前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的废水中氨氮处理方法主题范文,仅供参考,欢迎阅读并收藏。
关键词:废水,氨氮,饮用水
1.概述
氨氮的存在使给水消毒和工业循环水杀菌处理过程中氯量增大;对某些金属,特别是对铜具有腐蚀性;当污水回用时,再生水中的氨氮可以促进输水管道和用水设备中微生物的繁殖,形成生物垢,堵塞管道和用水设备,并影响换热效率,更严重的是氨氮是造成水体富营养化的重要原因。氨氮存在于许多工业废水中。钢铁、炼油、化肥、无机化工、铁合金、玻璃制造、肉类加工和饲料生产等工业,均排放高浓度的氨氮废水。某些工业自身会产生氨氮污染物,如钢铁工业(副产品焦炭、锰铁生产、高炉)以及肉类加工业等。而另一些工业将氨用作化学原料,如用氨等配成消光液以制造磨砂玻璃。此外,皮革、孵化、动物排泄物等废水中氨氮初始含量并不高,但由于废水中有机氮的脱氨基反应,在废水存积过程中氨氮浓度会迅速增加。不同类的工业废水中氨氮浓度千变万化,即使同类工业不同工厂的废水中氨氮浓度也不完全相同,这取决于原料性质、工艺流程、水的耗量及水的复用等。进入水体的氮主要有无机氮和有机氮之分。无机氮包括氨态氮(简称氨氮)和硝态氮,亚硝态氮不稳定可以还原成氨氮,或氧化成硝态氮。有机氮有尿素、氨基酸、蛋白质、核酸、尿酸、脂肪胺、有机碱、氨基糖等含氮的有机物。在一定的条件下有机氮会通过氨化作用转化成无机氮。免费论文参考网。
2.水体富营养化及其危害
2.1水体富营养化现象及主要成因
“富营养化”是湖泊分类与演化方面的概念,过量的植物性营养元素氮、磷排入水体会加速水体富营养化的进程。水体富营养化现象是指在光照和其它适宜环境条件情况下,水中含有的植物性营养元素氮的营养物质使水体中的藻类过量生长,在随后的藻类植物的死亡以及异样微生物的代谢活动中,水体中的溶解氧逐步耗尽,造成水体质量恶化、水生态环境机构破坏。
当水体中含N>0.2mg/L,含P>0.02mg/L水体就会营养化。水体营养化后会引起某些藻类恶性繁殖,一方面有些藻类本身有藻腥味会引起水质恶化使水变得腥臭难闻;另一方面有些藻类所含的蛋白质毒素会富集在水产物体内,并通过食物链影响人体的健康,甚至使人中毒。如海生腰鞭毛目生物的过度繁殖能使海水呈红色或褐色,即俗称“赤潮”;沟藻属是形成赤潮的常见种类,它们所产生的毒素会被贝类动物所积累,人体食用后会引起严重的胃病甚至死亡。水体中大量藻类死亡的同时会耗去水体中的溶解氧,从而引起水体中鱼虾类等水产物的大量死亡,致使湖泊退化、淤泥化,甚至变浅、变成沼泽地甚至消亡。据统计,我国平均每年有20个天然湖泊消亡。我国广东珠海沿江、厦门沿海、长江口近海水域、渤海湾曾多次发生藻类过度繁殖引起的赤潮,造成鱼类等水产物大量的死亡,使海洋渔业资源遭到的破坏,经济损失严重。而水体一旦富营养化后没有几十年的时间是很难恢复的,有的甚至无法恢复,如美国的伊利湖是典型的富营养湖,科学家估计需要100年才能恢复。
2.2降低水体的观赏价值
通常1mg氨氮氧化成硝态氮需消耗4.6mg溶解氧。水体中氨态氮愈多,耗去的溶解氧就愈多,水体的黑臭现象就越发严重。这就影响了水体中鱼类等水生生物的生存,使其易因缺氧而死亡。富营养的水质不仅又黑又臭,且透明度差(仅有0.2m),往往影响了江河湖泊的观赏和旅游价值。随着改革开放的深入,人民群众的生活水平日趋提高,旅游已成为人们越来越广泛的需求。而水质优良的江河、湖泊、公园是城市景观的重要组成部分,也是人们生活娱乐、游泳、观赏、休闲的最佳场所。但我国的大部分湖泊已呈现出不同程度的营养态。有些通常发黑、发臭,人们已无法在其中游泳、游览了,更观赏不到鱼类在其中嬉戏的情景,大大降低了这些湖泊的利用价值。影响当地人民的生活,并且也严重影响当地的旅游业发展,造成较大的经济损失。
2.3危害人类及生物生存
当水体中pH值较高时。氨态氮往往呈游离氨的形式存在,游离氨对水体中的鱼及生物皆有毒害作用,当水体中NH3-N>1mg/L时,会使生物血液结合氧的能力下降;当NH3-N>3mg/L在24~96h内金鱼及鳊鱼等大部分鱼类和水生物就会死亡。可使人体内正常的血红蛋白氧化成高铁血红蛋白,失去血红蛋白在体内的输氧能力,出现缺氧的症状,尤其是婴儿。当人体血液中高铁血红蛋白>70%时会发生窒息现象。若亚硝酸盐长时间作用于人体可引起细胞癌变。经水煮沸后的亚硝酸盐浓缩,其危害程度更大。免费论文参考网。以亚硝酸盐为例,自来水中含量为0.06mg/L时,煮沸5min后增加到0.12mg/L,增加了100%。亚硝酸盐与胺类作用生成亚硝酸胺,对人体有极强的致癌作用,并有致畸胎的威胁。美国推荐水中亚硝酸盐的最高允许浓度时1mg/L,而我国上海第一医院建议在饮用水中的亚硝酸盐的浓度必须控制在0.2mg/L以下。
水体中的氮营养来源是多方面的,其中人类活动造成的氮的来源主要有以下几方面:1.未经处理的工业和生活污水直接排入河道和水体:这类污水的氨氮含量高,排入江河湖泊,造成藻类过度生长的危害最大。城市污水、农业污水,食品等工业的废水中含有大量的氮、磷和有机物质。据统计,全世界每年施入农田的数千万吨氮肥中约有一半经河流进入海洋。美国沿海城市每年仅通过粪便排入沿海的磷近十万吨。2.污水处理场出水:采用常规工艺的污水处理厂,有机物被氧化分解产生了氨氮,除了构成微生物细胞组分外,剩余部分随出水排入河道,这是城市污水虽经过二级常规处理但河道仍然出现富营养化和黑臭的重要原因之一。3.面源性的农业污染物,包括废料、农药和动物粪便等。
3.氨氮废水处理的研究现状及主要处理技术
氨氮处理技术的选择与氨氮浓度密切相关,而对一给定废水,选择技术方案主要取决于以下几方面:(1)水的性质;(2)处理要求达到的效果;(3)经济效益,以及处理后出水的最后处置方法等。根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水、中等浓度氨氮废水、低浓度氨氮废水。随着工业的发展,中、高浓度的氨氮废水排放日益增多。免费论文参考网。现在,由于对氨氮废水的控制日益严格,对氨氮废水的处理技术要求越来越高。工业废水的氨氮去除方法有多种,主要包括物理法、化学法、生物法等。其中物理法有反渗透、蒸馏、土壤灌溉等技术;化学法有离子交换、氨吹脱、折点氯化、焚烧、催化裂解、电渗析、电化学处理等技术;生物法有藻类养殖、生物硝化、固定化生物技术等。虽然每种处理技术都能有效地去除氨氮,但应用于工业废水的处理必须具有应用方便、处理性能稳定、适用于废水水质且经济实用的特点。根据国内外工程实例及资料介绍和环境工作者所研究的重点,目前处理氨氮废水比较实用的方法主要有折点氯化法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法等。下面就这几种方法作一简单介绍。
3.1折点氯化法去除氨氮
折点氯化法是将氯气(生产上用加氯机将氯气制成氯水)或次氯酸钠通入废水中将废水中的NH4+-N氧化成N2的化学脱氮工艺。当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。当氯气通入量超过该点时,水中的游离氯量就会增多。因此该点称为折点,该状态下的氯化法称为折点氯化。废水中的氨氮常被氧化成氮气而被脱去,处理氨氮废水所需的实际氯气量取决于温度、pH值及氨氮浓度。氧化每克氨氮需要9~10mg氯气,pH值在6~7反应最佳,接触时间为0.5~2小时。在上述条件下,出水中氨氮浓度小于0.1mg/L。
折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。1mg残留氯大约需要0.9~1.0mg的二氧化硫。在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右的碱(以CaCO3计)。
折点氯化法最突出的优点是可通过正确控制氯的添加量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。对于氨氮浓度低于5mg/L的废水来说,用这种方法较为经济。为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点,常将此法与生物硝化连用,先硝化再除微量残留氨氮。氯化法的处理率达90%~100%,处理效果稳定,不受水温影响,在寒冷地区此法特别有吸引力。虽初次投资较少,但运行费用高,副产物氯胺和氯代有机物会造成二次污染,所以氯化法只适用于处理低浓度氨氮废水。
3.2选择性离子交换法去除氨氮
离子交换是指在固体颗粒和液体界面上发生的离子交换过程。离子交换法选用对NH4+离子有很强选择性的沸石作为交换树脂,从而达到去除氨氮的目的;而常规的离子交换树脂不具备对氨离子的选择性,故不能用于废水中去除氨氮。沸石具有对非离子氨的吸附作用和与离子氨的离子交换作用,它是一类硅质的阳离子交换剂,储量丰富价格低廉,对NH4+有很强的选择性。
【参考文献】
[1]沈耀良,王宝贞.废水生物处理新技术-理论与应用[M].中国环境科学出版社,2000:11-8
[2]钱易,唐孝炎.环境保护与可持续性发展[M].高等教育出版社,115-128
[3]郑兴灿,李亚新.污水除磷脱氮技术[M].中国建筑工业出版社,1998:15-87
[4]陈慧中,杨宏.给水系统中藻类研究现状及进展[J].现代预防医学,2001,28(l):79-80
[5]孙锦宜.含氮废水处理技术与应用[M].化学工业出版社.2003:15-36
[6]许国强,曾光明,殷志伟等.氨氮废水处理技术现状及发展[J].湖南有色金属,2002,18(2):29-30
[7]胡孙林,钟理.氨氮废水处理技术[J].现代化工,2001,21(6):47-50
[8]李晔.沸石改性及其对氨氮废水处理效果的研究[J].非金属矿,2003,26(2):53-55
[9]袁俊生,郎宇琪,张林栋等.天然沸石法工业污水氨氮资源化治理技术[J].环境污染治理技术与设
[关键词]氨氮废水处理技术方法选择
近年来,随着环境保护工作的日益加强,水体中有机物的代表指标――COD基本上得到有效控制,但是,含高氨氮废水达标排放没有得到有效控制,未经处理的含氮废水排放给环境造成了极大的危害,如易导致湖泊富营养化,海洋赤潮等。本文总结了国内外高氨氮废水处理技术及其优缺点、适用范围等。
1废水中氨氮处理的主要技术应用与新进展
1.1 吹脱法
吹脱法是将废水中的离子态铵(NH4+),通过调节pH值转化为分子态氨,随后被通入的空气或蒸汽吹出。影响吹脱效率的主要因素有:pH值、水温、布水负荷、气液比、足够的气液分离空间。
NH4++OH-NH3+H2O
炼钢、石油化工、化肥、有机化工等行业的废水,常含有很高浓度的氨,因此常用蒸汽吹脱法处理,回收利用的氨部分抵消了产生蒸汽的高费用。石灰一般用来提高pH值。用蒸汽比用空气更易控制结垢现象,若用烧碱则可大大减轻结垢的程度。吹脱法一般采用填料吹脱塔,主要特征是在塔内装置一定高度的填料层,利用大表面积的填充塔来达到气水充分接触,以利于气水间的传质过程。常用的填料有拉西环、聚丙烯鲍尔环、聚丙烯多面空心球等。胡允良等人研究了某制药厂生产乙胺碘呋酮时产生的一部分高浓度氨氮废水的静态吹脱效果。结果表明:当pH=10~13,温度为30~50℃时,氨氮吹脱率为70.3%~99.3%。
氨吹脱法通常用于高浓度氨氮废水的预处理,该处理技术优点在于除氨效果稳定,操作简单,容易控制。但如何提高吹脱效率、避免二次污染及如何控制生产过程水垢的生成都是氨吹脱法需要考虑的问题。
1.2 化学沉淀法(MAP法)
化学沉淀法是在含有NH4+离子的废水中,投加Mg2+和PO43-,使之与NH4+生成难溶复盐磷酸氨镁MgNH4PO4
•6H2O(简称MAP)结晶,通过沉淀,使MAP从废水中分离出来。化学沉淀法尤其适用于处理高浓度氨氮废水,且有90%以上的脱氮效率。在废水中无有毒有害物质时,磷酸氨镁是一种农作物所需的良好的缓释复合肥料。
处理时,若pH值过高,易造成部分NH3挥发。建议缩短沉淀时间,适当降低pH值,以减少NH3挥发。沉淀剂最好使用MgO和H3PO4,这样不但可以避免带入其他有害离子,MgO还可以起到中和H+离子的作用。赵庆良等人的研究发现:在pH=8.6时,同时投加Na2HPO4和MgCl2可将氨氮从6518mg/L降至65mg/L。
化学沉淀法处理高浓度氨氮废水工艺简单、效率高。但是,废水中的氨氮残留浓度还是较高;另外,药剂的投加量、沉淀物的出路及药剂投加引人的氯离子及磷造成的污染是需要注意的问题。
1.3 膜吸收技术
比较老的膜技术是液膜法,除氨机理是:NH3易溶于膜相(油相),它从膜相外高浓度的外侧,通过膜相的扩散迁移,到达膜相内侧与内相界面,与膜内相中的酸发生解脱反应,生成的NH4+,利用膜两侧的NH3分压差为推动力,使NH3从废水向吸收液转移从而达到降低废水中氨氮含量的目的。但如何防止液膜乳化、富集了氨氮的吸收液的去向及减少吸收液对废水的有机污染是该技术需要着力研究的内容。
目前随着膜技术的日臻完善,采用膜技术进行高浓度氨氮废水处理成为研究的热点。利用一疏水性膜将含氨废水与易吸收游离氨的液相隔于膜两侧。不同的吸收液需要选用不同的膜。当采用H2SO4为吸收液时,必须选用耐酸疏水性固体膜,透过膜的NH3与H2SO4反应生成(NH4)2 SO4而被回收。处理后废水中氨氮的浓度理论上可达到零。该工艺的难点在于防止膜的渗漏。为了保证较高的通量,一般的微孔膜的膜厚都比较薄,膜两侧的水相在压差的作用下很容易发生渗漏。
1.4 高级氧化技术
1.4.1 折点加氯法
折点加氯法是通过投加足量氯气至使废水中NH3-N氧化成无害氮气,反应如下:
2NH4++3HClO N2+3H2O+5H++3Cl-
处理时所需的实际氯气量,取决于温度、pH值及氨氮浓度。氧化每毫克氨氮一般需要6~10mg氯气。虽然氯氧化法反应迅速完全,所需设备投资较少,但液氯的完全使用和贮存要求高,并且处理成本也较高;若用次氯酸或二氧化氯发生装置代替使用液氯,安全问题和运行费用可以降低,但目前国内最大的发生装置产氯量太少,并且价格昂贵,因此氯氧化法一般用于给水处理,将其用来作深度脱氮。对于大水量高浓度氨氮废水的处理显得不太适宜。
1.4.2 催化湿式氧化法
催化湿式氧化法是20世纪80年展起来的治理废水新技术。在一定温度、压力和催化剂作用下,经空气氧化,可使污水中的有机物和氨分别氧化分解成CO2、N2、H2O等无害物质,达到净化的目的。
杜鸿章等人用在270℃、9MPa条件下,利用催化湿式氧化法处理焦化废水中的氨氮,去除率达到99.6%。该法具有净化效率高、流程简单、占地面积少等特点。经过国外多年应用与实践,在技术上已具有较强的竞争力。但如何降低成本还是实践应用有待研究解决的问题。
1.5 离子交换技术
离子交换法是选用对氨离子有很强选择性的沸石作为交换载体,从而达到去除氨氮的目的。根据有关资料,每克沸石具有吸附15.5mg氨氮的极限能力,当沸石粒径为30~16目时,氨氮去除效率可达到78.5%,但操作复杂,且再生液仍为高浓度氨氮废水,仍需再处理,一般适合于低浓度氨氮处理。
1.6 生物脱氮技术
1.6.1 生物脱氮传统工艺――硝化/反硝化法
传统的硝化/反硝化法是废水中的氨氮在好氧菌作用下,最终氧化生成硝酸盐,这一过程称为硝化反应。其反应如下:
2NH4+ + 3O2 2NO2- + 4H+ + 2H2O
2NO2- + O2 2NO3-
总反应式为:
NH4+ + 2O2 NO3- + 2H+ + H2O
硝化过程中要耗用大量的氧,一般认为溶解氧应控制在1.2~2.0mg/L以上,低于0.5mg/L则硝化作用完全停止。硝化反应后有硝酸形成,使生化环境的酸提高,因此要求废水中应有足够的碱度来平衡硝化作用中产生的酸,一般要求硝化作用最适宜的pH值为7.5~8.5。
反硝化反应是指在无氧条件下,反硝化菌将硝酸盐氮(NO3-)还原为氮气(N2)的过程。其反应如下:
4NO3- + 5C(有机C)+ H2O2N2+ 5CO2 + OH-
反硝化菌属异养型兼性厌氧菌,在有氧存在时,它会以O2为电子受体进行好氧呼吸;在无氧而有NO3-或NO2-存在时,则以NO3-或NO2-为电子受体,以有机碳为电子供体和营养源进行反硝化反应。反硝化过程中,理论的C/N应为2.86。当废水中的C/N大于2.86时才能充分满足反硝化对碳源的要求。废水中C/N愈小,反硝化去除率也愈低,工程运行中一般控制C/N在3.0以上。
生物处理对氨氮的降解彻底、运行费用低。是目前应用最为广泛的脱氮技术。传统的生物脱氮工艺是由Barth基于氨化、硝化及反硝化反应过程建立的三级活性污泥工艺。该系统因细菌生长环境条件优越,能够快速彻底地去除总氮。但该工艺流程复杂、处理设备多。上世纪80年代初开创的前置反硝化工艺A/O,以其流程简单、碳源和碱度需求低的优势迅速成为一种重要的生物脱氮工艺。此后随着研究的深入,先后出现了生物接触氧化脱氮工艺、氧化沟脱氮工艺、SBR脱氮工艺及MBR脱氮工艺等新的生物处理技术。
1.6.2 生物脱氮新工艺――短程硝化/反硝化
生物脱氮新技术的研究主要集中在开发一些低能耗、高效率、低投资的工艺。目前是通过选择抑制性物质或限制硝化菌的活性,使氨氮氧化为亚硝酸盐并积累,然后对其进行反硝化脱氮的短程硝化/反硝化。此法所需的氧量和电子供体量将分别减少25%和40%。
根据研究,通过控制pH:7.8~8.0、DO:2.0mg/L、温度:25~30℃等条件,可促使亚硝化菌成为优势菌,将大部分氨氮氧化为亚硝酸根。亚硝化菌对环境的变化很敏感。为了能获得稳定和较高的氨氮亚硝化率,必须保证适宜亚硝化菌生长的环境条件并限制硝化菌的活性。因此,目前亚硝化菌筛选和培育的研究也十分活跃。
2常用技术运行费用分析
上述几种方法中,从技术上讲都是可行的,确定采用哪种方法关键在于处理工艺投资、运行成本以及运行可靠性,各类处理法处理1kg氨氮的成本估算比较见表1。
表1各类处理法处理1Kg氨氮的运行费用表 (单位:元)
处理法 主要原材料或动力 成本估算 应用情况
500mg/l 10000mg/l
硝化/反硝化 氧气(动力)、碳源 1.00 1.50 适用于中低浓度处理、占地面积大、投资高
离子交换法 碱剂、食盐、动力 2.00 无法应用 投资高、运行费用略高、可回收氨产品
MAP沉淀法 磷酸、镁盐 18.00 18.00 适用于高浓度处理、占地小、运行成本高
折点加氯法 氯气 20.00 20.0 适用于低浓度处理、工艺简单、占地小、运行成本高
空气吹脱法 碱剂、空气(动力) 3.0 2.0 适用于中高浓度处理、有二次污染
蒸汽汽提法 碱剂、蒸汽 20.00 1.00 适用于高浓度可处理回收氨,运行成本高
3结论
目前氨氮处理法分为两类:一类为物化法,包括吹脱法、MAP沉淀法、膜法、折点加氯法和离子交换法;第二类为生物脱氮法,包括硝化和亚硝化/反硝化工艺。对于高浓度污水氨氮污水来说,一般可采用空气吹脱法、蒸汽汽提法、MAP沉淀法进行预处理,回收氨产品以补偿运行成本;对于中低浓度氨氮污水来说,一般可采用生物脱氮法、离子交换法和高级氧化法。
目前国内围绕高浓度氨氮废水处理的研究十分活跃,特别是膜吸收技术、湿式催化高级氧化技术及突破传统生物脱氮的短程硝化/反硝化新工艺和新技术等。
参考文献:
[1] 金志刚, 张彤.污染物生物降解[M].上海:华东理工大学出版社, 1997.
[2] 有马启, 田村学造. 郭丽华, 任玉岭译.生物净化环境技术[M]. 北京:化学工业出版社,1990.
[3] 汪大, 雷乐成.水处理新技术及工程设计[M].北京:化学工业出版社,2001.
[4] 须藤隆一. 俞辉群,全浩译.水环境净化及废水处理微生物学[M].北京:中国建筑工业出版社,1988.
[5] 张统, 侯瑞琴.间歇式活性污泥法污水处理技术及工程实例[M].北京:化学工业出版社,2002.
[6] 娄金生, 谢水波.生物脱氮除磷原理与应用[M].长沙:国防科技大学出版社, 2002.
[7] 王宝贞, 王琳.水污染治理新技术[M].北京:科学出版社,2004.
[8] 胡允良, 张振成等.制药度水的氨氮吹脱试验[J].工业水处理,1999,19(4):19-22.
[9] 赵庆良,李湘中.化学沉淀法去除垃圾渗滤液中的氨氮[J].环境科学,1999,20(5):90-92.
【关键词】高浓度废水氨氮废水废水处理 膜法高浓度氨氮废水 电渗析
中图分类号:X703文献标识码: A 文章编号:
一.前言
高浓度氨氮废水处理技术一直都是各国学着研究的热门课题。处理高浓度氨氮废水的方式有很多种,较为常用的包括生物脱氮法、折点加氯气、吹脱法和离子交换法等。在处理含有有机物的低氨氮浓度废水中吗,采用生物脱氮法较为可行。目前,对催化剂废水、化肥废水等高浓度无极氨氮废水处理,很多工业都是采用吹脱法。但由于吹脱法的脱氮率仅仅能够达到70%,其处理后无法达到国家标准。而聚丙烯中空纤维膜法处理具有诸多优点,能很好的弥补其他处理方式的缺欠。
二.膜分离技术。
膜分离技术是借助膜的渗透作用,通过化学位差和外界能量的推动作用,将混合物中的溶剂和溶质进行分离、分级和提纯及浓缩。同传统的蒸馏、沉淀、分馏、吸附、萃取等方法相比,膜分离技术在分离过程中没有发生相变,能耗较低;在膜分离的过程中,可在常温下进行,并且适合果汁、酶等热敏感物质;膜分离技术对有机物、无机物和生物制品都可适用,技术适用范围较广,遍布从微粒级到离子级;膜分离技术是采用压力差作为驱动力,具有操作方便、装置简单等诸多优点。
三.聚丙烯中空纤维膜法处理高浓度氨氮废水。
1.膜分离法处理原理。
膜分离法处理高浓度氨氮废水是通过膜的选择透过性,将液体中的氨氮成分进行选择性分离,达到脱除氨氮的目的。膜分离法处理高浓度氨氮废水的具体操作方式包括纳滤、电渗析、反渗透等。其中采用电渗析和聚丙烯中空纤维膜法处理氨氮废水具有较好的效果。采用电渗析方法时,在运行过程中需要消耗的电量和废水氨氮的含量成正比,在处理2000至3000mg/L氨氮废水中,去除率可达到85%以上,可提出高达8.9%的浓氨水。液膜法处理高浓度氨氮废水,在进水的氨氮质量浓度为500mg/L时,通过处理,其出水的氨氮含有浓度低于15mg/L;在处理过程中,对氨氮的回收比率较高,同时具有处理效果较为稳定,操作方便、无二次污染等优点。液膜法通常适用经过预处理的中低浓度氨氮废水,其弊端是,在处理过程中,使用的薄膜容易出现结垢,发生堵塞,造成反洗较为频繁,增加了废水处理的费用和成本。
2.处理技术。
聚丙烯中空纤维处理高浓度氨氮废水,是由于聚丙烯塑料在拉丝的工程中,在抽出的中空纤维膜中拉出了许多小孔,小孔允许气体从中通过,而阻止水的通过。在PH值达到11.5时,废水中的氨中有约为99.9%的是以游离状态的氨气存在的,而当废水通过聚丙烯中空纤维膜的内侧时,其中的氨分析能经由中空膜的膜壁透出,而将膜壁外的H2SO4进行吸收,转换为(NH4)2SO4,同时去除废水中的NH3-N。聚丙烯中空纤维膜法处理高浓度氨氮废水,是采用了吸收液循环的方式,将含有氨氮成分的废水,泵入到聚丙烯中空纤维内侧,H2SO4吸收液在中空纤维膜的外侧循环流动,而当废水经过聚丙烯中空纤维膜的过滤后,去除其中的氨,同时将氨回收为(NH4)2SO4.。
在膜法处理高浓度氨氮废水技术中,较为古老的技术是夜膜法,其去除氨的原理是:NH3易溶于膜相(油相),在膜相外侧中具有较高的浓度,而通过进行膜相的扩散和迁移,到达内相界面和膜相内侧,同时和膜内相中的酸产生解脱反应,形成了NH4+。而在膜两侧的NH3分压差作为处理的推动力,将废水中的NH3通过吸收液进行转移,将废水中的氨氮含量进行降低,实现去除的目的。液膜法处理高浓度氨氮废水技术中,如何防止液膜的乳化、含有氨氮的吸收液的处理方式、减少吸收液中对废水的有机污染等问题是液膜处理技术的核心技术内容。
纵观高浓度氨氮废水的处理技术及发展模式来看,膜技术日臻完善,而采用膜技术处理高浓度氨氮废水专业技术成为许多专家、学者、行业工作者研究和探讨的话题。
3.采用氨水的形式,回收氨氮废水。
以氨水的形式,回收氨氮废水的处理技术,能在去除氨氮的同时,获得浓度较高的氨水,通过处理后,将废水处理达到规定的排放标准,同时又能经济有效的分离和回收氨氮。采用回收氨水的形式,对高浓度氨氮废水进行处理,在处理废水的同时,又获得了较高浓度的氨水,具有较高的经济效益。
3.1电渗析处理技术,电渗析器通常由离子交换膜、极板、隔板组合而成。在含有氨氮的废水通过时,电渗析器在直流电场的作用下,将产生的OH-和NH4+进行定位迁移。通过离子迁移,将废水进行净化,取得较高浓度的氨水。采用电渗析处理技术,工艺流程较为简单,在处理废水的过程中不用受到废水的PH值限制,也同受处理温度的影响,具有投资成本较少、回收率较高、处理操作简便、处理过程不消耗药剂等优点。通过实验数据表明,采用电渗析处理高浓度氨氮废水时,在2000-3000mg/L氨氮浓度中,通过电渗析处理,对氨氮的去除率可超过87.5%,处理后获得浓度为89%的氨水。
3.2离子膜电解法处理高浓度氨氮废水。
采用离子膜电解法处理高浓度氨氮废水,同时也是进行脱氨的预处理,其处理原理为:离子膜的电解技术在电渗析器的直流电场作用下,将电位差作为处理的推动力,处理过程中利用离子交换膜的透过控制,选择性的将通过的废水中的部分离子通过离子交换膜进行分离,达到与原溶液分离的目的。通过电渗析处理,有效降低了高浓度氨氮废水的处理成本,同时获得的高浓度氨水,实现了废物资源的再利用。
3.3生物膜处理技术。
生物膜处理技术是指:采用附着和生长在惰性载体上,以微生物为主体的,其中包括能产生胞外多聚物,以及吸附在微生物的表面上的有机物和无机物等。其具有较强的吸附能力和具有生物降解的结构。生物膜处理技术是利用生物膜替代了传统的生化处理技术、以及生活处理中的二次沉淀、沙淀池处理技术。在高浓度氨氮废水处理中,生物膜处理技术通过分离工程中的膜法处理技术的应用,高效的完成了高浓度氨氮废水的分离处理,同时处理过程中,曝气池中的活性污泥的浓度得到增加,污泥总的特效菌也有所增加。另外,由于处理过程总,降低了F/M比值,将少了剩余的污泥产生量,甚至可以将到零,不仅仅是提高了生化反应的效率,同时也从基本上解决了传统活性污泥处理中存在的较为突出的问题。
五.结束语
聚丙烯中空纤维膜法处理高浓度氨氮具有技术先进,处理工艺流程短都优点,采用二级脱除后,脱除率能超过99.4%,非常适合处理高浓度的NH3-N废水。处理工艺设备要求简单,占地面积较小,同时操作也较为方便,具有较低的能耗,且不会产生二次污染。
参考文献:
[1] 杨晓奕 蒋展鹏 潘成峰 膜法处理高浓度氨氮废水的研究 [期刊论文] 《水处理技术》 ISTIC PKU2003年2期
[2] 刘乾亮 马军 王盼盼 王争辉 LIU Qian-liangMA JunWANG Pan-panWANG Zheng-hui 气扫式膜蒸馏工艺处理高氨氮废水的影响因素研究 [期刊论文] 《中国给水排水》 ISTIC PKU2012年13期
[3] 朱振中 膜吸收法与膜生物反应器组合系统处理高浓度氨氮废水的研究
[学位论文]2005 江南大学:环境工程
[4] 陈友义 膜法处理高浓度氨氮废水的研究 [期刊论文] 《城市建设理论研究(电子版)》2012年33期
关键词:生活园区,高浓度,氨氮生活废水
中图分类号: X703文献标识码:A 文章编号:
Abstract: because of ammonia nitrogen of water pollution are getting more and more serious, sewage denitrification has attracted people's attention, special high ammonia nitrogen living waste water in denitrification process first ammonia nitrogen oxide will only generate nitrite nitrogen, so how to realize the stable and efficient nitrosation process has become the international biodenitrification hot spot in the field of. This paper huakang normal university life park high concentrations of ammonia nitrogen life wastewater treatment for analysis.
Keywords: life park, high concentration, ammonia nitrogen life wastewater
Anaerobic-Anoxic-Oxic (AAO)工艺是我国城市生活污水处理工艺中最为常见的一种污水脱氮除磷工艺,其处理出水的达标排放和运行过程的节能降耗对于保护我国地表水环境具有重要意义。由于受到进水负荷波动等因素的影响,AAO工艺通常较难保持稳定高效的污染物去除能力[1]。因此必须经过处理,至少达到国家规定的二级排放标准25 mg/L才能排放,脱除这类废水中的氨氮是处理废水的关键步骤之一。
1工程概况
华康师大生活污水于2006年建设完成,设计工艺缺氧+三级接触氧化处理工艺,出水部分做回用水。现因部分原因出水的NH3-N和大肠杆菌超标。根据我公司对各种大小型生活污水项目的良好运行及技术经验,应甲方要求,对该废水设计改造进行认真分析,制造了本技术方案,使出水能稳定的完全达标。
2工艺分析
对于AAO 工艺中的三个主要控制变量:外回流量、内回流比以及溶解氧设定值,都可以根据进水负荷进行控制。考虑到在生产实际中氨氮浓度易于测量,且对于同一污水处理厂进水氨氮占总氮的比例较为稳定,可以用进水的氨氮负荷来表征总氮负荷。因此,在前馈控制中,使用进水COD负荷、氨氮负荷及COD 与氨氮浓度的比值(C/N)作为监测自变量,根据其不同的数值水平调节A2/O 工艺的各项运行参数。
(1)预处理。预处理系统主要包括对剩余氨水的加碱蒸氨处理及对其他废水的铁凝、气浮处理。目的是净化水质,降低废水氨氮含量,使其达到从AAO废水处理系统进水要求。
(2)AAO生化处理。各种生产废水统一进入调节池。调节池的主要作用是均衡废水水质和水量,保证AAO废水处理系统运行的稳定性。
调节池的水由泵送入厌氧池,厌氧池设有潜水搅拌机。废水在此与厌氧菌发生反应。厌氧反应使废水中大分子有机物断裂为小分子有机物,部分环状有机物开环成为链状有机物,从而提高了废水的可生化性。厌氧池出水经一沉池自流入缺氧池。在缺氧池中,以废水中的有机物作为反硝化的碳源和能源,用中间池回流水中的硝态氮作为反硝化的氧源,在池中反硝化菌的作用下进行反硝化脱氮反应,使废水中的 和 还原为氮气逸出,从而达到脱氮的目的。在运行过程中,要连续向厌氧池、缺氧池、好氧池中加碱,保持其pH值稳定[2]。
(3)后处理。后处理是通过物理化学方法,对废水进行进一步的混凝沉降、脱色处理,使出水指标均达到外排指标。
AAO 工艺过程中,生物除磷脱氮工艺处理污水效果与DO、内回流比r、外回流比R、泥龄SRT、污水温度及PH 值等有关,其中回流和好氧段曝气能耗是污水厂耗能主要的组成,在保证出水水质的条件下,针对入水水量和水质的动态变化,综合考虑工艺构型特点、各处理单元性能、硬件设备功效,优化工艺运行过程,提高工艺运行的精确性,使反应池内生态环境达到最优状态,通过精确的曝气和回流,降低需氧量并减少回流,在出水达标的情况下,提高运行效率,以达到节能减耗的目的。AAO 工艺主要的可控制变量有排泥量、外回流比、内回流比、曝气量及分配方式。其中,排泥量常用于调整活性污泥系统的污泥龄,或维持一定的反应区污泥浓度,需要调整的频率比较低,且排泥量也受到实际污水处理厂污泥处置能力的限制,所以在前馈控制策略中不作考虑[3]。而外回流、内回流以及曝气却直接和以小时为单位快速变化着的进水负荷相互作用,共同决定了活性污泥系统的动态处理效果,因此它们的设定值需要跟随进水负荷动态调整。
3材料与方法
3.1 试验装置
AAO废水处理项目采用了硝化一反硝化工艺,其主要目的是优化废水处理工艺,提高处理能力,解决NH3-N问题。
3.2接种污泥
污泥取自华康师大生活园区的回流污泥,AAO废水处理系统经过5个多月的培菌、驯化、调试并在以后的运行中,我们通过控制进水浓度、各池pH值、溶解氧等工艺指标,并采取定期排污等操作,使AAO废水处理系统始终处于稳定运行状况,处理后的废水各项指标达到设计要求。
3.3含氨氮废水的处理原理和方法
3.3.1增加污泥回流,提高水解能力
加装了污泥回流管,解决了二沉池至厌氧池的污泥回流,有效的提高了AAO系统的污泥平衡及厌氧池的水解能力,改善了原设计中存在的厌氧池中因污泥老化后得不到补充,从而影响厌氧水解效果的不足。
3.3.2解决外部原水恶化对系统的冲击
经过实验和探索,初步掌握了根据原水水质和来水量,有效的控制AAO系统的进水量和进水水质的调节方法。特别是初步掌握了如何应对当原水水质恶化对AAO系统造成冲击时,及时对AAO系统进行调整的方法和手段。
3.3.3优化蒸氨系统工艺,提高开工率
为了保证蒸氨的出水合格率和开工率,我们优化蒸氨系统工艺,逐步掌握生产中的技术要点和难点,取得了良好的效果。首先对剩余氨水的脱酚预处理系统的气浮和焦炭过滤系统进行改造,把剩余氨水中的焦油在脱酚预处理系统去除,减少了蒸氨塔底因焦油过多而停车清扫的次数;同时增加了对蒸氨中控的检测频次,严格控制出水pH值[4]。
3.3.4采用膜法和活性污泥相结合工艺,解决污泥平衡问题
按设计要求,采用的是外循环、推流式、膜法生物脱氮工艺,但由于所选用的漂浮填料挂膜效果较差,在污泥不易挂膜的情况下,就自然形成我们目前的膜法与污泥法相结合的工艺,这种工艺方法对NH3-N的去除同样有较好的效果,但也给AAO系统带来污泥生长速度快、泥量过多的问题。针对这一情况,我们采取了增加排泥频次、控制污泥回流、延长排泥时间等措施,把系统中已老化的污泥及时排到干化场,有效的控制了AAO系统中的污泥浓度。
3.3.5加装消泡装置,解决泡沫外溢
由于生物脱氮是通过硝化和反硝化反应,最终把NH3-N转化为氮气从水中逸出,造成了好氧段和缺氧段有大量的泡沫外溢,为了解决消泡问题,先后采用渔网覆盖池面、用油或消泡剂消泡等多种方法,都没有收到效果。后来试验并加装消泡装置,利用二沉出水消泡,收到了很好的效果,同时在好氧段加装了围栏,彻底解决了泡沫外溢的问题。
4结果与讨论
本文提出了建立AAO工艺离散化前馈控制策略的方法,进行了生物反应过程应对进水负荷和控制条件变化的缓冲特性分析。在此基础上,在前馈控制策略中综合考虑了进水负荷的影响,计算了进水负荷动态变化条件下的控制条件,提高了前馈控制的准确性,最终在AAO工艺上实现了生活废水出水达标排放和运行能耗降低的研究目标。
参考文献
[1]Garrido JM,Guerrero L,Mendez R,etal Nitification of waste waters from fish-meal factories [J]. Water SA,1998,24(3):245-249.
[2]刘旭娃,邱显扬,危青,等. 从V2O5生产废水中脱氨氮的研究[J]. 广东有色金属学报,2006,16(2):84-87.
关键词:焦化 废水 处理技术
中图分类号:X703.1 文献标识码:A 文章编号:1672-3791(2014)08(b)-0133-01
随着经济的发展,工业污染也越来越然中,其中焦化废水污染是一种非常难以处理的污染物质,对人体的危害很大,严重制约着人们生活质量的提高。目前焦化废水的处理一般采用预处理与二次处理相结合的方式进行处理,尽管是经过两次处理,但是处理之后的水质中,氰化物、氨氮等指标含量仍然超标,不能达到很好的处理效果。所以必须应用一种新型的废水处理技术,彻底解决焦化废水处理问题,提高人们的生活质量,顺应可持续发展的趋势。
1 焦化碳废水处理现状
现在很多焦化厂处理废水时,一般采用传统的生化处理技术,该技术的工艺一般是由暖气池、调节池、除油池、泥浆沉淀池、鼓风机等设备组成。一般情况下对焦化废水进行处理之前,都需要先将废水进行混合送到蒸氨装置中,脱掉NH3-N污染废物,在进行相应的技术处理。
通过这种普通的生化处理技术可以有效地去除废水中所含的苯、氰等有严重污染的排放物,使废水净化达到一定的标准。但是,此废水处理技术有很大的不足之处,用词技术处理焦化废水时,废水中的NH3-N、BOD5以及CODcr等污染源处理后,很难达到标准要求,特别是NH3-N污染物的降解层没有明显的处理结果,处理之后的含量与标准要求相差很大。我国每年的焦化厂废水处理中,所排放的NH3-N污染物其实一直是超标的,对于此种情况必须找到解决的措施,如果不加以遏制,将会产生严重的后果。
2 焦化废水处理存在的问题
焦化废水是在焦化产品回收过程中产生的一种含芳香族化合物与杂环化合物的废水,焦化废水中含有很多对人体有害的物质,而且是一种很难处理的高浓度有机废水。近几年我国不断在研究处理焦化废水的方法,也尝试过很多,但是效果不是太好。物理化学处理方法是一种深度处理方法,它对焦化废水中氨氮等物质的除去效果不太好。如果单独使用此方法,很难将焦化废水处理达标,一般是与其他方法结合使用才能处理达标,该方法操作简单,管理方便,运行成本比较低,但是设备多,土建投资相对比较大。此方法一个突出的问题时,它的吃力是将污染物从水中转移到污泥中,并没有对污染物彻底的降解,可能会有后续污染处理问题。而深度处理技术对设备要求比较高,操作也比较复杂,耗能大,在工厂中应用并不广泛。
化学处理方法需要使用的催化剂以及药剂的价格比较高,处理成本也比较高,而且设备投资也比较高。生物处理方法是目前处理焦化废水技术应用最为广泛的方法,它主要应用于焦化废水的二级处理。此方法需要大量的吸水,吸水及其他装置设施的费用都比较大,对处理后的废水水质要求也比较严,废水中的有机物质会影响细菌的生成,所以此方法的一定要有很高的操作管理水平,相应的操作费用也比较高。
3 焦化废水处理技术进展
3.1 吸附法
吸附法就是利用一些具有高效吸附性的物质,来吸去污染物中的有害物质,从而达到净化废水的效果,在焦化废水处理技术中,比较常用的吸附物质有活性炭、粉煤灰、矿渣等等。
焦化废水处理技术中比较常用的吸附剂是活性炭,它具有很好的吸附性能,而且它的化学性质相对稳定。但是活性炭吸附法也有他的缺点,首先活性炭一旦使用之后,很难再生,操作设备以及运行费用相对较高,所以很难再焦化厂大量推广使用。利用粉煤炭吸附剂结合次氯酸钙混合后进行焦化废水处理,能有效的脱去废水中的NH3-N,降低氨氮的质量浓度。这种处理方法除氨氮物质以外,其他的污染物质去除都能达到相关的标准。此技术方式的运行设备投资比较低,而且能以废治废,经济效益与环境效益良好,具有相对优势。但是用此方法处理后的的废水,废水中的氨氮质量不符合国家标准,废渣难以彻底处理。
3.2 等离子体处理技术分析
这种处理技术是一种利用物理上的脉冲放电现象,通过放电产生高能电子以及紫外线灯,把焦化废水中的有机物质降解到标准值。此技术方法是一种耗能低、效率高、处理量大的新型环保技术,使用范围很广。此技术能有效的破坏有机物的分子结构,提高可生物的降解性,然后经过活性污泥处理法,大大降低废水中的各个污染物质的含量,具有广阔的发展情景,目前仍然处理研究阶段,需要进一步的研究、改进,以便更好地处理废水。
3.3 烟道气处理技术
烟道气处理技术是一种具有良好的环境效益的处理废水的技术,该技术将焦化剩余氨水中的杂质处理掉以后,输入煤道废气,使之进行物化反应,从而达到减少氨气质量的效果。在处理过程中,能把焦化废水中剩余的氨水全部处理掉,使处理之后的废水中的氨水达到废水处理的标准。它不仅投资少、运行费用抵,而且占地少,环境效益好。此技术要求焦化废水中氨量必须与烟道中所需要的氨量含量大致相同,正是由于这种原因,限制了此处理技术的进一步发展。
4 结语
总之,焦化废水的处理技术需要进一步的研究与改进,不断地在实践中寻找有效的处理技术,解决废水污染问题。目前,焦化废水处理技术的主要难点就是怎样降低运行、投资费用,怎样有效的降低氨氮的含量,是其既没有二次污染,又能有效提高处理效果。现在的处理废水的技术都不能同时达到这三个要求,但是,我们可以根据具体的处理方法与工厂自身的生产特点,制定一套符合自身发展需要的处理废水的方案,尽量减少废水污染。
参考文献
[1] 黄立群.焦化废水处理及时研究开发最最新进展[J].水处理技术2008(12):123-125.
[2] 蔺起梅,杨晓红.焦化废水处理技术的应用与研究进展[J].环境研究与监测2006(11):154-156.
关键词:焦化废水 ;处理方法
1 焦化废水特点
钢铁工业的焦化厂、城市煤气厂等在炼焦和煤气发生过程中产生的污水称为焦化废水。其主要来源有三个:一是剩余氨水,它是在煤干馏及煤气冷却中产生出来的废水,其水量占焦化废水总量的一半以上,是焦化废水的主要来源;二是在煤气净化过程中产生出来的废水,如煤气终冷水和粗苯分离水等;三是在焦油、粗苯等精制过程中及其它场合产生的废水。焦化废水是含有大量难降解有机污染物的工业废水,其成分复杂,含有大量的酚、氰、苯、氨氮等有毒有害物质,超标排放的焦化废水对环境造成严重的污染。焦化废水具有水质水量变化大、成分复杂,有机物特别是难降解有机物含量高、氨氮浓度高等特点,其中不少属于有致癌作用的生物活性物质,出水达标难度大,因此,寻求效果好且成本低的深度处理方法具有积极意义。
2 焦化废水处理的主要做法
焦化废水一般需通过预处理、生化处理以及深度处理三个阶段方能实现达标排放。
2.1 预处理
预处理常用的方法有稀释和气提、混凝沉淀、气浮和高级氧化技术等。预处理系统的任务是除油和水质、水量的调节,为后续处理工艺奠定基础,是生化处理稳定运行的前提。
2.1.1 稀释和气提
焦化废水中含有的高浓度氨氮物质以及微量高毒性的CN-等,对微生物有抑制作用。 因此这些污染物应尽可能在生化处理前降低其浓度。通常采用稀释和气提的方法。气提是利用蒸馏对挥发性物质进行提取的方法,在气提过程中,被处理的挥发性物质由液相传递到气相。气提法在焦化废水的预处理中用于提取其中的氨氮。
2.1.2 混凝沉淀
沉淀法是利用水中悬浮物的可沉降性能,在重力作用下下沉,以达到固液分离的过程。其目的是除去悬浮的有机物,以降低后续生物处理的有机负荷。在生产中通常加入混凝剂如铝盐、铁盐、聚铝、聚铁和聚丙烯酰胺等来强化沉淀效果。
2.1.3 气浮法
气浮是将空气以微小气泡的形式通入水中,使微小气泡与在水中悬浮的颗粒或油滴粘附,形成水-气-颗粒(油滴)三相混合体系,颗粒粘附于气泡上浮至水面,从水中分离出去形成浮渣。 因过多的油类会影响后续生化处理的效果,气浮法在焦化废水预处理的作用是除去其中的油类并回收再利用,此外还起到预曝气的作用。
2.1.4 高级氧化技术
由于焦化废水中的有机物复杂多样, 其中酚类、多环芳烃、含氮有机物等难降解的有机物占多数,这些难降解有机物的存在严重影响了后续生化处理的效果,高级氧化技术是在废水中产生大量HO·自由基,HO·自由基能够无选择性地将废水中的有机污染物降解为二氧化碳和水。
2.2 生化处理
对于预处理后的焦化废水, 国内外一般采用好氧、厌氧生物法处理,但由于焦化废水中的多环和杂环类化合物,如萘、喹啉、吡啶等难以生物降解。好氧生物法处理后出水中的CODcr 、氨氮等指标远远不能达标。为了解决上述问题,近年来出现了一些新的处理方法,如PACT 法、生物铁、PSB(光合细菌菌体)活性污泥法,厌氧生物法/厌氧-好氧生物法等。
2.2.1 PACT 法
PACT法是在活性污泥曝气池中投加活性炭粉末,利用活性炭粉末对有机物和溶解氧的吸附作用,为微生物的生长提供食物,从而加速对有机物的氧化分解能力,活性炭用湿空气氧化法再生。该法去除效果好,投资费和运行费低。
2.2.2 生物铁法
铁的化合物对悬浮物、胶体物质和微生物的吸附作用能够生成易于沉淀的絮团, 同时铁还是微生物生长的必要元素。 因此在活性污泥中加入一定量的铁化合物后,可使活性污泥变得密实,提高曝气池的污泥浓度,加速生物氧化,而且在铁化合物和微生物的协同作用下,使吸附作用和絮团作用更加有效地进行。此法具有较强的适应能力和抗冲击能力,能够耐受较大的毒物冲击, 对氰化物有较高的分解能力,而且在活性污泥法基础上的改造也比较简便、经济。
2.2.3 PSB活性污泥法
PSB活性污泥法是将光合细菌菌体固定在活性污泥上,对焦化废水进行处理。PSB活性污泥法对温度、pH 的适应范围较广, 用于处理含酚较高的焦化废水有较高的酚去除率, 而且可减少菌体的流失。但其缺点是 CODcr、BOD的去除率不理想,出水需作进一步的处理。
2.2.4 厌氧生物法
一种被称为上流式厌氧污泥床(UASB)的技术用于处理焦化废水。废水自下而上通过底部带有污泥层的反应,大部分的有机物在此被微生物转化CH4 和CO2 ,在反应器的上部设有三相分离器,完成气、液、固三相的分离。该法处理焦化废水的工艺参数:进水CODcr质量浓度为2000mg/L以上,PH6.0-7.6,温度30-35℃,CODcr负荷10-15kg/(m3.d),停留时间3-12h。 在此条件下,CODcr的去除率为80-85%,最高达到90%以上,该技术可有效地去除废水中的酚类和杂环类化合物。
2.2.5 厌氧-好氧联合生物法
单独采用好氧或厌氧技术处理焦化废水并不能够达到令人满意的效果, 厌氧和好氧的联合生物处理法逐渐受到研究者的重视,采用厌氧化-好氧法处理焦化废水的研究发现,焦化废水经过厌氧酸化处理后,废水中有机物的生物降解性能显著提高, 使后续的好氧生物处理CODcr的去除率达90%以上。其中较难降解的有机物萘、喹啉和吡啶的去除率分别为67.6%、55.6%、和70.9%,而一般的好氧处理这些有机物的去除率不到20%。
2.3 深度处理
焦化废水经生化处理后,出水的CODcr氨氮等浓度虽有极大的下降,但由于难降解有机物的存在,使得出水的CODcr氨氮等指标仍未达到排放标准,因此,生化处理后的出水仍需进一步的处理。深度处理的方法主要有固定化生物技术、氧化塘法、吸附法和光催化氧化法等。
2.3.1 固定化生物技术
固定化生物技术是近年来发展起来的新技术,可选择性地固定优势菌种,有针对性地处理含有难降解有机毒物的废水。研究表明,经过驯化的优势菌种对喹啉、异喹啉、吡啶的降解能力比普通污泥高2-5倍,而且优势菌种的降解效率较高,经其处理8h,可将喹啉、异喹啉、吡啶降解90% 以上.
2.3.2 氧化塘法
氧化塘法对污水的净化过程与自然水体的自净过程类似,是一种利用天然净化能力处理污水的生物处理法。用氧化塘法处理焦化废水,在pH6-8,温度25-60℃的条件下,CODcr和氨氮均可达标排放, 若在焦化废水中混入生活污水,CODcr和氨氮的去除率均有所提高。
2.3.3 吸附法
由于固体表面有吸附水中溶质及胶质的能力,当废水通过比表面积很大的固体颗粒时, 水中的污染物被吸附到固体颗粒(吸附剂)上,从而去除污染物质。本法对CODcr和悬浮物的去除效果较好。
3 实际运行中的技术参数
3.1 强化预处理技术
以包钢焦化厂为例,当污水处理在混凝沉淀阶段,通过测定对于350m3/h废水处理最适合的混凝剂为聚合氯化铝,120m3/h废水处理最适合的混凝剂为聚铁,而且,随着其投加量由50mg/L增加至100mg/L,对COD的去除率也由5.8%增至42.8%,当投加量由100mg/L增至200mg/L时,去除率仅仅增加2.1%,因此管理规定聚合氯化铝的经济投加量应该在100mg/L左右,聚铁的投加量为15—20%。确定废水处理系统混凝反应的药剂及投加量,同时总结出“混凝剂药剂投加先进操作法”,经推广实施,可有效降低了岗位工人的劳动强度,且还能够节约药剂使用量。
实践证明,通过预处理系统将进水CODcr浓度控制在2600mg/l—4000mg/l的区间,当进水CODcr浓度集中在2600mg/l—3000mg/l的区间,同时在进水的CODcr浓度要逐步趋于平稳,平均出水CODcr浓度集中在80—120mg/l的区间内,去除率比较稳定。进水氨氮浓度集中在60mg/l—100mg/l的区间,而且进水的氨氮浓度要逐步提高后再趋于平稳,平均出水指标为11.2mg/l,稳定后系统对氨氮的平均去除率达到95.5%。
影响气浮除油效果的因素主要有气浮时间、分离时间、气浮药剂以及水中油类或悬浮物的疏水性等等。研究发现,在气浮时间为3.0min,分离时间为18min时,使用组合气浮药剂对焦化废水的原水CODcr的去除率达56.5%,对油类的去除率达95%以上。
强化预处理技术使得焦化废水预处理制度的执行更加科学,减少预处理指标控制不好而产生事故。
3.2 生物脱酚处理焦化废水
包钢焦化厂根据污泥中微生物所需营养比例BOD:N:P=100:5:1投加各营养物质。当监测好氧池的出水CODcr降解率达到60%,混合液30分钟沉降比达到10-30%,检查曝气池污泥性状,污泥沉降性能好、显微镜观察出现大量菌胶团及固着型纤毛虫类原生动物时,就标志培菌成功,可以进入负荷提升阶段。在运行中对污泥的色、嗅进行观察,正常的活性污泥一般呈黄(棕)褐色,同时略带湿土味,新的管理理念,污泥培养驯化出的菌种不仅活性强,而且所需时间也较短。
3.3 生物化学法技术的应用
焦化废水处理的生产实践表明,生物化学法用于焦化污水处理是一种较理想的处理方法。目前焦化污水的生物脱氮工艺可分为A/O、A2/0、A/O2及SBR-A/O2等方法,这些方法对去除焦化废水中的CODcr和NH3-N具有较好的效果。
包钢焦化厂采用硝化一反硝化(A/O)工艺,采用A/O内循环生物脱氮工艺,处理效果较好。处理效果可以达到:CODcrl00-150mg/L、酚≤0.5mg/L、氰化物≤0.5mg/L、总氰化物≤lmg/L;油≤5mg/L、氨氮≤5mg/L、溶解性总固体≤5000mg/L。处理后焦化废水指标基本稳定在二级排放标准,至于满足一级排放标准,还受多种因素制约。
在实际应用时,各方法往往不独立使用,否则难以达到排放标准。针对某种废水,往往需要通过几种方法组合成一定的二级或三级处理系统,才能达到排放标准。
4 结束语
2012年国家制定出台的《炼焦化学工业污染物排放标准》(GB16171-2012)中对焦化废水的指标限制做出了明确规定,并分时段予以提高,单位产品废水排放量也予以了明确控制。我国环境形势严峻,必然对水污染防治水平提出更高的要求,同时我国水资源紧缺,可以预见国家将对焦化废水提出更加严格的要求。所以今后多种技术联合使用的处理必将成为焦化废水处理的趋势。同时,生产企业应不断提高生产水平,开展清洁生产,拓宽处理后水的回用水平,从源头上减少水体污染物的排放量。
参考文献
[1] 汤鸿霄.用水废水化学[M].北京:中国建筑工业出版社,1978.87
[2] 姚昭章【炼焦学】冶金工业出版社
[3] 库咸熙【炼焦化学产品回收与加工】冶金工业出版社
[4] 谢全安 薛利平 【煤化工安全与环保】化学工业出版社
[5] 王晓琴 【炼焦工艺 】 化学工业出版社
[6] 郝临山【洁净煤技术】 化学工业出版社
关键词:净化水 氨态氮 纳氏试剂法
中图分类号:X132 文献标识码:A 文章编号:1672-3791(2012)11(a)-0056-01
净化水,即为净化过的水,去除了对人类健康的危害物质的水。它是通过相应的滤料,根据不同的最终用水需求,用物理或化学方法清除铁锈、沉积物和有机质、氯气、有害的重金属离子、细菌、病毒等得到的。
炼油厂的含氮废水是原油炼制与加工过程中产生的一类废水,对环境的危害大,所以需经处理成达标的净化水再进行排放[1~5]。
水体中含氮量过高时,会促进藻类等浮游生物的繁殖,从而在水面上形成密集的“水花”或“红潮”。继而藻类的死亡和腐化又将消耗大量的水体中溶解氧,导致水中溶解氧含量降低,使水质恶化,鱼类死亡,即水体的富营养化。水体富营养化还会产生一系列危害,如有些藻类本身的腥味会引起水质恶化使水变得腥臭难闻;还有某些藻类所含的蛋白质毒素会富集在水产物体内,并通过食物链影响人体的健康。被含氮物质污染的水体会使给水的净化处理带来许多困难,进而严重影响饮用水水质。因此在含氮废水排入水体以前必须进行脱氮。
从炼油厂含氮废水回用现状看,存在一些缺陷,如污染物去除不彻底、除污染的种类单一等。因此,开发简单适用、高效可靠的废水再生工艺或技术仍然十分必要和迫切。如何经济的、高效的去除水体中的氮元素污染己成为水污染防治领域极为热点的研究课题。
本文研究的油化工企业废水即为含氮废水。通过测试其中的氨态氮含量来确定此项指标排放是否达标,一定程度上考量废水处理方法是否得当。
1 实验部分
1.1 原理
碘化汞和碘化钾的碱性溶液与氨反应生成淡红胶态化合物,此颜色在较宽的波长范围内具强烈吸收。通常测量波长410~425 nm范围。
1.2 实验材料
仪器:分光光度计(752型紫外可见分光光度计,上海)。
试剂:纳氏试剂、酒石酸钾钠溶液、铵标准贮备溶液、铵标准使用溶液。
1.3 实验内容
量取100 mL水样于具塞量筒中,加10%硫酸锌溶液1 mL和25%氢氧化钠溶液0.1~0.2 mL调节pH至10.5左右,混匀。放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20 mL。
标准曲线的绘制:于一组7支50比色管中,分别加入0、0.50、1.00、3.00、5.00、7.00、10.00铵标准使用液,加水至50 mL标线,加1.0 mL酒石酸钾钠溶液,混匀,加入1.5 mL纳氏试剂,摇匀,放置10 min后立即用光程为20 mm比色皿,以水为参比,于420 nm波长处测量吸光度。由测得的吸光度,减去零浓度空白的吸光度后,得到校正吸光度,绘制以氨态氮含量(mg)对校正吸光度标准曲线。分取适量的预处理液于50 mL的比色管中,稀释至50 mL的标线,用与绘制标准曲线相同的步骤测定吸光度,最后减去空白试验所得吸光度。以无氨水代替水样,按水样测定相同步骤进行测定,以其结果作为水样测定的空白校正值。
1.4 结果与讨论
(1)标准曲线的绘制。
实验所选取波长为420 nm,比色皿光径2 cm,曲线系数0.1466 mg/A,标准曲线绘制数据如表1,线性图如图1所示。
(2)氨氮含量计算。
净化水中氨氮含量按下式计算:
式中:m为从标准曲线上查得的氨氮含量,mg;V为水样体积,mL。
经计算,净化水中氨氮含量为0.56 mg/L。
1.5 结果讨论
实验所测净化水水样中氨态氮含量为0.56 mg/L。中国生活饮用水水源水质标准中水质非常规指标极限值要求:氨氮(以N计,mg/L)≤0.5 mg/L结果表明,水样的此项水质指标超过标准限值,不宜作为生活饮用水的水源,不可排放,需要作进一步处理以达到标准,方可排放。
由此可知,若要实现水资源的良性再生循环,除了水体保护以外,必须重视对污水的有效化处理,才能实现水资源的可持续发展。
参考文献
[1] 齐军,顾温国,李劲,等.水中难降解有机物氧化处理技术的研究现状和发展趋势[J].环境保护,2000(3).
[2] 陈洪斌,庞小东,高廷耀,等.炼油厂污水回用处理研究[J].环境科学学报,2002,22(5).
[3] 曾科.石化污水深度净化回用的可行性[J].工业水处理,1999,19(4).
关键词:渗沥液 氨吹脱 氨去除 氮氧化物
1 引言
在生活污水中氨的浓度大约为30mg/L,而在渗沥液中则可能达到数千mg/L。在排放之前,必须去除氨是基于以下几个原因:
①毒性 氮在废水中可以四种形态存在:有机氮,氨氮,亚硝酸盐氮和硝酸盐氮。有机氮和氨氮是生活污水中氮存在的主要形态。NH3对鱼类有毒性,而NH4+才无毒性。当氨浓度在2.5~25mg/L,能使鱼致死(Klien, 1972)。随鱼的种类、水温、pH和水中其他化学物质的不同,这些数值会发生变化。游离氨对鱼类有毒害作用
NH 3+H+=NH4+
pH=7, 仅有NH4+存在,
pH>7, 反应向左,
pH=12, 仅有NH3存在。
一般说, 水体中游离氨浓度不应大于0.02mg/L。
②氨由于硝化作用而消耗氧,会降低水中的溶解氧,导致其他水生物无法生存。
③氮化物是植物性营养物,会造成水中藻类异常繁殖,破坏自然环境。
④水中NO3--N浓度高时,婴儿饮用后有可能患变性血色蛋白症。
去除渗沥液中的氮通常可以经过生化反应去除,去除速率通常小于1kg/(m3废水·d)。当土地有限、氨的浓度非常高时,这种方法实际上是不可行的。
2 技术
2.1 选择吹脱的原因
去除氨有许多其他可行的方法,表1列出了这些技术的优、缺点。
从上表可以看出,折点加氯和离子交换都要求复杂的技术、较高的费用、有技术的管理人员。氨吹脱的缺点通常认为主要是需要调pH。实际上,氨离子转化为氨气受温度和pH的制约,单独提高温度就可以充分完成这个转化。
氨氮在水中通常以两种形式存在:氨离子NH4+和氨气NH3。二者符合以下关系:
【关键词】有机工业 焦化废水 氨氮类物质
焦化废水中存有大量的有机物质,同时这些物质中多数是具有危害和毒性的,这其中主要有酚类、氰化物、硫胺类物质、氨氮类物质、焦油、BOD5等多种有机物,废水中这些有机物指标超高会直接影响人类的生存环境。
近年来随着我国科学技术的不断进步和研发力度的加大,在一些项目建设上给与一些试验的发展,从科研投入方面给与更多的实践的指导,这些都是在很大程度上提供宝贵的实践经验。但是在诸多的技术上,消除氨氮类物质和CODCr都存在着难以解决的技术难题,这些问题在业内已经形成一种共识,已成为制约行业发展的一个瓶颈。在目前的两阶段处理方案中,如何更好的实施废水处理工作,关键是废水能否进入到深度处理阶段,一方面有些指标的检测就需要做到控制在一定范围内,如CODCr要在达到国家排放标准上的指标,目前为200mg/L;另一方面氨氮类物质处理的问题上,焦化废水本身氨氮类物质含量较高,同时在废水处理各个环节中又有大量的氨类有机物质产生,如在一些过程中部分有机物质中也会合成这种氨氮类物质,这就大大的增加了除去氨氮类物质的难度。随着国家对于环境保护政策的相继提出,相关部门也将会给出更多更严格的有机物排放指标的要求,这些无疑会督促焦化厂加大污水处理力度,针对厂内氨氮类物质的排放要求作出新的调整,并且订制有关的解决策略,进而完成技术实施。
1 焦化废水的来源
焦化厂废水的来源主要是针对煤炭加工处理过程中各个环节中,所出现的一些问题进行综合阐述。
废水产生主要是集中在几个部分:一个是除尘部分,在备煤环节中需要对煤炭除尘,在此处形成一定量的除尘污水;同时在焦炭处理的过程中,推焦环节中也会出现一部分除尘污水。另一个是炼焦化学产品之一――焦油加工部分,其一是焦油氨水分离环节中,剩余的氨水可以利用,但是大多数会成为了废水的来源,其二在进行焦油的深加工环节中,出现的焦油精制分离水,也会成为废水的一部分,其三是在进行焦油深加工处理过程中出现的苯类物质,该类物质对于环境有极高的破坏力,加之生产中对于这部分物质要进行不断的提纯和冶炼,不仅需要耗掉大量的水资源,而且会形成了污水,其四是对于粗苯之后的精苯物质的加工,如古马隆的生产,此环节需要更多的水来过滤和处理,自然也会成为一个大量污水的来源。再一个是煤气加工部分,焦炉煤气的制冷环节中需要大量冷水,随之就产生了煤气初冷水和煤气终冷污水,同时对于煤气需要进一步提炼,经由管道处理,将形成的煤气进行不断地加工处理,此操作需要用水将对应的煤气管道进行封堵处理,由此便形成了煤气管道水封污水,可见这一环节也会对提高煤气的冶炼技术提出更高的要求。上述就是在炼焦生产和各种炼焦化学产品冶炼和深加工操作中所出现的废水的来源。在焦化厂,维持正常生产必须要保证煤气终冷温度,和减轻脱苯蒸馏设备的废蚀,终冷循环水须部分更换,同时要外排一部分的酚、氰废水。从环境角度看,焦化厂需要将环保的循环利用水资源排放到生活领域中,这样做是为了人们的更好的生活和更合理的循环利用我们地球上的水资源。因此,在生产进行中需要对于各个环节出现的水源的利用效率上给予要充分的关注和提高,同时加大对产品产出的合理的利用和开发,加快产业链条的形成,达到一个广泛的统一的废水处理体系,从根本上来解决这一系列问题。2 焦化厂废水产生的危害
焦化厂产生的酚类、氰化物和焦油类等有害物质大多数都无法得到处理而进行直接排放,这对于环境和生态都是非常大的破坏。对于那些难降解的物质,若不能达到国家的排放标准是不能够排放的,这就需要进行的深层次的处理,即所谓的三级处理,但是由于这种处理花费的成本和资金非常多,现在若干个企业为了追求更多的经济效益,忽略了这种处理。因此,未进行这种处理的废水所造成的危害是巨大的,会严重影响着各种环境,直至影响人类生存和发展[2]。
2.1 对人体的危害
在焦化废水里的多种有害物质中,包含了酚类、烃类和环状混合物、氨类及氰化物,其中的酚类物质能够破坏生物的细胞组织结构,同时将生物的细胞基质破坏,使之无法完成基本的新陈代谢活动。对于人体来说,它更多的会损坏中枢神经,也能够损害肝脏内部的一些组织和结构,甚至导致心血管系统出现一些问题,同时也可以将心脏的毛细血管表皮破坏,引起肝脏中的组织出现肿块,同时引起心肌出现肿胀和问题。
2.2 对水中生物和生态系统的危害
焦化废水的特点是有机物种类较为复杂,水质变化较大,且含有难以降解的物质,如此特点就给环境的可持续发展带来滞后的影响,水中较多的生物和微生物都会因这些有害物质的大量排放而大量繁殖或者大量死亡,久而久之就会使水环境的氧气含量降低,致使水生生物大量的死亡,同时引发生物界中的食物链遭到破坏,从而为生态系统的破坏引发了一系列的问题。2.3 对农作物的危害
未经处理的焦化废水直接灌溉农田,会使农作物减产,甚至枯死;废水中的油类物质堵塞土壤空隙,使土壤含盐量升高,造成土壤盐碱化[4]。如果在废水处理过程中,没有将相关指标降低就直接向外排放到河流或者农田中,就会发生更多的苯类等有机物质的沉淀,同时还会产生一定量的酚类物质的积累,严重时会导致的一些农作物出现减产或者毁灭性的打击。
3 焦化厂废水处理主要方法
在焦化废水的深度处理技术中,所应用的就是二级处理技术,这些技术在处理的层面上有更为高的要求,同时也大量汇聚着的更多新技术的使用。