架结构中的侧向刚度,有着积极的影响,可以抵抗水平荷载,提升高层建筑整体强度。与纯框架架构相比,支撑结构稳定性较好,将窗台下方-下层窗户顶部区域位置,作为支撑位置,合理设置支撑,能够达到结构支撑要求。采取环向封闭同一平面,能够提高建筑钢结构侧向刚度,在强震区应用,其效果更为凸显。②抗侧力结构。若高层建筑结构为多种框架结构形式,应用钢结构,可以承载建筑物竖向负载与部分横向负载。采用抗侧力结构,可以按照建筑的各类要求,来选用抗侧力结构。若高层建筑中桁架高度和单楼层相同,可以利用交错桁结构,来设置上下楼层,确保各单元设置的灵活性。应用此结构,在钢结构平面内,梁柱弯矩较小,侧向位移也较小。
3.3准确计算结构抗震
开展高层建筑结构抗震设计前,需要准确的计算建筑结构的地震作用,接着计算结构与构件的地震作用效应,并且和其它载荷效应,做好相互结合,检验建筑结构抗震承载力与变形,确保能够达到新《建筑抗震设计规范》(GB50011-2001)规范相关要求。需要做好以下计算:①地震作用计算。建筑结构抗震承载力主要考虑水平地震作用,高层建筑结构设计,还需要注意竖向地震作用。②抗震验算。主要包括截面抗震验算、弹性变形验算、薄弱层弹塑性变形验算等[3]。
3.4做好非结构部件设计
非结构部件指的是建筑结构分析中,不考虑侧向荷载与重力荷载的建筑部件,包括内隔墙与墙等。虽然建筑结构设计时,此类部件不参与荷载分析,但若发生地震,此类部件会起到作用,极有可能会改便建筑结构承载力,或是提升建筑抗震性,或是增加破坏性,因此需要做好非结构部件的处理。可以采取以下措施:①加强建筑框架和填充墙之间的联系,使得填充墙可以成为建筑主体抗震结构的组成部分。对于墙体连接,可以采取柔性连接方式,削弱墙柱的联系,避免发生嵌固作用。②对于附着在建筑楼与屋面结构的,需要做好此类非结构构件和主体结构的连接处理,以免发生地震时,造成人员伤亡。③加强幕墙和装饰贴面等和建筑主体结构的有效连接,避免贴面损坏。
3.5做好倒塌分析
开展高层建筑结构设计时,采取倒塌分析法,做好建筑倒塌分析,以优化建筑结构抗争性设计,达到抗震标准。可以借鉴超高层建筑经验,譬如:某超高层建筑为Ⅷ度抗震设防烈度建筑,在建筑结构设计时,利用倒塌分析法,进行结构设计方案分析,发现采取内嵌钢支撑剪力墙方案,能够有效的增强建筑结构强度。基于倒塌分析,明确此工程采取全支撑方案建设总材料用量可节约11.2%,建筑结构抗倒塌储备能力可以增加14.8%,建筑的抗震性能较好。采取对比各种最小地震剪力系数调整方案,能够明确采取调整地震剪力,开展刚度验算,设计建筑构件承载力,能够获得较好的效果,此方案和提高刚度缩短建筑结构自振周期的方案相比,具有较强的经济性。对于建筑结构倒塌关键位置,能够提高建筑结构整体的抗倒塌能力,此方案的实施,增加钢用量约0.1%。总而言之,在建筑结构设计时,做好倒塌分析,能够准确衡量各类结构设计方案的效果,明确各类抗震措施对建筑结构抗震性能的影响,发挥着积极的作用[4]。
4结束语
应用概念设计,开展高层建筑结构抗震设计,需要充分的借鉴工程经验,严格按照建筑抗震设计相关规范,采取相应的措施,提升建筑结构的整体性能,提高结构的抗震性能。
参考文献
[1]陆新征,杨蔚彪,卢啸,齐五辉,刘斌,张万开,叶列平.倒塌分析在某500m级超高层建筑抗震设计中的应用[J].建筑结构,2015(23):91~97.
[2]刘均伟.高层建筑结构设计中抗震概念设计的运用研究[J].山西建筑,2016(20):43~44.
[3]雷雨润.高层建筑结构中抗震概念设计的应用[J].建设科技,2017(08):80.
【关键词】混凝土;钢筋混凝土;结构设计;抗震结构;抗震设计
1、引言
人类在社会发展过程中遇到一种可怕、不可抗力自然灾害就是地震。强烈地震往往是突发性以及巨大破坏力给社会、经济发展、人类生存安全、社会稳定、社会功能带来非常严重危害。使工程建筑达到减轻和避免地震灾害目,抗震设计是减轻地震灾害主要措施。这样可以减少不可抗力自然灾害对整人类社会造成损失。
2、结构抗震概念设计
结构抗震概念设计是依据地震灾害以及工程经验等提炼出设计原则以及设计思路,进行构筑物以及结构体系的总体布置,确定建筑物各细部构造的抗震设计过程。结构抗震设计必须遵循正确抗震概念设计思路,满足基本抗震概念设计技术要求,以此为基本基准进行必要抗震计算。概念设计是抗震计算前提以及数据基础,它与抗震计算相比更应该决定性意义。
2.1抗震概念设计要领
建筑结构体讲究简单、规则、对称、刚度变化均匀,抗震结构体系必须符合要求,计算简图必须明确以及合理地震传递作用的途径;抗震结构布置必须避免部分结构、构件破坏而导致整个结构丧失其抗震能力和承载能力;抗震结构必须具备必要抗震承载力,即抗剪、抗压、抗弯、抗扭等作用能力,以及较好变形能力即延展性能、通过延性及阻尼来消耗地震能量等作用;对于抗震结构关键部位必须采取有效措施进行加强;应该设置多道抗震防线;抗震结构平面上两个主轴方向受力相近;应该合理分布刚度以及强度,避免局部削弱产生薄弱部位,产生过大应力集中和塑形变形集中,抗震结构各类构件之间必须应该可靠连接,抗震结构支撑系统必须能保证结构稳定,非结构构件包括维护墙、隔墙、填充墙都要合理设置。
2.2抗震技术设计
《建筑抗震设计规范》2010版本(下称《规范》)中对于平面和竖向不规则建筑结构,在计算模型都有特别要求必须采用空间结构计算模型,产生了大量计算工作,提高了计算难度。而且虽说计算模型、方法、手段增多了,但是并不能保证抗震计算结果就是准确,主要是真实地震情况比较复杂,产生破坏作用偶然性比较大,虽然是空间计算模型但是也是模型,而不是真实的结构体必然存在较大差异性,造成建筑结构体安全度很难控制。所以,抗震设计时必须尽量避免采用不规则设计方案。设置防震缝能解决这些建筑结构,由于复杂变形而避免碰撞的好方法。但对于高层,特别是超高层建筑多选用合理建筑结构方案,而不设抗震缝,同时可以采用合适计算方法以及有效技术措施,可消除不设抗震缝带来反面影响。强调强剪弱弯,必须改变传统做法即箍筋只有I级钢筋,可以用Ⅱ、Ⅲ级钢箍;混凝土要求强度越高,其脆性就越大,其抗震性能 越低,因此,对混凝土强度等级选择是否越高越好,正确选择科学设计方法是非常必要的。
2.3设计关键问题
1)结构层间屈服强度弱
在高层建筑过程中框架结构已经成为较为普遍的存在,然而在整体设计中钢筋混凝土框架结构存在不均匀性, 这些结构存在着层间屈服强度非常薄弱。在强烈地震作用下, 抗震结构薄弱层率先屈服,弹塑性变形急剧发展,并产生弹塑性变形集中现象。
2)柱端与节点破坏严重
混凝土框架结构构件地震灾害往往是柱重梁轻,柱顶重于柱底,特别是角柱以及边柱最易发生破坏现象。除剪跨比较小的短柱易发生柱中剪切破坏之外,往往柱的破坏产生柱端弯曲破坏最多,轻者产生水平和侧向断裂;重者混凝土被压酥,主筋外露、压屈以及箍筋脱落。如混凝土构件节点核芯部位无箍筋约束时,节点与柱端破坏加倍。如柱侧有强度高砌体填充墙紧密嵌砌时,柱顶剪切破坏严重,破坏部位可能转移至窗洞处,甚至出现短柱剪切破坏。
3)砌体填充墙破坏严重
砌体填充墙刚度较大,其形变能力低,承受地震作用力低,遭受破坏,在8度以及以上地震作用力下,填充墙裂缝明显破坏和加重,甚至部分墙体倒塌,地震危害规律往往是上轻下重,空心砌体墙重于实心砌体墙,砌块墙重于砖墙。
3、混凝土结构基本抗震体系性能
混凝土框架结构、剪力墙结构以及框架剪力墙结构是钢筋混凝土建筑最为常用三大基本结构体系。其性能分析有表现如下:
1)框架结构
通过合理设计框架结构体系,把建筑框架结构设置成延性框架。延性框架在大地震作用下,通过先产生在梁铰、后产生在柱铰,这样一种耗能机构消耗大量地震能量,同时该结构能够承受较大侧向形变能量。纯框架结构是一种抗震性能非常好的结构体系,但是同时也能分析出纯框架是一种抗震刚度较小,造成侧移值比较大,因此,建筑高度不宜建造的太高。
2)剪力墙结构
剪力墙结构承载力大其刚度也很大,但侧移形变能力较小,因此,它使用范围可比纯框架结构更高。但是,剪力墙中不论是墙肢还是连梁,它截面特点是短而高,这类构件对剪切变形相当敏感,容易出现裂缝,容易出现脆性剪切破坏,因此需进行精心合理设计,才能够使剪力墙应该良好抗震性能以及良好延性能力。
3)框架-剪力墙结构
把框架以及剪力墙结合在一起共同抵抗竖向荷载以及水平荷载一种体系,它利用剪力墙高抗侧力刚度以及承载力,弥补框架结构抗侧刚度差,变形较大弱点。由于剪力墙与框架协同工作,改善了纯框架以及纯剪力墙变形性能。层间变形上下趋于均匀,框架各层柱受力也比较均匀。另外,在地震作用下,剪力墙承担了大部分剪力,框架只承担很小一部分剪力,通常都是剪力墙先屈服,剪力墙屈服后将产生内力重分配,框架分配剪力将会增大,如果地震作用继续增大,框架结构也会屈服,使之产生曲线分布吻合最好。
4、提高混凝土结构抗震性能
根据当前震害经验以及理论认识,良好抗震设计必须尽可能地考虑下述原则:场地选择,场地选择原则是避开可能发生地基失效松软场地,选择坚硬场地。体形均匀规整,无论是在平面和立面上,结构布置都要力求使几何尺寸、质量、刚度、延性等均匀、对称、规整,避免突然变化。提高结构以及构件强度以及延性,结构物振动破坏来自地震动引起结构振动,因此抗震设计要力图使从地基传人结构振动能量为最小,并使结构物应该适当强度、剐度以及延性,以防止不能容忍破坏。在不增加重量、不改变刚度前提下,提高总体强度以及延性是两个有效抗震途径。多道抗震防线,使结构应该多道支撑以及抗水平力体系,则在强地震作用下,建设工程一道防线破坏后尚有第二道防线可以支撑结构,避免倒塌。防止脆性与失稳破坏,增加延性,脆性与失稳破坏常常导致倒塌,故必须防止。这种破坏常见于设计不良细部构造。
5、结论
抗震设计中必须满足强柱弱梁、强剪弱弯、强节点、强底层柱底等延性设计原则以及有关规定。砌体结构自重大、强度较低,抗震性能差;钢结构易连接破坏、侧向刚度小以及耐火性差;钢筋混凝土结构由于其自身优势,目前城市中正在建设以及拟建多层、高层建筑物大都是钢筋混凝土结构。地震是一种自然现象,为避免它造成生命以及财产损失,作为结构工程师必须该依据《规范》对混凝土结构建筑抗震设计在给定抗震设防烈度下合理地确定结构选型、布置、各构件截面乃至构件之间联系,使建筑结构在经济条件下应该足够强度、刚度以及延性。
参考文献:
[1]朱镜清,结构抗震分析原理[M].北京:地震出版社,2002.