前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的重金属污染处理主题范文,仅供参考,欢迎阅读并收藏。
关键词:生物吸附 菌剂 海藻酸钠 固定化 重金属污水 Cr
一、水体重金属污染现状
重金属是非降解型有毒物质,由其引发的水环境重金属污染可导致生物急性或慢性中毒,而且由于重金属在环境中不能被降解具有累积效应,会通过食物链的富集放大其生物毒性,存在显著的生态和健康风险。现有的重金属污染处理工艺主要有物理-化学法和生物吸附法两大类。化学法、物理-化学法普遍存在成本高、能耗大、操作困难、易造成二次污染等缺陷,且对低浓度重金属的处理效果不太理想。微生物处理法作为治理重金属污染的一项新技术,具有微生物吸附材料来源广泛、成本低、对低浓度重金属废水处理彻底、可对某些贵重金属进行高效回收等优点[1,2]。
本文研究使用海藻酸包埋法固定菌体,将微生物细胞截留在水不溶性的凝胶聚合物孔隙的网络空间中,阻止了微生物细胞的泄漏,同时能让六价铬渗入,去除水中六价铬的污染。
二、实验设备、材料及方法
1.主要实验设备
原子吸收分光光度计AA600,恒温振荡器HZ-9211K,高速冷冻离心机KDC-160HR,小型高速离心机TCL-16H Centrifuge,扫描电子显微镜PHILIPS XL-3 0ESEM
2.实验材料
酵母菌R32:通过电场诱导融合构建,出发菌株是解脂假丝酵母(Candida ipolytica)和热带假丝酵母(Candida tropicalis)。对Cr6+具有较好的吸附还原能力。
含铬模拟污水(15-30mg/L)、酵母培养基、海藻酸钠、CaCl2、活性碳
3.实验方法
从实验室菌种库中接种酵母菌R32,活化、扩大培养36h后,菌液经4000rpm离心分离20min得到工程菌菌体。称取一定量的海藻酸钠及50g/L的酵母R32工程菌混合后加入定量蒸馏水配置成海藻酸钠-菌体混合液,用注射器将混合液注入过量的15%的CaCl2溶液中(1L CaCl2溶液适合制备100ml混合液),得到海藻酸钙包埋菌球(直径约为2mm)。稳定清洗晾干后,得到吸附用的固定化菌剂(含水率约为95%)。用扫描电镜观察固定化菌剂内部机构[3,4],长时间震荡方式判定菌剂含量不同的固定化菌剂的抗破碎能力和菌体泄露情况。将固定化菌剂按一定的投加量投加到30mg/L含铬模拟污水瓶中, 120rpm振荡吸附一定时间。吸附完成后取上清液稀释一定倍数,用原子吸收分光光度法测定样品中的金属浓度。
三、实验结果与分析
1.海藻酸钠固定化菌剂扫描电镜观察
实验结果如图2,未固定菌体的海藻酸钙小球具有较松散的溶洞结构。图3的海藻酸钠固定化菌剂中,工程菌以圆形颗粒的形式被紧密包埋于海藻酸钙所形成的包囊里,圆形颗粒间紧密相连。这能最大量将工程菌紧密的包埋于海藻酸钠包囊中,避免菌体泄露,最大化体系比表面积,提高工程菌的吸附能力。同时圆形颗粒间又充满了微小的孔隙,保证了整个菌剂的通透性,使包囊中的菌体能很好的与金属污水接触。实验测得菌剂具有更好的抗振能力,增加了其抗破碎的性能。可见,以海藻酸钠为载体固定化菌剂具有优越的微观结构,保证了菌剂的物理性能和吸附性能。
2.海藻酸钠含量对固定化菌剂吸附能力的影响
制造海藻酸钠含量分别为1%、1.5%、2.0 %、2.5 %和3.0 %(m/v)的固定化菌剂,以一定的投加量投加含铬模拟污水中。振荡吸附8h,测其对Cr的去除率。结果如图3所示,在海藻酸钠含量为1%时,固定化菌剂对Cr的去除率最大。随着海藻酸钠含量的增加,Cr离子进入固定化菌剂的传质阻力增加,菌剂对Cr的去除率略有下降。同时,实验证明,1.0%的海藻酸钠作为载体的菌剂无论在抗破碎能力和菌体抗泄漏能力均优于其他海藻酸钠含量的菌剂。因此,选择选1.0%的海藻酸钠作为载体较为合适。图1 海藻酸钙对照扫描电镜图(2um)图2海藻酸钠固定化菌剂扫描电镜图(10um) 图3海藻酸钠含量对固定化菌体吸附能力的影响
3. 投加量对海藻酸钠固定化菌剂吸附Cr的影响
选择了含量为1%和1.5%海藻酸钠的固定化菌剂进行投加量实验,其结果如图4所示。在海藻酸钠含量为1%和1.5%的条件下,固定化菌剂对Cr的去除率随投加量的增加而增加,在10~40g/L的区间增加的速度最快。当投加量增加到40g/L后,菌剂投加量的增加不能再使Cr的去除率产生显著的提高。
对于未包埋菌体的对照组,其吸附曲线呈不规则变化,这是因为Cr的吸附主要靠包埋在小球内的菌体的生物吸附,而对照组对Cr的吸附主要是通过材料表面快速的吸附和解析动态平衡实现,因此具有波动性。
从以上两组实验可以得40g/L的固定化菌剂可以很好的处理中低浓度含Cr污水。 图4海藻酸钠含量为1%和1.5%时菌剂投加量对吸附效果的影响
4.调理剂加入对海藻酸钠包埋菌剂吸附Cr的影响
实验发现,固定化菌剂对Cr的吸附速度较慢,为使菌剂的吸附速率加快在工程菌固定化的过程中加入活性炭作为调理剂,从而改善固定化菌剂的通透性,改善菌剂的吸附效果及重金属的去除速度。在1%海藻酸钠中分别加入 0.01%、0.03%、0.05%、0.07%(m/v)的活性碳制成固定化菌剂,活性碳调理菌剂对含Cr模拟污水的吸附去除率曲线如图5所示。可见,活性碳的加入对固定化菌剂的吸附速度具有一定的促进作用,当活性碳的加入量为0.05%时,菌剂在吸附3h时达到吸附平衡,此时,菌剂对Cr去除率达到90%。 图5 活性碳的加入对固定化菌剂吸附能力的影响
5.处理含Cr污水固定化菌剂吸附动力学
为了更好的将菌剂应用于实际,研究了处理含Cr污水固定化菌剂的吸附动力学,并对其进行了动力学方程拟合。菌剂的吸附动力学曲线如图6所示。从实验结果可见,固定化吸附菌剂的吸附动力学能够很好的用准二级吸附动力学方程拟合,其R2达到了0.9941。可见固定化菌剂的吸附是多层吸附,并伴随有内部扩散现象。由表1的参数还可以看出该吸附是一个较慢的吸附过程,在实际应用过程中应保证足够的吸附处理时间。表3-2 各动力学方程拟合参数 图3-13菌剂吸附动力学曲线
四 、结论
1.无毒无害的天然高分子凝胶海藻酸钠是较为环境友好型的固定化载体。包埋后菌剂具有良好微观埋结构,有利于最大量的包埋细菌,同时有留有空隙,为重金属的渗入提供良好的通透性。
2.用1%(m/v)海藻酸钠包埋固定化酵母R32制得的Cr高效吸附菌剂具有良好的物理特性和Cr吸附性能。菌剂投加量为40g/L(湿重含水率约为95%),吸附时间为8h时其对Cr的最高去除率可达98%。在固定化菌剂中加入0.05%的活性碳作为调理剂能提高固定化菌剂的吸附速率。
Key word: water treatment; chironomus larva; prevention
摇蚊幼虫(红虫)大量孳生是由于水体污染导致的富营养化而变得日益突出的困扰供水界的新问题。摇蚊幼虫的抗氧化性较强,常规水处理的消毒工艺难以将其有效地杀灭,使得在我国一些大中城市的水厂清水池乃至管网水中都曾发现过摇蚊幼虫。在我国南方一些城市,由于气候具有常年温暖潮湿的特征,适于昆虫繁殖,问题更加突出。摇蚊幼虫不仅给用户带来了不良的感官影响,引起用户对水质信心的下降与恐慌,更为重要的是摇蚊幼虫还是人类多种传染疾病的传播媒介,对居民的饮用水安全带来极大的威胁。
1.摇蚊幼虫的生活习性及分布
摇蚊分属昆虫双翅目摇蚊科[1],由于身体内含有血红蛋白而成红色。摇蚊的生活史经过卵—幼虫—蛹—成虫四个阶段。有的两年只有一个世代,有的一年却有七个世代,但大多数每年有两个世代,第一个在春季(5~6月),第二个在夏季(8~9月)。
摇蚊的卵产于水面,卵块内有300~700个卵。初孵的摇蚊幼虫具趋光性,经过3~6天浮游生活后,转入底栖生活,利用藻类、腐屑、细沙、淤泥、唾液腺所分泌丝状物筑巢,多数种类筑成两头开口的管型巢。随着幼虫转入底栖,幼虫由趋光性改为背光性。幼虫经四次蜕皮后进入蛹阶段,每蜕皮1次,体色加深,从淡红色、鲜红色、深红色至变成黑褐色的蛹。幼虫的食性,除了环足摇蚊属Cricotopus中某些专吃植物的种类外,其余种类可分肉食性与杂食性两大类。肉食性种类以甲壳类、寡毛类和其他摇蚊幼虫为食。而杂食性则以细菌、藻类、水生植物和小动物为食。幼虫的摄食方式有:粘食、滤食、沉食、采食和捕食几种[2]。
摇蚊分布很广,其幼虫几乎在任何水域中均可见到,它们适应性亦强,如在海拔3200余米的青海湖、海拔4000多米的西藏阿里班公湖附近均有分布。在阿塞拜疆,一年积雪达8个月之久的哈里湖,也有羽摇蚊的栖息。大多数种类幼虫生活在淡水中,但也有在盐份很高的水体中生活的,如盐生摇蚊T.gr.salinarius,它不但在氯离子浓度较高的青海湖中生存,也能在碱性苏打型的水体中生存[2]。
2 影响摇蚊生长繁殖的主要环境因素
环境因子对摇蚊生长繁殖的影响作用是一个十分复杂的论题,表现为不仅因子众多,加之在不同的底栖环境中因子有不同的影响作用,因此至今尚未有一个较全面的理解,一般文献中探讨的内容主要从以下几个方面来进行阐述。
2.1温度
在食物和其他环境条件适宜的条件下,升高温度可加快摇蚊的生长发育速度,缩短周转率[3]。温度与世代时间呈负相关性,摇蚊完成一个世代的时间随温度的变化情况如图1[4]。
2.2 溶氧
许多深水湖泊或其他遭受有机污染的水体中底质环境的溶氧常处于相对较低水平,这对于生活在这种环境中的底栖动物来说,溶氧明显地成为它们的限制因子。Kitagawa认为,决定摇蚊幼虫分布的主要因素是湖体底部的溶解氧含量[5]。也有研究发现,含氧量与摇蚊羽化成虫数量呈负相关,即含氧量增高时羽化成虫数量却减少 [6]。有研究认为,摇蚊幼虫的呼吸是通过体壁从水中交换气体的。体色血红色的幼虫体内含有血红蛋白,它比非红色幼虫耐缺氧,甚至在无氧条件下也能生存30~120天。这是体内营养物质不经氧化分解成乳酸或脂肪酸,以释放能量维持生命[2]。
2.3 pH值
pH值也是影响摇蚊幼虫生长的环境因素之一。摇蚊的多数种类能生存于pH为6~8的水域,个别种类如Cacerbiphilus能生活在pH为1.4的极酸性水域中[2]。在实际的水厂生产中,水的pH值一般都控制在7.0~8.0,是摇蚊幼虫生长的最佳pH值范围,为摇蚊幼虫的孳生提供了良好的水质环境。
2.4底质
无论在湖泊还是河流,底质的特性与组成都是一个影响摇蚊幼虫的重要环境因子。摇蚊幼虫能够直接利用有机物,可以认为,水体中摇蚊幼虫的分布在很大程度上由底质中的有机物含量所决定,而有机物的含量在一定程度上反映了水体的富营养化状态和污染水平。Lundbeak的研究成果认为:湖泊与水库水体中底质中的有机质含量决定了摇蚊幼虫的种类组成和数量[7]。据刘建康等的资料,武汉东湖腐泥底质中摇蚊幼虫密度和生物量大于沙泥等其他底质[8]。所以有机物耗氧量的年平均值与底栖动物生物量之间存在非常显著的正相关。
转贴于 3摇蚊幼虫在水处理流程中的发生与分布规律
天然水体污染程度的加重,直接导致底栖动物多样性明显降低,而适应富营养水体的摇蚊类水生昆虫在水体中却占优势地位,在水体富营养严重时常可发现大量的摇蚊科幼虫。摇蚊幼虫在水厂中的产生经由两个方面,一方面摇蚊在水源的地表水体水面产卵并在水中繁殖,大量的摇蚊幼虫及虫卵个体随着水流进入水处理系统,通过挂网实验发现进入水厂的原水中含有大量的摇蚊虫卵及低龄的幼虫;另一方面,摇蚊成虫在水处理流程中的沉淀池等敞开水面产卵并在水中繁殖。这两个形成因素协同作用,使得摇蚊幼虫污染问题很难通过单一的办法来解决。
摇蚊幼虫孳生要有理想的筑巢场所,观察发现在水处理工艺中平流沉淀池由于只有四壁可以适合幼虫的筑巢,所以摇蚊幼虫污染现象比较轻微;而对于斜板(斜管)沉淀池,由于斜板(斜管)表面粗糙,易于沉积矾花淤泥,因而摇蚊幼虫可以在斜板(斜管)上及沉淀池的池底利用絮凝体、泥土等筑巢,以水中的藻类、有机物为食,并羽化为摇蚊成虫;摇蚊成虫在沉淀池池壁上产卵,卵孵化成幼虫后,一些幼虫沉入池底生长,一些就随水流进入滤池。由于刚孵化的幼虫直径仅80μm,对常规的滤池有可能穿透并进入清水池,就可能在清水池内进行二次繁殖或直接进入管网(如图2所示) [9]。
4 摇蚊幼虫污染防治技术
国内自1996年起至今,在上海、广州、北京和宁波等地城市供水系统发生了摇蚊幼虫污染事件[10],引起了水处理工作者的关注,一些研究者对摇蚊幼虫污染防治技术进行了研究,主要包括如下几个方面。
4.1物理防治
物理防治是利用机械方法,以及声、光、电、温度等条件,捕杀、诱杀或驱除害虫。近年来,在这方面研究得较多的是光电诱杀,利用蚊虫的趋光性,用一定波长的灯光,将害虫诱来,再用灯外的高压电去杀,或用机电动力将蚊虫吸入网内。
抑制摇蚊成虫产卵,从而可以达到控制摇蚊幼虫数量的目的。由于水池池壁是摇蚊栖息、产卵的主要场所。在沉淀池面上架装喷雾装置来隔断摇蚊成虫后到水面上产卵的途径,同时迫使羽化不久的成虫翅被打湿而不能飞起、,基本上能达到杜绝摇蚊在水池池壁上产卵的目的[11]。
代田昭彦指出[12],摇蚊产卵大体与成虫形成蚊柱的时间一致,光强在300lx以上摇蚊就不再产卵。400W橘黄色探照灯较为合适,该光源光束集中,穿透力强,当光强超过300lx时,光照能从很大程度上抑制摇蚊产卵,但还不能彻底根除[11]。
超声波对大龄摇蚊幼虫杀灭率随着溶解氧浓度的提高和超声波幅射时间的延长而上升;而且超声波与二氧化氯、液氯之间存在着明显的协同增效效应,且余氯的效果要优于二氧化氯,这可能与大龄摇蚊幼虫身体构造有关[13]。
由于水厂的原水中含有大量的摇蚊虫卵及低龄的幼虫,造成了摇蚊幼虫在水处理工艺中富集,使物理方法不能从根本上抑制摇蚊幼虫在水厂中的孳生,所以物理方法只能作为一种辅助手段来使用。
4.2化学防治
化学药剂对生物的灭活作用主要是由于生物接触药剂后其体内的蛋白酶遭到破坏,不能参与氧化还原系统的活动,代谢机能发生障碍而引起的[14]。化学药剂可通过吸附、渗透作用或直接破坏生物体壁的结构而进入到生物体中。药剂氧化性能的高低导致其在摇蚊幼虫灭活率方面的差异,需要有强氧化能力的化学药剂、并且有足够的作用时间,才能对其进行有效灭活。John.C.Hoff与Edwin E.Geldreich对大肠杆菌和病原体的灭活试验研究表明,几种氧化剂的氧化能力由高到低依次为:O3>ClO2>Cl2>NH2Cl,可见二氧化氯和臭氧的氧化能力高于氯气。但是由于臭氧在水体中的分解速度较快很难保证较长时间的持续灭活能力[15],所以尽管它的氧化能力比二氧化氯强,但由于有效灭活作用的接触时间短使得它达到100%灭活率时的投药量高于二氧化氯。
无论是二氧化氯、液氯还是过氧化氢、臭氧,只要保证在一定的投加量(表1)以上,都能在较短时间内将摇蚊幼虫杀灭。在几种药剂的对比中,现场发生二氧化氯的杀虫能力最强,适宜的投加量很低[11]。
Michael K.Alexander曾采用美国卡尔岗公司生产的絮凝剂和浓度为35%的过氧化氢溶液进行针对摇蚊幼虫的短期和长期杀灭实验,得出了短期半致死浓度均为112 mg/L,长期半致死浓度分别为13 mg/L和51 mg/L [16]。
叶劲[10]进行了过氧化氢、次氯酸钠、高锰酸钾、石灰水等化学药剂喷洒和浸泡杀灭实验。结果表明:喷洒5%浓度的过氧化氢效果最佳,能在短时间内杀死摇蚊幼虫,而过氧化氢、次氯酸钠的浸泡杀灭效果较佳。在成都市某水厂快滤池的生产实验表明,过氧化氢实际浓度为0.23%(有效浓度),浸泡时间2h,杀灭摇蚊幼虫效果显著。
液氯是水处理工艺中最常用的化学氧化剂,但是摇蚊幼虫的生物体对不良环境会产生一定的抗性,若连续提高投氯量会使摇蚊幼虫对氯产生较强的抗性,所以可以采用间歇提高前加氯量的方法,使摇蚊幼虫未来得及产生抗性前毒杀它们,这样效果较显著,且节约了氯耗。但摇蚊的虫卵对水中余氯有较强的抵抗力,2mg/L的余氯量对之并无影响,在自来水中虫卵孵化率可达95%以上[17]。
深圳水司的实践表明,采用一定浓度的液氯浸泡沉淀池,可以长时间抑制摇蚊幼虫的发生与孳生。但是由于液氯浸池的时间长达24h,影响了水厂的正常供水,所以这种方法可以在摇蚊幼虫大规模爆发时采用。在不影响水厂正常生产的情况下,在沉淀池中投加化学氧化剂,可以利用摇蚊幼虫在凝絮体中筑巢的生理特点,往往使灭活率较高。但是该方法既增加了生产成本,又由于加大氧化剂的投量而加剧了副产物的生成,给出厂水的水质安全造成新的问题。
4.3 微生物防治
微生物防治害虫是生物防治的一个重要组成部分。特定微生物能直接杀死害虫,不污染环境。目前国内外尚无微生物杀虫剂用于饮用水的报道。1987年后期美国印第安那州的洛厄尔城发生了城市供水系统摇蚊幼虫污染。洛厄尔城实施了清洗消毒等处理措施,但是没有取得明显的效果。他们曾尝试利用苏云金杆菌以色列变种(以下简称Bti)来治理,但提案被印第安那州政府否决,首先是因为Bti尚未被批准应用在饮用水中,其次是因为在相关法规上,不允许在饮用水中投加杀虫剂。最后他们采用Cat-floc Ls食品级聚合物来治理,其作用是作为水絮凝剂去除摇蚊幼虫所需的食物—硫化细菌和铁细菌[16]。
4.4 环境防治
环境防治是通过环境改造以防止或减少害虫的孳生繁殖。环境防治是对昆虫生态学的实际应用,它是根据害虫生物学的特点,对害虫生活环境治理,使之不利于害虫的生长、繁殖,而达到防治害虫的目的。
摇蚊幼虫以水中的有机物碎屑、细菌及藻类为食[10]。强化混凝,通过投加聚丙烯酰胺助凝,控制待滤水浊度小于3NTU,可以提高原水中有机物和藻类等的去除率,减少幼虫的食物来源,使其生活环境质量下降,降低幼虫的生存机率;针对摇蚊幼虫可在沉淀池底泥中越冬生活的特点,增加冬季和秋季的大强度清洗工作,可以除去底泥中存在的摇蚊幼虫,抑制其再度生长繁殖;加强滤池管理,保证滤池的正常运行,滤池池壁要勤洗刷,对气水反冲洗滤池的池底水区要经常排空,以保持池体的清洁,同样可以减少摇蚊幼虫的滋生机率[9]。
4.5 生物操纵技术
“生物操纵”技术其内容就是利用生态系统食物链摄取原理和生物的相生相克关系,通过改变水体的生物群落结构来达到改善水质恢复生态平衡的目的[18]。摇蚊幼虫是多数经济鱼类的优良天然饵料,在浮游阶段时,可被不少幼鱼摄取;当转入底栖时,则是底层鱼类鲤、鲫、青鱼等的良好铒料。鱼类属于水生生态系统中食物网的顶级消费者,放养大型不同食性的鱼类,势必影响鱼类的群落结构,并对其他生物群落,特别对饵料生物群落产生极大的影响,进而影响整个生态系统的结构和功能[19]。所以利用生物种群间的捕食关系,从生态学的角度入手,可以通过生物操纵技术来抑制摇蚊幼虫的滋生。
周令等人[11]对原水前加氯的情况下沉淀池养鱼的可行性进行了试验研究,试验鱼种采用鲫鱼鱼苗。结果表明:(1)沉淀水余氯<1.0mg/L,鱼苗在沉淀水中生长良好,没有出现不适应症状;(2)鱼喜食摇蚊幼虫特别是老龄红虫,有利于灭蚊和控制红虫数量;(3)几种鱼类配合放养,使鱼在沉淀池中呈立体分布,有利于消灭不同生活习性的各发育阶段的摇蚊幼虫;(4)放养鱼苗的沉淀池出水浊度及氨氮含量与未放养鱼沉淀池出水相差不大,说明鱼的正常活动及其排泄物不会影响沉淀效果。
沉淀池养鱼由于可操作性差,有一定的局限性,但此方法可在水源中使用以控制原水中的摇蚊幼虫及虫卵。在水体中实施以生态治理为目的的鱼类放养,其放养的生物量应远低于以提高鱼产量为目标的水体渔业养殖中的高密度放养量。在微型生态系统中鱼类放养实验表明,在放养生物量为30g/m3的条件下,水体中的氮、磷等营养物质得到了一定程度的去除,有机物的指标下降、溶解氧的浓度有所提高,浮游植物藻类尤其是蓝、绿藻的生物量也被控制在较低的水平,有效地控制和缓解了水体富营养化的进程。“生物操纵”技术可以在水体生态治理中发挥重要作用,这也是解决水处理工艺中摇蚊幼虫污染问题的重要途径之一。
总之,单凭某一种物理、化学或生物的方法还不能对城市给水处理过程中摇蚊幼虫的孳生进行卓有成效的控制,必须各种方法兼用,互相渗透,多级设防,多层屏障,贯穿于整个净水厂净水工艺系统中。
5研究展望
水处理过程中摇蚊幼虫污染问题的研究,目前仍处于探索阶段,今后应从以下几个方面进行深入研究,以期早日实现摇蚊幼虫污染防治的系统化,确保饮用水的安全。
5.1进行传统制水工艺的各净水单元对摇蚊幼虫去除的特性研究,了解摇蚊幼虫在工艺中的孳生规律及机理,以指导水厂在其暴发期间采取强化工艺或应急措施。
5.2进行摇蚊幼虫在饮用水深度处理工艺(如紫外—臭氧氧化、膜滤、臭氧—生物活性炭等)中的去除规律及机理研究,为水厂采用深度处理工艺去除摇蚊幼虫污染提供理论指导。
5.3从生态学角度出发,研究摇蚊幼虫、鱼类、营养物质水平之间的关系,建立有效的生物控制方法。
水处理工艺中摇蚊幼虫污染控制是一项复杂的系统工程,应结合污染的实际状况采取适当的措施,把水源水富营养化控制与净水处理工艺有机地结合起来。从长远来看,强化水源水体的保护与管理,对已被污染的水源采取有效方法治理,是解决饮用水摇蚊幼虫污染乃至水体富营养化的根本措施。
转贴于 [1] 王俊才,鞠复华.摇蚊幼虫的水生态研究进展[J].辽宁城乡环境科技.1998,18(3):83-84.
[2] 何志辉.淡水生物学[M].北京:农业出版社.1994.336-339.
[3] Armitage P,Cranston P S,Pinder L C V.The Chironomidae :The biology and ecology of non-biting midges[J].London :Chapman&Hall,1995.225-268.
[4] 朱利斌.花翅摇蚊生物学及实验种群生态学的研究[D].中山大学硕士论文.1997.10-11.
[5] 孙刚,盛连喜,李明全.长春南湖底栖动物群落特征及其与环境因子的关系[J].应用生态学报.2001,12(2):319-320.
[6] 薛瑞德,Arshad Ali,赵彤言.用于杀虫剂评价的水池中无脊椎动物的群落结构及其种群动态[J].寄生虫与医学昆虫学报.1996,3(1):50-57.
[7] 吴洁,王国龙.西湖与青山水库底栖动物群落的研究[J].环境监测管理与技术.2000,12(增刊):17-19.|
[8] 刘建康.武汉东湖生态学研究[M].北京:农业出版社.1990,415-421.
[9] 章诗芳,刘韦宏.有关摇蚊幼虫的习性及其防治问题的探讨[C].第二届环境模拟与污染控制学术研讨会.2001.
[10]叶劲,李彬,刘恒,唐雪惠,李朝晖.摇蚊幼虫杀灭试验及相关问题的初步探讨[C].中国土木工程学会水工业分会给水委员会第八次年会.成都,2001.
[11]周令,张金松,雷萍,梁明.净水工艺中红虫污染治理的研究动态[J].给水排水.2003,29(1):25-28.
[12]代田昭彦著,鲁守范等译.摇蚊幼虫的研究—养鱼饵料的饲育培养法[M].北京:农业出版社,1998.
[13]卢靖华,周广宇.超声波对自来水中大龄摇蚊幼虫的杀灭作用[J].中国给水排水.2003,19(1):91.
[14]Huang J L , Wang L, Ren N Q.Disinfection Effect of Chlorine Dioxide on Viruses, Algae and Animal Plankton in Water[J]. Water Research, 1997,31(3):455-460.
[15]王晓昌.臭氧用于给水处理的几个理论和技术问题[J].西安建筑科技大学学报.1998,30(4):307-311.
[16]Michael K,Alexander.New Strategies for the Control of the Parthenogenetic Chironomid[J]. Journal of the American Mosquito Control Association1997,13(2):189-192.
[17]卢靖华.自来水中塞氏摇蚊幼虫的生长规律及防治对策[J].中国给水排水.2001,17(6):53-54.
关键词:危害 重金属污染 土壤修复
土壤是地球表面的疏松表层,它是人类赖以生存的重要自然资源,并且在生态环境中占有重要地位。而近年来,随着工业的快速发展和乡镇城市化,土壤重金属污染日益严重,由此会破坏人类生态环境,从而影响人们的健康,因此,土壤重金属污染的修复技术已成为一个研究热点。
一、土壤重金属污染的危害
随着工农业的快速发展,多种工业如采矿、冶炼、电镀、废电池处理、金属加工等的排放以及农业中各种农药,化肥的施用均是土壤重金属污染的来源。据报道,全世界平均每年排放Hg约1.5万吨,Cu 340万吨,Mn 1500万吨,Pb 500万吨,Ni 100万吨[1]。土壤重金属污染具有污染面积达、积累时间长、不易被微生物降解、有明显的生物富集作用等特点,被重金属污染的土壤会严重影响到农作物的生长和发育,从而导致农作物的减产并污染农作物。安志装等人[2]研究发现镉与巯基氨基酸和蛋白质的结合会引起氨基酸蛋白质的失活,甚至使植物死亡。另外,土壤中的重金属会被农作物吸收并在农作物体内富集,通过食物链进入人体,从而严重危害人体健康。
二、土壤重金污染修复技术
1.物理化学修复技术
1.1化学固化
化学固化法指的是通过在土壤中加入土壤固化剂来改变土壤的有机质含量、矿物组成、pH值和Eh值等理化性质,再经重金属的吸附或共沉淀作用来调节其在土壤中的移动性,从而降低其共生物有效性。固化剂将污染土壤中的重金属固定后,不仅可以减少重金属通过径流和淋洗作用对地表水和地下水的污染,而且被污染的土壤还有可能重建植被[3]。虽然化学固化法可以固化土壤中的重金属,但固化剂只是改变重金属在土壤中的存在形态,重金属仍留在土壤中,因而该方法还有待进一步的研究探讨。
1.2电动修复
电动修复是近年来快速发展的技术,其作用机理是将电极对插入被污染的土壤中,在通入微弱电流形成电场,使土壤中的重金属在电场形成的各种电动力学效应下定向移动,在电极区附近富集,从而将重金属处理或分离。
对于低渗透的粘土和淤泥土的修复,电动修复是常用的技术。郑喜坤等人[4]研究了电动修复技术对沙土中Pb2+、Cu3+等重金属离子的去除效果,结果表明,重金属离子的去除率达99%以上。电动修复技术是一种原位修复技术,它可以有效的去除土壤中的重金属离子,并且经济效益好,是一种可行的修复技术。
1.3土壤淋洗
土壤淋洗是一种适用于治理大面积重废污染土壤的方法。所谓淋洗,是指利用提取剂(包括有机或无机酸、碱、盐、表面活性剂和聚合剂等)将土壤中的固相重金属转化为液相,土壤在经水淋洗处理后可归回原位利用,而对于富含重金属的废水也可进行回收处理,从而达到修复土壤的目的[5]。吴华龙等人[6]研究了被铜污染土壤修复的有机调控机理,研究结果表明,外加EDTA对降低红壤对铜的吸收率与加入的EDTA量的对数量显著负相关。土壤淋洗法虽然处理量大,处理效率高,但会造成二次污染,因此,寻找一种既能提取各种形态重金属又不破坏土壤结构的提取剂将成为土壤淋洗法的研究热点。
2.植物修复
植物修复是指在被重金属污染的土壤中,种植某种特定的植物,利用该植物对重金属的耐性和超富集作用将重金属移出土壤,使土壤中的重金属降低到可接受的浓度,达到重金属污染修复的目的。
根据其修复过程和作用机理可将植物修复技术分为4种:①植物萃取技术,即利用超富集植物将重金属从土壤提取出来,并将其转移,贮存到地上部分,然后通过植物收割来对重金属进行集中处理的过程[7]。韦朝阳等人[8]研究发现了一种大叶井口草,它对As的富集有明显的效果,其地上部分最大含量可达694mg/Kg。②植物固化技术,即利用耐金属植物及其根系微生物的一些生物化学作用降低重金属的活性,使其固化,从而减少对土壤的危害。该方法主要适用于有机质含量的矿区污染土壤的修复。③根圈生物技术,即利用植物根际分泌物和根际脱落物刺激细菌和真菌的生长,通过细菌和真菌对重金属的吸附固定作用,是重金属矿化的过程。④植物挥发技术,即利用植物根系的吸收、积累和挥发作用减少土壤中一些挥发性污染物,及植物将污染物吸收到体内后将其转化为气态物质释放到大气中[9]。
3.工程措施
工程措施是比较经典和传统的修复土壤重金属污染的方法,主要包括客土、换土及深耕翻土等方法。通过客土、换土或者将深耕翻土与污土混合,使土壤中重金属的含量降低,减少重金属对土壤植物的毒害,从而使农产品达到食品卫生标准[10]。
客土法是将干净的土壤覆盖在已受污染的土壤上混匀,从而降低土壤中污染物的浓度;换土法是用干净的土壤代替受污染的的土壤,对于换出的土壤应进行处理,防止二次污染的发生;深耕翻土是将表层已受到污染的土壤翻至深层,从而使土壤中污染物的浓度降低。
三、结语
目前运用于修复土壤重金属污染的技术有很多,但每种修复技术对于土壤重金属污染修复均有一定的弊端,并且对于不同类型的土壤受重金属的污染的程度的不同,单一的使用某种技术并不能达到理想的效果,因此,在实际应用中,应综合多种修复技术的优点,互取优势,研究出新型的具有高效,低耗的修复技术。
参考文献
[1]周泽义.中国蔬菜重金属污染及控制[J].资源生态环境网络研究动态.1999,10(3):21-27.
[2]安志装,王校常.重金属与营养元素交互作用的植物生理效应[J].土壤与环境,2002,11(4):392-296.
[3]Vangronsveld J F. Asschc V and Clijsters H.1995.Reclamation of a bare industrial area contaminated by norrferrous metals: In situ metal immobilization and revegetation. Environ Poll ,87:51-59.
[4]郑喜坤,鲁安怀,等. 土壤重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.
[5]龙新宪,杨肖娥,倪吾钟. 重金属污染土壤修复技术研究的现状与展望[J].应用生态学报,2002,13(6):757-762.
[6]吴龙华,骆永明,黄焕忠. 铜污染土壤修复的有机调控研究I.可溶性有机物和EDTA对污染红壤的释放作用[J].土壤,2000,(2):62-66.
[7]丁华,吴景贵. 土壤重金属污染及修复研究现状[J].安徽农业科学。2011.39(13):7665-7666,7756.
[8]韦朝阳,陈同斌,黄泽春,等. 大叶井口边草—一种新发现的富集砷的植物[J].生态学报,2002,22(5):777-778.
关键词 重金属;河道整治;修复;东大沟上游河道;甘肃白银
中图分类号 X522 文献标识码 A 文章编号 1007-5739(2013)16-0224-01
白银市地处黄河中上游,东大沟地区作为白银市的主要工业区之一,流域内分布着以资源开发、加工为主的有色金属、化工行业企业,流域周边企业排放废水和废渣中含有大量重金属,重金属具有高度迁移性,长期堆置不仅造成大量有价金属流失,而且对土壤、地下水等周边生态环境构成潜在污染威胁[1]。
1 东大沟污染现状
1.1 水环境质量现状
东大沟流域多个断面水质监测数据均不能满足《污水综合排放标准(GB 8978-1996)》中一级标准的要求。水质偏酸,氟化物含量超标,上游Zn、Cd的污染较为突出,下游COD、Cu、As污染显著。
1.2 土壤质量现状
东大沟上游有色金属加工企业重金属粉尘、尾水、废渣排放,导致河岸两侧土壤中重金属严重超标,土壤中重金属主要富集在地表以下0~20 cm,部分区域污染深度达到50 cm,土壤污染现状呈现以Zn为主的多种重金属复合污染现象。
1.3 底泥质量现状
底泥的污染来源于有色金属加工企业冶炼废渣堆放以及含重金属废水排放,通过对底泥样品的采样调查,底泥中重金属As、Pb、Cu、Zn的含量最高值均高于加拿大制订的NOAA标准,Pb、Zn 2种重金属的最大峰值分别出现于20、80 cm,而Cu的最大峰值则出现于40、80 cm,As的最大峰值出现于80 cm。
2 治理工艺及技术可行性
重金属污染河道治理工程主体工艺包括废渣及表层污染底泥异位贮存,表层污染底泥重金属固化/稳定化修复工程以及重金属污染植物修复[2-3]。
2.1 废渣及表层污染底泥异位贮存
2.1.1 治理工艺。由于河道自身情况较为复杂,底泥的深度也难以在抽样调查中完全体现,根据已有的调查数据,研究区域河道底泥挖掘深度拟定为50~120 cm,具体的挖掘情况应根据现场挖据底泥的颜色等进行定性判断,并且在挖掘过程中对50 cm深度的底泥进行再次取样分析,如果效果仍不能达标,需要继续向下挖掘,具体深度视分析结果而定。
河道疏浚的目的是对污染底泥沉积层采用工程措施,最大限度地将储积在该层中的污染物质移出,改善水生态循环,遏制自然水体退化。该次治理区域大部分底泥含水量较低,为了不增加底泥的水力负荷以及废水处理强度,采用机械疏浚的方式,底泥自然蒸发脱水干化与废渣密闭运至弃渣场妥善处置。
2.1.2 技术可行性。含Cu、Pb、Zn、As等重金属的废渣、底泥及土壤均未列入《国家危险废物名录》。根据对研究区域废渣及表层污染底泥的重金属浓度监测,pH值均在6~9,未超出《危险废弃物鉴别标准——浸出毒性鉴别(GB5085.3-2007)》中要求的pH值范围,属于一般工业固废。采用异位贮存方式是一种最为经济、适宜处理大量工业废渣且不受工业废渣种类限制的处理方式。
2.2 表层污染底泥重金属固化/稳定化修复
2.2.1 治理工艺。通过采样分析,选取含As、Zn、Cu、Pb等重金属离子污染程度均严重区域底泥进行固化/稳定化修复,由于底泥中含有As、Zn、Cu、Pb等多种重金属离子,且所含各种重金属离子的种类和含量存在不稳定性,为确保固化/稳定化处理达标,需要根据污染元素和污染浓度来选取药剂。
针对Zn、Cu、Pb的固化,通过加入天然矿物质混合药剂,经氧化还原反应、矿化作用、分子键合反应和共沉淀反应将交换态重金属离子转化为重金属的单质、硅铝酸盐、硅酸盐和多金属羟基沉淀物等自然环境中极稳定的物质,防止其被植物的根系所吸收;针对As的固化,采样铁锰复合氧化物,经吸附、氧化作用,实现重金属污染底泥的固定化修复。
2.2.2 技术可行性。固化/稳定化是向污染底泥、土壤或废渣中投加固化/稳定化制剂,改变土壤的酸碱性、氧化还原条件或离子构成情况,进而对重金属的吸附、氧化还原、拮抗或沉淀作用产生影响的稳定化技术,实现重金属污染土壤的修复。采用该工艺处理后底泥中重金属的浸出浓度低于一般工业固废的入场标准,满足Pb浸出毒性低于5 mg/L、Cu浸出毒性低于75 mg/L、Zn浸出毒性低于75 mg/L、As浸出毒性低于2.5 mg/L的要求。
2.3 重金属污染植物修复
2.3.1 治理工艺。在清除废渣和浅层底泥后回填基质土种植重金属超富集植物,对剩余底泥和部分河岸进行植物修复。普通植物体内Pb含量一般不超过5 mg/kg,Cu的正常含量为5~20 mg/kg,过量重金属对普通植物有很大的毒性,在Zn、Pb、Cu复合污染土壤中,种植普通植物很难达到从污染土壤中快速清除Zn、Pb、Cu复合污染物目的。因此,需要选择对重金属有较强耐受及吸收能力的植物作为首选修复物种,并且超富集植物必须适应白银市当地气候,能够在当地很好地生长,才能保证较好的修复效果[4]。根据白银市当地土质情况及需修复的土壤现状,选取的修复植物为枸杞、红柳、沙枣、国槐、火炬、垂柳、土荆芥、披碱草、芦苇、紫花苜蓿等。
研究发现,禾本科多年生草本植物披碱草具有修复Pb污染土壤的潜力,狗尾草等对As有一定累积效果,且生物量大,为适宜的土壤重金属污染修复植物。紫花苜蓿等牧草对Pb等有较强的富集能力,是土壤Pb污染的理想修复植物,且拥有强大的根系和顽强的生命力,兼具水土保持效果,可用于干旱地区重金属污染的修复。灌木灯心草中的Pb含量测定符合Pb超富集植物,地上部分Pb富集量大于1 000 mg/kg的临界标准,转运系数大于1,在重金属污染土壤修复方面具有潜在的应用价值。上述植物均为当地常见物种,可以很好地适应当地环境,确保生长,同时对重金属具有一定的修复效果。
2.3.2 技术方案可行性。植物修复技术是利用植物来转移、容纳或转化污染物,通过植物的吸收、挥发、根滤、降解、稳定等作用达到土壤修复目的的方法,是一种成熟且发展迅速的清除环境污染的绿色技术[5]。该项目建设区表层50~120 cm表层污染底泥、废渣经处理后,剩余底泥仍具有不同程度的污染,需种植适应在当地生长的重金属超富集植物,以达到较好的治理效果。植物修复技术成本低廉,能增加土壤有机质肥力,且环境扰动小,大面积处理易为公众所接受,并有很好的绿化作用。
3 结语
由于长期遭受重金属毒害作用,东大沟河道生态功能已经完全丧失。针对东大沟典型重金属复合污染问题及生态脆弱的现状,采用异位贮存、固化/稳定化修复以及植物修复等重金属治理技术对区域内的底泥、废渣等介质进行无害化处理与处置,并建立重金属污染土壤植物修复示范区,可实现河道生态恢复和景观重建,初步恢复遭到重金属污染胁迫的东大沟河道生境。
4 参考文献
[1] 黄河上游白银段东大沟流域重金属污染整治与生态系统修复规划[M].北京:北京大学出版社,2012.
[2] 蒋培.土壤镉污染对芦蒿生长和品质安全的影响及调控措施研究[D].南京:南京农业大学,2009.
[3] 卜全民,李凤英.污染河道生态修复技术研究[J].安徽农业科学,2008(36):16084-16085,16090.
1.土壤重金属污染现状 目前我国受重金属污染的耕地面积近2000万公顷,约占耕地总面积的1/5。受矿区污染土地达200万公顷,石油污染土地约500万公顷,固体废弃物堆放污染约5万公顷,“工业三废”污染耕地近1000万公顷,污水灌溉的农田面积达330多万公顷。土壤污染使全国农业粮食减产已超过1300万吨,因农药和有机物污染、放射性污染、病原菌污染等其他类型的污染所导致的经济损失难以估计。由于污染,土壤的营养功能、净化功能、缓冲功能和有机体的支持功能正在丧失。
2.土壤重金属污染产生的严重后果 ①土壤污染使本来就紧张的耕地资源更加短缺。②土壤污染给人民的身体健康带来极大的威胁。③土壤污染给农业发展带来很大的不利影响。④土壤污染也是造成其他环境污染的重要原因。⑤土壤污染中的污染物具有迁移性和滞留性,有可能继续造成新的土地污染。⑥土壤污染严重危及后代子孙的利益,不利于农村经济的可持续发展。
3.土壤重金属污染来源 ①随着大气沉降进入土壤的重金属。大气中的重金属主要来源于能源、运输、冶金和建筑材料生产产生的气体和粉尘。除汞以外,重金属基本上是以气溶胶的形态进入大气,经过自然沉降和降水进入土壤。经自然沉降和雨淋沉降进入土壤的重金属污染,与重工业发达程度、城市的人口密度、土地利用率、交通发达程度有直接关系,距城市越近,污染的程度就越重。②随污水进入土壤的重金属。污水按来源和数量可分为城市生活污水、石油化工污水、工业矿山污水和城市混合污水等。生活污水中重金属含量很少。但是,由于我国工业迅速发展,工矿企业污水未经分流处理而排入下水道与生活污水混合排放,从而造成污灌区土壤重金属铅、镉、汞、溴、铬等含量逐年增加,随着污水灌溉而进入土壤的重金属,以不同的方式被土壤截留固定。③随固体废弃物进入土壤的重金属。固体废弃物种类繁多,成分复杂,不同种类其危害方式和污染程度不同。其中矿业和工业固体废弃物最为严重。这类废弃物在堆放或处理过程中,由于日晒、雨淋、水洗,重金属极易移动,以辐射状、漏斗状向周围土壤、水体扩散。有一些固体废弃物被直接或通过加工作为肥料放入土壤,造成土壤重金属污染。如随着我国畜牧生产的发展,产生大量的家畜粪便及动物加工产生的废弃物,这类农业固体废弃物中含有植物所需氮、磷、钾和有机质,同时由于饲料中添加了一定量的重金属盐类,因此作为肥料施入土壤增加了土壤锌、锰等重金属元素的含量。固体废弃物也可以通过风的传播而使污染范围扩大,土壤中重金属的含量随距污染源的距离增大而降低。④随农用物资进入土壤的重金属。农药、化肥和地膜是重要的农用物资,对农业生产的发展起着重大的推动作用,但长期不合理施肥,也可以导致土壤重金属污染。重金属元素是肥料中最多的污染物质,氮、钾肥料中重金属含量较低,磷肥中含用较多的有害重金属,复合肥的重金属主要来源于母料及加工流程所带入。
1 土壤重金属污染物的来源
土壤重金属污染是指土壤中重金属过量累积引起的污染。污染土壤的重金属包括生物毒性显著的元素如Cd、Pb、Hg、Cr、As,以及有一定毒性的元素如Cu、Zn、Ni等[1]。成土母质本身含有一定量的重金属,但由于土壤环境是个开放的体系,外源重金属通过各种途径不可避免地进入土壤,包括人为污染源和天然污染源,土壤重金属污染的控制在源头上主要是人为源的控制。人为污染源的污染途径主要包括大气沉降、污水灌溉、固体废弃物的处理,以及农用物资的不合理施用等。
1.1 大气沉降
工业生产(如能源、冶金和建筑材料等)产生了大量废气和粉尘,其中含有重金属的部分在大气中通过自然沉降和降水淋洗进入土壤。Lisk估计全世界每年约有1600吨的Hg通过煤及其他化石燃料的燃烧排放到大气中,例如比利时每年从大气进入土壤的重金属每公顷达到Pb 250g、Cd 19g、As 15g、Zn 3750g[2]。这些污染物以工厂企业的烟尘为中心,顺着风向向外延伸,污染范围一般呈圆形或椭圆形。
另外,繁忙的运输也使得公路、铁路两侧的土壤中重金属(Pb、Zn、Cd、Cr、Co、Cu等)远高于土壤背景值。在法国索洛涅地区A-71号高速公路沿途,重金属Pb、Zn、Cd的沉降粒子浓度超过当地土壤背景值2~8倍,而公路旁土壤重金属浓度比沉降粒子的浓度还要高7~26倍[3]。这些重金属主要来自于含铅汽油的燃烧和汽车轮胎磨损产生的粉尘,以公路为中心,向四周及两侧扩散,污染范围呈条带状。
1.2 污水灌溉
污水灌溉一般指使用经过一定处理的城市污水灌溉农田、森林和草地。城市污水包括生活污水、商业污水和工业废水。[4]随着城市工业化的迅速发展,大量未经处理或处理不到位的工矿企业污水进入城市污水,通过污灌造成土壤中重金属Hg、Cd、Cr、Pb、Cd等含量的逐年增加[5]。其中Cd污染最为严重。在日本,有472125公顷农田被Cd污染,占重金属污染总面积的82%。[6]我国有140万公顷污灌区,64.8%受重金属污染,其中严重污染的占8.4%[7],沈阳张士灌区、上海沙川灌区、广东广州和韶关地区、广西阳朔、湖南衡阳、江西大余等地,因长期污灌Cd污染严重,频频出现“镉米”[8]。
1.3 固体废弃物的处理
在工矿业固体废弃物的堆放、填埋等处理过程中,由于日晒、雨淋、水洗等,重金属极易移动,以辐射状、漏斗状向周围土壤、水体扩散。煤矸石的堆放对土壤会造成严重的重金属污染[9]。沈阳冶炼厂的矿渣自1971年开始就堆放在一个洼地,主要含Zn、Cd,目前已扩散到离堆放场700米以外的范围;武汉市垃圾堆放场、杭州铬渣堆放区附近土壤中重金属Cd、 Hg、Cr、 Cu、Zn、Pb、As等的含量均高于当地土壤背景值[10]。
有一些固体废弃物被作为肥料施入土壤,造成土壤重金属污染。磷石膏是化肥工业废物,含有一定量的正磷酸以及不同形态的含磷化合物,并可改良酸性土壤,因而被大量施入土壤,造成了土壤中Cr、 Pb、Mn、As含量增加。同样的,磷钢渣也常作为磷源施入土壤,造成土壤中Cr累积。污水处理厂产生的污泥含有较高的N、P养分及有机质,常回填农田以肥田,而污泥中的Cr、 Cu、Zn、Pb、As往往超标,所以污泥回填也可使土壤重金属含量增加[11]。
1.4 农用物资的不合理施用
农田耕种过程中为了增产、稳产,必须使用农药、化肥和地膜等农用物资。这些农用物资如果长期不合理施用,也会导致土壤重金属污染。少数农药含重金属,如杀菌剂抗枯宁、菌枯灵等含Cu、Zn,被大量地施用于果树和温室作物,造成土壤Cu、Zn累积;杀菌剂西力生含Hg,它的使用使每公顷土壤中的Hg增加6~9 g。马耀华等对上海地区菜园土研究发现,施肥后,Cd的含量从0.134 mg/kg升到0.316 mg/kg,Hg的含量从0.22 mg/kg升到0.39 mg/kg,Cu、Zn 增长2/3[12]。Taylor对新西兰施用磷肥达50年的同一地点的58个土样进行分析,发现Cd从0.39 mg/kg升至0.85 mg/kg[13]。在阿根廷由于传统无机磷肥的施入,导致土壤重金属Cd、Cr、Cu、Zn、Ni、Pb的污染[14]。
随着近年来地膜的大面积推广使用,不仅造成了土壤的白色污染,而且地膜生产过程中加入的热稳定剂含Cd、Pb,又增加了土壤重金属污染来源。
2 土壤重金属的污染特性
与大气、水体及废弃物污染相比,土壤重金属污染有比较明显的隐蔽性与滞后性,以及累积性与可变性,使污染治理和土壤修复的效果没有大气及水体污染治理那么见效明显,并且治理周期长,通常成本较高,大大增加了土壤污染控制的难度。
2.1 隐蔽性与滞后性
土壤有巨大的自净化能力,其体系内的重金属容纳量其实是比较大的,所以,重金属污染物进入土壤后,很长一段时间都不会体现出其污染性,往往要通过土壤样品分析、农残检测及有关人畜健康状况检查,才能发现和确定。因此土壤重金属污染有明显的隐蔽性。而发现土壤受重金属污染时,往往土壤中重金属的含量已经远远超标,受污染局部区域及其周边的生态环境已经呈现出明显的毒害副作用,这一特点也使得土壤重金属污染的治理往往具有滞后性,所采取的各种方法、措施是补救性质的,因此对土壤重金属污染的控制,预防更显重要。
2.2 累积性与可变性
土壤中的固相物质占土壤总体积的50%,占总重量的95%以上,重金属污染物进入土壤体系后不象在流体态环境中那样比较易于扩散和稀释,所以重金属污染物在土壤的局部空间容易积累并达到很高浓度,其污染具有很强的累积性,污染物量越大,污染越严重。
然而重金属在土壤中的存在状态会受很多因素影响,重金属元素在土壤中主要以可溶态、可交换态、碳酸盐态、铁锰氧化态、有机态及残渣态的形式存在,外源重金属进入土壤之后,其形态不断变化,氧化还原电位、pH值、离子强度、金属元素浓度、各种无机及有机组分的种类和浓度等因素都可能引起土壤重金属形态的变化,其中可溶态和可交换态重金属的生物有效性最强,易于被生物吸收、吸附,使重金属能在土壤中的空间位置进行一定的迁移转化,由此出现重金属富集或分散,因此土壤重金属污染又具有可变性。根据这一特点,对土壤重金属污染进行控制的时候,可以通过改变重金属存在状态,增大或者减小其生物有效性,从而达到污染治理的目标。
参考文献
[1] 徐良将,张明礼,杨浩.土壤重金属污染修复方法的研究进展[J].安徽农业科学,2011,39(6):3419~3422.
[2] Lisk D. Environment implications of incineration of municipal solid waste and disposal [J]. Sci Total Environ,1998,74,(1):39-66.
[3] Pyeong-Koo Lee. Heavy metal contamination of settling particle in a retention pond along the A-71 motorway in Sologne,France [J]. Sci. Total Environ,1997,201(1):1-15.
[4] 郑喜珅,鲁安怀,高翔等.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79~84.
[5] 张书海,沈跃文. 污灌区重金属污染对土壤的危害[J].环境监测管理与技术,2000,12(2):22~24.
[6] 廖自基.微量元素的环境化学及生物效应[M].北京:中国环境科学出版社.1993:301~303
[7] 杨科壁.中国农田土壤重金属污染与其植物修复研究[J]. 世界农业,2007(8):58~61.
[8] 顾继光,周启星,王新.土壤重金属污染的治理途径及其研究进展[J]. 应用基础与工程科学学报,2003,11(2):143~151.
[9] 李东艳,方元元,任玉芬等.煤矸石堆周围土壤重金属污染特征分析[J]. 煤田地质与勘探,2004,32(5):15~17.
[10] 张孝飞,林玉锁,俞飞等.城市典型工业区土壤重金属污染状况研究[J].长江流域资源与环境,2005,14(4):512~515.
[11] 王静,王鑫,吴宇峰等.农田土壤重金属污染及污染修复技术研究进展[J].绿色科技,2011,3(3):85~88.
[12] 马耀华,刘树应 . 环境土壤学[M].西安:陕西科技出版社,1998,198~201
[13] Taylor M D. Accumulation of cadmium derived from fertilizers in New Zealand soil [J]. Sci. Total Environment,1997,208(1/2):123~126.
[14] Lidia GiuffreI De Lopez Came. Eavy metals input with phosphate fertilizers used in Argentina [J]. Sci.Total Environment,1997,204(3):245~250.
基金项目:中央财政支持作物生产技术专业
[关键词]土壤;蔬菜;重金属污染
[DOI]10.13939/ki.zgsc.2016.51.181
目前,蔬菜水果的农药残留早已经引起人们的重视,而蔬菜水果的重金属超标及污染问题因为其生态毒性的滞后效应尚未引起人们足够的重视。关于蔬菜水果的重金属污染源,人们对金属矿产开采及加工区域的农产品重金属污染情况关注很多,而较少地关注畜禽养殖废物农用作为重金属污染源带来的污染。本研究对养猪场固废农用对环境和土壤的影响、蔬菜重金属污染等方面进行了相关的关注。
1 养猪场固废农用的环境影响研究进展
随着生活水平的提高,人们饮食结构中动物蛋白比例的增加,带来畜禽养殖业的快速发展。畜禽养殖废物逐渐成为区域水环境、大气环境和土壤环境的重点污染源,仅次于工业点源污染。养猪场固废农用是传统的生态农业循环经济模式,但其环境影响却为人们所忽视。我国是世界上畜禽养殖大国,据估算2003年我国畜禽粪便为31.9亿吨[1],规模化畜禽养殖业的快速发展产生了大量的畜禽粪便,多数有机肥施入土壤进入养分循环。研究表明,以畜禽粪便为原料堆制的有机肥会带来土壤重金属的累积[2],多数有机肥施入土壤会进入养分循环,但是有机肥中除了含有氮、磷、钾等养分外,还含有一些重金属元素,这些元素难降解、毒性强,在土壤中长期积累会通过食物链传递到人体,对人类健康构成威胁。因此,对畜禽粪便农用所带来的对土壤重金属形态的影响进行关注,对重金属与作物吸收的关系进行研究,对减少畜禽粪便施用带来的生态环境风险具有重要的意义。
2 养猪场固废农用对土壤环境影响研究进展
畜禽养殖废物农用的环境影响人们常常认为具有正面的积极作用,这与传统生态农业模式有关。但现代规模化畜禽养殖业的发展已经与饲料添加剂的广泛使用密不可分,继而带来的畜禽养殖废物农用的负面环境影响日渐显露,但尚未被人们所关注。例如饲料添加剂中铬的使用,促使大量铬元素通过畜禽养殖废物进入土壤-植物生态系统中,其生态影响机制和过程尚未被人们所关注。
随着微量元素作为饲料添加剂在畜禽养殖中的广泛使用,而这些重金属元素很难被畜禽完全吸收利用,导致大量重金属(95%以上)会随粪尿排出体外[3]。由于重金属在土壤中相对稳定、难降解、毒性强、有积累效应等,因此,近年来饲料添加剂对畜禽产品的品质影响一直是国内外研究的焦点。人体中的重金属元素主要来自农产品,主要是农作物,而作物中重金属元素又主要来自土壤。作物中重金属元素含量很大程度上取决于作物自身的特性和作物种类。荆旭慧等[4]的研究表明土壤的基本理化性质对土壤重金属的富集有一定的影响。目前关于土壤-农作物系统中重金属的研究已经很多,已经关注了不同种类的植物中铬和硒的含量,研究了蔬菜作物不同器官吸收和积累铬的能力,以及重金属在人类所摄入的食物链中的土壤这一系统的含量,来评价土壤重金属毒性阈值。
3 蔬菜中的重金属污染研究进展
近年来人们对蔬菜的消费除了对蔬菜感官口味的要求外,对蔬菜的安全也日益重视。以往的大多数研究主要是针对氮、磷等营养元素对蔬菜的影响,以及以生活污水和工业废水灌溉农业土壤造成的蔬菜重金属污染影响、工业废水灌溉的农业土壤和大型排污口附近通道重金属的积累和相关理化性质、未经处理的工业废水灌溉土壤后蔬菜中重金属的含量、未经处理的生活废水灌溉菜园可能存在的健康风险等;消费者对蔬菜特别是可食用部分中重金属浓度重点关注,并从植物生物量和输给、淋溶等计算植物获得的年净平衡,评价生长在这些领域的蔬菜是否适合人类食用。中国北京、上海、杭州、南京等大中城市都曾较系统地调查研究了城市郊区菜园蔬菜中的重金属污染状况,基本摸清了蔬菜重金属污染现状[5]。
另外,国内外有些学者也研究了空气作为重金属的污染源对蔬菜作物的影响,例如通过空气传播的镉、铬、铜、镍、铅等重金属对蔬菜的污染影响;以及通过对积累在土壤、降尘(衡量空气污染)和地下水位的重金属进行含量测定,并评价蔬菜产量的质量,分析蔬菜器官的重金属含量。
国内主要从研究蔬菜重金属污染的现状、蔬菜对重金属的吸收与富集规律、重金属污染对蔬菜生长发育的影响、蔬菜重金属污染后的生理生化反应、控制蔬菜重金属污染的途径与对策、今后蔬菜重金属污染研究的方向与展望等方面概述了蔬菜重金属污染的研究进展[6]。
重点讨论农作物污染的重要因素,并在农业生产中有意识地控制这些因素,为保证蔬菜基地生产的安全性做一定的工作,对畜禽养殖业废物无害化处理,畜禽养殖废物农用的生态影响分析和农产品食品安全等具有重要的理论指导和实践意义。
4 该领域的研究方向
以往的研究主要是关注畜禽粪便中的重金属含量累积及形态变化,或者畜禽粪便农用对植物吸收方面的影响,养猪场固废-土壤-蔬菜几个系统互相结合的报道很少,因此对饲料-养猪场固废-土壤-蔬菜进行系统的、全面的调查,具有较重要的意义。生态分布模型可以直观表现出某种化学物质在多个环境系统中的浓度,具体研究实例中的重金属物质污染。目前已有的植被对城市污泥中重金属的吸收模型,没有考虑其他的污染源、植物的不食用部分,以及因大气沉降导致的植物吸附作用;同时对植物而言,也应重视在生长季和收获季的区别。普通的吸收模型可以根据土壤成分,有可能找到不同重金属离子的分配系数,也就是溶解在土壤间隙水中的部分占总量的百分比。通过分析多种土壤类型中的重金属重量和相应的溶解态重金属的量,就可以找出分配系数。一方面确定土壤中的pH、腐殖质、黏土和沙土的相关关系;另一方面确定分配系数,对重金属的吸收被认为是溶解重金属的一级反应。研究饲料、畜禽粪便、土壤、大气沉降等源及蔬菜中不同部分重金属的含量分布,并构建生态分布模型,判断农作物污染的重要因素,值得进一步深入。
⒖嘉南祝
[1]王方浩,马文奇,窦争霞,等.中国畜禽粪便产生量估算及环境效应[J].中国环境科学,2006,26(5):614-617.
[2]郝秀珍,周东美.畜禽粪便中重金属环境行为研究进展[J].土壤,2007,39(4):509-510.
[3]闫秋良,刘福柱.通过营养调控缓解畜禽生产对环境的污染[J].家禽生态,2002,23(3):68-70.
[4]荆旭慧,李恋卿,潘根兴.同环境下土壤作物系统中重金属元素迁移分配特点[J].生态环境,2007,16(3):812-817.
关键词:重金属污染;河道疏浚;污染危害
中图分类号:X324 文献标识码:A
1前言
随着经济的飞速发展,我们国家的科技水平越来越高,工业和制造业的发展也越来越快,但是工业和制造业的发展而带来的环境污染也越来越严重,其中就有重金属污染。重金属污染不仅破坏自然环境、危害生命,还使河道淤堵,给航运带来不良影响。而且重金属很难降解,难以降解的重金属,还会加深重金属的污染程度,从而使重金属的污染不断加剧。重金属可以通过水和土壤、大气,进入生命体,使生命体的一些蛋白质失去活性,让生命体中毒,从而导致生命体的病变甚至死亡[1]。同时重金属还会对河道产生严重的不良影响,使河道的疏浚工作难以展开,因此,无论从哪一方面讲,重金属污染的治理都十分重要。
2治理水体中重金属污染的方法
由于本文的主题是讨论重金属污染对河道的影响,所以文章着重分析水体中的重金属污染的治理方法。
从总体上看,治理水体中重金属污染的方法,通常有三个基本思路:一是,彻底清除水体中的重金属,让水体完全没有重金属或者只含有极少量的重金属,但这种思路的实施通常需要在一定条件下进行,即不是任何水体都能够采取这种思路进行重金属污染的治理;二是,尽量降低水体中的重金属含量,或者降低水体中重金属的扩散能力,这种治理思路,实施时受到的条件限制相对较少,所以其可行性相对较高;三是,研究高效的重金属降解技术,通过植物、动物、细菌的正常生物活动,对重金属进行环保的降解,让重金属的含量大幅降低,这种治理思路,是最具环保性的,因此也最被推崇。根据这三种思路,可以研究出具体的治理方法,而通常采用的具体治理方法就主要有以下两种。
2.1综合化学和物理的治理方法
对水体中的重金属的治理可以通过物理方法和化学方法来实现。用来治理水体重金属的物理和化学方法通常就有:离子交换法、明矾沉降发、化学沉淀法、电解法、分子筛选法、萃取法等。这些方法各具优点,都可以将大部分重金属从水体中清除,是十分高效的治理重金属污染的方法,而且在具体实施时,技术难度较小,条件限制较少,通用性较强。但是由于这些方法普遍能耗较高,在具体实施时成本过高,需要的工作人员和设备较多,最关键的是这种治理方法容易对水体产生二次污染,比如化学沉淀法,因此物理、化学方法,不是最理想的重金属治理方法。
2.2生物治理方法
利用生物技术对重金属进行治理,是一种最新的治理重金属污染的方法。该种方法利用植物、动物、细菌的正常生物活动,吸收、转化水体中的重金属[2]。由于生物材料造价较低而且来源广泛,因此生物治理方法在具体实施时没有较大困难,得到业界广泛支持,也具有比较成熟的技术;同时由于其完全采用生物材料进行重金属污染的治理,对环境完全无污染,更不会产生二次污染,所以这种治理方法受到业界青睐,水体重金属污染治理领域拥有极大发展潜力。
3河道的疏浚方法及应用
由于要维持河流的生态平衡,和河道的正常运行,也需要保持一定厚度的泥沙,所以河水中的泥沙较多。同时,由于重金属污染,河水中的重金属经过一系列化学、物理作用,就会吸附鱼类尸体、营养物,形成淤泥;同时这些淤泥成为河流的内污染源,进一步吸附河道中的泥沙,使河道形成较多的淤泥,让河道无法畅通,不仅影响河道的航运和沿河两岸的渔业,还会使河流的生态环境遭受严重破坏[3]。因此,在治理河道的重金属基础上,还要对河道进行疏浚,采取有效措施,保障河流的生态平衡。
因此研究河道疏浚的具体方法就十分重要,在实际疏浚中通常采用以下疏浚方法。
3.1挖河疏浚法及应用
这种方法,不需要抽干河道中的流水,而主要通过挖泥船挖出河道的淤泥,来疏浚河道,使河道畅通。使用这种疏浚方法,挖出的淤泥含水量较大,淤泥的清除不够彻底,从而作业精度较低;而且,无法准确找到污染源头,所以这种疏浚方法的效率较低;同时,目前疏浚作业普遍使用的挖泥船,还容易对河道造成二次污染,即治理河道污染的同时又污染了河道,形成一定的恶性循环;因此挖河疏浚的可行性较低。同时,挖泥船的疏浚成本很低,几乎任何单位都有能力配备,而且挖泥船不受环境限制,可以随时开展疏浚工作,所以挖河疏浚更适合于经济实力较弱并且河道不能停流的地方。比如为了有效改善黄河潼关淤积抬升问题,降低由于潼关高程的抬升对渭河下游防洪与黄河小北干流造成的一些不利影响,充分发挥其三门峡水库综合效益,在1996年和1997年的时候,在三门峡库区潼关河段实施了挖河疏浚方法,并取得了一定的效果,但是由于其清淤规模比较小,作业河段比较有限,同时其所采用的冲淤清淤机械不是很完善,不能将将河道中的淤泥清除干净[4]。
随着科技的迅速发展,如今挖泥船已逐渐有一定技术改良,在挖泥船上配备了先进仪器、设备,使挖泥船的作业精度有一定提高;对其挖掘部件也做了较大改进,使挖泥过程淤泥的扩散得到有效控制,减少了挖泥船的二次污染。
3.2抽水疏浚法及应用
这种方法,主要是利用抽水机将河道的水抽干,再用挖土机、刮泥机等疏浚设备清除河道的淤泥,使河道畅通。抽水疏浚法在清除河道淤泥时,可以一次性清除河底的淤泥和河道两旁的淤泥,而且,能找到重金属污染的源头,断绝所有的污染源,从而达到“一劳永逸”的效果。
这种疏浚方法,可以准确挖出淤泥,挖出的淤泥浓度较高,因此作业精度极高。但是这种疏浚方法的成本极高,使得疏浚工作开销极大;同时,抽水疏浚法在实际使用时,由于这种方法需要将河道的水抽干,即河道必须停流,所以实施时有明显限制。
4重金属污染对河道疏浚的影响
通过对大多数受重金属污染的河道进行化学、物理分析时发现,大部分河道的重金属污染程度,远比沿河两岸的土壤受到的污染程度低,相对来说,河道的重金属污染不很严重。而且大部分受污染河道的各种重金属含量,均低于用于农田施肥污泥重金属含量的最低标准。因此,就可以将河道疏浚的淤泥,用于农田施肥,不仅将重金属污染物清除,还将重金属污染的不良影响变为有价值的农田肥料。
但是,也有一小部分河道受到严重的重金属污染,这一部分河道的重金属含量均高于用于农田施肥污泥重金属含量的最高标准。因此,不仅不能将其河道疏浚的淤泥用于农田施肥,而且还要特别注意将河道疏浚的淤泥环保处理,使其不能破坏淤泥处理地的生态环境,降低其不良影响。
比如苏州河作为黄浦江的主要支流,在引排水、灌溉以及通航等方面有着非常重要的作用,苏州河是一种典型的平原河流,由于其河道蜿蜒曲折,其水流不是很畅,同时其流速也较为缓慢,再加上河道与支流沿岸的人口比较多,其工农业比较发达,所排放的各种污染物随着河流悬浮物沉积于河道底部,长期下来成为了污染底泥,在这些污染物中,由于重金属污染物不能降解,同时在一定条件下经过螯合、吸附以及络合等方式溶于水中,如果被生物体吸收以后,就可能随着食物链逐渐地累积,其产生的危害将会非常大[5]。
通过大量的资料显示,在苏州和市郊段底,重金属在不同河段的分布差异也比较大,但是其各元素的分布趋势大致一样。从苏州河市郊段河道的底泥和沿岸的土壤比较情况来看,该河段总体上的重金属污染还不是很严重,各重金属不管是平均含量还是其峰值含量均比1984年原城乡所颁布的关于《农用污泥中污染物控制标准》中农田施用污泥最高的容许含量规定要低。同时由于该地区的土壤属于偏碱性,且含有相应的石灰性物质,在这种土壤环境下,可降低重金属活动性,对此,该河段疏浚出的这些底泥基本上均可就近用于农田肥料。[6]此外,由于该河段底泥的重金属分布不是很均匀,有些河段的重金属含量远比沿岸土壤的背景值大,再加上该河段市郊的农田是蔬菜地,其地下水位比较高,因此必须要特别注意金属对于地下水源的影响以及对人体的危害等,针对这一问题,对于重金属含量很高的河段,所疏浚出的底泥不能作为农田的肥料,但可作为花卉用土或者进行垃圾场的埋填。
5结束语
综上所述,文章通过介绍重金属污染的严重性,提出了关于治理水体重金属的各种方式,并基于此提出了河道疏浚的的多种方式以及其具体的应用。在实际河道疏浚过程中,可结合重金属污染的具体情况,采取相应的治理措施。随着科学技术的进步,在今后河道疏浚过程中,应该加大对新技术和新方法的研究,对其技术进行不断地创新,同时还要加大环境保护重要性的宣传,提高人们的环保意识,这样才能有效防止对河道的污染,推动城市生态化的可持续发展。
参考文献:
[1] 吴卿,高亚洁,李东梅等.紫花苜蓿对重金属污染河道底泥的修复能力研究[J].安徽农业科学,2011,39(28):17376-17378.
[2] 李靓亮,李文全,王志军等.吹填采砂、河道疏浚与航道维护结合的应用与启发[J].水运工程,2012,(9):132-135
[3] 辛小康,叶闽,王凤等.河道疏浚工程悬浮物影响预测模型[J].水利水电科技进展,2011,31(1):8-10,49.
[4] 朱广伟,陈英旭,王凤平等.城市河道疏浚底泥农田应用的初步研究[J].农业环境保护,2001,20(2):101-103.
关键词:螯合剂 土壤 运用
一、螯合剂的种类
标准的分类不同使螯合剂也呈现不同的种类,当下比较常见的分类方式主要有效果与作用机理分类、化学组成分类。螯合剂根据效果与作用机理的分类能够分为稳定、固化以及活化的重金属螯合剂。依照螯合剂所显示出来的化学组成分类,螯合剂能够分为天然的低分子有机酸以及氨基多羧酸类。具体分类入下图:
二、螯合剂在重金属污染土壤修复中的运用
对于农产品而言,土壤遭受到重金属的污染会影响着其安全,严重的情况会威胁到人类的健康以及整个生态系统,这个问题已经逐渐蔓延开来,当下世界已经将土壤的重金属污染问题纳入全球性环境问题中。如果土壤遭受到重金属的污染,会极大的降低土壤中生物的有效性,使栽植的植物难以吸收土壤中的养分,在现实当中,螯合剂就能够很好的解决这一难题,其能够有效的对土壤中重金属所具备的移动性予以改变,这里所说的改变主要就是指将土壤重金属予以钝化或者活化,这样就能够极大提高修复重金属土壤的效率,因此在当下修复重金属土壤的中广泛将螯合剂运用进来。
1.氨基多羧酸类
就当下形式而言,氨基多羧酸类的螯合剂在一定程度上含有活化效率高的特征,在我国对于修复土壤重金属污染的报道非常多。例如在研究拥有半年开采历史以及我国亿吨煤建设基地的淮南矿区,土壤所遭受的重金属污染主要就是铅污染,我国已经有很多专家以及学者对淮南矿区这一现状以及危害进行了仔细分析,与此同时还研究出了修复土壤铅污染的最新技术、修复栽植植物的机理以及技术特征。再例如我国很多专家以及学者认为将DTPA、EDTA以及HCL作为化学螯合剂,在这三种浸提剂中,对于镉、铜、铅、锌这四种重金属而言,HCL的浸提效果相对于DTPA以及EDTA要好的多。我国还有一些专家以及学者通过研究得出,泥炭以及螯合剂能够对苎麻吸收土壤中重金属镉起到一定的影响,根据相关实验表明,柠檬酸与泥炭两者组合起来进行配施处理能够帮助所栽植植物的生长,针对植物吸收重金属镉的实际能力来看,泥炭与螯合剂(柠檬酸、EDTA)两者组合起来进行配施处理能够有效的帮助苎麻更好的吸收土壤中的重金属镉。我国很多专家以及学者都认为小白菜能够对土壤中的重金属镉污染植物进行有效的修复,然后经过盆栽试验,我们能够得出小白菜在重金属镉土壤中的富集指标以及耐受性,然后根据此指标去施加不同水平的螯合剂,这样做的主要目的就是让修复效果得到强化。我国还有一些专家以及学者还做了土培盆栽试验,我们能够得知油菜以及甘蓝也能够在吸收土壤中重金属镉起到有效的生物净化作用,在此基础之上,很多专家以及学者还对甘蓝富集镉受到螯合剂的影响进行了详细的研究,通过这个研究我们能够得出,甘蓝在进行修复土壤中重金属镉污染的效果并不是那么明显,但是油菜在修复土壤中重金属镉污染却有着非常显著的效果,但是EDTA化学螯合剂在提高修复水平方面的效果就不是那么明显,因此,我们就可以认定油菜这种植物比较合适去对土壤中的重金属镉污染进行修复,但是对于螯合剂的添加还是要根据实际情况来决定。
2.低分子有机酸
低分子有机酸相对于氨基多羧酸类来说,在进行修复土壤重金属污染的相关研究报道中,偏向于低分子有机酸的研究报道要相对要少一点。我国一些专家以及学者就当下土壤重金属污染的实际情况进行筛选活化重金属土壤中天然植物螯合剂的研究,根据此研究我们能够得知植物的类别不同所产生出来的汁液也能够对土壤中不同的重金属成分起到不同的活化能力,为此我们做了一个排序:马尾松
三、存在的问题与展望
在运用螯合剂对土壤重金属污染进行修复的时候会在不同程度上受到螯合剂种类所呈现出来的效应、金属种类、螯合剂所呈现出来的浓度效应、整合剂的酸碱值效应、土壤的基本特质效应以及植物的具体种类效应等方面的影响。例如,EDTA能够在一定范围内的酸碱值内与其他金属复合成为一种具有一定稳定性的复合物,其不仅能够对土壤中的重金属予以吸附,还能够将土壤中的重金属化合物予以溶解,但是不溶性,与此同时酸碱值、提取液与土壤之间的比例、电解质、重金属在土壤中的具体形态以及土壤的具体性质都会对EDTA清除土壤中的重金属的实际效果造成影响,并且EDTA具有价格昂贵以及回收率低的问题,这就使得EDTA不能够被广泛的运用起来。
而对于螯合剂修复土壤的重金属污染来说,其不仅是一项耗费低的修复技术,还具备在一定的范围内对受到污染的土壤予以修复的潜能,但是就目前形势而言,还缺乏对螯合剂在土壤中以及重金属在植物内部的累积、迁移和重金属的络合作用的机制的研究。与此同时,螯合剂不仅能够对土壤中、低浓度重金属污染予以处理,还能够与其他土壤重金属污染修复技术相结合,以此来作为整个修复工作的最后一项内容,但是螯合剂不能够对土壤遭受的所有重金属污染予以处理。
在未来我们能够要求螯合剂的来源植物要具备对重金属有一定的耐性,因此,我们能够将基因工程技术运用进来,这样做的主要目的就是对超富集植物的培育,通过基因工程技术培育后的植物具有重金属生物量大以及累积量大的特点,这样就能够提高植物的生物量,从而提高植物的土壤重金属污染的修复效果。
参考文献
[1]白雪,程国玲.螯合剂在重金属污染土壤中的应用[J].现代农业科技,2011,(1):289-289,292.
[2]李玉红,宗良纲,黄耀等.螯合剂在污染土壤植物修复中的应用[J].土壤与环境,2002,11(3):303-306.