公务员期刊网 精选范文 生物质燃料的优势范文

生物质燃料的优势精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的生物质燃料的优势主题范文,仅供参考,欢迎阅读并收藏。

生物质燃料的优势

第1篇:生物质燃料的优势范文

关键词:生物质成型燃料 锅炉设计 双层炉排 动态评价 技术经济

中图分类号:TK229 文献标识码:A 文章编号:1674-098X(2013)03(b)-00-01

1 双层炉排的设计依据

我国在生物质成型燃料燃烧上进行的理论与应用研究较少,然而它的确是能有效解决生物质高效、洁净化利用的一个有效途径。目前来说,没有弄清楚生物质成型燃料理论,需要将原有燃煤锅炉进行一定程度的改造升级,但是炉膛的容积、形状、过剩空气系数等和生物质成型燃烧是不匹配的,也因此导致了锅炉燃烧效率和热效率很低,污染物排放超标。所以,根据生物质成型燃料理论科学来进行设计研究专用的锅炉是目前急需解决的重要问题。

1.1 燃烧特性

以稻草,玉米秆,高粱秆,木屑为例子,对比它们的工业分析、元素分析、以及发热量的数值,我们可以得出结论:生物质成型燃料的挥发分远远高于煤,含碳量和灰分也比煤小很多,热值比煤要小。(1)原生物质燃烧特性,原生物质尤其是秸秆类的生物质密度较小,体积大,挥发分在60%~70%之间,易燃。热分解时的温度低,一般来说,350C就能释放80%的挥发分,燃烧速度很快。需氧量也远大于外界扩散所提供的氧量,导致供养不足,从而形成CO等的有害物质。(2)生物质成型燃料特性,生物质成型燃料密度远大于原生物质,因为其经过高压才能形成,为块状物,结构和组织的特征使得其挥发分逸出速度和传热速度大幅度降低,而其点火温度升高,性能差,但比煤的性能要强。燃烧开始的时候挥发分是慢速分解的,在动力区燃烧,速度也中等,逐渐过度到扩散区和过渡区,让挥发分所发出热量能及时到达受热面,因而降低了排烟的热损失。在其挥发分燃烧后,焦炭骨架结构变得紧密,运动气流无法让其解体悬浮,因而骨架炭能够保持住它的层状燃烧,形成燃烧核心。它需要的氧气和静态渗透扩散的一样,燃烧时候很稳定并且温度很高,也因而降低排烟的热损失。

所以说,生物质成型燃烧相比之下优点更明显,燃烧速度均匀适中,需氧量和扩散的氧量能很好匹配,燃烧的波浪比较小,更稳定。

1.2 设计生物质成型燃料锅炉的主要要求

(1)结构布置,采用了双层炉排的设计结构,也就是手烧炉排,并且在一定高度加上一道水冷却的钢管式炉排。其组成包括了:上炉门、中炉门、下炉门、上炉排、下炉排、辐射受热面、风室、燃烬室、炉膛、炉墙、对流受热面、排气管、烟道和烟囱等。上炉门是常开设计的,用作投燃料和供给空气。中炉门则可以调整下炉排上燃料的燃烧,并可以清理残渣,只打开于点火和清理的时候。下炉门用来排灰,提供少量空气,在运行时微微打开,看下炉排上的燃烧情况再决定是否开度。上炉排以上的地方是风室,上下炉排间是炉膛,墙上则设计有排烟口,不能过高,不然烟气会短路。但过低也不行,否则下炉排的灰渣厚度达不到。设计的工作原理,让一定的粒径生物质成型燃料通过上炉门燃烧,上炉排产生的生物质屑和灰渣可以在下炉排继续燃烧。经过上炉排的燃烧,生成的烟气与部分可燃气体通过燃料层然后是灰渣层而进到炉膛内,继续燃烧,并且和下炉排上燃料所生成的烟气混合,然后通过出烟口通向燃烬室,再到后面的对流受热面。下炉排可以采取低、中、高这样三个活动炉排,因为燃料粒径和热负荷的大小不同。这样就达到了让生物质成型燃料分布燃烧的目的,能够缓解其燃烧的速度,还能匹配需氧量。完全燃烧率得到提升,消除烟尘也更有效化了。锅炉受热面设计,换热面以辐射换热为主的形式叫作辐射换热面,又称作水冷壁。由计算得出其受热面的大小,为保持锅炉内的炉温和生物质燃料的燃烧,要把上炉排布置成辐射的受热面。而形式是对流的换热面则是对流受热面,也叫作对流管束,其大小能由公式计算得到。引风机选型,引风机是用来克服风道阻力以及烟道的。选择风机的时候必须考虑其储备问题,否则会造成计算带来的误差。风量和风压能由计算来确定,选择型号要依据制造厂的产品目录。

2 对双层炉排生物质成型燃料锅炉的前景分析

生产与利用实际上就是一个把生产目的、手段还有投入人力物力财力之间进行合适的结合的过程。这不是简单的经济过程,是技术与经济相互结合的过程。技术因素和经济因素要协调,才能使这项技术得到更好的推广和发展。

2.1 技术分析

双层炉排生物质成型燃料锅炉设计的热负荷是87千瓦,热水温度95摄氏度,进水的温度是20摄氏度,热效率也能高达70%,其排烟温度200摄氏度。它在技术的性能上十分占优势,有很高的热效率和燃烧效率,也减少了有害气体和烟尘的排放量,符合我国的标准,对环境带来的损害小,所以可以考虑广泛应用于各种活动生产中来。

2.2 经济分析

在经济效益方面,因为该锅炉的燃烧效率较高,所以能很大程度燃烧燃料,因此制造的热能量等损失小,节省了不少燃料费用。对比燃煤锅炉,更为经济适用。另外,成本费里包括了固定资产的投入与运行费用。而固定资产投入费包含了设备与建设费,该锅炉的成本为一万元,安装和土建费则是五千元,运行费也含有电费、原料费、人工费以及设备维修费。而优点是简单的设备能节省人工费。如果对成型技术还有设备做进一步的研究,可以在原有成本上再降低,因此也是可取的,适合经济发展的。

3 结语

(1)在技术上,双层炉排是一个很大的进步,能很好的提高效率,而且控制了污染物的排放量,也达到了工质参数的设计要求,随着燃料能源的价格上涨,还有科研人员加强对生物质成型技术的深入研究,这种锅炉一定能占有不错的市场。(2)用技术经济学来分析锅炉,能得出一个大致结果就是,该锅炉投资较大,但是长期看来,是经济可行的,其效益也是符合投资要求的。只是和燃煤锅炉比较起来,燃煤的价格占有优势,但如果化石能源的价格上涨,并且环保力度加大,双层炉排生物质成型燃料锅炉会越来越占据优势的一面。

参考文献

[1] 刘雅琴.大力开发工业锅炉生物质燃烧技术前景分析[M].工业锅炉,1999.

[2] 林宗虎,徐通模.应用锅炉手册[J].化学工业出版社,1996(6).

第2篇:生物质燃料的优势范文

关键词:生物质发电厂;燃料输送;设备选型;发电项目;输送机 文献标识码:A

中图分类号:TM621 文章编号:1009-2374(2016)32-0071-02 DOI:10.13535/ki.11-4406/n.2016.32.035

1 概述

如今,随着各类可再生能源技术的更新,可再生能源市场占有比例得到不断提高。可再生能源在减少资源消耗的同时,也降低了对环境的破坏。生物质能源为一种可再生能源,近年来得到广泛应用,本文以生物质发电厂为例,对生物质电厂燃料输送系统设备选型进行对比分析。当前较为常用的输送机主要有五种,分别为普通带式输送机、大倾角带式输送机、挡边带式输送机、链式输送机与管状带式输送机。在电厂生产过程中,燃料输送系统的安全稳定运行,对电力生产水平和效率有重要的影响,因此进行生物质发电厂设计时,必须重视输送设备的选型工作,根据燃料特征、电厂设备出力要求等情况,选取出最为适宜的设备类型,对保障发电厂生产运行和提高经济效益具有重要意义。

2 生物质燃料

生物质燃料为可再生资源,近年来受到国家的高度关注,相关部门出台了很多法规与政策,鼓励企业加大力度开发、运用这种资源。生物质发电技术就是充分利用生物质能源,将生物质能转化成电能。生物质发电的主要燃料为农业生产过程中的废料。我国生物质电厂常用的发电燃料主要有两种,其一为黄色秸秆,如稻草、甘蔗叶、稻谷以及花生壳等;其二为灰色秸秆,如树皮、林木肥料以及棉花秆等。由于生物质发电厂燃料,其具有松、杂和散等特征,所以需根据燃料的特征和输送设备的性能进行设备选型,为保证电能生产质量,充分发挥燃料作用和价值,需切实做好燃料的输送设备的选型工作。

3 生物质发电厂燃料输送设备选型

3.1 普通带式输送机

普通输送机是我国应用最为娴熟的技术之一,在燃煤发电厂中极为常见,用途也十分广泛。该输送机的成型商品较为可靠,现阶段已完全实现国产化,造价合理。输送燃料时,燃料不易封闭,防尘效果相对较差;在布置输送机的过程中,倾角不能太大,通常保持在16°以内,否则将造成打滑、脱落等现象。该输送机主要输送经过破碎处理以后的硬质秸秆,常见的有木片与棉花秆等。

目前,有许多生物质发电厂在普通输送机上运用花纹带。与常规输送带相比,花纹带具有更高的摩阻力,可避免物料发生打滑等现象,有效提升了输送能力,节省电厂土建投资,具有很高的经济效益。花纹带输送机通常用在破碎处理后的燃料输送环节中。

3.2 大倾角带式输送机

从结构上讲,大倾角带式输送机和普通带式输送机并无太大差别,只是前者将波状挡边输送带和后者进行了有效的结合。其中,波状挡边大倾角带式输送机主要由三大部分构成,分别为基带、挡边与隔板。横隔板为复合材质,具有较强的耐冲击与抗变形能力;基带两边是波状挡板,挡板与隔板采取冷硫化的方式固定于基带之上,而隔板和挡板之间互相拴结,可进行随时更换。对于这种输送带而言,它对抗拉强度与耐磨性能有很高的要求,针对留有一定空边的输送带,为满足角度更改需求,胶带必须具有良好的柔韧性与刚度。

通过对此类输送机的合理应用,可大幅提升输送角度,减少了不必要的转运点和占地面积,而且对于燃料也具有很强的适用性,很好地处理了滑料等实际问题。然而,我国自主产品还是以小出力和低高度为主,对于大出力和大高度还需从国外进口,而且这种设备的回程带还会产生较大的振动,容易产生粉尘,造成运行环境不佳。这种输送机适合输送具有较好流动性的燃料,常见的有稻谷、花生壳等,但要对输送量进行控制,单次输送量不宜过大。

3.3 挡边带式输送机

该输送机充分结合了特制挡边与普通带式输送机,并在传统平托输送机上加设固定挡板。这种输送机可有效提升输送过程中的截面积,输送效果良好,输送能力相对较强。由于输送机的挡边完全固定,所以可实现密封,具有极强的防尘能力,有利于运行环境的改善和保护。该输送机与普通带式输送机并无太大差别,使用范围较广,软质燃料和硬质燃料都适用。通过对国内使用现状的分析可知,对于这种输送机的实际应用,大多运用敞开的布置形式,为保证运行效果,需要增设防溢裙板或者是防护罩,以进一步增强其密封性,从而对防尘能力进行有效的改善。

3.4 链式输送机

链式输送机是丹麦技术,在我国主要由龙基电力公司进行生产,用于整包物料的运输,对于物料包尺寸、松紧程度有很高的要求,通过合理的设计与布置可很好地实现定量数量;在输送过程中不会产生大量粉尘,设备的运行环境相对较好;工艺布置可选方式较多,如高架、地面和地坑等,具有极强的灵活性。然而该输送机对物料包形式有极高的要求,只可以输送整包物料,无论是哪一种散料都不可以进行输送。除此之外,在输送时还有可能出现散包等现象,且占用相对较大的空间。就目前而言,该输送机已经在我国的鹿邑、辽源等地区中运用,技术应用水平正日益成熟。

3.5 管状带式输送机

该输送机是由呈六边形布置的辊子将输送带裹成边缘互相搭接的圆管状来输送物料的一种新型带式输送机,其结构如图1所示。和普通的带式输送机相比,此类输送机主要具备以下优势特点:支持长距离物料输送,可在复杂、多变的地形中使用;物料运输全程实现封闭性,不会产生灰尘,避免了对周围环境造成的污染和破坏;输送机本体带有走廊,可有效降低土建施工的工作量;支持大角度物料输送。由于给料与卸料段之间存在一定距离,所以该输送机不能在短距输送中使用,且维护量相对较大。通过使用现状分析得知,该输送机常用于具有较强流动性物料的输送,常见的有稻谷、花生壳等。

图1 管状带式输送机

除此之外,由于该输送机能在相对复杂的地形中输送多种散装物料,所以其能在很多领域中应用,除了生物质发电厂,还有矿山、码头、港口以及煤炭等行业。然而,从生物质发电角度讲,该输送方式并未得到广泛的普及,在技术方面还需进行更为深入的研究,以此推动此类输送机的应用与发展。

4 结语

通过上述分析可以看出,不同输送机各有所长,但从输送效果角度讲,花纹带普通带式传输机与挡边带式输送机具有相对较高的经济性与适用性;大倾角带式输送机虽然运行效率突出,但造价偏高、检修维护量大,常用于受地形因素影响严重的情况;链式输送机仅可以进行整包输送,输送形式单一;管状带式输送机可大幅节省占地面积,在密封性、易维护性等方面有显著的优势,但只能用于长距离输送中,所以目前管带机在生物质发电领域中的应用受限,还需对其进行有效的改善。

上述五类输送机,除了管状带式输送机,其他所有输送机都可以在生物质发电厂中有效应用。对于单一的燃料的类型,带式输送机可以很好地满足需求。但从实际情况来看,由于生物质电厂燃料具有一定多样性,所以电厂需要根据自身情况对输送系统进行适当的改造与升级,在条件允许的情况下还要结合多种输送机,实现联合输送,从而满足多样性的需求。

在实际的设备选型过程中,需根据具体发电项目具体状况与要求,从性能可靠、经济合理、便于维护等层面入手,整体分析不同输送机的特征和优势,进而选取出最为适宜的输送设备,为发电厂稳定、高效生产奠定良好基础。

参考文献

[1] 徐晓云.生物质电厂燃料运输、贮存及输送系统的设计研究[J].电力技术,2010,7(6).

第3篇:生物质燃料的优势范文

【关键词】生物质能源;发展问题;农村;政策建议

能源是社会发展和经济增长的最基本驱动力,是人类赖以生存的物质基础。随着我国经济的快速发展,对能源的需求和消耗也在与日俱增,而传统化石能源的过度开采和使用引发了一系列严峻的社会和环境问题,严重制约了我国经济的可持续发展。

化石能源的过度使用产生了大量的温室气体,是导致全球气候变暖的主要因素。2002-2007年间,我国二氧化碳排放量翻了一番,2008年二氧化碳排放量超过美国,成为全球最大的二氧化碳排放国,这使我国面临巨大的国际压力和生态压力,如何减少碳排放量成为我国发展经济发展过程中急需解决的问题。同时,我国的传统能源正在逐渐枯竭,譬如煤炭人均拥有量只相当于世界平均水平的50%,石油、天然气人均资源量仅为世界平均水平的1/15左右,均属于世界较低水平。这造成了我国对能源进口的依存度较高,能源安全问题逐渐突显。

对能源结构进行科学调整,开发利用新型能源是我国解决这些问题的最有效途径。然而,原本作为我国重点开发的新型能源之一的核能,由于日本的核泄漏事件,其安全问题再一次引起了争议。太阳能、水能、地热能等新型能源由于其不稳定性和地域局限性,在发展上也受到了限制。因此,选择符合我国客观条件、适应发展需要的新型能源,成为了我国能源战略中的关键步骤,也是我国未来能源战略的发展方向。

在国家制定的战略性新兴产业发展规划中,把新能源产业列为了现阶段的七大战略性新兴产业之一,而生物质能源更是被作为其中的重点来进行发展。生物质能源因其具备其它新型能源所不具备的分布广泛性、易获得性和使用安全性等优点,而成为了最佳替代能源。积极推进生物质能源产业的发展,将有效缓解我国的能源短缺的局面,对保障国家能源安全,改善生态环境,优化农业结构,加速经济发展具有重要意义。

一、我国生物质能源发展的现状

我国是农业大国,生物质资源极为丰富,品种多样,分布广泛。据农业部测算,全国每年产生的农作物秸秆约有7亿多吨,农产品加工业废弃物(包括稻壳、玉米芯、花生壳、甘蔗渣等)超过1亿吨,畜禽粪便以及农产品加工业有机废水超过30亿吨,用于生产燃料乙醇的粮食超过了500万吨。另外,我国目前有759.6万hm2的土地可用于能源农业,有6753万hm2土地可用于能源林业,有333.33万hm2可利用的海岸滩涂和大量的内陆水域,可用来培植油藻来制取生物柴油。由此可见,我国具有发展生物质能源产业的良好资源优势,而随着国家对生物质能源开发的重视,我国生物质能源产业得到了迅速发展,进展十分显著。

(一)沼气产业初具规模

我国政府十分重视沼气产业的发展,对沼气产业的投入力度正在不断加大,截止到2010年,仅中央对农村沼气建设的投入资金已经高达242亿元。据农业部统计,全国已建设大中型沼气工程2.26万处、养殖小区和联户沼气工程1.99万处、秸秆沼气示范工程47处,沼气产业已初具规模。目前,国家有关部门已安排专项资金用于沼气的产业化发展,努力推进“户用沼气”向“产业沼气”的发展,重点扶持特大型沼气工程或者大中型沼气工程的建设,并选用先进技术进行应用试验,对沼气产业化发展中的关键技术进行进一步开发。

(二)生物乙醇产业发展较快

我国在2000年启动了燃料乙醇项目,并作为“十五”期间的重点发展项目进行规划。中央总共投入4.8亿元人民币在河南、安徽、吉林、黑龙江先后建立了四家粮食转燃料乙醇生产企业,到2007年四家企业总计产量超过了145万吨。2007年底,在广西北海合浦投资建立的以木薯为原料的燃料乙醇生产企业正式投入生产,年产燃料乙醇20万吨。这是我国正式投产的第一家以非粮作物为原料的乙醇生产企业,标志着我国正式步入了燃料乙醇生产的“非粮化”。至2008年,我国已经在全国十个省份推广使用了乙醇汽油,极大地促进了我国燃料乙醇产业的发展。2010年,我国燃料乙醇产量已经超过了200万吨,继美国、巴西之后,位居世界第三。到2020年,预计将超过1000万吨,这将使我国的石油进口量降低10%。

(三)生物柴油发展亟待加强

我国早在十多年前就开始了生物柴油的研究和推广,以应对日益严重的柴油紧缺问题,但是由于生物柴油的生产成本较高,对技术的要求也比较苛刻,而且我国用于生产生物柴油的原材料供应严重不足,这些外部条件成为了制约发展的重要因素。而且没有国家的财政补贴,也在很大程度上影响了企业的生产积极性,目前国内每年150万吨生物柴油的产能,实际上只有30-40万吨的产量,大部分处于闲置状态。生物柴油作为我国能源替代战略的重要组成部分,直接关系到未来的社会经济发展,就目前的状况而言,亟待政府的大力扶持。

二、国外生物质能源发展战略

为了更好地推动生物质能源产业的发展,许多国家出台了相应的发展战略和发展规划,设立专门的科研机构和管理部门,并制定了相关的法律法规、财税政策和扶持办法,取得了较好的成果,这些经验是十分值得我们学习和借鉴的。

(一)制定国家发展战略

2002年,美国能源部和农业部联合提出了《生物质技术路线图》,对生物质能源和生物质产品做出了长远规划,计划到2020年使生物质能源和生物质产品较2000年增加10倍,达到能源总消耗量的25%。上世纪九十年代初,欧盟委员会通过决议决定发展生物质能源,并鼓励生产和使用燃料乙醇,计划到2020年运输燃料的20%将用燃料乙醇等生物燃料进行替代。巴西政府在1975年制定了全国性的生物质能源发展战略,提出要重点发展以甘蔗为原材料的燃料乙醇产业和乙醇汽油的推广。政府先后投入数十亿美元的资金用于该产业的发展,并制定了相关的法律法规和优惠政策,目前巴西已经成为世界最大的燃料乙醇生产国。(二)设立专门的科研机构和管理机构

德国政府为更好地发展生物质能源产业,在1993年专门成立了生物质原材料和生物质能源研究中心,该研究中心专门负责全国生物质能源作物的研究和开发,以及新技术、新工艺的推广等。2002年,美国政府组建了“生物质项目办公室”,成立了专门的生物质技术咨询委员会,主要为生物质能源产业制定发展规划和技术路线。

(三)政策扶持

欧美国家采用政府行为来为生物质能源的发展提供支持,通过增加研发投入,提出补贴,实施政府采购,制定优惠税收政策和对生物质能源的流通环节给予补贴等手段来扶持生物质能源产业的发展,特别是通过产业化支持来加速生物质能源的技术革新和规模扩大,这些措施都有效促进了本国的生物质能源产业的快速、高效发展。

三、促进我国生物质能源发展的政策意见

我国生物质能源发展已被列为国家发展战略,是未来社会进步和经济发展的重要保障。生物质能源产业的发展离不开政府的大力扶持,行政手段不但可以为产业发展注入动力,也可以为产业发展创造有利的外部环境。

(一)整体发展,进行产业链整合

生物质能源的生产过程是由许多环节组成的,包括前期的技术研发,原料生产,中期的能源转换,后期的销售、使用,所有这些环节形成了一条完整的产业链。通过对整条产业链上各参与单位的组合、协调和整体化布局,既可以提高整条产业链的生产效率,也可以使整个产业的效益达到最大化。各地方政府应该根据本地资源优势,结合实际情况,对生物质能源产业进行横向和纵向整合。横向整合是指通过提高生物质能源产业链上同类型企业的集中度,采用打造生物质能源产业园区和生物质原料生产基地的方式,来扩大产业规模。通过集群优势来降低成本,获得价格优势,从而扩大市场占有率,达到产业效益的最大化。纵向整合是指对生物质能源产业链上下游的所有参与单位进行纵向约束,使它们产生互相联动,从产品研发、原料生产、能源转换到销售都根据所制订的标准进行一体化生产,通过对生产技术、产品质量、生产规模和产品定价的控制,实现产业纵向利润最大化。通过产业链整合不仅可以壮大产业规模,还可以培植本地龙头企业和名优产品,增加企业利润,加快生物质能源产业的健康、快速发展,促进本地区经济水平的提高。

(二)创造有利条件,鼓励民营企业参与

在我国的民营企业中有很大一部分具有乡镇企业背景,它们对农村的社会环境和经济环境有比较深入的了解,有一定的群众基础和信息优势。同时,民营企业具有灵活的经营体制和快速的市场反映能力,在新兴产业中具有更强的适应性。在生物质能源产业的开发过程中,民营企业具有无可比拟的优势,所以应该借助广大民营企业的力量来开发这一产业。但是民营企业多为中小型企业,资金投入和风险控制的能力不强,这极大限制了民营企业参与生物质能源开发的热情。这就需要政府加大扶持力度,创造有利条件,鼓励民营企业参与到开发、生产生物质能源的产业中来。主要可以通过制定优惠的财税政策,如财政资助、税收减免、加速折旧和提供奖励等措施对参与开发的民营企业进行财税上的扶持。同时,通过建立有利的投融资机制,采用投资补贴、提供无息或贴息贷款、排污权交易与市场配额等手段,帮助民营企业获得资金支持。我国还应尽快建立起扶持生物质能源产业开发的公益基金,通过政府性资金的投资杠杆作用,给予民营企业以资金支持,降低投资风险。

(三)加大财政投入,支持技术研发

政府设立专项资金,用于投资支持公共研发部门对关键技术的研发,尽量降低企业在技术研发上的风险。通过财政拨款加大对生物质能源技术开发的资金投入,同时也可采用经济和政策手段鼓励企业进行技术创新。统筹协调科研机构和生产企业之间的联动关系,加强公共研究机构和企业间的合作,鼓励“技术和利益共享”,加速关键技术的成果转换和产业化进程。对具有较强创新能力的企业,进行重点扶持,树立行业“标杆”,从而达到“以点带面”的发展效果。同时,还需建立人才资源库和合理的人才培养体系,对高校开设的生物质能源有关专业进行财政扶持,为生物质能源产业提供所需人才。

(四)完善服务体系,深化市场功能

生物质能源作为一个新兴产业,其市场体制还不够完善。我国目前只对个别生物质产品制定了行业标准,这导致了原料和产品的质量参差不齐,出现了市场混乱,甚至有很多生物质能源产品不能入市交易,这极大地限制了我国生物质能源产业的发展。有关部门应制定相应的法律、法规来规范生物质能源市场,特别是要对生物质能源产品制定详细的行业标准,严格控制产品质量。同时要充分发挥政府的监督职能,设立特别部门,专门对市场中存在的违规现象进行监管和惩处。政府还要充分发挥自身的服务职能,为市场参与者提供咨询、调解和法律支持,以及提供信息服务,避免由市场信息不对称而造成的不公平竞争。通过建立规范、公平的市场环境来充分发挥其高效的资源配置、优胜劣汰和信息反馈功能,更好地为消费者和生产企业提供帮助,从而进一步促进生物质能源产业的健康发展,最终达到“企业—市场”互相促进,共同发展的良性循环。

参考文献

[1] 张丽峰.我国经济增长、能源消费对碳排放影响分析[J].工业技术经济,2011(1):22.

[2] 国家发展改革委工业司报告.广西非粮燃料乙醇产业发展取得成效[M].中国经贸导刊,2008(11):56.

[3] 刘宁,张忠法.国外生物质能源产业扶持政策[J].世界林业研究,2009(1):25.

第4篇:生物质燃料的优势范文

    0 引言

    随着中国经济与社会发展的持续加速,能源资源短缺和环境污染问题日益突出。加快生物质能开发利用,开辟新型能源供应,对于缓解国家能源供需矛盾,减少化石能源消耗,有效保护生态环境,促进农村经济和社会可持续发展具有积极的推动作用。提高资源利用效率,发展可再生能源资源,加快发展循环经济,保障国家能源安全,将成为我国经济发展的一项重要战略任务。

    1 生物质能利用现状及发展目标

    1.1生物质能利用现状

    截至2006年10月,黑龙江垦区应用新型专利技术,建设了7处秸秆气化集中供气工程、3处大中型沼气工程、3700户户用沼气池、6套秸秆固化成型燃料机组、15套稻壳发电机组,建设总投资28400万元。秸秆气化工程年利用作物秸秆5800t,可节约常规能源折合标准煤900t,直接受益农户2196户。大中型及户用沼气工程年可处理畜禽粪便6万t,节约常规能源折合标准煤2200t,直接受益农户5100户。利用秸秆固化成型技术生产秸秆固化燃料年可替代原煤4200t。稻壳发电机组总装机容量达24800kW,年可利用稻壳21万t,年发电量4590万kW。应用生物质气化、固化及稻壳发电技术,提供新型清洁能源,改善了传统用能方式,提高了生活质量和用能品位,降低了生产和生活成本,防止了畜禽粪便污染,既取得了较好的经济效益,也带来了减少二氧化碳、二氧化硫、废弃物等污染物排放的环境效益,为垦区节约能源、保护生态环境走出了一条新路。

    目前存在的主要问题,一是受传统观念影响,农村能源开发利用与垦区经济社会总体发展水平差距较大,资源潜力没有得到有效开发,现代农业循环经济产业链还没有形成。二是生物质能源技术及装备处于较低水平,其可靠性和稳定性有待进一步提高。三是生物质能源项目初始投资较大,比较效益低下,难以实现市场化、商业化运作。

    1.2发展目标

    “十一五”期间,黑龙江垦区大力推进以生物质为原料的气化、固化、液化及发电工程建设,计划建设40个生物质气化站,生物质固化燃料年生产能力达到20万t、液化燃料5万t,装备20台套稻壳发电机组,装机容量4万kWh,建设2座生物质直燃发电、热电联产装置,装机容量5万kWh。生物质年利用量占一次能源消费总量的8%,发电装机容量占全国的2%。

    2 开发利用生物质能的优势与潜力

    黑龙江垦区地处东北三江平原,总面积5.62万km2。其中,耕地面积220万km2,农业机械总动力433.6万kW,总人口158.6万人,年粮食生产能力达1000万t,已成为国家重点商品粮基地和现代农业示范基地,因此,发展生物质能源具有独特优势与潜力。

    一是资源优势。黑龙江垦区年可利用作物秸秆量达800多万t。2005年末,大牲畜存栏80.5万头,生猪存栏174万头,年畜禽粪便量达622万t。集约化、规模化生产为生物质能利用提供了基础保证。有效利用作物秸秆及畜禽粪便等生物质能,可进一步调整生产用能结构、提高生活用能质量、改善当地生态环境、促进农民增收、实现农业和畜牧业可持续发展。

    二是机械化优势。现代农机装备作业区已达到160个,大马力作业覆盖面积约900万亩,农业综合机械化率达到93%,农机化总水平居国内领先,机械化作业为生物质收集利用提供了先决条件。

    三是农垦小城镇建设优势。按照垦区“十一五”规划,计划将原有2000多个生产队合并建成660个管理区,农业职工全部集中居住,住宅全部实现砖瓦化。利用小城镇基础设施完善、服务功能齐全、信息便捷的优势,使更多的农业富余劳动力向小城镇转移,壮大城镇经济规模和人口规模,为生物质利用提供了发展空间。四是典型示范优势。在国家和省有关部门积极支持下,已建成多处大中型沼气、秸秆气化、秸秆固化、稻壳发电等生物质能源示范工程项目,积累了丰富的建设经验,为生物质利用提供了技术支撑。

    3生物质能工程技术方案及可行性

    3.1大中型沼气工程

    3.1.1工艺方案

    综合考虑大中型养殖场物料特点及北方地区气候寒冷等因素,适宜采用底物浓度高、加热量小、运行费用低和沼液量少的“能源生态型”卧式池中温发酵工艺。工艺流程示意图如下(见图1)。

    3.1.2可行性

    发展大型沼气工程及沼气综合利用,是解决垦区规模化养殖粪便处理、发展生态有机农业的最有效途径。充分利用畜牧业废弃物生产清洁能源,可进一步改善农场职工生活条件,减少环境污染,探索和形成垦区“粮-畜-沼-肥-粮”的资源良性循环生态农业新模式。

    实践证明该工艺在北方地区运行稳定,产气效率平均高达0.6m3/(m3.d),沼气、沼渣、沼液应用前景广阔,具有较好的经济和社会效益,适宜在6000头猪以上的规模化养殖场及集中居民区附近建设。

    3.2秸秆气化集中供气工程

    3.2.1工艺方案

    推广使用下吸式固定床气化炉技术。下吸式固定床气化炉具有以下优点:(1)操作简便,运行可靠;(2)原料适应性强;(3)气化效率高;(4)热裂解充分,焦油含量低。工艺流程示意图如下(见图2)。

    3.2.2可行性

    以往农作物收获以后,除少量的秸秆粉碎后还田用于饲料及烧柴外,其余全部在田间烧掉,造成资源极大浪费,也给环境带来了污染。同时,随着煤炭、液化石油燃气价格不断上涨,居民生活用能成本不断增加。充分利用秸秆燃气,则可以更好地满足人们的生活需要,提高生活用能品位,带来良好的经济效益和社会效益。

    3.3生物质液化燃料工程

    3.3.1工艺方案

    根据黑龙江垦区地域及气候特点,重点发展甜高粱秸秆制取燃料乙醇。工艺流程示意图如下(见图3)。

    发展燃料乙醇有利于中国能源多元化、减少环境污染、发展畜牧养殖、增加农民收入。黑龙江垦区土地资源丰富,种植甜高粱产量高,成本低。生产甜高粱乙醇,可替代石油资源,减少车辆尾气污染,废渣废液可作优质饲料和液体肥料综合利用,是一项从种植到加工、从农业到能源的新型能源农业工程。

    目前,黑龙江垦区在已建成甜高粱良种繁育基地的基础上,又扩大试种面积3000km2,为生产燃料乙醇提供了原料保证。

    3.4生物质发电工程

    秸秆发电是一项新兴能源产业。据调查,黑龙江垦区粮食作物区25km半径内,大豆、玉米、水稻等秸秆剩余量达58万t。随着农业生产科学技术不断发展,粮食单产进一步提高,秸秆剩余量将进一步增加。发展秸秆发电,一是可以加快秸秆转化步伐,增加农民收入,实现经济协调发展;二是可以增加电力供应,拉动工业经济增长;三是可以提高资源利用效率,改善生态环境;四是可以拉动农区运输服务等相关产业发展。

    项目采用具有国际先进水平的生物质直燃发电技术,工艺系统主要包括机组、电气

    、热力、燃烧、燃料输送、水处理、除灰、采暖、通风、除尘、消防等装置。黑龙江农垦所属宝泉岭、红兴隆、建三江、牡丹江、九三等地区地质条件良好,水源充足,交通方便,电力接口便捷,可充分利用发电余热等优势,适宜建设25~50MW秸秆热电联产发电项目。

    4 发展生物质能源的对策措施

    (1)进一步加大《可再生能源法》的宣传力度。通过典型示范,提高开发生物质能源的认识,加快农村能源项目的推进和落实,形成全社会支持生物质能发展的良好氛围。

    (2)全面开展生物质能资源评价。制定农业生物质资源评价技术规范,调查生物质资源量、能源作物适宜土地资源量,选育能源作物优良品种。

第5篇:生物质燃料的优势范文

Abstract: Based on the theory of industrial ecology and recycling economics, this paper described the structure of the bio-energy industrial chain of HB Corporation in Mongolia, which has the three characteristics of the ecological, recycling economics and network chain. On this basis, from the perspective of the longitudinal extension and circumferential process, this paper further put forward several suggestions on perfecting the network of the bio-energy industrial chain.

关键词: 生物质能产业;生态产业链网;循环经济;生态工业

Key words: bio-energy industry chain;ecological industry chain network;recycling economy;ecological industry

中图分类号:F273文献标识码:A文章编号:1006-4311(2011)01-0109-03

0引言

生物质能作为一种化学态能,不仅能够发电、供热,而且还能转化为液态燃料和生物基产品,是唯一可大规模替代化石燃料的能源,主要发达国家的技术专家和决策者都非常重视生物质能产业的开发[1]。近年来,伴随着针对生物质能产业创新而发生的“车人争粮”、“人道危机”、“环境问题”等激烈论争,在此背景下,生物质能产业基于循环经济理论、工业生态理论所建立的生物质能生态产业链网具有良好的经济效益和环境效益,已成为生物质能产业发展的新的趋势和特点。

1HB集团生物质能产业链网结构解析

HB集团发展生物质能产业,主要是利用各种植物秸秆、林作物以及不能作为食用油的油作物等。HB集团所在城市耕地面积中有可耕地1100万亩,灌溉面积900万亩,有待开发面积760万亩。其主要粮食作物包括小麦、玉米,种植面积各为190.8万亩、208万亩,另外还有油葵、食葵等经济油料作物,这为HB集团生物质能产业的发展提供了足够的纤维类原料;巴彦淖尔市边际性及周边的土地多为沙荒地、盐碱地、荒坡地,共有2000万亩,其可作为生物质能产业发展的林木种植基地,种植面积可达300万亩以上。HB集团现已在该市边际性土地上建立石油植物园,重点培育油料作物文冠果,该植物为落叶灌木或小乔木,生长周期为2年,主要产于内蒙古地区,适应性强,喜生于沙质肥沃土壤,根系深,有抗干旱的优良特性,一般在干旱沙荒地带生长良好。

目前集团开发的生物质能三大产品包括生物甲醇、生物柴油和燃料乙醇。该集团以石油植物园、甲醇基燃料系统、生物柴油――生物油联产系统、纤维制乙醇系统、热电联产系统、环境综合处理系统为框架,各系统之间通过中间产品和废弃物的相互交换而互相衔接,从而形成了一个比较完整的生物质能产业链网(图1)。本文将从企业链、产品链、生产链、技术链四个方面对HB集团生物质能产业链进行阐释。

1.1 HB集团企业链解析从图1中可以看出,HB集团主要由三条企业链组成,企业链①:石油植物园生物柴油、生物油联产系统环境处理系统,是以环境综合处理系统为链中下游企业,该系统的物料投入主要是来自集团内生物质能生产系统和热电联产系统生产过程中排出各种废水、废渣和废气等废物;企业链②:生物甲醇系统生物柴油、生物油联产系统石油植物园,以环境综合处理系统为链中上游企业,它表示废水、废渣和废气等经该系统处理后,被集团内其他系统循环利用的过程。其中该系统主要利用回用水工程,将废水经过处理以后,达到了工业用水的要求,因此又重新被集团中甲醇基燃料系统、燃料乙醇系统所利用;企业链③:石油植物园燃料乙醇系统环境综合处理系统石油植物园,以热电联产系统为链中上游企业,它表示该系统以利用甲醇基燃料系统的余热和其他投入为基础,将产生的电、汽、热全部应用于集团内三大生物质能产品系统的生产过程。

另外,可以看出环境综合处理系统、热电联产系统与集团内三大生物质能产品系统的联系紧密,实现了集团内的水循环、能量循环。

1.2 HB集团产品链解析从产品结构视角看,产品链是指以某项核心技术或工艺为基础,以市场前景比较好的、科技含量比较高的、产品关联度比较强的优势企业和优势产品为链核,以产品技术为联系,投入产出为纽带,上下连结、向下延伸、前后联系形成的产品链。产业链中,上一个企业的产出是下一个企业的投入――这是产业链的“基础内含链”[2]。

从企业链的角度来讲,HB集团仅有三个生物质能产品系统,但从产品链的角度来讲,HB集团生物质能产品共有五种:生物甲醇、生物柴油、生物油、燃料乙醇、碳酸二烷酯等。从生物柴油、生物油联产系统的工艺流程看出,油酸甘油酯通过酯交换、酯化,分别生成了生物柴油、生物油两种生物质能产品;甲醇基燃料系统最终生产出生物甲醇、碳酸二烷酯两种生物质能产品,碳酸二烷酯以生物甲醇为原料,由生物甲醇进一步加工而生成。另外生物甲醇作为中间投入,用于生物柴油、生物油系统中,作为最终生物质能产品生物柴油的中间投入,由此便形成了HB集团生物质能产品链。

1.3 HB集团生产链解析生产链是与最终产品生产直接和间接相关的诸多企业及社会经济的若干部门之间的一种相互依存、相互制约的链状经济技术关系。

生产链结构及运行有两个突出特点[3]:一是各个环节在空间上的并存性和运行时间上的继起性。所谓空间并存性,是指链条的基本环节在空间上不能空缺,也就是在同一时点上各个环节都必须同时存在;所谓时间的继起性,是指生产链的每一个生产环节的运动不仅自身不能停止,而且必须一个继一个地有序地跟着前进;二是链状结构之间的比例性和运动的平衡性。只有各环节在组织规模与作业数量保持一定的比例,才能保持各环节在运动中的动态平衡,也只有保持链状环节的动态平衡,才能保持整个生产链良性互动,并产生出整合的前推力量。

对于HB集团的五个系统,各个系统之间是相互联系、相互作用的。其中任何一个系统产品产量和规模的变化都会给其他系统带来影响。如:热电联产系统,该系统存在的意义是保证集团各系统的电、汽、热及时、保质保量供应给其他的系统,这样才能保证集团生物质能产品的正常生产。但是如果三大生物质能产品系统中任何一个企业想要扩大生产规模,那么该系统对电、汽、热的需求便会增加,此时就应该相应的扩大热电联产系统的规模。

1.4 集团技术链解析产业链中每个企业为了保证产品生产的质量,都有一系列的技术支撑,所有不同环节企业的技术之和便构成了产业链的技术链[4]。由于每个企业都有自己的核心竞争力,因此每个企业也都有独特的技术,这些技术是企业的竞争优势所在。当市场需求发生变化时,首先就要引起产业链的技术链的变化,只有技术链能顺利对接才能保证产业链生产上的对接,才能保证产业链的稳定运行。HB集团各系统之间存在着紧密的经济技术联系,没有了各种生物质能技术的支撑,就不能形成生物质能产业链。

以纤维制乙醇为例,该工艺与发酵法纤维乙醇相比,成本相当于其58%,投资低65%,生产规模是其2-3倍,与天然气制醇类燃料相比,大大节省了温室气体CO2的排放(是其26%),该技术工艺是由HB集团自己开发的。

HB集团吸纳国内三所在生物质炼制领域技术领先的重点大学作为股东,共同办企业。由大学教授与企业科研人员共同组成课题组;用大学的基础研究设施和企业的应用研究、小试生产、中试生产设施共同完成科研开发;由大学的基础理论研究与企业的产品研发、应用技术研究结合。队伍精干、具备一流的研发试验设施,形成灵活高效的运作机制,显著的自主创新优势和突出的技术特色,能够持续不断地为生物质炼制产业技术进步提供有力支撑。

2HB集团生物质能产业链的特性分析

2.1 生态产业链特性生态产业链一般是指依据生态学原理,以恢复和扩大自然资源存量为宗旨,为提高资源基本生产率和根据社会需要为主体,对2种以上产业的链接所进行的设计(或改造)并开创为一种新型的产业系统的系统创新活动[5]。生物质能产业链本身是一种借助于高新科技将“生态工业系统”与“自然生态系统”相耦合而形成的产业链,因此其必定具有一定的生态特性:

2.1.1 从集团发展生物质能的原料来看,甲醇基燃料系统、纤维制乙醇系统均以植物纤维、草这样的农林废物为原料,这些纤维素类物质是地球上最丰富、最廉价的可再生资源,对其的利用不但可恢复、扩充自然资源增量,还会减少这些废物对生物生存空间的侵占和一定的环境污染;另外该集团利用巴彦淖尔市边际性土地(沙荒地、盐碱地、荒坡地)种植文冠果果树等生物质能林木,原料供应不但做到了“不与人争粮”,“不与粮争地”,从而避免以往生物质能产业引起的“车人争粮”、“人道危机”、“环境问题”等激烈论争,而且将能源林基地建设与防风固沙、城市周边绿化融为一体,更是很好的体现了该集团生物质能产业链的生态特性。

2.1.2 从生物质能产业链的“生态工业系统”角度来讲,集团研发部依据生物质C、H、O循环机理、生物质炼制与环境的协调性、生物质产品技术经济分析等设计和改进生物质能生产工艺,其生产过程中处处体现绿色、无毒和安全的特性。例如:在生物柴油、生物油联产系统整个工艺生产过程中,利用国际领先的工艺(生物柴油生产过程采用国际先进的汉高法;生物油生产过程采用国际先进的有利凯玛法,这些方法为国际通称的“绿色精细化工”行业),不添加任何对环境可能造成污染的添加剂,且工艺安全合理。另外,在生产过程中,涉及外运的易燃易爆品为工业溶剂油和甲醇,将采用专用车、专用道、专用时间运输。

2.1.3 从生物质能产品利用的角度来讲,生物质能产品较石油能源产品来讲,其本身具有很好的环境友好特性。生物柴油具有优良的环保特性,主要表现在由于生物柴油中硫含量低,使得二氧化硫和硫化物的排放低,可减少约30%(有催化剂时为70%);生物柴油中不含对环境污染的芳香族烷烃,因而废气对人体损害低于柴油。

一直以来,煤炭作为不可再生的化石能源,是我国主要依赖的能源,在一次能源消费中其比例高达70%,然而煤炭的利用给我国带来了巨大的环境问题,CO2、SO2等有害气体的大量排放,造成环境污染的同时也制约着我国经济社会的可持续发展。生物质能作为世界第四大能源,是唯一既可再生又可直接储运的能源,其开发利用可使人类摆脱对化石能源的依赖,对生态环境保护具有重要的意义。

2.2 循环经济特性循环经济是指为保护环境,实现物质资源的永续利用及人类的可持续发展,按照生态循环体系的客观要求,通过清洁生产、市场机制、社会调控等方式促进物质资源在生产中循环利用的一种经济运行形态。资源的循环利用是循环经济的核心内涵,“循环”则是循环经济的中心含义。“循环”是指经济赖以存在的物质基础――资源在国民经济再生产体系中各个环节的不断循环利用[6]。

HB集团循环经济特性主要表现在:

2.2.1 在生产加工过程中对能源原材料的果实、秸秆、叶子等全方位的利用。以石油植物园中生产的文冠果为例,文冠果是我国特有的优良木本油料树种,种子含油量为45%-50%,种仁含油量70%。从能源角度看,是一种理想的能源林植物。HB集团将文冠果果实作为生物柴油、生物油投入的原料;其废枝条用于燃料乙醇和热电联产系统;文冠果叶被采摘直接销售到市场,经其他企业加工生产高级茶叶。

2.2.2 通过适当的技术尽量将生产的副产品进行回收。HB集团三大生物质能产品系统在生产过程中均有一定数量的副产品生成。如:甲醇基燃料系统副产品二氧化碳、堆肥;生物柴油、生物油联产系统副产品甘油、粕;纤维制乙醇系统堆肥。其中,副产品堆肥作为有机复合肥用于石油植物园的中间投入进行使用,以实现节约资源、减少集团开支的作用。另外,副产品甘油、粕等直接流入市场,为集团创造了额外的经济效益。

2.2.3 在各系统生产过程中,一个系统排出的“废物”作为集团内其他系统的最初投入进行生产。以甲醇基燃料系统为例,其在生产过程中产生的“废热”就被热电联产系统所利用;集团内各系统生产过程中所排出的“废渣”、“废水”等废物,均是环境综合处理系统的最初投入。在环境综合处理系统中,通过回用水工程,实现了集团内的水循环。

2.3 产业链网结构特性根据以上论述,HB集团生物质能产业链既具有生态性、又具有循环经济特性。这就造成在集团内部,一条产业链的“下游企业”有可能另一条产业链的“上游企业”。产业链的这种特性,很好的实现了系统间的物质集成、能量集成,通过上下纵向延伸和横向环向拓展,形成产业间的工业代谢和共生关系,构建出生物质能产业共生网络系统。其中上下纵向延伸是对生物质资源进行深加工,环向拓展就是将上下延伸的产业链排放出来的副产品或废弃物再深度加工。

产业链网状结构的构建需要多种技术,除包括循环经济技术中通常使用的替代技术、减量化技术、再利用技术、资源化技术以外,还包括系统优化技术以及共生链接技术。系统优化技术从系统工程的原理出发,通过资源、能源工业代谢分析,实现区域物质流、能量流、信息流、价值流等优化配置的软科学技术,可用于指导产业链网状结构的构建;共生连接技术是在构建产品组合、产业组合、实现产业链链接和产业共生时所需要开始的链接技术,这对于构建生态产业链的成功起到关键作用。

根据前面对集团产业链的解析结果,该集团目前存在的纵向主导产业链有以下几种:文冠果果实――生物柴油――市场;文冠果果实――生物柴油――生物油――市场;文冠果纤维茎秆――燃料乙醇――市场;生物质纤维――生物甲醇――市场;生物质纤维――生物甲醇――生物柴油――市场;生物质纤维――生物甲醇――碳酸二烷脂――市场。

而环向产业链的构建主要是靠集团内两大寄生型共生系统为媒介进行搭建。环境综合处理系统吸收并消化三大产品系统产生的废水、废渣、废气,并实现了废水回用于集团各系统,实现了水系统集成;热电联产系统利用石油植物园中植物纤维以及生物甲醇系统的余热实现发电,并用于集团各系统对于热、电、汽的需求,但是从对该集团生物质能产业链耦合程度的考察结果来看,其在纵向延伸的深度和横向延伸的广度可进一步加强,从而构建出更加健全稳定的生物质能产业链网状结构。

3HB集团生物质能产业链网改进措施

HB集团生物质能产业链网在其结构形成和发展过程中,会不断加深各种链网结构的纵向延伸和横向联系,从而又形成新内容的链状结构,最终形成更复杂的产业链网状结构。根据目前HB集团生物质能产业链网的发展情况,提出了如下改进措施:

3.1 燃料乙醇产业向上延伸与化石能源煤炭产业接轨,利用劣质煤炭褐煤与植物纤维双原料技术,生产乙醇基燃燃料。具有丰富的煤炭资源,在该地区煤炭资源开发与利用过程中,一部分劣质煤市场竞争力较弱,价格低廉,在对其开采过程中往往造成很大的浪费;另一方面,集团现有的纤维制燃料乙醇气化技术存在着能量利用率低、过程污染严重等问题,因此该技术亟待改善。本文建议结合当地煤炭资源优势在纤维制乙醇系统中将褐煤这一劣质煤作为原料与植物纤维混合制乙醇,在改进技术工艺的基础上,使生物质能产业向上延伸与煤炭行业接轨。

3.2 延长生物甲醇产业链网生物甲醇系统可进一步利用甲醇催化脱水制备二甲醚、再度脱水制备汽油技术,生成最终产品生物汽油,延长其产业链长度,增加经济效益。生物质能产品的主要风险来自市场的竞争,而产品的价格竞争又是市场发展的重要因素。该项目直接利用本集团生产的生物甲醇来生产生物汽油,降低了原料成本,提高了生物汽油的市场竞争力,与原有生物甲醇产业链相比,其经济效益的提高非常明显。

3.3 扩大环境综合处理系统的规模改进污水处理技术,并将处理后的水用于石油植物油的灌溉和生物柴油系统中,更好发挥集团水集成系统功能。集团环境综合处理系统虽然在一定程度上实现了水集成系统的功能,但是其集成程度并不完善,这直接造成以环境综合处理系统为主导企业的产业链网络中的环链结构不够发达。另外,集团中生物柴油系统也是一个用水量较多的系统,而目前其用水主要来源为新鲜水,因此为节约水资源,提高环境综合处理系统的水处理能力势在必行。

3.4 构建CO2利用产业链纵观本集团生物质能产业链网络,我们发现在其生产过程中,排放的主要废弃物就是CO2,且以生物甲醇系统为最,每生产一吨生物甲醇就会产生0.1吨的CO2。

结合本集团种植业与工业生产相结合的现状,可考虑利用CO2发展生态农业。具体做法是:收集各系统产生的CO2气体用于集团石油植物油温室育苗过程,以达到减少温室气体排放的目的。与此同时,还可利用集团中各系统产生的余热来维持温室温度。

4总结

通过对HB集团生物质能产业链网的分析,得出以下结论:

4.1 生物质能产业链网是一种借助于高新科技将“生态工业系统”与“自然生态系统”相耦合的资源循环利用型产业链,以此发挥该产业在经济部门中的静脉作用。生物质能产业链网的培育要充分发挥产业集成技术与循环经济技术的优势。

4.2 生物质能产品企业的核心技术是提高生物质能产业的生产效率和经济效益的关键因素。HB集团应进一步加大对生物质能技术的开发力度,使其成为产业链中技术创新、专利、标准、品牌等方面具有竞争优势的核心企业,以其良好的发展前景吸引更多的生物质能产品的消费者。

4.3 通过探讨各产业之间的链网结构以及其特性,找到产业链上生态经济形成的原因,并借此进一步提出了完善集团生态产业链网内部的“物质流”和“能量流”的几个建议,以实现整个集团产业链网的和谐健康发展。

参考文献:

[1]International Energy Agency Bioenergy 2006 Annual Report..

[2]Fischer G,Schratten L.Global Bioenergy Potential Through 2050 [J] .Biomass and Bioenergy,2001(20):151-159.

[3]K. Maniatis,G. Guiu and J. Reisgo. The European Commission perspective in biomass and waste thermochemical conversion. In:A.V. Bridgwater,Editor,Pyrolysis and gasification of biomass and waste,CPL Press,Newbury(2003),pp.1-18.

[4]刘贵富.生态产业链研究―产业链基本理论[M].吉林:吉林科学技术出版社,2006:96-98.

第6篇:生物质燃料的优势范文

【关键词】生物质气化混燃发电;气化炉;自动控制;系统研究

[Abstract]biomass gasification mixed combustion power generation is an effective way to use biomass energy and conventional fossil energy, but also can control the emission of SO2, NOX、N2O and CO, and even toxic pollutants. In the mixed fuel power generation system of biomass gasification, gasification furnace is the core technology of biomass gasification in the equipment, the automatic control technology is a key factor to determine the system stable and efficient operation, efficient and clean utilization of raw materials can. This article is based on the established biomass gasification equipment, combined with biomass gasification + coal coupled power generation technology requirements, starting from the principle of biomass gasification, launch control research for the influence factors of gasification and biomass gasification + coal coupled power generation applications, and gives the design of automatic control of mixed combustion of biomass gasification power generation process gasification furnace.

[Key words] biomass gasification mixed combustion power generation; gasifier; automatic control; system research

引言

如果l电企业能够利用农林废弃物发电,对促进节能减排和合理控制能源消费总量具有积极作用,而采用气化技术产生的生物质可燃气取代部分锅炉用煤,充分利用燃煤机组高发电效率,这种“生物质能气化+煤”耦合式发电方式,生物质综合发电效率在30%以上,高于现有的生物质直燃发电(20~25%),减少了化石燃料产生的污染物排放量,符合火力发电能源结构调整的要求,也能满足国家能源局印发的《可再生能源配额制指导意见》规定非水电新能源发电配额的要求。

1.生物质气化工艺流程

1.1生物质的贮存系统

加工成型的生物质物料,由外界通过运输车辆送到生物质贮存仓库,在贮存前,生物质原料须进行称重、取样。生物质原料品质的关键指标为生物质水分和热值,在生物质贮存仓库内配有装载机,抓斗旋转装置,通过这些装置,生物质被送到进料振动筛,生物质经过振动筛网,过滤掉不合格的生物质料,再通过螺旋输送机,长距离输送皮带将生物质送到加压系进料系统的常压料仓。

1.2加压进料系统

存放在常压料仓的生物质料,通过进料装置和阀门进入到生物质锁斗,锁斗装满生物质料后,通过控制系统用氮气(氮气由公用工程制氮系统供应)对锁斗充压,当生物质在锁斗内压到0.1~0.3MPa时(与气化炉压保持一致),锁斗加压完成,生物质通过下料阀和下料装置,进入到加压给料仓,在加压给料仓的底部,有两组螺旋输送机,生物质料由这两组螺旋输送机分两路进入到生物质气化炉进行持续进料。生物质锁斗在完成卸料后,锁斗将会进行卸压至常压状态,再重新进料,充压,进行下一个循环物料输送,每个小时完成约两次循环,每次进料量可维持气化炉满负荷运行30分钟。

1.3生物质气化炉及气体净化系统

气化炉是整个系统的关键设备。根据操作条件的差别,气化炉分为固定床气化炉和流化床气化炉两种类型。本文建议采用富氧加压循环流化床气化炉,相比常规循环流化床气化炉在处理规模、气化效率、燃气品质等方面具有较为显著的优势。富氧加压循环流化床的加压气化增加了反应的浓度和反应速度,大幅度增加了处理量,且反应温度高,碳转化率95%以上。工作压力在0.3MPa时,如果处理量为530吨/天,加压后发电功率提高2%(折合300KW/h)。在同等装机容量、同等工程条件下,加压气化总体投资比常压循环流化床气化低。

气化炉炉型为流化床,从加压给料仓来的生物质分成两路从气化炉的下部进入炉膛反应区;在气化炉的底部,空气,氧(水蒸气根据生物质成分按比例加入)作为气化剂进入炉膛,生物质在炉膛内和空气,氧气充分混合,形成一种沸腾流化状态(气化反应温度约为700~980℃,气化压力0.1~0.3MPa);同时,炉内的高温床料也充分起来了传热和传质的作用,加速了气化反应的进程,气化最终生成高温可燃气。

化学方程如下:

主要气化反应:C + O2 C O2+Q

2C + O2 2CO+Q

C + H2O CO+H2-Q

2CO + O2 2CO2+Q

CO2 + C 2CO-Q

C + 2H2 CH4+Q

生物质裂解反应:生物质CO+H2+CH4+N2+CnHm(少量焦油)

因生物质原料含有一定比例的灰分,在气化过程中产生的灰渣,一部分由气化炉底部排出,冷却后送到贮存系统;另一部分则随着可燃气进入到下游分离装置-旋风分离器,进入旋风分离器的高温合成气在离心力的作用下,进行气体和固体分离,固体灰从旋风分离器底部经过冷却后排出,送到贮存系统。可燃气则从旋风分离器的顶部出来,进入到下游的余热回收系统。

表1 气化炉出口典型可燃气组成表

可燃气组成 CO H2 CH4 N2 CO2 H2O 焦油量 粉尘量

含量%(vol) 24.2 17 4.5 28.6 13.1 12.6

可燃气热值 6487KJ/Nm3(1552kcal/Nm3)

1.4余热回收装置系统

经过旋风除尘后的可燃气温度约为850~900℃,气体温度较高,且体积较大,在送入电厂燃煤锅炉前为减小设备w积,降低输送气体管道的设备材质等级要求,同时保证可燃气中的焦油不产生冷凝,高温可燃气通过余热回收装置热量回收的方式降温到400℃左右,余热回收装置生成的低压水蒸汽并入电厂管网系统,气化炉用除盐水由电厂公用系统供应。

1.5可燃气的输送和燃烧系统

经过除尘和余热回收后的可燃气,温度约为400℃,烟气中的焦油在300℃以上成气态,压力(0.1~0.3MPa),气体经过经过在线的气体成分、温度及流量计量计算得出输入锅炉的总热量,再送到燃煤锅炉前独立的燃气燃烧器,通过锅炉燃烧器燃气进入锅炉和煤粉一起燃烧发电。在事故情况下,可燃气可通过紧急的排放火炬及切断系统,如锅炉MFT,气化系统的安全保护动作将触发气化炉紧急停车,气化系统将与锅炉系统切断隔离,可燃气将引至安全区域火炬放空,且系统自动进行氮气置换的保护程序,煤气放散装置设有点火装置和氮气灭火设施。

2.生物质气化过程的主要影响因素

生物质气化反应复杂,气化机理研究较为困难,反应过程受到的影响因素较多。针对既定的气化装置及生物质颗粒,其影响因素主要为气化温度、时间、压力。在生物质气化过程中,气化温度是一个很重要的参数,温度的高低不但会影响产气的速率,而且对物料反应过程中的吸放热等可逆反应也一定的影响,从而最终影响到气化产物分布、产品气的组成、产气率、热解气热值。此外,反应时间是决定二次反应过程的主要因素,一般温度大于700℃时,气化过程初始产物(挥发性物质)的二次裂解受停留时间的影响很大,在8s左右,可接近完全分解,使气体产率明显增加,所以必须考虑停留时间对气化效果的影响。压力方面,采用加压气化技术可以改善流化质量,压力增大,裂解反应加强,产生的焦油量和气相浓度都减小。所以,操作压力提高,一方面能提高生产能力,另一方面能减少带出物损失。

3.过程控制系统

生物质气化混燃发电的生产装置及公用工程等辅助装置都采用现场总线、DCS、EDS和PLC进行监控和联锁。个别辅助装置也可设置常规仪表盘。由于装置中可能泄露可燃气体及有毒气体,也可考虑设有可燃气体检测器及相应的毒气检测器。

3.1气化炉安全稳定运行控制系统

设置一个中央控制台(CCS),中央控制台内设有DCS和ESD操作站、辅助操作站等人机接口,对燃料的输送、加压、进料、气化,余热回收装置和公用设施进行操作控制管理。此外,还应设有计算机系统进行先进控制(APC)和实时优化(RT-OPT)管理。中央控制台集计算机控制、计算机监督控制(SCS)和全装置的管理计算机系统(TCS)于一体。

DCS系统及仪表电源均由不中断供电装置(UPS)供给,要求在外电源断电后,整个仪表及DCS能供30分钟的备用量。仪表空气由电厂配送过来缓冲罐送往气化系统各装置,气化罐容量应满足全装置停电后30分钟用量。

气化装置的重要的安全联锁系统采用三重化冗余系统(即紧急停车系统ESD),对安全联锁系统的关键参数采用3取2表决处理。联锁系统的重要输出采用双电磁阀的结构。ESD系统具备与DCS进行高速通讯的能力,能够及时把联锁系统的工艺参数告诉操作员,又能及时接受DCS的指令。为确保气化炉运行稳定性,控制平台还将对生物质燃料流量中值选择,氧/燃料比参数以及气化炉负荷进行控制和调整。

3.1.1生物质燃料流量中值选择。

生物质燃料流量的控制是采用变频电机调节生物质燃料泵转速来实现。为了增加生物质燃料流量测量的可靠性,对生物质燃料流量设计了中值选择回路。对生物质燃料流量(三个电磁流量计)输入DCS进行计算,取中间值即中值作为生物质燃料流量的最终值。在DCS上可选择上述三个流量或中值为输入值经PID调节控制生物质燃料给料器的转速。

3.1.2氧/生物质燃料比参数。

氧/生物质燃料比的自动控制,采用标准比例功能和内部仪表的比例计算来保证氧/生物质燃料比稳定。氧/生物质燃料比手动给出,经乘法器(生物质燃料流量乘以氧/生物质燃料比)计算出氧量流量,作为氧气单参数控制回路的远程给定。如果生物质燃料流量发生变化,通过氧/生物质燃料比自动控制。根据实测的生物质燃料流量计算出氧量流量,经PID调节后的输出值来控制氧气调节阀的动作。如果氧气流量发生变化,通过氧/生物质燃料比自动控制,计算出相应的生物质燃料流量,经PID调节后的输出值来控制电机转速,使生物质燃料流量按氧/生物质燃料比变化。

3.1.3气化炉负荷的控制。

气化炉生产负荷的控制,气化炉负荷手动给出,为了防止负荷大幅度波动,设置速度限制器,将负荷每分钟的变化限制在一定范围内。为了防止氧气过量,设置高低选择器。在生物质燃料回路上设置高选器,将计算出的生物质燃料量和负荷给定的燃料量作比较,取高者作为生物质燃料回路远程给定的最终值。在氧气回路上设计低选器,将生物质燃料量和负荷给定的生物质燃料流量作比较,将其低者作为氧气回路的给定值。这样当低负荷时,生物质燃料流量大于负荷给定值,被高选器选中,先提生物质燃料流量,经氧/生物质燃料比控制,氧气流量随之变化。当降负荷时,氧气流量低于负荷给定值,被低选器选中,先降氧气流量,经氧/生物质燃料比控制,生物质燃料流量随之下降。

3.2辅助控制系统

辅助控制系统采用PLC控制,并与DCS通过通讯及硬接线连接,在DCS上完成监视及操作。辅助控制系统推荐采用同一品牌的PLC系统以利于运行维护。

3.3紧急操作台

当分散控制系统(DCS)发生通讯故障或操作员站全部故障时,可以通过紧急操作台实现安全停炉。安装在操作台上实现紧急安全停炉所必需的后台监控设备主要有:手动停炉、放空阀、火炬点火等操作按钮,对有可能发生燃气泄漏的位置均设置燃气泄漏报警设备。

总之,针对既定的生物质气化混燃发电系统采用分散控制系统(DCS)控制[包括:数据采集系统(DAS)、模拟量控制系统(MCS)、顺序控制系统(SCS)、锅炉安全保护系统(FSSS)及电气控制系统(ECS)等],个辅助系统(制氧、制氮、空压机、除灰及输料等)为随系统带来的PLC控制,在DCS上完成全厂监视及操作完全满足设计需求,为生物质气化混燃发电的推广应用从控制角度提供了一种有益的思路和方法。

参考文献:

[1]张瑞祥.生物质发电气化过程机理分析与建模研究[D].华北电力大学(河北),2008.

第7篇:生物质燃料的优势范文

高峰竹柳造林的最佳土地条件是低洼湿滩地,这些土地不能种植庄稼,只能短期养殖,属于低效益的荒废湿滩地,我国大约有9000万公顷这样的荒滩湿地,这些低洼地大多数都位于江河湖泊的边缘地带,另外还有1.3亿公顷盐碱地,因此在这些地方种植速生竹柳具有变废为宝、生产能源等多种优势。

万里常青公司在湖北搞的烂泥经济试验,一年前还是无人问津的烂泥地,一年后就成了一座一眼望不到边的绿色海洋!4000亩高峰竹柳种苗现已在这些烂泥地扎根生长。据统计,每亩湖地里的树木每年都能产生效益15600多元,六年以后这片湖地将为社会直接创造财富2个亿以上。每一个到过这里的人,面对这样的场景都忍不住地感叹,万里常青公司为林业界创造了一个奇迹!

一、高峰竹柳与木塑聚合材料

目前,万里常青公司正在进行第三代木塑分子聚合材料生产试验,这是一项造福人类社会的最新技术成果。第三代木塑分子聚合材料是利用聚乙烯PE、聚丙烯PP、聚氯乙烯PVC等与木粉,经分子层次聚合生成,采用挤出、模压、注射成型等常规塑料加工工艺,生产出各种板材、型材和产品。这种新型板材不吸水、不变型、不褪色、不老化、不腐蚀、不霉烂、不虫蛀,节能环保效果好。

生产木塑分子聚合材料的主要成份是木粉,该木粉则是由“高峰竹柳”造林中幼林抚育大树修剪产生的枝条或竹柳大树成材加工剩余的枝叉加工而成,也可以高密度种植高峰竹柳,以小径材制成所需的木粉材料供聚合之用。为此开辟了一条竹柳木材加工新途径。

和普通木材相比,木塑分子聚合材料还具有以下优点:首先,生产木塑分子聚合材料可以节约资源、保护环境,做到废物利用。因为木塑分子聚合材料全部使用竹柳小径材、树木枝条、加工剩余物、废弃物,节约竹柳成材和优质木材,将竹柳木材的木素、半纤维素、纤维素都聚合进了新材料中。使用和损坏后的木塑聚合材料,可以全部再生利用,是一个全回收、全循环、全利用、全环保的项目。

其次,生产木塑分子聚合材料具有低投入、低消耗、高产出、高回报的优势。木塑分子聚合材料用0.6吨竹柳木粉和0.4吨废旧塑料,就可以生产出一吨产品,目前国际市价格最高达28000元/吨。一个年产10万吨木塑材料的企业,可利用竹柳6万吨,利用废旧塑料4万吨,相当于从垃圾中捡回25万立方米木材、相当于节省水泥、钢材分别为40万吨、替代塑料和铝材分别是8万吨,这是木塑产业发展对循环经济的贡献。

再次,生产木塑分子聚合材料能促进产业结构调整,加快社会经济发展。木塑分子聚合材料改变了商品林的生产方式,由长时间周期性生产向短期林业种植业转变,可实现竹柳当年种植当年受益。有利于调动农民的种植积极性,开展竹柳规模种植。把林业、木材加工业、废旧塑料回收业也聚合到了一起,形成了一个污染治理、环境保护、资源节约的社会系统工程。

最后,木塑分子聚合材料用途广泛,现已被应用于包装运输领域中、车辆船舶领域中、建筑材料领域、室内装潢领域、军事领域等,它将在众多领域和范围内取代木材、钢材、水泥、塑料等常规材料。

二、高峰竹柳与生物质能源

当前,世界经济的快速发展引发了世界范围内的能源危机,大力发展可再生能源、逐步替代化石能源是克服能源危机的主要出路。据预测,到2020年,在全球可再生能源中生物质能的比重接近60%,而生物质颗粒燃料则占生物质能利用的60%。

所谓生物质能源也就是利用生物体,通过光合作用把吸收的太阳能转化为常规燃料能源。有机物中所有来源于动植物的能源物质均属于生物质能,是一种取之不尽、用之不竭的可再生能源。

柳树是林业能源林的主要树种,“高峰竹柳”则是多基因组合杂交的柳树新品种,具有速生、高产、抗逆等优点。作为能源树种每亩可密植1万株,每亩每年生物产量鲜重可达8至10吨,是普通柳树的十倍。在国外柳树生物质转化为能源的主要途径是发电,柳树生物质具有较高的燃烧值,发达国家用柳树生物质发电已经有20 年以上的历史。将柳树粉碎后制作成生物质能源颗粒和煤炭混合发电,可以大大提高热效率,降低污染50%以上。

生物质颗粒燃料是最具大规模产业化开发前景的新型生物质能源,用途主要包括三个方面:一是取暖和生活用能,生物质燃料利用率高,便于贮存,无污染。二是生物质工业锅炉,用生物质能替代燃煤,解决环境污染。三是发电,可作为火力发电的燃料。据统计,2008年全球生物质颗粒燃料销售量达1.8亿吨,市场规模超过500亿欧元。在全球经济放缓的背景下,生物质颗粒燃料产业以年均18%的速度高速成长,已经成为全球新能源市场中的“香饽饽”。

竹柳是生产生物质颗粒燃料最好的原料。生物质颗粒需求之大,竹柳作为原料种植前景更为广阔。

生物质颗粒燃料发展在我国处于起步阶段,但透过国外的发展我们可以看到,“高峰竹柳”将在生物质能源中发挥重要作用。高峰老人发起的1000万亩竹柳大造林,将可年产生物质颗粒3.25亿吨,相当于年发电量9000亿KWH以上。

三、高峰竹柳是最好的纸浆来源

随着现代经济的快速发展,我国已成为世界上仅次于美国的第二大纸品消费国,各类纸和纸制品消费量占世界消费总量的14%;同时我国又是森林资源匮乏的国家。在各大纸浆生产国中,中国的净进口量最大,但仍有很大的市场缺口,大量造纸原料需要进口。

要解决纸浆用材需要日益增长与森林资源匮乏日显突出的矛盾,缓解国际进口纸浆价格暴涨的压力。建立纸浆原料林基地,逐步减少对国外进口资源的依赖,显得非常迫切。营造速生丰产纸浆林“高峰竹柳”是最好的树种之一。

中国制浆造纸研究院进行了“竹柳材性纤维质量及制浆性能的研究”,检测分析结果表明:高峰竹柳材质色浅且密度适中,木粉自然白度比杨树高,竹柳木材的纤维质量较好纤维长宽适中且柔软。符合制浆工业对木材要求。根据竹柳木材密度和材质白度分析,该原料适宜做高得率化学机械浆。竹柳可以作为纸浆材合理地种植并开发利用。

中国作为发展中国家,对纸张、架材、板材等木材的需求与日俱增,特别是当前很多工业企业都呈现出掠夺式的发展,因此大力开展高峰竹柳造林是对我国的能源资源的有效补充和储备,是改善生态缓解能源紧张的务实之举!

中国高峰竹柳产业集团有限公司

地址:北京市朝阳区亚运村凯旋城1号楼2栋1403室

电话:010-59273183

15855582853

香港公司地址:香港九龙尖沙咀厚福街3号华博大厦18楼1806室

电话:00852-23682122

00852-33673126

皖阜阳公司地址:阜阳市经济开发区申寨社区政务大楼1-3楼

电话:0558-2220627

2226697 400-088-2853

15855582853 5955852853

第8篇:生物质燃料的优势范文

(一)农业资源构成。农业生物质资源是指农业作物(包括能源植物),主要有以下两个部分构成:农业生产的废弃物,如农作物秸秆(玉米秸?p高粱秸?p麦秸?p豆秸?p棉秆和稻草等);农业加工业的

废弃物,如稻壳、玉米芯、甘蔗渣、花生壳等。

我国是一个农业大国,可以利用的主要有两个方面:秸秆和农业加工废弃物。其中,秸秆的产量约为每年6.5亿吨,折合约3亿吨标准煤。稻壳重量约在稻谷重量的20%以上,由此可以推算出2005年我国谷

物(包括稻谷、小麦、玉米)产量为37428.7万吨,其中稻谷产量为16065.6万吨,稻壳产量为3213.2万吨。另外,稻壳的热值为12560~14650kJ/kg。所以,稻壳在每年谷物处理过程中是一种不可忽视的

能源。我国玉米的主要产区(2000千公顷以上)有河北、吉林、黑龙江、山东、河南。2005年玉米的产量为11583万吨,玉米芯的平均热值为14400kJ/kg。

(二)林业资源的构成。林业生物质资源包括森林生长和林业生产加工资源中所提供的能源,主要有以下三个部分构成:碳薪林、在森林抚育和间伐过程中的零散木材、残留的树枝、树叶和木屑等;木

材采运和加工过程中的枝丫、锯末、木屑等;林业副产品的废弃物(如果壳和果核等)。

林业生物质资源在我国农村能源中具有重要地位。林业生物质资源占农村能源总消费的21.2%,在丘陵、山区和林区等区域,这个比例高达50%以上。在2005年我国农村消耗林业生物质资源约为1.66亿吨

标准煤。

在林业生产过程中,碳薪林是一种产量高而生长期短的生物质能资源,它主要可以缓解农村的燃料需求,减少对自然林木的砍伐从而减少对环境的破坏。我国幅员辽阔,有许多种不同的气候,因此我国

树种资源也十分丰富,适合我国的碳薪林种类比较多。

林木伐区剩余物包括经过采伐、集材后遗留在地上的枝杈、梢头、灌木、枯倒木、被砸伤的树木、不够木材标准的遗弃材等。据不完全统计,每采伐100立方米的木材,剩余物约占30%,若利用率按55%计

算,将会有1000多万立方米的剩余物可供加工利用,这也将会缓解我国森林资源紧缺和木材供需矛盾。

我国目前的水平,木材综合出材率(由立木到原木)为65%,我国的木材利用率(由原木到成品)为60%左右。故我国每年可以利用的林业生物质资源是巨大的。利用好这一块能源也具有很大的潜力。

(三)我国生物质压缩成型替代煤的前景。由于生物质通过气化、液化、固化可以转化为二次能源,分别为热量或电力、固体燃料(木炭或成型燃料)、液体燃料(生物柴油、生物原油、甲醇、乙醇和

植物油等)和气体燃料(氢气、生物质燃气和沼气等)。

生物质压缩成型替代煤是利用木质素充当黏合剂将农业和林业生产中的废弃物压缩为成型燃料,提高其能源密度,是生物质预处理的一种方式。将松散的秸秆、树枝和木屑等农林废弃物挤压成固体燃料

,能源密度相当于中等烟煤,可明显改善燃烧特性。在该领域中我国已拥有世界领先技术,为大规模燃烧利用生物质打下基础。

二、国内利用秸秆发电现况

国内利用秸秆发电情况大致分为秸秆掺烧发电、纯秸秆发电、利用城市垃圾和包括秸秆在内的农林废弃物发电三种情况。目前已开始启动的厂家、项目有江苏宝应协鑫生物质环保热电工程、华电国际十

里泉发电厂、江苏国信新能源开发有限公司、盐城垃圾焚烧发电项目、晋州掺烧发电厂改造工程等。据了解这些单位依傍不同优势而掺烧不同材质的生物质,由于是自己摸索,虽已经过了一段时间的实

际掺烧,但各自存在一些问题,正向深层次摸索。目前,真正利用秸秆压缩发电的国内还没有。

笔者走访了香港协鑫集团下属的江苏宝应协鑫生物质发电厂和盐城阜宁协鑫环保发电厂。这两家都已进行掺烧试验,试验证明秸秆掺烧对锅炉燃烧未产生不良影响,对锅炉效率,除尘器效率、飞灰可燃

物、烟气排放未造成不良影响。

三、秸秆掺烧的技术可行性

笔者在秦皇岛及附近地区采集了10种生物质燃料,其编号见表1,压缩成型燃料的秸秆来自定州,并委托清华大学煤燃烧工程研究中心,对生物质秸秆压缩成型燃料的燃烧特性、污染物控制等进行研究。

(表1)

试验结果表明:秸秆的发热量为3670~3890大卡,玉米骨子的发热量为3700大卡,果木枝条的发热量为4170大卡。各种生物质无论产自何地,几乎其成分和热值基本相近,发热量相当于中等烟煤。

清华大学得出这样的技术结论:

1、从实验数据来看,单一生物质燃烧主要集中于燃烧前期;而煤燃烧主要集中于燃烧后期。生物质与煤混烧的情况下,燃烧过程明显地分成两个燃烧阶段。在煤中掺入生物质后,可以改善煤的着火性能

。在煤中加入生物质后,燃烧的最大速率有前移的趋势,同时可以获得更好的燃尽特性。生物质在燃烧过程中放热比较均匀。在煤中加入生物质后,可改善燃烧放热的分布状况,对燃烧前期的放热有增

进作用。煤中加入生物质后,使得煤的燃烧最大速率有所增加,生物质的燃烧特性普遍较好。

2、通过不同比例的掺混成型秸秆燃烧,对于试验范围内,燃烧温度提高到1050OC时,均未发生结焦。

3、掺混10%~20%的成型秸秆的混合燃料,SO2排放较低,在不添加石灰石情况下,SO2排放可以控制在200ppm以内。

4、掺混10%~20%的成型秸秆的混合燃料,NOx排放可以控制在200ppm以内。

总之,在目前的循环流化床锅炉设备中,无需经过过多改动,利用秸秆压缩发电掺烧比例可达到20%在技术上是完全可行的。不仅可以减少煤的使用量降低燃料成本,掺烧生物质还可以起到助燃作用,提高锅炉燃烧室的温度,从而提高锅炉的热效率(北山电厂锅炉热效率在74%~77%),同时在降低飞灰可燃物(掺烧前为27%)、减少排渣带走的热损失(掺烧前为700大卡)上都能发挥效能。新晨

四、经济可行性预测

考虑到秸秆的采购、储运、安全等方面因素,我们准备采取将粉碎、压缩设备分散到农户手中,由农民将秸秆压缩成型后再送到厂里掺烧的办法。以河北秦皇岛北山电厂拥有的一台装机容量为2.5万千瓦

、二台1.22.5万千瓦的凝汽式火力发电机组为例:

1、掺烧对底渣物理热损失、未完全燃烧损失的改善以及对飞灰未完全燃烧损失的改善,以掺烧秸秆量为Xo=20%(重量比)考虑,效率总体可提高?浊=2.49%。

2、考虑秸秆的热值Q1为3550~3800kcal/kg,煤的热值为Qo=3200kcal/kg(未考虑炉前煤损失),以及对效率的影响掺烧20%的秸秆,可以替代22.19%~25.64%的煤量。

3、秸秆压缩后到厂价格每吨可控制在150元(根据我们收集的数据按秸秆50元/吨、电费25元/吨、半径50公里的运费40元/吨、人工15元/吨、利润20元/吨计算),3200大卡原煤的到厂价格全年平均价格

第9篇:生物质燃料的优势范文

1300万千瓦

2011年11月,有媒体披露《可再生能

源“十二五”发展规划》中有关生物质能

源部分规划内容已初步定稿。到2015年

底,生物质发电装机将达1300万千瓦,

到2020年将达3000万千瓦,在2010年底

550万千瓦的基础上分别增长1.36倍和

4.45倍。

点评:发展目标的确定将对涉足生

物质发电、垃圾焚烧发电以及生物燃料

领域的相关企业构成利好,也将坚定企

业投资该领域的信心。

2 世界最大非粮燃料乙醇企业被迫

停产

2011年3月21日,世界规模最大的木

薯乙醇生产企业广西中粮生物质能源有

限公司被迫全面停产。据媒体报道,问

题主要集中在车用乙醇汽油推广过渡期

过长,导致乙醇汽油市场覆盖率下降;

普通汽油与车用乙醇汽油长期混用导致

部分消费者车辆油耗增加、动力下降,

造成消费者对乙醇汽油的误解;燃料乙

醇生产企业发展面临困难等方面。

点评:社会加油站普通汽油的价格

优势加上消费者对乙醇汽油不科学的认

识和误解,使得乙醇汽油在广西的推广

使用难度不断加大,直接导致燃料乙醇

生产陷入困局。

3 国航生物燃料首次验证飞行成功

2011年10月28日,国航使用现役波音

747-400型客机加载由中石油与霍尼韦尔

旗下UOP公司合作生产的航空生物燃

料,在首都国际机场执行了验证飞行,

并取得成功。此次试飞使用的生物燃料

不用对飞机或发动机作出任何改变,仅

仅是对石油燃料进行了替换。

点评:本次试飞,将有助于削减运

营成本并降低飞机温室气体排放量,在

中国航空发展史上具有重要里程碑意

义。

4 用地沟油制生物柴油免征消费税

2011年6月30日,财政部、国家税务

总局联合通知,划定了废弃动植物

油生产纯生物柴油免征消费税的适用范

围,详细列出四种免征消费税的生物柴

油原料。此前,国家曾过生物柴油

免征消费税的政策,但并没有明确免征

范围。

点评:出台这个措施是为了防止地

沟油、潲水油流入食品行业,鼓励企业

将这些废弃动植物油转化为工业用油。

生物柴油作为一种绿色能源,对柴油是

一个补充。

5 中国设专项资金收集城市餐厨废弃

2011年5月26日,国家发展改革委、

财政部联合《循环经济发展专项资

金支持餐厨废弃物资源化利用和无害化

处理试点城市建设实施方案》,将设专

项资金重点支持试点城市餐厨废弃物的

收集、运输、利用和处理体系的建设和

改造升级,以及法规、标准、管理体系

等能力建设。回收的废弃油脂将用于炼

化生物柴油和化工产品,以及一些低碳

环保的装修材料。

点评:餐厨废弃物问题处理利用好

了则可以变废为宝、化害为利,从源头

上解决用“地沟油”加工食用油的非法行

为,避免将餐厨废弃物直接喂猪,有效

解决餐厨废弃物作为生活垃圾填埋或焚

烧造成的资源浪费和环境污染问题,实

现社会效益、经济效益和环境效益的统。

6 河南30家生物柴油企业全部停产

截至2011年10月,河南省境内的近

30家生物柴油企业目前全部处于停产状

态,最早通过环评的洛阳新天源已停产

两年。地沟油收购价过高是致使生物柴

油企业停产的主要原因。生物燃料产业

要实现真正规模化发展,还需国家政策

扶持和引导。目前最迫切的做法是要对

餐厨垃圾的处置立法,餐厨垃圾的回收

处理不能市场化。

点评:目前国内所有生物柴油企业

都还在夹缝中生存,被上游地沟油供应

商挤压,受下游生物柴油用户逼迫,利

润偏低。

7 全国沼气标准化技术委员会在北京

成立

2011年12月15日,全国沼气标准化技

术委员会暨国际标准化组织沼气技术委

员会秘书处在北京成立,挂靠于农业部

科技发展中心。

点评:成立全国沼气标准化技术委

员会有利于加强沼气行业标准化工作,

提高沼气技术水平。有利于规范沼气行

业发展,提高沼气工程建设质量。有利

于沼气产业健康发展,创沼气产业名

牌。

8 西部规模最大的垃圾发电项目投入

试运行

2011年9月30日,由重钢三峰环境产

业集团公司联合美国卡万塔控股集团共

同建设的成都九江环保发电厂正式投入

试运行。该项目占地约90亩,共配置了

3台垃圾焚化炉,是目前西部规模最大、

工艺最先进的垃圾焚烧发电厂。

点评:该发电厂每天处理城市生活

垃圾约2000余吨,平均每日发电74.7万千

瓦时。

除电厂自用外,剩余的电全部送至

九江变电站,可供8万户居民使用。

9 世界最大生物质发电厂在广东运营

2011年10月18日,由广东省粤电集团

投资的目前世界上单机容量及总装机容

量最大的生物质发电厂正式投入商业运

营。广东粤电湛江生物质发电项目为2台

5万千瓦机组,其中1号机组已于2011年

8月底投运;2号机组现已顺利通过96小时

满负荷试运行,试运期间,机组平均负

荷率达100.6%,各项技术参数指标优

良。该生物质发电项目每年可替代约10万

吨标煤,减少二氧化碳排放约30万吨,减

少二氧化硫排放近2000吨。

点评:该项目在纯生物质燃料前提

下,采用具有自主知识产权的循环流化

床技术,进一步提升发电机组的效率,

成本和污染物排放更低、燃料适应性

强,燃烧温度低有效抑制结渣、腐蚀令

灰渣综合利用价值提高,更为节能环

保。

10 国内首个生物质炉VER自愿减排项

目在河北启动

2011年12月10日,由河北光磊炉业有

限公司实施的“30万台生物质炉具

VER自愿减排项目”在河北省故城县启

动。项目第一期将于2011年底前在故城

县推广5000台生物质炉具,配套建设30个

秸秆成型燃料厂,年产秸秆成型燃料

1.5万吨,替代标准煤7500吨,年减排二

氧化碳近2万吨。这是国内首个在生物质

炉具行业实施的VER自愿减排项目。

点评:生物质炉具是一种新型高效

低排放炉具,燃料以生物质为主,采用