公务员期刊网 精选范文 继电保护原理及应用范文

继电保护原理及应用精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的继电保护原理及应用主题范文,仅供参考,欢迎阅读并收藏。

继电保护原理及应用

第1篇:继电保护原理及应用范文

中图分类号:TU99文献标识码:A文章编号:1003-2738(2011)12-0290-01

摘要:电动机保护器作为拖动系统中的重要组成部分,对电动机的起动和运行中保护起着至关重要的作用。本文分析了电动机保护器保护及构成原理,并阐述了电动机保护器在发展过程中的应用及选择原则。

关键词:电动机;保护器;保护原理;应用

一、引言

电动机是当前应用最广泛的动力设备,是其他机电设备的动力源泉,电动机正常的输出是其驱动的机电设备正常工作的前提,如今已被广泛应用于工农业、交通运输、国防等领域。电动机所带的负载种类繁多,且往往是整个设备中的关键部分,因而确保电动机的正常运行就显得十分重要。电动机保护器(电机保护器)是发电、供电、用电系统的重要器件,是跨行业、量大面广、节能效果显著的节能机电产品[1]。电动机保护器的作用是给电机全面的保护控制,在电机出现过流、欠流、断相、堵转、短路、过压、欠压、漏电、三相不平衡、过热、接地、轴承磨损、定转子偏心时、绕组老化予以报警或保护控制。如今电动机保护器几乎渗透到所有用电领域,在国民经济和节能事业中有着不可替代的重要地位和作用。

二、电动机保护器的保护原理与构成

对电动机来说,其故障形式从机械角度可以分为绕组损坏和轴承损坏两方面。造成绕组损坏的主要原因有:1.电动机长时间的电、热、机械和化学作用下,绕组的绝缘老化损坏,定转子绕组匝间短路或是对地短路。2.电网供电质量差,电源电压三相不平衡、电压波动大、电网电压波形畸变、高次谐波严重或者电动机断相运行。3.电源电压过低使得电动机启动转矩不够,电动机不能顺利启动或者是在短时间内重复启动,电动机长时间承受过大的启动电流导致电机过热。4.因机械故障或其它原因造成电动机转子堵转。5.某些大型电机冷却系统故障或是长时间工作在高温高湿环境下造成电机故障。

电动机保护原理的研究是保证电动机保护器性能高低的关键,根据三相对称分量法的理论,三个不对称的向量可以唯一分解成三组对称的向量,分别为正序分量、负序分量和零序分量。对称分量的计算公式如下:

(1)

上式是以A相为例,其中 为算子,即 , 分别是A相电流用对称分量法分解得到的正序电流、负序电流和零序电流。

根据(1)式,电动机在发生对称故障和不对称故障时,电动机的三相电流都会发生变化。电动机故障条件流过绕组的电流过大,超过电动机的额定电流,因此可根据这一特征来对电动机过电流进行保护。电机过载、断相、欠压都会造成绕组电流超过额定值。电源电压欠压,运行电流上升的比例将等于电压下降的比例;电机过载时,常造成堵转,此时的运行电流会大大超过额定电流。针对以上情况,电动机保护器可通过对三相运行电流进行检测,根据运行电流的不同性质来确定不同的保护方式,从而对电机予以的断电保护。电动机的故障类型分为过流保护、负序电流保护、零序电流保护、电压保护和过热保护等几种。

通过对电动机保护器的保护原理分析可以看出,理想的电动机保护器应满足可靠、经济、方便等要素,具有较高的性能价格比。经过发展和更新,如今电动机保护器一般由电流检测电路、温度检测电路、基准电压电路、逻辑处理电路、时序处理电路、启动封锁及复位电路、故障记录电路、驱动电路、电动机控制电路组成。电动机保护器的构成原理如图l所示。

图1 电动机保护器组成模块和构成原理图

三、电动机保护器的类型及应用分析

目前我国普遍采用的电动机保护器主要有热继电器、温度继电器和电子式电动机保护器。热继电器是五十年代初引进苏联技术开发的金属片机械式电动机过载保护器,它在保护电动机过载方面具有反时限性能和结构简单的特点[2]。但存在功能少,无断相保护,对电机发生通风不畅,扫膛、堵转、长期过载,频繁启动等故障不起保护作用。这主要是因为热继电器动作曲线和电动机实际保护曲线不一致,失去了保护作用。且重复性能差,大电流过载或短路故障后不能再次使用,调整误差大、易受环境温度的影响误动或拒动,功耗大、耗材多、性能指标落后等缺陷。温度继电器是采用双金属片制成的盘式或其他形式的继电器,在电动机中埋入热元件,根据电动机的温度进行保护,但电动机容量较大时,需与电流监测型配合使用,避免电动机堵转时温度急剧上升,由于测温元件的滞后性,导致电动机绕组受损。温度继电器具有结构简单、动作可靠,保护范围广泛等优点,但动作缓慢,返回时间长,3KW以上的三角形接法电动机不宜使用。目前在电风扇、电冰箱、空调压缩机等方面大量使用。电子式电动机保护器通过检测三相电流值和整定电流值,采用电位器旋钮或拔码开关操作来实现对电动机的保护,电路一般采用模拟式,采用反时限或定时限工作特性。

除了上述三种常见的电动机保护器,磁场温度检测型继电器和智能型电动机保护器也在电动机故障保护中得到普遍应用。磁场温度检测型保护器通过在电动机中埋入磁场检测线圈和温度探头,根据电动机内部旋转磁场的变化和温度的变化进行保护,主要功能包括过载、堵转、缺相、过热保护和磨损监测,保护功能完善,缺点是需在电动机内部安装磁场检测线圈和温度传感器。智能型电动机保护器能实现电动机智能化综合保护,集保护、测量、通讯、显示为一体。整定电流采用数字设定,通过操作面板按钮来操作,用户可以根据自己实际使用要求和保护情况在现场自行对各种参数修正设定,采用数码管作为显示窗口,或采用大屏幕液晶显示,能支持多种通讯协议,目前高压电动机保护均采用智能型

四、电动机保护器应用选择原则

选用电动机保护装置的目的,既能使电动机充分发挥过载能力,又能免于损坏,而且还能提高电力拖动系统的可靠性和生产的连续性。合理选用电机保护装置,既能充分发挥电机的过载能力,又能免于损坏,从而提高电力拖动系统的可靠性和生产的连续性。具体的功能选择应综合考虑电机的本身的价值、负载类型、使用环境、电机主体设备的重要程度、电机退出运行是否对生产系统造成严重影响等因素,力争做到经济合理。在能满足保护要求的情况下首先考虑最简单保护装置,当简单的保护装置不能满足要求时,或对保护功能和特性提出更高要求时,才考虑应用复杂的保护装置,做到经济性和可靠性的统一。

五、结束语

如今电动机保护器已发展到了微电子智能型时代,电动机保护器也朝着多元化方向发展。这就需要我们的工作人员在选型时应充分考虑电动机保护实际需求,超前、准确、及时地判断电动机的故障,合理选择保护功能和保护方式,实现对电动机的良好保护,达到提高设备运行可靠性,减少非计划停车,减少事故损失的目的。

参考文献

第2篇:继电保护原理及应用范文

Key words: high impedance differential protection ratio error

论文关键词:高阻抗差动保护 匝数比

论文摘要:本文阐述了大型电动机高阻抗差动保护原理及整定原则和整定实例。分析了CT匝数比误差对高阻抗差动保护的影响,并介绍了匝数比误差的测量方法。

1概述

高阻抗差动保护的主要优点:1、区外故障CT饱和时不易产生误动作。2、区内故障有较高的灵敏度。它主要作为母线、变压器、发电机、电动机等设备的主保护,在国外应用已十分广泛。高阻抗差动保护有其特殊性,要保证该保护的可靠性,应从CT选型、匹配、现场测试、保护整定等多方面共同努力。现在我国应制定高阻抗差动保护和相应CT的标准,结合现场实际情况编制相应的检验规程,使高阻抗差动保护更好的服务于电网,保证电网安全。

2高阻抗差动保护原理及定值整定原则

2.1高阻抗差动保护的动作原理:

(1)正常运行时:原理图见图1,I1=I2 ij=i1-i2=0. 因此,继电器两端电压:Uab= ij×Rj=0. Rj-继电器内部阻抗。

电流不流经继电器线圈,也不会产生电压,所以继电器不动作。

(2)电动机启动时:原理图见图2,由于电动机启动电流较大,是额定电流的6~8倍且含有较大的非周期分量。当TA1与TA2特性存在差异或剩磁不同,如有一个CT先饱和。假设TA2先饱和,TA2的励磁阻抗减小,二次电流i2减小。由于 ij=i1-i2 导致ij上升,继电器两端电压Uab上升。这样又进一步使TA2饱和,直至TA2完全饱和时,TA2的励磁阻抗几乎为零。继电器输入端仅承受i1在TA2的二次漏阻抗Z02和连接电缆电阻Rw产生的压降。

为了保证保护较高的灵敏度及可靠性,就应使Uab减少,也就是要求CT二次漏阻抗降低。这种情况下,继电器的整定值应大于Uab,才能保证继电器不误动。

(3)发生区内故障:原理图见图3,i1=Id/n (n-TA1电流互感器匝数比) ij=i1-ie≈i1Uab=ij×Rj≈i1Rj此时,电流流入继电器线圈、产生电压,检测出故障,继电器动作。由于TA1二次电流i1可分为流向CT励磁阻抗Zm的电流ie和流向继电器的电流ij。因此,励磁阻抗Zm越大,越能检测出更小的故障电流,保护的灵敏度就越高。

2.2高阻抗差动保护的整定原则及实例

(1)整定原则:

a)、保证当一侧CT完全饱和时,保护不误动。

式中:U-继电器整定值;US-保证不误动的电压值;IKMAX-启动电流值;

b)、保证在区内故障时,CT能提供足够的动作电压:

Uk≥2US

(3)

式中:Uk-CT的额定拐点电压。

CT的额定拐点电压也称饱和起始电压:此电压为额定频率下的正弦电压加于被测CT二次绕组两端,一次绕组开路,测量励磁电流,当电压每增加10%时,励磁电流的增加不能超过50%。

c)、校验差动保护的灵敏度:在最小运行方式下,电动机机端两相短路时,灵敏系数应大于等于2。

式中Iprim-保证继电器可靠动作的一次电流;n、Us-同前所述;m-构成差动保护每相CT数目;Ie-在Us作用下的CT励磁电流;Iu-在Us作用下的保护电阻器的电流;Rs-继电器的内阻抗。

(2)、整定实例:

电动机参数:P=7460KW;Ir=816A。CT参数:匝数比n=600;Rin=1.774Ω;Uk=170V。

CT二次侧电缆参数:现场实测Rm=4.21Ω。

差动继电器(ABB-SPAE010)参数:整定范围0.4-1.2Un ;Un=50、100、200可选;Rs=6K。

计算Us: US=IKMAX(Rin+Rm)/n=10Ir(Rin+Rm)/n=10×816(1.774+4.21)/600=81.38V

选取Us=82V

校验Uk:Uk=170V Us在85V以下即可满足要求。

确定继电器定值:选取Un=100;整定点为0.82;实际定值为82V。

校验灵敏度:通过查CT及保护电阻器的伏安特性曲线可得在82V电压下的电流:Ie=0.03A Iu=0.006A Iprim=n(Us/Rs+mIe+Iu)=600(82/6000+2×0.03+0.006)=47.8A。

由此可见,高阻抗差动保护的灵敏度相当高,这也是该保护的主要优点之一。

3高阻抗差动保护的应用

3.1高阻抗差动保护在应用中除了应注意:

(1)、CT极性及接线应正确;(2)、二次接线端子不应松动;(3)、不应误整定;(4)、CT回路应一点接地等。还应注意:(1)、CT二次应专用;(2)、高阻抗差动保护所用CT是一种特别的保护用CT。为了避免继电器的误动作,对CT有三个要求:励磁阻抗高、二次漏抗低和匝数比误差小。高阻抗差动保护用的CT设计要点是:依据拐点电压及拐点电压下的励磁电流来确定铁芯尺寸。对于高阻抗差动保护用CT的特性匹配至关重要,在实际选用时应采用同一厂家,同一批产品性相近、匝数比相同的CT。

3.2下面主要探讨CT匝数比误差对高阻抗差动保护的影响

(1)匝数比n为二次绕组的匝数与一次绕组匝数的比值。匝数比的误差εt定义如下:

εt=(n-Kn)/Kn

(6)

式中,Kn-标称电流比。

国外标准中规定此种CT的匝数比误差为±0.25%。

(2)匝数比误差要小:

当电动机启动时(见图2),电流互感器TA2未饱和,CT的二次电流接近于匝数比换算得来的数值,这是由于TA2未饱和时励磁阻抗较高的原因。一般情况下高阻抗差动保护用CT励磁阻抗为几十千欧姆的数量级。如果匝数比的分散性很大,TA1和TA2的二次电流i1和i2不能互相抵消,该差值电流ij流经继电器线圈,即成为产生误动作的原因。

(3)、匝数比误差规定为±0.25%,对于不同匝数比CT不尽合理。匝数较大CT容易满足该规定并且能保证保护不发生误动作。匝数较小CT即使满足该规定,在电动机启动时的差电压也较大,足以造成保护误动作。

下面列举两个例子:

a).两侧CT匝数比均满足±0.25%。假设:n1=3609(正误差);n2=3591(负误差)。

匝数比误差产生的不平衡电流:ij=(10×3600/3591-10×3600/3609)=0.05A

继电器两端不平衡电压:Uj=ij×Rs=0.05×6000=300V

Uj大于继电器整定值,保护在这种情况下将不可避免的发生误动作。

b). 两侧CT匝数比相对误差满足±0.25。假设:n1=3609;n2=3600。

匝数比误差产生的不平衡电流:

ij=(10×3600/3600-10×3600/3609)=0.025A

继电器两端不平衡电压:Uj=ij×Rs=0.025×6000=150V

Uj小于继电器整定值,可满足工程要求。

例2:所有参数与整定计算实例相同。

a).两侧CT匝数比均满足±0.25%。

设:n1=601(正误差) ;n2=599(负误差)。

匝数比误差产生的不平衡电流:

Uj远大于继电器整定值(82V),保护将发生误动作。

b). 两侧CT匝数比相对误差满足±0.25%,假设:n1=601 n2=600

匝数比误差产生的不平衡电流:

Uj=ij×Rs=0.0226×6000=135V

Uj仍大于继电器整定值,保护将发生误动作。

通过上述两例足以说明对于高阻抗差动保护CT选择的苛刻条件,选择时应遵守CT匝数比误差相近的原则。建议在整定原则中增加继电器整定电压应大于由于匝数比误差产生的差电压,以保证高阻抗差动保护的可靠性。

3.3匝数比误差的测量

测量的方法有两种:

第一种:在CT二次侧短路状态下,测量流经额定一次电流i1时的比值差f1,设此时励磁电流为i0,则 f1=-εt-i0/i1

二次回路连接与二次绕组阻抗相等的负荷,在额定一次电流的1/2电流下测量比值差f2,这时仍设励磁电流为i0,则 f2=-εt-2i0/i1

匝数比误差为:εt=f2-2f1

第二种方法:在测量CT伏安特性的同时测量一次绕组的电压。

第3篇:继电保护原理及应用范文

关键词:继电保护;模拟保护;微机化;课程改革

作者简介:王思华(1968-),男,江苏南通人,兰州交通大学自动化学院,副教授;赵峰(1966-),男,上海人,兰州交通大学自动化学院,教授。(甘肃 兰州 730070)

基金项目:本文系兰州交通大学教学改革项目资助的研究成果。

中图分类号:G423.07     文献标识码:A     文章编号:1007-0079(2012)01-0058-02

由于电力电子技术、计算机技术、网络技术及保护算法的不断发展,微机保护已经得到了普遍采用,尤其是近年来测量、控制及保护技术的融和,新建的变电所和发电厂其二次系统一般都安装了综合自动化系统。在对老变电所和发电厂的改造过程中,遇到保护设备的更新,无一例外地都采用了微机保护装置。因此,随着模拟式机电型保护装置退出和二次设备的不断更新,电力系统继电保护装置的微机化已基本形成[1-2]。面对这样的技术现实,结合目前继电保护教学方面教材特点,如何让学生在几十学时里,既能对继电保护的基本原理掌握好,又能对微机保护装置有所掌握,这是摆在广大继电保护教师面前的一个比较大的现实问题。为了能解决和应对这个难题,对继电保护教材和教学内容的调整势在必行。

一、保护的微机化对传统继电保护的影响

目前,在现有电力系统继电保护教材中,大多数教材在讲述保护的基本原理的过程中,一般是结合模拟型继电器来分析保护原理,尤其是机电型继电器,这样就花费了大量的篇幅用于分析介绍继电保护装置和传统继电保护的二次电路[3]。当然通过传统的机电型保护的动作过程来让学生学习和掌握保护原理是行之有效的方法,学生也容易理解,问题是在理解完了保护基本理论后,如何让学生来认识微机保护,这在大多数教材中并没有体现。而是对具体模拟电路或机电型保护元件参数的选择、元件老化、频率变化、过渡过程、管压降(门槛值)、非线性问题等进行讨论,不同类型的继电器,其动作原理是不同的,结构也不同,特别是用机电型继电器来实现较为高级保护,其结构尤为复杂,学生要掌握它很不容易,同时调试应用都不便。而微机保护,无论其功能如何,其硬件构成基本相似,无非是CPU及其扩展电路有所不同[1]。因此上述那些要讨论的因素就相对涉及较少(或不存在)。由此可见,保护的微机化对继电保护的教学内容影响很大。下面就继电保护的课程内容进行讨论。

1.电流保护的影响

电流保护单元是继电保护课程的一个最基本、最重要的单元内容,也是在实践中应用最广的内容,通过这个单元学习让学生对电力系统继电保护有一个基本的认识。学好、理解、掌握和应用尤为重要。在目前大多数继电保护教程中,在讲述这一部分原理时,大多采用模拟型器件来讲解保护,比如电压、电流、时间等机电型继电器或晶体管型继电器组成的保护电路。对于机电型继电器,通过它们来认识继电保护是比较直观的,对于学生刚接触继电保护是有好处的,其本身原理、结构简单学生容易掌握,而对于由晶体管构成的继电保护,相对来说结构要复杂些,尤其是对电子电路没有学好的学生,让他们通过晶体管保护来理解继电保护的原理难以可行。而目前电流保护装置基本是微机电流保护,它与传统的电流保护的组成结构有本质的区别,学生在学好电流保护后对微机电流保护装置不会用,不会整定,不会调整。

2.功率方向和距离保护的影响

功率方向保护及距离保护是一种较高等级的保护,其基本原理比较容易掌握,但其模拟器件的原理比较麻烦,一般的教材中花费了比较大的篇幅去介绍,如模拟式方向元件一般在线路出口相间短路时有死区,为防止在死区内短路时保护装置拒动,一般都利用RLC回路的谐振对故障前的电压相位实现记忆,记忆时间一般为70ms左右。如记忆时间过长,由于RLC回路的振荡频率与系统频率的差异,会使得记忆电压与故障前的电压有相位差,这样可能导致反向出口短路时误动。在模拟式方向阻抗继电器中为克服出口两相短路的死区,还加入了第三相电压,其目的是在出口两相短路时保证极化电压能保持与故障前的电压同相。这些问题可以很方便在微机保护中利用算法加以解决,基本不需要什么硬件。再如阻抗继电器的接线,为了保护证接线的灵敏度和测量准确问题,提出了“阻抗继电器的接线方式”,微机式的距离保护是作为一个整体引入三相电流和三相电压,不再借用电抗变换器参数的调整来改变整定阻抗和整定阻抗角,故没有由于电抗变换器的特性(转移阻抗)变化而导致的动作阻抗下降的问题,也就是说不存在精确工作电流的概念(只有A/D变换的分辨率问题)。

3.变压器保护及发电机保护的影响

在变压器及发电机保护的单元里,其保护的核心是差动保护问题,大多数教材中主要是以BCH2型继电器作为差动保护的元件来介绍的,这种模拟元件主要问题是结构复杂,另外接线和动作的整定调整十分不便,而微机差动保护一般是带制动的折线型保护,它对接线形式没有太多的要求,是一种整体接线方式,对于不同的方式它由软件来进行运算分析,消除角度误差等因素的影响,另外整定不需要算出相应的元件的动作匝数及制动匝数等,而且整定通过良好的界面来进行,方便易于实现。

二、课程教学的改革

电力系统教学改革的目的是让学生通过有限时间的学习,掌握保护的基本原理和方法,能够自主进一步深入学习或应用继电保护的原理去解决电网中的实际问题。

1.课程改革的思路

继电保护课程的改革以基本原理为主,包括保护的基本原理、保护装置和继电器的基本原理。以模拟保护具体电路为辅,对于复杂模拟电路不作介绍,减轻学生的学习负担。保护装置结构以逻辑关系为主。不同型号的保护装置只是实现方法不同,但逻辑关系不变,在模拟式保护中它体现为框图或逻辑图,在微机保护中它体现在程序的流程上。保护装置和继电器的应用举例以微机型为主,可适当兼顾尚未退役用得较多的模拟式装置和常用继电器。在教学的实践过程,应留出适当(不多)的时间,介绍当前继电保护最新的技术和原理,同时鼓励学生课后自主实验。

2.课程改革的具体方法

(1)教学手段的改革。在教学过程中,教学手段十分关键,教学手段的好坏直接关系到能否激发学生的学习积极性,也就是说能否抓住学生。目前常用的教学手段主要是板书式教学、多媒体教学及讨论式教学等。这些教学应该是经过长期实践,证明是可行的,但对于不同的教学内容如果采用一种方式效果不理想,在教学过程中不能激发学生的学习动力,因此需针对不同的教学内容,合理采用不同的手段进行。比如在讲解算法时,需要数学的推导,这时笔者主要采用板书式教学,让学生顺着老师的思路进行理解学习,在讲解保护设备时,采用多媒体比较好,让学生一下子了解设备及其一些应用,通过声光一下吸引学生学习保护设备的积极性,提高学生学习动力和对新设备的认知。再如对于故障的分析学习,笔者采用讨论法进行,充分调动学生积极性,发挥学生的思考及参与能力。因此,合理运用不同的教学手段是调动学生学习积极性的重要因素。

(2)教学内容的改革。

1)继电保护教学内容的改革。继电保护教学内容改革是核心,没有一个好的内容,无论怎么改都不会成功,问题是继电保护的内容很多,怎么从众多的内容中选取是关键所在。笔者认为内容的改革需遵循够用、发展、创新这样的层次展开。所谓够用就是继电保护内容要包含基本的保护理论原理,比如常规的电流保护、功率方向保护、距离保护及差动保护等,对于这些原理的学习要完全掌握。对于利用传统保护构成的装置的学习,要简单化学习,不必对具体的器件及复杂的模拟电路进行分析,如功率方向元件的幅值比较、电压相位的记忆、变压器差动继电器匝数的调整等电路,主要是理解整个保护的逻辑关系,这样学生容易掌握理论,又不至于陷入对模拟复杂电路的理解。所谓发展就是继电保护的理论学习要与时俱进,对于目前不用的一些陈旧理论要敢于删除,对于新的理论要补充。由于微机保护的大力发展,许多过去用模拟电路难以解决的问题,通过算法却很容易解决,如功率保护的接线形式,差动保护的接线等问题。这些问题在模拟保护中靠装置的反复移相变换进行解决,其理论比较复杂,学生在学习过程中掌握不好。现在只介绍一个过程和处理的方法,通过算法比较容易实现。当然由于微机保护引入,保护课程发生了大的变革,这要求学生需要更多的知识面,比如计算机、通信及较高的数学知识。这些知识虽然在基础课有所学习,但并没有相关的应用。因此,如何将上述相关知识应用到保护原理中,这对学生又是一个问题,所以笔者在教学过程中,主要强调保护的结构及逻辑关系,并对常用算法进行推导分析,引导学生进行数学理论的应用,注重微机保护模块的学习。

2)继电保护相关课程内容的改革。与继电保护的相关教材有 《继电保护原理》、《微机保护原理》、《变电站综合自动化系统》、《自动装置》,这几门功课的内容重复和交叉,比如在《变电站综合自动化系统》这门课中,涉及到微机保护的数据采集单元,微机保护的相关算法单元,这些内容又与《微机保护原理》的数据采集单元及保护原理相重叠。这几门课程如果独立开设,既耗费了很多学时,又不利于学生理解这些课程的相互关系和相关课程整体意识的构建,所以应统筹考虑和选取教学内容,以适合工作岗位的需要,对继电保护密切相关的课程在教学内容上,课时上尝试进行大幅度地整合。

(3)实验的改革。本科“继电保护”教学必须与工程实践结合紧密。继电保护是比较难学的课程,其原因在于继电保护技术涉及到电力系统的运行、稳定、安全以及一、二次设备的技术细节,同时,其本身也是一门包含高深理论和最新科技的工程技术学科。作为一门实践性很强的学科,继电保护的实验教学尤其重要,它是“电力系统继电保护原理”课程教学工作的重要组成部分。通过实验教学,不仅可以让学生更好地理解理论教学的内容,而且可以让学生掌握必要的工程技术、测试方法、先进设备和学科的基本研究方法,同时还可以培养学生的科学素养、实验技能和创造性,所以必须要重视教学实验环节。

1)实验室的建设更新。目前传统继电保护以继电器为主的继电保护实验室一般都已具备,通过传统实验可以使学生通过实际的保护二次接线的训练,清晰直观地观察保护动作过程和现象。此外在保护实验中可灵活模拟各种二次接线错误,然后让学生根据错误结果分析原因,培养和锻炼学生的分析能力;还可让学生按实验要求自己设计实验方案、接线、调试实验,使他们的动手能力得到提高。对于初学者来说,通过对常规保护的电气接线、工作原理、动作过程的学习,也为理解微机保护和做好微机保护实验打下良好的基础。另一种就是加强微机保护实验室建设。由于微机保护的接线少,信号质量相对较高,操作过程也相对简单,可以设计内容不同、形式多样的实验内容对学生进行专门训练,使学生较好地掌握保护测试技能、对滤波及保护算法进行初步的设计,甚至对自己设计的保护方案调试等。

2)改革实验教学的要求和方法。作为工科院校的本科生,工程实践能力是其基本素质,也是社会的基本要求。完善实验环节,积极推进实验教学环节的改革[5]。对于本科继电保护的教学采用任务驱动法,在实践过程中,可以按照电网施工的流程,将一些简单实际的小型工程全程照搬入实验室,老师提供相关的图纸资料,学生们几人一组,按照任务要求,进行保护的施工安装,调试,对保护出现的故障进行分析查找,完成所调试设备的实验报告,进一步提高学生的分析解决实际问题的能力,这就要求学生具备较强的二次识图能力。另一方面,由于微机保护装置功能强大,它能满足众多实验内容的需要。

(4)考评的改革。考评是检验学生对知识学习和应用掌握一个重要环节,不同的考评制度可以检验出学生学习过程中的不同能力,因此,要促使学生学好知识,掌握原理,学会应用,需要老师设计好不同的考评方案。考核评价体系的改革要立足于正确引导学生在打好坚实理论基础的基础上,培养和提高分析问题与解决问题的能力,鼓励学生发挥创新思维和创新能力[6]。从基础理论知识的掌握、专业技能的运用、设计性实验及综合性实验的实施等多方面进行综合考核,加大实验环节的考评比例,从制度上鼓励学生进行发散思维、求异思维的培养。传统考评往往是采用闭卷考试方式,这种方式有它的优点和公证性,但不能很好检验学生动手能力和应用继电保护原理知识去解决实际问题的能力。对于原理性内容学习采用传统闭卷考试,解决问题和分析问题能力采用具体实作考评。对于新原理的学习认识采用小论文形式拓展,最后分别设计一个系数求和,完成对一个学生的综合评价。

三、课程改革的结果分析

任何一项改革,最终要经过实践检验,当然教育实践的检验有其特殊性,它是一个长期的复杂的过程。笔者在学校教改立项的支助下,对电气2008级的电气工程的4个班中的其中两个班的继电保护进行了课程内容教学改革,从上课的效果上看,学生上课活跃程度增加,学生对继电保护原理的理解增强,对微机保护设备的认识和实践能手动力大大提高,在课程结束后,请具有现场丰富经验的继电保护工件者根据目前现场对继电保护工作人员理论知识和基本技能进行出题测试,最后测试结果成绩分析为两组,见表1、表2。

通过表1及表2的对比,可以明显反映出改革前与改革后的成绩的变化,通过对比和对学生的问卷调查,学生相对更喜欢改革后的教学方式。这也说明了这次课程内容调整和教学方式改革是比较成功的。

四、结论

大学的教育是培养高素质人才的一个重要阶段。优化的教学内容,多样的教学方式,合理的实践是培养学生掌握基本原理,引导学生开拓创新及具有一定分析与解决问题能力重要环节。对继电保护教学内容和方法的改革,经过验证是可行的。

参考文献:

[1]许建安.电力系统微机继电保护(第2版)[M].北京:水利电力出版社,2008.

[2]蒋先国.高速铁路四电系统集成[M].成都:西南交通大学出版社,2010.

[3]罗士萍,顾艳.从保护的微机化浅析继电保护课程内容的调整[J].南京工程学院学报(社会科学版),2004,(2).

[4]田有文,孙国凯,周启龙.突出继电保护教学中学生的创新能力培养[J].沈阳农业的大学学报,2005,(1).

第4篇:继电保护原理及应用范文

关键字:继电保护;电力;维护

 

 

1 前言

电力作为当今社会的主要能源,对国民经济的发展和人民生活水平的提高起着极其重要的作用。现代电力系统是一个由电能产生、输送、分配和用电环节组成的大系统。电力系统的飞速发展对电力系统的继电保护不断提出新的要求,近年来,电子技术及计算机通信技术的飞速发展为继电保护技术的发展注入了新的活力。如何正确应用继电保护技术来遏制电气故障,提高电力系统的运行效率及运行质量已成为迫切需要解决的技术问题。 

2 继电保护发展的现状 

上世纪60年代到80年代是晶体管继电保护技术蓬勃发展和广泛应用的时期。70年代中期起,基于集成运算放大器的集成电路保护投入研究,到80年代末集成电路保护技术已形成完整系列,并逐渐取代晶体管保护技术,集成电路保护技术的研制、生产、应用的主导地位持续到90年代初。与此同时,我国从70年代末即已开始了计算机继电保护的研究,高等院校和科研院所起着先导的作用,相继研制了不同原理、不同型式的微机保护装置。1984年原东北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用,揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。在主设备保护方面,关于发电机失磁保护、发电机保护和发电机-变压器组保护、微机线路保护装置、微机相电压补偿方式高频保护、正序故障分量方向高频保护等也相继通过鉴定,至此,不同原理、不同机型的微机线路保护装置为电力系统提供了新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果,此时,我国继电保护技术进入了微机保护的时代。 

目前,继电保护向计算机化、网络化方向发展,保护、控制、测量、数据通信一体化和人工智能化对继电保护提出了艰巨的任务,也开辟了研究开发的新天地。随着改革开放的不断深入、国民经济的快速发展,电力系统继电保护技术将为我国经济的大发展做出贡献。 

3 电力系统中继电保护的配置与应用 

3.1 继电保护装置的任务 

继电保护主要利用电力系统中原件发生短路或异常情况时电气量(电流、电压、功率等)的变化来构成继电保护动作。继电保护装置的任务在于:在供电系统运行正常时,安全地。完整地监视各种设备的运行状况,为值班人员提供可靠的运行依据;供电系统发生故障时,自动地、迅速地、并有选择地切除故障部分,保证非故障部分继续运行;当供电系统中出现异常运行工作状况时,它应能及时、准确地发出信号或警报,通知值班人员尽快做出处理。 

3.2 继电保护装置的基本要求 

选择性。当供电系统中发生故障时,继电保护装置应能选择性地将故障部分切除。首先断开距离故障点最近的断路器,以保证系统中其它非故障部分能继续正常运行。 

灵敏性。保护装置灵敏与否一般用灵敏系数来衡量。在继电保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。 

速动性。是指保护装置应尽可能快地切除短路故障。缩短切除故障的时间以减轻短路电流对电气设备的损坏程度,加快系统电压的恢复,从而为电气设备的自启动创造了有利条件,同时还提高了发电机并列运行的稳定性。 

可靠性。保护装置如不能满足可靠性的要求,反而会成为扩大事故或直接造成故障的根源。为确保保护装置动作的可靠性,必须确保保护装置的设计原理、整定计算、安装调试正确无误;同时要求组成保护装置的各元件的质量可靠、运行维护得当、系统简化有效,以提高保护的可靠性。

3.3 保护装置的应用 

继电保护装置广泛应用于工厂企业高压供电系统、变电站等,用于高压供电系统线路保护、主变保护、电容器保护等。高压供电系统分母线继电保护装置的应用,对于不并列运行的分段母线装设电流速断保护,但仅在断路器合闸的瞬间投入,合闸后自动解除。另外,还应装设过电流保护,对于负荷等级较低的配电所则可不装设保护。变电站继电保护装置的应用包括:①线路保护:一般采用二段式或三段式电流保护,其中一段为电流速断保护,二段为限时电流速断保护,三段为过电流保护。②母联保护:需同时装设限时电流速断保护和过电流保护。③主变保护:主变保护包括主保护和后备保护,主保护一般为重瓦斯保护、差动保护,后备保护为复合电压过流保护、过负荷保护。④电容器保护:对电容器的保护包括过流保护、零序电压保护、过压保护及失压保护。随着继电保护技术的飞速发展,微机保护的装置逐渐投入使用,由于生产厂家的不同、开发时间的先后,微机保护呈现丰富多彩、各显神通的局面,但基本原理及要达到的目的基本一致。

4 继电保护装置的维护 

值班人员定时对继电保护装置巡视和检查,并做好各仪表的运行记录。 在继电保护运行过程中,发现异常现象时,应加强监视并向主管部门报告。 

建立岗位责任制,做到每个盘柜有值班人员负责。做到人人有岗、每岗有人。 值班人员对保护装置的操作,一般只允许接通或断开压板,切换开关及卸装熔丝等工作,工作过程中应严格遵守电业安全工作规定。 

做好继电保护装置的清扫工作。清扫工作必须由两人进行,防止误碰运行设备,注意与带电设备保持安全距离,避免人身触电和造成二次回路短路、接地事故。对微机保护的电流、电压采样值每周记录一次,每月对微机保护的打印机进行定期检查并打印。 

定期对继电保护装置检修及设备查评:①检查二次设备各元件标志、名称是否齐全;②检查转换开关、各种按钮、动作是否灵活无卡涉,动作灵活。接点接触有无足够压力和烧伤;③检查控制室光字牌、红绿指示灯泡是否完好;④检查各盘柜上表计、继电器及接线端子螺钉有无松动;⑤检查电压互感器、电流互感器二次引线端子是否完好;⑥配线是否整齐,固定卡子有无脱落;⑦检查断路器的操作机构动作是否正常。 

第5篇:继电保护原理及应用范文

关键词:电力系统;继电保护技术;措施;发展趋势

中图分类号: TM77 文献标识码:A 文章编号:

引言

近年来,随着电子及计算机通信技术的快速发展为继电保护技术的发展注入了新的活力,同时也给继电保护技术不断的提出了新的要求。作为继电保护技术如何才能有效的遏制故障,使电力系统的运行效率及运行质量得到有效的保障,是继电保护工作技术人员需要解决的技术问题。

1.继电保护发展现状

上世纪50年代,我国工程技术人员创造性地吸收、消化、掌握了国外先进的继电保护设备性能和运行技术,建立了继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了指导作用。60到80年代,晶体管继电保护技术蓬勃发展。到90年代初集成电路保护的研制、生产、应用仍处于主导地位,这是集成电路保护时代。在这方面某电力自动化研究院研制的集成电路工频变化量方向高频保护起了重要作用。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果,从90年代开始我国继电保护技术已进入了微机保护的时代。目前,继电保护技术发展迅速,正向计算机化、网络化方向发展,实现保护、控制、测量、数据通信—体化和智能化。

2.线路的继电保护技术

电压等级高的输电线路一般按双侧具有电源考虑,所接电网为大电流接地系统,断路器一般采用分相操作,通常采用综合重合闸方式。故障的形式包括:三相故障、两相故障、两相接地故障、单相接地故障共有不同相别的十种故障类型,同时要考虑非全相运行的问题、同杆并架双回线的跨线故障问题等。高电压等级输电线路在电力系统中占据着十分重要的地位,对其继电保护有较高的要求,微机保护后,线路保护一般均设计为成套保护,即一套保护完成所有的主保护和原理上的后备保护功能,为了实现设备上的后备,通常采用双重化配置或多重化配置。

2.1输电线路的距离保护

距离保护是通过反映故障点到保护安装处的距离而动作的继电保护装置,通常应用于110kV及以上电压等级的输电线路,其原理也可以应用于35kV及以下电压等级的配电线路。构成距离保护的核心就是测量故障点到保护安装处的距离,并与一个事先整定的距离相比较,测量距离小于整定距离时保护动作。测量故障距离的方法包括阻抗法、行波法和雷达法,其中应用最多的是阻抗法。

2.2输电线路的纵联电流差动保护

基于基尔霍夫电流定律的纵联电流差动保护,是到目前为止最为完善的继电保护原理,在发电机、变压器、母线、电抗器、大容量电动机和输配电线路等电气设备中都得到了应用。其基本工作原理如下:

正常及外部故障时即流入差动继电器KD中点电流为0,继电器不会动作。被保护设备发生故障时(区内故障时)流入KD的电流为故障电流的二次值,KD动作。

可见,在理想情况下,根据KD中是否有电流,就能够区分出是否有内部故障,是否应将被保护设备从系统中切除。

3.继电保护安全运行的措施

3.1定值区问题。微机保护的一个优点是可以有多个定值区,这极大方便了电网运行方式变化情况下的定值更改问题。但是还必须注意的是定值区的错误对继电工作来说是一大忌,必须采用严格的管理和相应的技术手段来确保定值区的正确性。采取的措施是,在修改完定值后,必须打印定值单及定值区号,注意日期、变电站、修改人员及设备名称,并重点在继电保护工作记录中注明定值编号,避免定值区出错。

3.2做好继电保护装置检验。在继电保护装置检验过程中必须注意,将整组试验和电流回路升流试验放在本次检验最后进行,这两项工作完成后,严禁再拔插件、改定值、改定值区、改变二次回路接线等工作。电流回路升流和电压回路升压试验,也必须在其它试验项目完成后最后进行。

3.3一般性检查。不论何种保护,一般性检查都是非常重要的。首先清点连接件是否紧固焊接点是否虚焊机械特性等。其次是应该将装置所有的插件拔下来检查一遍,将所有的芯片按紧,螺丝拧紧并检查虚焊点。在检查中,还必须将各元件保护屏、控制屏、端子箱的螺丝紧固作为一项重要工作来落实。

3.4工作记录和检查习惯。工作记录必须认真、详细,真实地反映工作的一些重要环节,这样的工作记录应该说是一份技术档案在日后的工作中是非常有用的。继电保护工作记录应在规程限定的内容以外,认真记录每一个工作细节、处理方法。工作完成后认真检查一遍所接触过的设备是一个良好的习惯,它往往会发现一些工作中的疏漏,对于每一位继电保护工作人员来说都应该养成这一良好的工作习惯。

3.5接地问题。继电保护工作中接地问题是非常突出的,大致分以下两点:首先,保护屏的各装置机箱屏障等的接地问题,必须接在屏内的铜排上,一般生产厂家已做得较好,只需认真检查。最重要的是,保护屏内的铜排是否能可靠地接入地网,应该用较大截面的铜鞭或导线可靠紧固在接地网上,并且用绝缘表测电阻是否符合规程要求。

4.电力系统继电保护技术的发展趋势

随着计算机技术的飞速发展及计算机在电力系统继电保护领域中的普遍应用,新的控制原理和方法被不断应用于计算机继电保护中,以期取得更好的效果,从而使微机继电保护的研究向更高的层次发展,出现了一些引人注目的新趋势。

4.1网络化。计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化。它深刻影响着各个工业领域,也为各个工业领域提供了强有力的通信手段。实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络联接起来,亦即实现微机保护装置的网络化。

4.2计算机化。随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力。与其他保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力、高级语言编程等。

4.3一体化技术。一体化技术说到底,就是实现继电保护装置在数据处理上的一体进程,始终把单一的继电保护装置作为整个电网运行系统的一个终端设备,它可从网上获取电力系统运行和故障的任何信息和数掘,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。

4.4变电站综合自动化技术。现代计算机技术、通信技术和网络技术为改变变电站目前监视、控制、保护、故障录波、紧急控制装置和计量装置及系统分割的状态提供了优化组合和系统集成的技术基础。高压、超高压变电站正面临着一场技术创新。继电保护和综合自动化的紧密结合已成为可能,它表现在集成与资源共享、远控制与信息共享。

4.5智能化。由于人工智能的逻辑思维和快速处理能力,人工智能已成为在线状态评估的重要工具,越来越多地应用于电力系统的多个方面中,特别是继电保护方面,其在控制、管理及规划等领域中也发挥着重要作用。

4.6自适应控制技术。自适应继电保护的概念始于20世纪80年代,它可定义为能根据电力系统运行方式和故障状态的变化而实时改变保护性能、特性或定值的新型继电保护。自适应继电保护的基本思想是使保护能尽可能地适应电力系统的各种变化,进一步改善保护的性能。自适应继电保护具有改善系统的响应、增强可靠性和提高经济效益等优点,在输电线路的距离保护、变压器保护、发电机保护、自动重合闸等领域内有着广泛的应用前景。

5.结束语

电力系统继电保护能够快速、有效的切除故障设备,保证保证非故障设备的安全运行,能够有选择性的发出故障报警信号,维护电力系统的畅通。电力系统的发展也对机电保护提出了更高的要求,继电保护装置容易出现故障,只有对继电保护装置定期检查并维护,及时发现故障并处理,保证电力系统正常运转,保证供电的可靠性。

参考文献:

[1]周培华.浅谈电力系统中继电保护的发展趋势[J].科技咨询导报2007

第6篇:继电保护原理及应用范文

关键词:智能变电站 技术 继电保护 影响

中图分类号:TM77 文献标识码:A 文章编号:1672-3791(2013)01(c)-0113-01

1 智能变电站及其技术特征

通过《智能变电站技术导则》可知,智能变电站涵义为:运用先进、低碳、环保及可靠的智能设备,使变电站符合通信平台的网络化、全站信息的数字化与信息共享的标准化等要求,并能自动完成有关信息的测量、采集、计量、控制及监测等功能,还可依据需求对电网的智能调节、实时自动控制与在线分析等高级功能给予支持,有效实现变电站间互动或者电网调度等的变电站。在ICE61850的标准下,智能变电站充分体现了设备智能化、网络化、交互标准化与应用互动化等技术特征,其中,一次设备智能化作为智能变电站基础建设,目前较多应用的是常规设备与智能组件所构成智能型的一次设备,像智能变压器及智能断路器等,具有真正意义的智能型一次设备并未投入运行,电子互感器与光纤网络的应用,使得一次与二次设备间的数据交互实现了完全数字化,传统意义上的二次回路被弱化,二次与一次设备间的通信连接所使用的是高速光纤网络,有效实现了二次设备资源及数据共享,智能变电站设备间的数据通信执行ICE61850的标准,不同设备生产厂家均执行同一标准,有效简化了设备安装与检修等流程。

2 智能变电站的架构体系

智能变电站结构并不是常规站间隔与主控设备的方式,它的逻辑构架可概括为三层两网络,三层为过程层、间隔层与站控层,两网络为过程层网络与站控层网络,主要在三层中间,如图1所示。在智能变电站中,对继电保护来说,过程层包含一次设备与之有关智能组件等,如隔离开关、变压器、互感器及高压断路器等,其作用为采集数据、检测各种设备的状态,并控制命令执行等;间隔层主要包含各种监控设备与继电保护等,其作用为实现各间隔设备监视、控制与保护等;而站控层主要由数据前置机、人机交互设备、工作站及服务器等所构成,其作用为传输整定值的召唤与修改,并录波文件的传送等,有效实现变电站集中控制。智能变电站中的继电保护网络所使用规则亦是ICE61850的标准,从模型上,将原来继电保护装置划分成多个的逻辑设备,还划分成采样值处理、保护算法与跳闸回路等逻辑节点;从数据上看,详细划分了继电保护的数据种类,并覆盖了目前继电保护的应用数据,扩展了数据种类方法;从通信协议看,其通信服务需要依照性能与类型对通信协议给予映射。与传统变电站比较,智能变电站并不以装置作为继电保护的组织形态,而是以保护功能的模块化作为组织形式,保护的分散或集中形式不再依赖装置,主要取决自网络性能与保护需求,使得继电保护工作更为灵活,有效满足了电网保护需求。

3 智能变电站技术下的继电保护影响

3.1 数据信息与保护原理影响

从继电保护内的数据信息角度看,智能型的变电站技术所带来影响为下列方面,其一,电子互感器代替了电磁互感器,使得继电保护元数据产生了很大变化,传统电磁互感器中的一些算法与整定原则要重估与优化,电子互感器所带来的数据延迟与同步等问题,给继电保护也带来了影响,要对其进行深入评估,在线性度、响应速度与频带宽度等方面优势,会对继电保护产生新算法与新源里;其二,在ICE61850的标准下,二次信息实施统一建模,让继电保护的数据处理与利用方法产生了很大变化,随着ICE61850的应用,不同设备间的互通互联及互换等,给IED设备及二次信息分离奠定了基础,大量信息数据存储挖掘,保护配置与双重化,以及动态迁移组态等均带来了新的保护组态与保护原理;其三,继电保护的数据传输方法也发生了改变,由二次电缆连接变成了信息网络传输,信息网络传输让跨间隔保护变得灵活简便,促使了新实现方法与保护原理的产生,网络的可靠性与实时性受到关注,处理小概率数据延迟、丢包与误码等成为继电保护原理、算法与机制的新课题。

3.2 对继电保护的实现机制、调试及维护等方面的影响

从继电保护的实现机制来看,智能型的变电站技术也带来了很大影响,打破了原有的采样、计算与出口的一体化形式,数据信息、保护对象及装置不再进行绑定,让数据动态能实时调用及存储,不同系统数据的统一管理与不同功能应用变成了可能,极大降低了保护设备及过程网络的交互需要及复杂性,对保护功能组态、迁移与广域保护提供了数据信息的交换平台;还改善了二次回路中的不可测控问题,可实时掌握网络数据的可靠状态,极大提高了继电保护中的可靠水平,原有继电保护很容易形成信息孤岛问题,应用智能变电站的对等交互技术模式,不必与保护装置进行绑定,有效实现了数据信息共享。从调试及维护等角度来看,继电保护的运行模式与保护形态产生了较大变化,在测试方法及周期等维护标准方面存在滞后性,继电保护的二次回路监测,让保护设备的状态检修变得可能,标准统一,让变电站建模出现一体化,一旦变电站实施扩建或者变更时,对配置文件给予动态修改成为智能变电站所遇新问题,并且智能变电站的设计、维护及调试等,需要设计院、业主、设备商及调试单位等,进行反复协调与方案修改,当单位投入运行后,难以摆脱厂家及调试单位等依赖性,为电网运行带来了安全上的隐患,限制了智能变电站广泛应用。

参考文献

[1] 吴小云.对智能变电站技术的探讨[J].广东科技,2011(10).

第7篇:继电保护原理及应用范文

关键词:继电保护 事故 方法

0 引言

继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。

最早的继电保护装置是熔断器。以后出现了作用于断路器的电磁型继电保护装置、电子型静态继电器以至应用计算机的数字式继电保护。随着电子技术、计算机技术、通信技术的飞速发展,人工智能技术如人工神经网络、遗传算法、进化规模、模糊逻辑等相继在继电保护领域的研究应用。随着科学技术的不断发展,微机继电保护测试仪已广泛运用于线路保护,主变差动保护,励磁控制等各个领域。正因为微机继电保护在工业尤其是电力系统中的应用越来越广泛,才需要我们对其中可能会出现的事故和问题进行预先的了解。

1 继电保护事故种类

1.1 定值问题。①整定计算误差②人为整定错误③装置定值漂移,a元器件老化及损坏b温度与湿度c定值漂移问题。

1.2 电源问题。①逆变稳压电源问题,a纹波系数过高b输出功率或稳定性差②直流熔丝配置问题③带直流电源操作插件。

1.3 TA饱和问题。继电保护测量对二次系统运行起关键作用,系统短路电流在中低压系统中急剧饱和时,因为电流互感器已经应用到继电保护装置当中,现场的因馈线保护因电流互感器饱和难以启动,这时就会很容易发生事故。而常用的数字式继电器采用微型计算机控制,其主要工作电源仅有5V左右,数据采集电平范围也仅有10V左右,电流互感器饱和对数字式继电器的危害将更大。

1.4 插件绝缘问题。微机保护装置集成度高,布线紧密,长期运行后由于静电作用,会使得插件接线焊点周围聚集静电尘埃,在外界条件允许时两焊点之间出现导电通道,从而引起装置故障或者事故。

1.5 高频收发信机问题。在220kV线路保护运行中属于收发信机问题。各厂家生产的收发信机质量不一,在使用前应严格审核,应注意校核继电保护通信设备(光纤、微波、载波)传输信号性和冗余度,防止因通信设备问题而引起高频保护收发信机不工作。高频保护不工作的原因包括:收发信机元件损坏,收发信机起动发信信号产生缺口,高频通道受强干扰误发信,收发信机内连线错误,收发信机闭锁,作用区外故障时误动等。

2 继电保护事故思路

2.1 微机故障信息 经常发生、技术简单的事故容易排除,但对故障有时仅凭经验难以解决,所以这时要讲故障特征严格记录下来,再按照严格的技术手册造作以查清事故原因,排除故障。

2.1.1 屏背面展开图—以屏的结构在安装接线图上展开为平面图来表示。屏背面部分装设仪表、控制开关、信号设备和继电器;屏侧面装设端子排;屏顶的背面或侧面装设小母线、熔断器、附加电阻、小刀开关、警铃、蜂鸣器等。

2.1.2 屏上设备布置的一般规定—最上为继电器,中为中间继电器,时间继电器,下部为经常需要调试的继电器(方向、差动、重合闸等),最下面为信号继电器,连接片以及光字牌,信号灯,按钮,控制开关等。

2.1.3 保护和控制屏面图上的二次设备,均按照由左向右、自上而下的顺序编号,并标出文字符号;文字符号与展开图、原理图上的符号一致;在屏面图的旁边列出屏上的设备表(设备表中注明该设备的顺序编号、符号、名称、型号、技术参数、数量等);如设备装在屏后(如电阻、熔断器等),在设备表的备注栏内注明。

2.1.4 在安装接线图上表示二次设备—屏背面接线图中,设备的左右方向正好与屏面布置图相反(背视图);屏后看不见的二次设备轮廓线用虚线画出;稍复杂的设备内部接线(如各种继电器)也画出,电流表、功率表则不画;各设备的内部引出端子(螺钉),用一小圆圈画出并注明端子的编号。

2.1.5 接线端子—连接同一屏(除特殊信号联络外)上不同设备电路。

2.2 用检查方法①将二次回路的设备展开表示,分成交流电流、交流电压回路,直流回路,信号回路。②将不同的设备按电路要求连接,形成各自独立的电路。③同一设备(电器元件)的线圈、触点,采用相同的文字符号表示,同类设备较多时,采用数字序号。④展开图的右侧以文字说明回路的用途。⑤展开图中所有元器件的触点都以常态表示,即没有发生动作。

2.3 事故处理注意事项

2.3.1 对试验电源要求。在微机保护试验中,要求使用单独供电电源并核实用电试验电源否三相电源为正序和对称电压,并检查其正弦波及中性线电源容量是否足够等要素。

2.3.2 对仪器仪表要求。万用表、电压表、示波器等取电压信号仪器选用高输入阻抗者继电保护测试仪、移相器、三相调压器应注意其性能稳定。

3 如何掌握继电保护技术

要掌握继电保护故障和事故类型以及继电保护故障和事故发生的条件,要下述几个问题:

3.1 足够必要理论知识

3.1.1 电子技术知识。电网中微机保护使用越来越多一名继电保护工作者学好电子技术及微机保护知识当务之急

3.1.2 微机保护原理和组成。在微机继电保护测试仪及自动装置的使用过程中,要能迅速分析出产生故障或事故的原因以及故障部位,这就要求电力工作人员需要具备过硬的微机保护知识,熟悉保护原理和装置性能,熟记微机保护逻辑框图,熟悉电路原理和元件功能。

3.2 具备技术资料的阅读能力 微机继电保护事故的处理离不开诸如检修规程、装置使用与技术说明书、调试大纲和调试记录、定值通知单、整组调试记录二次回路接线图等资料,所以技术人员必须具备这方面的素质。

3.3 运用检查方法 一般的继电保护事故往往凭借简单的检查手段就能够被查出。如果用常规检查仍未发现元件故障,则说明该故障较为隐蔽,应当引起重视。此时可采用逐级逆向检查法,即从故障暴露点入手去分析原因,由故障原因判别故障范围,查找到故障原因以后就可以采用顺序检查法对装置检查。

4 小结

本文从微机继电保护的自身特点和本人长期从事继电保护事故和故障经验和方法出发,对微机保护事故或故障共性原因进行了分门别类的分析,并在技术范围内总结了微机继电保护事故处理的思路及方法,介绍了提高微机继电保护事故和故障能力途径。实践表明,上述思路和方法具备实用性和可操作性。

参考文献

[1]王梅义.高压电网继电保护运行技术.北京.电力工业出版社.1981.

第8篇:继电保护原理及应用范文

关键词:继电保护;电力系统;电气保护

中图分类号:TM734 文献标识码:A 文章编号:1009-2374(2013)23-0060-02

随着我国科学技术的不断发展,我国继电保护装置已经得到了广泛的应用,其基本上已经代替了原有的各种类型继电保护设备,成为了电力系统中的重要成分,为电力系统的安全有效运行奠定了基础。

1 继电保护运行模式概述

继电保护装置指通过对电力系统问题的研究,以探求解决问题的一种反事故自动化措施,继电保护的重点任务是:当电力系统出现问题及异常现象时,继电保护装置可在最短时间内实现对电力的切除,或者发射信号引起工作人员的注意以消除异常情况根源,进而减轻或避免设备出现损坏,最终完成对整个电气系统区域的保护。

目前,传统的继电保护装置的运行模式如下所示:(1)继电保护装置的输入部分:其中需要输入的部分主要包括保护对象的电流、电压以及与其有关的一次设备的运行状态量,另外还包括从变电站和网络中收到的各类信息、对时及各种网络报文数据等。(2)继电保护装置的内部采样、计算及逻辑判断:继电保护设备将接收到的信息,通过内部程序来完成对信息的处理及逻辑判断。(3)继电保护装置的输出部分:继电保护设备的输出部分包括相应状态信息、报文及动作等。

从以上电力系统的运行模式可看出,电力系统中的继电保护装置可以被认为是一个集数据接收、数据判断和数据输出的综合化系统。

2 继电保护现状及研究意义

目前,电气系统在实际操作中由于操作不当而出现了很多问题,这些问题通常致使电力系统运行出现故障,另外继电保护工作量超过额定工作量也会导致继电保护设备运行出现故障,例如一些常常发生的继电设备保护功能降低、系统安全性的保护能力下降等,这些问题导致整个继电保护设备不能很好地完成保护工作。因此本文结合实际经验,对继电保护设备在运行中易出现的问题进行了探究,并对这些问题做了细致的分析,总结出了一些解决

方案。

3 继电保护设备工作中常见问题及处理方法

3.1 电网接入方法

我国现在最普遍的电网接入方式是在220kV下的旁路断路器,其主要包括以下两类接线方式:(1)主变压器接线;(2)转代线路断路器接线,通过主变压器保护及转代线路断路器对整个电气系统进行保护,可顺利实现电气系统中各线路的保护,下面对这两种接入方式在实际中的应用做重点阐述,并总结其易出现的问题,给出相应的解决办法。

3.2 实际案例探究

以下将结合实际案例基础,以发变组220kV为主要案例,通过对以下案例的探究,而探讨旁路代路继电保护对电气设施的整个保护过程,详细地研究该保护过程中的保护装置运行状态,以下为变电站继电保护系统主接线图。通过对简图的探究,掌握整个继电保护系统的运行原理及运行细节。

3.3 常见问题及解决对策

案例中使用的2810断路器,具体的电路结构划分如图1所示,通过对线路图的研究我们可看出断路器的具体保护工作流程,下面将举出一个实际步骤来对保护全过程做叙述。其中所有的保护过程均是根据继电保护中的光纤保护过程,值得注意的是该光纤保护过程是一个不可逆过程,因此在该种条件下只能通过将所用控制系统中的高频闭锁保护设备接入到旁路电路设备上以进行保护。下面为详细的实施步骤:步骤一:确认2810用作保护中的定值是否达到实际标准,然后对2810实施保护,并继续将开关闭合,在这个过程要注意对于高频段不再采取保护;步骤二:在打开2810断路器前首先要对2810断路器进行再次校验,检查其与旁路母线的充电连接是否合理,如果发现充电存在异常一定要立即关闭开关,如果确认充电确实正常则打开;步骤三:关闭4881两边的光纤保护装置(该装置在控制电脑的右侧放置);步骤四:闭合4881的旁路开关,并将2810的旁路断路器闭合;步骤五:闭合2810旁路短路器;步骤六:4881短路器断路器断开,该环节是整个步骤中的重点之一,因此要特别注意;步骤七:有选择地将4881断路器切换至旁路,对通道进行校验,并确认正常;步骤八:检验4881断路器,并确认工作正常。上述八个步骤当中,假设是在旁路代路的状况下,对操作当中的一和二,也就是说在整个冲击旁路对电气保护的过程当中,如果是旁路母线出现故障,需根据4881断路器本身所具备的两种应急保护机制来对故障进行处理,并且直接使用旁路断路器进行保护,进而解除故障,在该过程中,怎样确保一次设备在操作时不间断是操作中的重点工作之一,因此为了保证操作更加规范就要将4881线两侧的微机光纤保护预先退出来作证。另外在后续操作中,在第四、五两个步骤当中工作的电气设备如在操作时出现故障,也可将其看作是线路4881的一个分支,可直接利用4881的微机高频闭锁来对问题进行处理,通常来讲,对于高频闭锁保护通道的置换需要在代路电气操作之后才可进行,最后值得我们注意的是,在高频切换过程中,线路在短时间内有可能失去对电气的快速保护,这时一定要使用线路的后备保障来对处理出现的故障。

4 新间隔的启动

就拿220kV变电站做分析,假设采取双母线代旁路这种方式进行连线,在新线路开启时就会引起新间隔的保护出现故障或者新间隔工作不正常,因此要想保证线路冲击合闸可迅速恢复正常,就必须使用旁路断路器代替新间隔来完成整个工作。在实际运行中,提前对电气系统的保护操作重点如下所示:整个系统中使用的所有设备仅仅使用一根母线,这样就可余出一根母线,这时使用旁路母线替代新间隔在母线上完成工作。另外在新间隔的运行开始就要重点注意的是,对于失灵及母差要确保关闭和退出及时准确。最后对新间隔整个系统中的回路接入和传动作校验时,必须确认传动的合理性,接着才可将系统中的变电保护器投入运用。必须重点注意的是,对于新间隔在使用之前必须做带负荷实验,并确认实验没有故障之后才可将设备投入使用。另外我们要考虑利用母联过流的方式来当作新间隔的后备保护,在后期操作过程中,新间隔充电完成,线路断路器合环,带负荷之前,要注意整个线路保护通道的正常工作。至此,新间隔的启动顺利完成。

5 继电保护的发展趋势

随着我国电力系统不断系统化、规范化及继电保护管理手段的不断更新,就要求电力系统中所使用的继电保护设备与这些先进的管理理念同步。目前,新的电力系统建设中,均使用了一些新型的电力设备,例如常见的无线电波、光纤通道等,这标志着继电保护方式已从传统的载波保护逐步向新媒介新材质保护过渡,这些继电保护产品的不断换代,要求我们相关的工作人员必须不断地掌握新技术新知识,并学会使用新的管理理念,最终确保继电保护装置的顺利工作。

6 结语

本文主要探讨了电气操作过程中易出现的继电保护问题,并从继电保护各步骤出发,详细地分析了应对这些问题应该采取的解决措施,另外,论文从继电保护装置的运行特点及原理出发叙述了继电保护运行模式中应该注意的问题,并探究了电气保护装置出现问题的原因,结合实际工作经验提出了电气保护运行中的几点注意事项,最后文章简要地叙述了继电保护运行模式的发展前景。

参考文献

[1] 贺家李,宋从矩.电力系统继电保护原理[M].北京:水利电力出版社,2007.

[2] 刘学军.继电保护原理(第二版)[M].北京:中国电力出版社,2005.

[3] 杨晓敏.电力系统继电保护原理及应用[M].北京:中国电力出版社,2006.

第9篇:继电保护原理及应用范文

【关键词】:智能电网继电保护 发展影响

中图分类号:TM421 文献标识码:A

【正文】:

0引言

由于信息通信技术的快速发展、电气设备关键制造工艺的技术突破,以及适应大规模清洁能源接入、应对气候变化实现节能减排的需求,催生了智能电网的迅速发展。因具有稳定性、自愈性、安全性、兼容性、经济性等诸多优点,智能电网在世界各国得到了大量的推广与应用。国家在2009年对智能电网发展进行了全面的规划,分三个阶段运用先进的通信、信息及控制技术,全面完成以信息化、数字化、自动化、互动化为特征的智能电网建设,目前正处于大规模建设阶段,预计到2020年基本建成。继电保护运行状况直接关系系统安全可靠运行,现代大电网更是对继电保护提出了更高要求。智能电网的发展使传统电力系统的形态发生很大的变化,电子式互感器、数字化变电站、广域测量、交直流灵活输电和网络控制技术的广泛运用,给继电保护的配置运行带来深刻影响。本文在研究智能电网继电保护构成的基础上,阐述了智能电网对继电保护的影响,对智能电网继电保护发展有关问题进行探讨。

1 智能电网继电保护的构成

目前继电保护正在向数字化、智能化,保护控制测量集成化以及数据通信一体化方向发展。电网的分布式发电、交互式供电对继电保护提出了更高的要求,网络通信与信息处理技术的快速发展,数字化技术深化应用也为探索新的保护机理提供了帮助。智能电网能够利用传感器对发电、输电、配电、供电等重要设备的运行情况进行监控,把得到的数据经过网络系统来收集、整合,最后再进行数据分析。利用这些数据能监测系统及设备运行的具体状况,达到对保护性能及保护定值的远程动态监控、诊断与修正功能。除此之外,对保护装置来说,保护收集的信息不但需要涵盖本保护对象的运行状况,还需要与之密切相关的其它设备的运行信息,确保故障的准确识别,另外借助保护的智能诊断功能,在无人工干预情况下,可以迅速隔离故障、自行恢复运行,防止事故扩大和大面积停电状况发生。因此智能电网继电保护装置保护动作时不确定是否仅跳本保护对象,还可能在跳本保护对象时需发联跳命令跳开别的相关节点,还有可能仅发连跳命令跳开别的关联节点,不跳开本保护对象。

典型智能变电站保护及自动化配置联络如图1所示。

图1典型智能变电站保护及自动化配置联络图

2 智能电网继电保护的典型特征

智能电网是以物理电网为基础,覆盖通信、信息、计算机、传感测量、新能源等技术,把发、输、配、用各环节连接成一个高度智能化的网络。智能电网继电保护从设计、配置、运维管理上都有许多不用于以往的新特性,其典型特征主要表现在以下几个方面。

2.1 数字化

智能电网的一个重要特征是数字化,对继电保护而言,一是测量手段的数字化,广泛采用电子式互感器和数字接口;二是信息传输方式的数字化,传统变电站采用的模拟量电缆传输和状态量电缆传输方式将被以光纤为媒介的网络数字传输所代替。图1所示系统图中电子式互感器取代了基于电磁感应原理的传统互感器。

电子式互感器的优越性在于其采用光电转换原理进行测量,体积小、绝缘性能好。对继电保护其最大的优势是传输频带宽、暂态性能好,不存在电磁式互感器和电容式电压互感器等传统互感器的测量误差和暂态特性,能很好地将电力系统运行状态信号变换到二次侧。随着智能电网的建设及智能化仪器、设备的推广,传统的互感器将逐步退出运行。

电子式互感器采用网络接口,通过网络保护装置和智能断路器连接,大大简化了二次回路接线,易于维护。

2.2 网络化

智能电网的核心节点是数字化变电站,近年来基于IEC61850标准的数字化变电站建设逐步铺开,已出现500 kV全数字化示范变电站,各网、省公司都在大力推广数字化变电站建设。

数字化变电站最大的特点是采用基于IEC61850标准的分布分层的结构体系,面向对象的数据统一建模、数据自描述,采用抽象通信服务接口(ACSI)和特殊通信服务映射(SCSM)技术实现智能设备间的信息共享和互操作。

图1所示智能变电站系统图分为三个工作控制层面(过程层、间隔层、站控层),三个工作层面的各组件通过基于IEC61850标准的MMS网、GOOSE网、SV网三个网络实现互联。MMS服务应用于设备和监控后台之间的数据交互,实现各装置信号上送、测量上送、定值操作、控制操作和故障报告上送等功能。GOOSE服务应用于保护、测控、智能终端等智能化设备之间的通讯服务,通过广播方式传送报文数据,实现装置之间互相通信及信息共享。SV服务主要完成采样值的网络传输。该接线形式大大简化了保护采样、出口跳闸及保护屏柜之间二次电缆接线,使全站信息采集、传输、处理、输出过程完全数字化。

对继电保护来说,数字化变电站的网络化带来了两方面的变革,一是信息获取,虽然继电保护主保护的功能仍然保持不变,但由于网络数据传输的共享性,可以获取全站相关设备元件的信息(电气量信息);二是信息发送,由于采用带数字接口的智能断路器,跳合闸等控制信号的传输方式也由二次电缆改为数字信号的网络传输。

2.3 输电灵活化

智能电网的一个最大特点就是输电效率的提高,控制手段的灵活。智能电网中必然大量采用诸如可控串联补偿装置、静止无功补偿装置、电能质量控制装置、统一潮流控制器及STATCOM等交流灵活输电技术。另外,我国电网的交直流混合输电的特征也使电网中非线性可控电力元件数量大大增加。以电力电子器件的广泛应用为特征的智能电网的故障暂态过程与仅有同步发电机等旋转元件的传统电力系统将有显著的不同。

电网暂态过程的复杂性及电网运行方式灵活控制造成的多变性,使现有继电保护装置面临较大考验。

2.4 广域化

近年来,随着我国电网信息化进程不断推进,各网、省公司都在大力推进基于PMU的WAMS网络建设,继电保护信息专用网络也已初步建成,将成为智能电网控制的重要环节。虽然WAMS网络和继电保护信息系统建设的初衷不是为继电保护服务,但利用其提供的广域信息来提高后备保护的性能、提高安全自动装置的性能却值得思考。

3 智能电网继电保护需关注的问题

智能电网的规划和发展改变了电能传输的某些特点,信息化和数字化的特征使智能电网与传统电力系统产生了本质的差别,作为继电保护专业,也需要适应其发展,进行相关的研究工作。

3.1利用数字化提高保护性能

电子式互感器独特的工作原理和传输性能的提高使继电保护不需要再考虑电流互感器饱和、二次回路断线、二次回路接地等互感器故障问题。电气量信息通过网络传输也为继电保护装置性能的提高带来了便利条件。但无论是电子式互感器、智能组件还是光纤传输系统,对运行环境的要求都很高,目前数字化变电站中测控保护交换机等数字化组件均在设备现场分散布置,如何适应现场复杂的运行环境保持连续可靠运行是一个重要课题。同时如何简化继电保护的辅助功能,利用数字化传感器提高继电保护的整体性能,也是是未来继电保护发展需要研究的核心问题。

3.2提升继电保护网络化配置形态下运行可靠性

基于IEC61850网络的数字化变电站改变了传统继电保护信息获取和信号发送的媒介,利用网络上共享的站内其它相关电气元件的信息提高主保护的性能,利用共享的控制信号网络简化继电保护配置,是智能电网中继电保护研究的前沿性问题。网络化带来共享信息的同时,也带来基于网络信息传输的可靠性和安全性问题。与传统二次电缆的传输方式不同,基于网络的控制信号传输的可靠性必须得到保证。数字化变电站条件下继电保护的可靠性问题及如何进行保护配置保证可靠性是网络化二次回路的关键问题。

3.3提升安全自动装置性能

PMU和WAMS网络为电力系统安全防御和紧急控制提供广域信息,能够利用其已建成的网络,提高对时间敏感性不强的后备保护和安全自动装置的性能,改变现有保护和安全自动装置的延时整定原则,使其能够在某些情况下及时判断系统故障,采取措施避免大停电等恶性事故的发生。

3.4研究继电保护在线整定技术

自适应保护的思想在继电保护领域已被广泛应用,限于条件,传统的自适应保护仅能根据被保护线路的运行情况对定值进行调整,不能利用全网信息准确、实时地判断运行方式来调整定值。智能电网的发展有望改变这一现状,从而实现在线整定。

3.5研究继电保护新原理与新技术

风能、太阳能、生物能等新能源接入的随机性和间歇性,使电网接入安全问题日益受到重视,相应的调度方式在智能电网背景下将更快、更灵活地调整传输方式和潮流方向。以电力电子控制为依托的电网灵活控制方式将改变传统电网的故障暂态特征,研究适应智能电网灵活控制的继电保护新原理与新技术是智能电网中继电保护相关研究的一个关键问题。

4 结束语

智能电网的建设是电力系统的一次重要变革,是电网未来的发展方向。如今,智能电网的建设已经全面铺开,建设过程中新技术和新设备的应用将给继电保护专业领域带来革命性的变化。随着智能电网建设的推进,相关研究的深入,继电保护专业要适应电网需求向智能化方向发展,紧跟电网建设步伐,为智能电网建设提供可靠技术支持。

【参考文献】:

[1]林宇锋,钟金,吴复立.智能电网技术体系探讨[J].电网技术,2009,

[2]国家电网公司.坚强智能电网综合研究报告[R].国家电网公司, 2009.

[3]谢 开,刘永奇,朱治中,等.面向未来的智能电网[J].中国电力,2008.