公务员期刊网 精选范文 大学生数学建模课程范文

大学生数学建模课程精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的大学生数学建模课程主题范文,仅供参考,欢迎阅读并收藏。

大学生数学建模课程

第1篇:大学生数学建模课程范文

关键词 数学建模课程教学 数模竞赛 创新能力培养 改革举措 

中图分类号:G642 文献标识码:A DOI:10.16400/j.cnki.kjdkz.2015.05.015 

Exploration and Practice of Mathematical Modeling Activities 

in the Innovation Educational Background 

WANG Wenfa[1], WU Zhongyuan[2], XU Chun[1] 

([1] College of Mathematics and Computer Science, Yan'an University, Yan'an, Shaanxi 716000; 

[2] Office of Academic Affairs, Yan'an University, Yan'an, Shaanxi 716000) 

Abstract Under the innovative education based on university personnel training requirements and problems of traditional mathematics education, the importance of mathematical modeling of students' innovative ability to Yan'an University, for example, according to "sub-level, sub-module" model of teaching and organization contest guidance, teaching and assessment in accordance with academic competitions, math majors and computer majors, two contests with a thesis project and Daiso, boutique website and digital-analog Association and second class "four convergence" approach to student innovation and innovative ability, and made remarkable achievements in personnel training, curriculum development, team building, professional building. 

Key words mathematical modeling teaching; mathematical modeling contest; innovative ability training; reform measures 

高等学校的大学生是国家科技发展的主力军,大学生的创新能力决定着国家未来的科技创新能力。数学建模课程教学与竞赛的广泛开展对高等学校大学生的创新能力培养具有十分重要的作用。如何在数学建模课程教学与实践中,既能增强大学生的数学应用意识,又能提高大学生运用数学知识和计算机技术分析和解决问题的能力,从而达到提高大学生综合素质和创新能力的目的,这个问题是近年来众多高校关注的问题。延安大学作为一所地方高校,在近几年数学建模课程教学与实践过程中,进行了一系列卓有成效的探索和改革,学生的创新意识和创新能力得到大幅度提升。 

1 更新教育理念,充分认识数学建模对学生综合素质和创新能力培养的重要性 

数学作为一门基础学科,它涉及的领域相当广泛,如经济、计算机及软件、管理、国防等,虽然数学在高校教育教学中的地位不断提高,人们对其认识也不断加深。但是,人们对数学类课程、数学学科在创新型人才培养中的重要性仍认识不够深入,在教学内容、教学方法、教学手段、评价措施等诸多方面,仍然沿用传统数学类课程的教学模式和思维方式,导致高校人才培养与创新教育背景下的人才培养需求完全脱节。正如著名的数学家王梓坤院士所说“今天的数学科学兼有科学和技术两种品质,数学科学是授人以能力的技术。”面向21世纪,高等教育在高度信息化的时代培养具有创新能力的高科技技术人才,数学作为一门技术,现已成为一门普遍实施的技术,也是未来高素质人才必须具备的一门技术。因此,在数学建模课程教学与实践过程中,必须转变传统数学类课程的教育教学理念,不能将其简单地当作工具和方法,而要将其当作是一门技术,而且是一门普遍适用的高新技术,在保证打牢基础的同时,力求培养学生的应用意识与应用能力、创新意识与创新能力,真正实现培养高素质创新人才的目的。 

2 数学建模课程教学的改革与实践 

2.1 分层次、分模块实施数学建模课程教学和竞赛指导 

一是在数学建模专业课、专业选修课、公共选修课教学中按照知识点及教师研究方向,将课程内容分为两个层次九个模块。第一层次包括数学软件、初等模型、优化模型、数学规划模型、微分方程模型等五个模块;第二层次包括离散模型、概率模型、统计回归模型、数值计算与算法设计等四个模块。第一层次针对公共选修课教学,第一层次+第二层次针对专业课和专业选修课教学。具体措施是:由数学建模课程教学团队集体制定课程教学大纲和实施计划,每位教师按照课程教学大纲和实施计划主讲自己所从事的方向模块,在保证课程教学内容完整性和系统性的同时,根据学生知识层次,充分发挥每位教师专业优势,有效地提升了课程教学质量;二是在大学数学课程教学中,按知识点将数学建模思想融入其中,在激发学生学习数学兴趣的同时,强化学生的数学应用能力培养;三是在校内数学建模竞赛中,按照“建模知识+专题讲座+模拟+竞赛”的模式组织校内建模竞赛,主要以数学建模的基本思路、基本方法、基本技能为内容,使学生对数学建模有更加深入的感知和认识,在激发学生学习数学兴趣和积极性的同时,培养学生的科研意识和创新意识;四是在全国数学建模竞赛中,按照“集训+软件应用+旧题新做+模拟选拔+强化训练”的模式组织全国建模竞赛,主要以培养学生的洞察力、联想力、创新能力、团队协作精神和吃苦精神为内容,使学生的创新意识、团队协作精神得到良好培养。 2.2 建立数学建模精品课程网站,为数学建模爱好者搭建学习交流平台 

网站将数学建模课程教学与数模竞赛有机地融合,为学生全方位了解、学习和掌握数学建模的相关知识、相关技能开辟第二条通道。网站包括:课程介绍【课程描述、教学内容、教学大纲、建设规划】、教学团队【整体情况、课程负责人、主讲教师】、教学资源【教学安排、多媒体课件、授课录像、电子教案、课程作业、课程习题、模拟试卷、参考资源】、实验教学【实验任务、实验大纲、实验指导、课程设计、实验作品、实验报告】、教学研究【教学方法、教学改革、教学课题、教学论文、学生评教】、教学成果【教学成果奖、获教学奖项、人才培养成果、教材建设】、在线学习【在线交流、在线自测】、成绩考核【平时成绩、作业成绩、实验成绩】、下载专区【教学软件、常用工具】、数模协会【协会简介、协会章程、通知公告、新闻动态、竞赛获奖、优秀论文、往届赛题、模拟赛题、校内竞赛、新手入门】等,这些内容几乎囊括了数学建模教育教学活动的所有内容,学生可以通过网络资料学习就可以全面了解数学建模的相关知识与技能。 

2.3 专业相互融合,取长补短,充分发挥学生各自专业优势 

数学与计算机科学学院现有数学与应用数学、信息与计算科学、计算机科学与技术、软件工程四个专业,其中两个为数学类专业、两个为计算机类专业。在课程教学中针对两专业的长处和不足,按照专业结队子、学生结队子的模式组织教学和小组讨论,强化计算机类专业学生的数学应用能力培养,强化数学类专业学生的计算机软件应用能力培养;在竞赛组队中,每队均配备至少1名计算机类专业学生和1名数学类专业学生。充分发挥各自的优势,取长补短,使学生的综合能力得到提升。 

2.4 延伸数学建模竞赛效能,不断提高学生的创新能力 

每年全国大学生数学建模竞赛和校内数学建模竞赛试题都是从实际生活中提取出的实际问题。因此,指导教师在指导学生毕业论文(设计)和大学生创新训练项目时,从往届赛题或模拟试题中选择一些题目,将其进行适当的延伸作为学生毕业论文(设计)和大学生创新训练项目选题。通过这一方式,进一步培养学生的创新思维和创新意识,为学生今后从事科学研究奠定了坚实的基础。 

3 数学建模课程教学改革取得的成效 

3.1 我校全国大学生数学建模竞赛成绩居全省同类院校前列 

我校参加全国大学生数学建模竞赛共获得国家一等奖4项、国家二等奖6项、陕西省一等奖33项、二等奖71项,4次被评为优秀组织奖,1名指导教师获陕西省数学建模竞赛陕西赛区优秀指导教师,600多名学生参与大创项目,公开发表科研论文30余篇,学生的就业率和就业质量得到明显提高。该赛事因此也成为了延安大学学科竞赛品牌和亮点。 

3.2 我校数学建模教育获得多项教学成果奖、质量工程项目及教改项目 

教学成果奖:“理工类大学生数学素质与创新能力培养的研究与实践”荣获2009年陕西省教学成果二等奖;“地方性院校开展数学建模教学的实践与探索” 荣获2003年延安大学教学成果一等奖;“计算机专业高素质应用型人才培养模式的改革与实践” 荣获2012年延安大学教学成果一等奖;“厚基础、重实践、强化工程素质和创新的人才培养模式的研究与实践”荣获2011年延安大学教学成果二等奖;“数学建模课程改革及数学建模竞赛的研究与实践”荣获2007年延安大学教学成果二等奖。 

质量工程项目:“数学与应用数学专业”为2010年省级特色专业;“数学建模教学团队”为2011年省级教学团队;“数学建模精品课程”为2012年校级精品课程;2014年“数学建模”课程获批为省级精品资源共享课程;2014年“数学与应用数学”专业获批为省级专业综合试点项目。 

教改项目:“大学生数学应用能力创新能力培养的改革与实践”为2009年省级重点教改项目;“地方高校青年教师教学能力提升途径的研究与实践”为2013年省级重点;“青年教师教学能力提升的研究与实践”为2011年校级重点;“计算机相关专业校企合作人才培养模式改革的研究与实践”为2013年校级重点。 

3.3 依托数学建模教育平台,推动指导教师教学科研能力和综合素质提升 

数学建模教育不仅提高了学生的创新能力,同时也为指导教师的教学、科研及综合素质的提升起到了推动作用。数学建模课程是一门面向全校理、工、经、管、教各学科专业大学生开设的理论与实践相结合的基础课程,主要以学生的洞察能力、创新能力、数学语言翻译能力、抽象能力、文字表达能力、综合分析能力、思辨能力、使用当代科技最新成果的能力、计算机编程能力、数学软件应用能力、团队协作精神和组织协调能力等综合素质培养为目标,以数学建模课程教学、数学建模竞赛、第二课堂、毕业论文(设计)、大学生创新训练项目等为手段,通过“分层次、分模块、四融合”的教学模式的有效实施,在提高我校学生解决在理、工、经、管、教等学科专业领域遇到的数学建模问题的能力的同时,为我校高素质、应用型人才培养做出贡献。 

基金项目:2013 “地方高校青年教师教学能力提升途径的研究与实践”(项目编号:13BZ37);2014年陕西本科高等学校“精品资源共享课程建设”项目“数学建模”课程建设阶段性成果 

参考文献 

第2篇:大学生数学建模课程范文

关键词:数学建模竞赛;数模文化;数学文化

作者简介:谢海(1972-),男,广西岑溪人,桂林理工大学理学院,讲师,主要研究方向:智能计算和不确定性理论。(广西桂林541004)

一、什么是数学建模

“不论是用数学方法解决哪类实际问题,还是与其他学科相结合形成交叉学科,首要的和关键的一步是将研究对象的内在规律用数学的语言和方法表述出来,即建立所谓数学模型,还要将求解得到的结果返回到实际问题中去,这种解决问题的全过程称为数学建模。”[1]

二、我国大学生数学建模竞赛发展现状

大学生数学建模竞赛(MathematicCompetitioninModeling,简称MCM)1985年最先在美国出现。1989年,我国3校4队大学生首次参加美国的数学建模竞赛。借鉴美国数学建模竞赛成功经验,我国于1992年开始举办全国大学生数学建模竞赛(ChinaUndergraduateMathematicalContestinModeling,简称CUMCM),每年一届。

全国大学生数学建模竞赛参赛校数和队数逐年持续增长,师生们参赛的热情与日俱增,表明这项竞赛具有良好的声誉,在高等院校和社会上的影响力越来越大,对学生的吸引力越来越强,树立了自己的品牌,使之成为全国高校规模最大的一项科技课外活动。

我国大学生数学建模竞赛以全国大学生数学建模竞赛为核心,其他形式的竞赛有:地区性建模竞赛,如大学生数学建模邀请赛(原为华东地区数学建模竞赛)、苏北地区数学建模竞赛、华中地区大学生数学建模邀请赛;省市级建模竞赛;校内建模竞赛;专业建模竞赛,如电工数学建模竞赛。

此外,我国参加美国大学生数学建模竞赛的队伍也在壮大,参加2008年美国大学生数学建模竞赛(MCM)有849队,占总数的73%,参加交叉学科竞赛(ICM)的有357队,占总数的94%。

总体上说,我国大学生数学建模竞赛活动发展态势良好,成效显著。

三、大学生数学建模竞赛的成效

在全国大学生数学建模竞赛带动下,我国各级各类大学生数学建模竞赛蓬勃发展,数学建模不仅仅是一项竞赛,更是推动大学数学教育教学改革,提高大学生素质的成功探索,取得了巨大的成效。

全国大学生数学建模竞赛组委会主任李大潜院士在分析数学建模之所以受到大学生追捧的原因时说:“数学建模及其竞赛活动打破了原有数学课程自成体系、自我封闭的局面,为数学和外部世界的联系在教学过程中打开了一条通道,提供了一种有效的方式。学生们通过参加数学建模的实践,亲自参加了将数学应用于实际的尝试,亲自参加了发现和创造的过程,取得了在课堂里和书本上所无法获得的宝贵经验和亲身感受,这必能启迪他们的数学心灵,促使他们更好地应用数学、品味数学、理解数学和热爱数学,在知识、能力及素质三方面迅速地成长。可以毫不夸张地说,数学建模的教育及数学建模竞赛活动是这些年来规模最大也最成功的一项数学教学改革实践,是对素质教育的重要贡献”。数模教育及数模竞赛活动有助于广大教师转变教学观念,改进教学方法手段,不断把数模思想和方法融入到大学数学主干课程中,促进整个大学数学课程教学改革,并取得了丰硕成果。2001年、2005年两届高校国家级教学成果一、二等奖中,以数学建模、数学实验为主要内容的有11项,占整个数学类的38%。在2003至2008年度国家级精品课程中数学类共有64项,其中数学建模或数学实验共有9项,占整个数学类的14.1%。数模竞赛活动促进了数模教育教学,数模教育教学的深入展开反过来更好推动数模竞赛活动健康开展。

很多学生用“一次参赛,终生受益”来描述他们参加全国大学生数学建模竞赛的切身感受。通过参与数模、走进数模、体验数模,学生真切感悟到数学解决实际问题广泛性和有效性,形成一种“学数学、爱数学、用数学”的良好氛围。数学建模是数学走向应用的必经之路,是启迪学生数学心灵的必胜之途,是培养学生创新能力的极好载体,有利于提高学生综合素质。

四、数模竞赛与数模文化

数学不仅是一门科学,也是一种文化,即“数学文化”。所谓数学文化,是指数学作为人类认识世界和改造世界的一种工具、能力、活动、产品,在社会历史实践中所创造的物质财富和精神财富的积淀,是数学与人文的结合。全国大学生数学建模竞赛的“目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。”其竞赛宗旨是“创新意识、团队精神、重在参与、公平竞争”。全国大学生数学建模竞赛的目的和宗旨充分反映了以数模竞赛为核心的各种数模活动带有浓郁的人文气息,具有明显的文化特征。数模竞赛带动了数模系列活动迅速展开,高校掀起数模热,数模系列活动的人文色彩越来越浓厚,文化特征越来越明显。数模竞赛带动数模系列活动,丰富数模文化基本的内涵,拓展数模文化的表现形式。数模文化是数学文化的重要组成部分。在高校里,数模文化可以看作是数学文化与校园文化的综合体。数学建模其实不是什么新鲜事物,而古而有之,历史上一些著名数学模型一直沿用至今。公元前3世纪欧几里德建立的欧氏几何学,就是对现实世界的空间形式所提出的一个数学模型。这个模型十分有效,后来虽然有各种重要的发展,但至今仍在使用。开普勒根据第谷的大量天文观测数据所总结出来的行星运动三大规律,后经牛顿利用与距离平方成反比的万有引力公式、从牛顿力学的原理出发给出了严格的证明,更是一个数学建模取得辉煌成就的例子。由此看出,数学建模具有丰富的文化底蕴。

五、高校加强数模文化建设的若干思考

近年来,数模热在高校里持续升温,为宣传数模、普及数模奠定良好基础。数模文化虽然是数学文化的组织部分,但数模文化也自成体系、具有自身特色。因此,高校加强数模文化建设、充分挖掘数模的文化内涵,具有重要的理论意义和现实针对性。高校加强数模文化建设应认真考虑以下几个问题:(1)建设数模文化的定位是什么。建设数模文化应着力提高大学生的数模素养、文化素养和思想素养。(2)如何确定有数模特色的数模文化基本内容。数模文化内容是十分丰富的,其基本内容应重点介绍数模史、数模思想、数模方法、数模精神、数模竞赛、典型数学模型赏析等。(3)如何构建形式多样、喜闻乐见的传播平台。数模文化的传播平台应形式多样、富有吸引力且便于学生参与,如:可通过“数模文化周”、“数模文化周”、“数模文化长廊”、“数模墙报、板报”、“数模文化讲座”、“数模论坛”、“数模网站”、“数模竞赛”、“数模夏令营”等传播数模文化。(4)如何将数模文化融入到数模教学及大学数学教学中去。将数模文化融入到数模教学及大学数学教学中去,能更加丰富数模课及大学数学的教学内容。(5)能否开设“数模文化”课程。目前,全国有将近四十所高校将“数学文化”作为公共选修课进行开设,取得了较好的效果。由于数模文化本身就自成体系,因此在条件成熟的情况,应该考虑能否也将“数模文化”作为公共选修课开设。

六、结束语

数模的文化功能目前还没有充分发挥,因此,数模文化研究应得到更多的关注,给予更高的重视。高校应大力宣传数模文化、建设数模文化,弘扬数模精神,充分发挥数模的文化功能,更好地提高学生的综合素质。

参考文献:

[1]周远清,姜启源.数学建模竞赛实现了什么[N].光明日报,2006-01-11.

[2]卢丽君.大学生数学建模竞赛魅力何在[N].中国教育报,2006-01-13.

第3篇:大学生数学建模课程范文

关键词:数学建模;教学改革;实践; 科学素质; 创新能力

数学思想已成为现代科技发展的原动力,微观的机理性研究离不开数学,宏观的决策也离不开数学,人们已逐渐习惯了用数学的思维去思考问题、用数学的语言去表述客观的现象、用数学的方法去分析和了解事物发展的客观规律。而架起各门科学与数学的桥梁,正是数学建模!大学生是未来的工程技术人员、科技工作者、工矿企业和政府机关管理人员,理应具备扎实的数学基础和良好的数学素质,数学建模教育也就成为培养大学生综合科学素质和创新能力的必经和有效途径。

一、数学建模对学生能力的培养

数模竞赛是培养学生综合科学素质和创新能力的一个极好载体,而且能充分考验学生的洞察能力、创造能力、数学语言翻译能力、文字表达能力、综合应用分析能力、联想能力、使用当代科技最新成果的能力等。学生们同舟共济的团队精神和协调组织能力,以及诚信意识和自律精神的塑造,都能得到很好地培养。通过数学建模的教学和训练,应对大学生从以下七个方面进行培养和引导[1,2]。

1.将实际问题抽象和简化成数学问题。引导学生在遇到实际问题时反复理解问题的本质,我们已有哪些条件?需要哪些相关的知识?与数学的哪些概念可能有关联?通过阅读题目,仔细推敲每一句话、每一个概念,客观正确地理解问题,根据研究对象的具体情况,抓住问题的核心和关键,进行必要的合理假设,然后根据自己已掌握或通过查阅而及时了解的相关知识,建立起相应的数学模型。同时,培养学生对其运用数学手段处理的研究结果做出通俗合理的解释,使读者较为容易地理解自己的思想。

2. 数学方法和思想的综合应用能力。随着数学向经济、人口、生态、地质等领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的、关键的步骤和这些学科发展的基础。在国民经济和社会活动的诸多方面,数学建模都有着非常具体的应用,如通过药物浓度在人体内的变化以分析药物的疗效;数值模拟设计新飞机的机翼;预报与决策方法对产品质量指标的预报、气象预报、经济增长预报、经济收益最大的价格决策、费用最小的维修决策;控制与优化方法用于生产过程的最优控制、零件设计的参数优化;规划与管理模型用于生产计划、运输网络规划、排队策略、物资管理等[3]。这些都依赖于平时的积累,一方面要求学生有博览群书的习惯,更重要的是任课教师的知识扩展。例如,讲授微积分学课程的教师,不能仅仅介绍数学符号的运算,在讲到微分、级数等内容时应让学生知道它可用来做近似计算等。

3. 观察力,洞察力,想象力和创造性。学生面对的建模问题是一个没有现成答案和模式的问题,只能依靠充分发挥自己的创造性去解决。这就需要学生具有丰富的想象能力,从大量的文献资料中摄取有用的思想和方法,从貌似不同的问题中窥视出其本质的东西,加工处理,创造出新的形象;同时要具有把握问题内在本质的能力,即洞察力。例如,当你遇见诸如速度、变化率、衰减、增长、边际、弹性等字眼的时候,你是否想到了导数和微分?进而可建立一个微分方程模型来分析运动的机理?当你遇见诸如使什么最大(极大或尽可能大)、最小(极小或尽可能小)、最佳、最省等字眼的时候,你是否会想到要建立一个目标函数呢?进而去建立一个优化决策的数学模型?

4. 熟练使用计算技术手段。即运用计算机编程解决模型的数值解。学生在学习计算机课程时,教材所提供的问题只是为了熟悉掌握一些编程的命令和语句,计算机编程能力相对较差。数学建模教学的开展,给学生提供了综合运用各种命令和语言编写程序的机会,学生针对教师所精选出的不同模型编写出许多较大的程序,并通过运用程序求出模型问题的数值解,使学生编程能力和解模能力大大提高,为以后从事科研工作奠定必要的基础。

5.学生的自学能力和善于使用文献资料的能力。学生仅靠课堂上学习的知识远远不能满足建模工作的需要,一方面,通过集中的培训和讲授,可补充一些知识;另一方面,通过让学生实际做一些建模题目,给学生布置一些没有学过的数学内容和没有接触过的建模问题,有意识地培养其自学能力和善于使用文献资料的能力。并让学生尝试完成在网站上搜索他们感兴趣或认为比较重要的建模题目,以此提高其自我评价意识、自觉性、积极性和主动性。

6. 交流和表达能力,团结合作精神。竞赛是集体项目,现代的科技开发也越来越需要多人多方面的合作。应在平时就开始注重培养学生密切合作、集思广益、取长补短的团队精神,使其善于倾听别人的意见,并能从不同观点的讨论中综合出最优的方案。这种相互协作的集体主义精神,是学生在未来的工作和生活中非常需要的。

7. 科技论文写作能力。学生在参加数学建模学习之前,科技论文写作的能力普遍较弱,有的甚至是一片空白,对如何写摘要、提取关键词、使用数学公式编辑器等,都需要教师指导。不少学生初次写出的建模论文根本无法阅读。教师应手把手地教,一字一句地改,让学生知道为什么要这样写?这样写的目的和意义是什么?这样才能使学生的写作水平得到提高和稳定地发挥。

二、数学建模课程教学改革的实践探索

有了正确的认识和理念,才会有明确的行动方案和实效。我校的数学建模工作起步于1994年,通过数学建模工作者的不断探索,开辟了现在的良好局面。

1.好的政策和稳定的教师队伍是数学建模教改成功的保障。在我校的数学学科中有一批稳定而热情的数学建模教师队伍。他们团结、协作,从过去的三人发展到现在的十多人,并有主教练负责。学校出台了对学生和指导教师具有相当吸引力的鼓励和奖励政策,建立了校级数学建模实验室,指导学生成立了全校的数学建模协会,为数学建模工作在本校的深入开展提供了有力的保障。

2.教学内容的选取是提高学生参与度的核心环节。教学内容是培养目标和教学目的的直接反映,在提高教学质量和培养学生创新实践能力中具有决定性作用,教学内容的先进性和科学性,是直接关系到学生参与度的核心环节。

起步时期的建模教学内容,是以数学相关知识介绍为主。大致介绍数学建模的思想和一些简单的建模案例,让学生初步了解数学建模的意义、基本方法和步骤,了解数学建模的特点、分类和作用。内容较为平淡,其收效不大,当学生遇到真正的数学建模问题时,就难以下手解决,学与用存在脱节的现象,特别是学生参加全国大学生数学建模竞赛成绩不理想。

在数学建模教练小组的努力下,成功申报了一个省级教改项目“加强数学建模课程建设,提高大学生综合素质”,深入开展教学改革研究。首先,组织编写了数学建模竞赛培训资料,并作为该课程使用教材,这也有利于让该课程与大学生数学建模竞赛接轨;其次,教材依据数学建模中常用的一些方法,如数据分析方法、线性规划和非线性规划、概率统计、微分方程、方差分析、聚类和分类、图论、综合评价、预测方法、满意度评价以及科技论文的写作等,并有机地结合相关的一些典型建模案例的分析和求解。这样,使教材变得生动,大大提升了学生的学习兴趣。

3.好的教学方法和手段是提高教学质量的保证。培养学生的综合实践能力,是开展数学建模教育的根本目的。科学有效的教学方法,可以提高学生的效率和创新实践能力。因此,在教学活动中,注重理论教学的同时更应加强实践环节。

数学建模的整个过程是学生能力的综合体现。在教学过程中,按照数学建模竞赛的模式进行专题教学和训练,我们的具体作法是:(1)按照全国大学生参赛办法,将三个学生组成一个队,以队为单位和教师一起参与经常性的讨论,讨论地点放在数学建模实验室。(2)免费开放数学建模实验室,方便学生查阅资料和建模训练。(3)通过多媒体教学课件,介绍数学建模方法,让学生随时都可以反复学习和查阅。(4)精选训练题目,按竞赛要求,让学生在一定时间内完成并提交论文。(5)对完成较好的论文,让学生自己讲解所完成题目的思想、方法,提出解题中的优点和不足,达到互相学习的目的。(6)指导教师和学生一起讨论所写论文中存在的问题并进行修改。通过这种训练式的教学方式,学生无论是在分析问题处理问题方面,还是在论文写作方面,都有了很大提高。

4.数学建模课程的考评应不同于传统的考核模式。由于数学建模注重的是综合能力的培养,因此,在该课程考评方面,应不同于传统的考核模式,我们的具体作法是:(1)由老师提供若干论文题目。

这些题目尽可能没有现存的论文。(2)学生事先组好队,依据所学专业的性质,每队完成2~3篇论文。(3)为尽可能避免相互抄袭,每个题目最多不超过5个队做,如果出现雷同,则返工重做。(4)根据教师制定的评分标准,按质量高低给分,并对每篇论文写出评语,指出论文中的优缺点。(5)期末不再进行考试,该门课程的期末成绩由几次论文质量决定,每次论文在期末成绩中所占权重基本相同。

通过对数学建模教学改革的努力探索,我校在全国大学生数学建模竞赛中成绩发生了根本性变化。2006年以来共获得了国家一、二等奖13队,省级奖45项,平均获奖率达86%。

参考文献:

[1] 李凝. 数学建模竞赛缘何受大学生青睐[N]. 科学日报. 2007-01-18.

第4篇:大学生数学建模课程范文

关键词:数学建模 调研 海南高校 精品课程

一、调研的基本情况

在海南省建设国际旅游岛的过程中遇到的如环境监测、能源优化和景点规划等一系列实际问题如何建模解决成为了海南省内外人士关注的问题,同时在全国大学生数学建模竞赛以及美赛的推动下,海南省各高校逐步开始建设具有自己特色的数学建模工作,致力于为建设国际旅游岛奉献一份力量。本文将对此进行一系列调研分析。

1.数学建模是什么。

数学建模是用数学语言描述实际现象的过程,运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。

2.对学校和学生的影响。

全国大学生数学建模竞赛在与“挑战杯”创业大赛和“外研杯”英语演讲比赛组成大学生的三大项国赛中,其是要求学生知识全面、大脑灵活、开拓创新和坚持不懈并且最容易获得奖项的国赛。对学校而言:①数学建模可以提高高校教师的素质;②可以提升学校的综合实力;③为学校优秀毕业生争取更多的保研资格等。对学生而言:①数学建模过程中的信息收集处理、分析解决问题和语言文字表达能力的培养对日后的毕业设计具有很大影响;②数学建模过程中的思考与团结互助对学术的创新研究具有促进作用;③数学建模还可以让学生深切感受、理解知识产生和发展的过程等。

为了直观展示调研结果,我们将所得数据整合如表1所示。

由表1,海南省各高校数学建模指导率为56.25%,其中本科指导率为100%,专科为30%,可知专科院校指导力度不够;另外,对于多数综合性大学,其在数学建模的参与获奖方面均远远高于文科或医科等,得知多数非综合性大学的学生综合素质相对欠缺。我们了解了海南省各高校数学建模的现状:各自发展,本科优势很大,专科较为落后。

5、案例分析。

为了更为清晰的展现海南省各高校数学建模的现状,以我比较熟悉也是自己亲身参加了培训的海南大学为例,简要研究其近十年来的发展。相关数据如图2。

从图2中可以明显的看出海南大学数学建模仅仅竞赛方面逐年提升,无论是参赛规模还是获奖数量,都有了很大的进步。

二、调研中发现的问题及相关思考

根据“数学中国论坛”不完全统计,以2012年全国大学生数学建模竞赛数据为例进行分析,如表2所示。

综上:海南赛区参赛规模上低于全国平均水平,我们猜测是海南高校少、学生少的原因;另外在全国奖获奖比率中海南赛区高于全国平均水平,说明参赛队员的综合能力较强。对于此,我们不得不产生以下的思考。

1.海南各高校是否有正式的数学建模实验室?

由于调查问卷回收不完整,所以统计不全面。目前知道海南大学、海口经济学院和三亚学院等在内的多数高校具有该实验室,预计海南省各高校数学建模实验室拥有率约为70%,主要集中在本科院校。

2.本科与专科间的差距最主要原因是不是因为指导老师能力问题?

数据显示本科高校在数学建模方面建设工作做的较为完善,远远优于专科院校,我们考虑可能是因为多数本科教师综合能力强于专科教师,且本科学生的基础知识掌握由于专本科学生也是一个重要原因。

3.各高校对数学建模建设工作中所投入的人力物力是否合理?

本文曾试这收集关于各高校人力物力投入的相关信息,但是所获不多,就海南大学而言,个人感觉在人力上从培训到指导都有多名专业的指导老师,物力上优秀组别有学校免费报名,这极大地激发了学生们参赛的热情,大大的推动了海南大学数学建模建设工作的进行。

三、调研的结论与相关建议

综合以上分析,我们得出:①海南省各高校近年来参加全国大学生数学建模竞赛的学校在逐步增加,其中本科尤为明显;②海南省参与全国大学生数学建模时获得全国奖的比率高于全国平均水平;③海南省各高校自身的数学建模指导或是课程开设覆盖率50%,不利于学生对数学建模兴趣的培养,思维的启发和数学建模知识体系的完善。

针对以上结论和对数学建模的自身了解,并结合现阶段海南各高校数学建模水平提出以下建议:①创建专业的数学建模实验室,增加数学建模专业指导老师,对学校热爱数学建模的学生进行正确的引导,对其完成的任务进行指导,以提升学生对数学建模的热爱;②开设数学建模精品课程。数学建模作为21世纪最广泛的学术研究,是解决实际问题的有效数学方法,也是高校各科综合体现的最佳手段,我们应将其增加为我们的精品课程,以培养学生自主创新、思维活跃的综合能力,从而为祖国培养栋梁、为海南建设国际旅游岛培养人才增添一份动力。

参考文献:

[1]李绍波,朱宁.地方高校数学建模教学团队建设探讨[J].广西.广西教育2012.31

[2]林李.“数学建模”课程建设的几点思考[J].广西.广西财经学院学报.2006.10.

第5篇:大学生数学建模课程范文

一、前言

自党的“十”以及十八届三中全会召开以来,我国经济、教育等各项事业的发展迈入了一个崭新的历史时期。面对经济体制转轨、政治体制改革、国际国内形势复杂多变等环境,大学生作为社会新技术、新思想的前沿群体、国家培养的高级专业人才,在一定层面上代表着国家未来的发展与创新潜力,这就要求大学生在参加社会主义建设之前需要具备自我决策能力、适应社会能力、创新与实践能力、社交与团队协作能力等。尤其是随着互联网技术的快速发展,社会各领域极需具有逻辑思维能力强、演绎能力突出以及能够将数学方法与计算机技术相结合的创新性人才。众所周知,任何来自于自然科学与工程实践的问题都可以归结为数学问题,而数学建模就是通过计算得到的结果来解释实际问题,并接受检验,来建立数学模型的全过程,这也是利用数学方法解决实际问题的一种实践。因此,培养与提高大学生的数学建模能力,对于提高大学生的抽象思维能力、分析与解决实际问题能力、创新与实践能力以及计算机应用能力等方面具有十分重要的意义。根据当前大学生数学建模教学的发展趋势,结合笔者自身指导大学生参加数学建模竞赛的经历,本文提出了大学生数学建模能力差异化培养以及开展模块化教学实践的探索。

二、数学建模的特点与作用

1.数学建模的特点。为了激发大学生对数学建模的兴趣以及培养与提高大学生的数学建模能力,必须要大学生首先认识数学建模的特点。数学建模就是通过抽象、简化、假设、引入变量等方式将实际问题用一定的数学方式进行表达,从而建立一定的数学模型,并用优化后的数学方法及计算机技术进行求解的全过程。因此,从数学模型建立的实践中,我们可以归纳出数学模型主要存在以下特点:(1)目的性。数学建模的目的是利用数学模型来分析特定对象的有关现象及其规律,对事物的运行与发展趋势进行一定的预测与分析判断,然后做出控制与决策。(2)多样性。对于相同的实际问题,出于不同目的,使用不同的方法与假设,可以建立出不同的数学模型。因此,判断数学模型好坏的唯一标准是看其能否解决实际问题。(3)逼真性与可行性。数学模型的建立需要尽可能与实际问题接近,也就是数学模型的逼真性。而一个逼真的模型往往达不到预期的建模目的,即不可行。因此,数学建模只要达到预期的应用目的,可行就够了,不必追求完全逼真。(4)渐近性与强健性。对于较为复杂的实际问题,往往需要多次由简到繁、由繁到简的反复迭代才能建立可行的数学模型。同时,随着科技的发展与人们实践能力的提高,数学建模也是一个不断完善与更新的过程。另外,模型的结构与参数随着观测数据的微小改变也会表现出微小的变化,从而表现出数学建模的强健性。(5)可移性。数学模型是在原型的基础上进行理想化、简化与抽象化处理之后的结果,它也可以从一个研究对象转移到另一个其他的研究对象。(6)局限性。①数学建模过程中常常会忽略一些次要因素,因此数学模型得出结论的精确性是近似的,通用性也是相对的。②由于人们认识与技术的局限性以及数学发展本身的限制,导致大量实际问题很难得到有实用价值的数学模型。③还存在一些特殊领域的实际问题至今未能建立有效的数学模型进行解决。

2.数学建模的作用。大学生对需要解决的实际问题的认识与理解,可以直接通过大学生的数学模型能力来加以体现。因此,大学生需要有很强的数学逻辑思维力、数学观念以及对数学模型的把控与构建能力,才能运用可行的数学语言表达客观事物或需要解决问题的本质特征。所以,数学建模在很大程度上反映了大学生的数学观念、意识和能力。

随着互联网、云计算以及智能制造等技术的快速发展,提出了许多需要用数学方法解决的新问题,同时也使过去一些即便有了数学模型也无法求解的课题(如天气预报、大型水坝应力计算等问题)迎刃而解;建立在数学模型和计算机模拟基础上的计算机辅助设计技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段。尤其是将数学建模、数值计算和计算机图形学等相结合形成的计算机软件,已经被固化于产品中。因此,数学建模在许多高新技术领域,如电子与信息技术、生物工程与新医药技术、先进制造技术、空间科学与航空航天技术、海洋工程技术等领域具有十分广阔的应用前景。

此外,随着数学向其他学科领域的逐渐渗透,尤其是用数学方法研究这些学科领域中的各种定量关系时,数学建模就成为首要的、关键的步骤以及这些学科发展与应用的动力。因此,一些交叉学科,如计量经济学、人口控制论、数学生态学、数学地质学等得了快速发展,在经济社会发展的各个领域正发挥着越来越重要的作用,同时也为数学建模的发展及应用提供了无限的空间。因此,数学建模必将与其他学科相互渗透与融合,迎来快速发展的新时期。

目前,大学工科教学中普遍存在内容多、学时少的情况,导致教学中重理论轻应用,使学生对数学的重要性认识不够,使得很多学生在进入到专业课学习阶段时,不能有效地理解与学习专业课程里的基本原理与数学推导过程,以致其看到繁杂的数学公式而望而生畏,造成其理论水平停滞不前,为其以后的进一步学习、知识更新与创新能力的突破留下了极大隐患。而指导大学生参加数学建模竞赛就是使大学生亲自参加与体会社会、经济与生产实践中经过适当简化的实际数学问题,不仅体现了数学应用的广泛性,而且也使大学生感受到数学的魅力与力量,激发了他们学习数学的兴趣,同时也提高了他们运用数学方法进行分析、推演与计算的能力,为其后续的进一步学习打下了夯实的基础。

三、大?W生数学建模能力差异化培养

《国家中长期教育改革和发展规划纲要(2010―2020)》对高校人才培养工作明确指出:关心每个学生,促进每个学生主动地、生动活泼地发展,尊重教育规律和学生身心发展规律,为每个学生提供适合的教育。所以,在大学生培养过程中,必须牢固树立“以人为本与以学生为中心”的意识。实际上,人的思维与认识世界的方式是多元的,人类至少拥有包括语言、数学、音乐、绘画、运动等多种天赋秉性,每个人都有自己的优势潜能。大学如果能根据学生的个性差异及能力差异,遵循教育规律,根据大学生的学习需求及学习效果,设计出多元化的培养方案与教育模式,发掘出每个大学生的优势潜能,将极大地提高教育效率与人才培养质量,真正做到人尽其才。大学生数学建模能力差异化培养就是结合数学建模的特点,根据大学生个体的优势潜能,有针对性地对其开展多样化的教育教学工作的一种教育模式,势必打破千人一面的标准化、规模化教育模式,其最终目的是发掘大学生的学习潜能,培养大学生的数学逻辑思维能力,提高大学生分析问题与解决实际问题的能力以及实践动手能力与科技创新能力。那么,该如何实现大学生数学建模能力差异化培养呢?下面笔者主要从两个方面展开论述。

1.以学生为中心,为其选择合适的数学建模课程与授课教师,实现课程与教师的差异化。数学建模课程的差异化,就是以学生自身的素质与能力等为基础,根据学生的个性差异及能力差异设计数学建模课程教学方案与评价标准的一种教学模式。该模式的优点如下:在数学建模教学过程中,能够最大限度地进行因材施教,提高数学建模的教学效率与教学质量,最终促进数学建模人才培养质量及学校办学水平的整体提高。此外,教师是各种教育理念与培养方案的直接执行者。执行者的学术能力与个人素养决定了目标实现的质量差异。根据大学生差异化的专业背景与数学基础,设定差异化的培养目标与课程,并选择与之相配套的教师队伍。根据差异化教学的需要,就是把有意愿、有能力的教师组织起来,引导学生自发地从事数学建模的学习及开展创新实践活动,以达到个性化、多元化数学建模的目的。

2.在数学建模教学过程中,教师应根据学生自身的学习基础、学习能力以及学生的创新能力等方面的差异,制定出不同层次的教学任务,使大学生的潜力得到最大程度地提高,笔者主要是从以下几方面着手:(1)学生分层。教师要对学生的学习情况十分了解,这样教师就可以把学生进行一定的分层。例如,将班里的学生以4人为一组,每组要包括学习能力好、中、差的学生,或者由学生个人进行自行分组。之所以采取将学生分组进行数学建模教学,主要是因为学习的过程是一个对话交流、相互帮助与相互竞争的过程,采取分组教学的形式能更快、更好地激发大学生对数学建模的学习兴趣和学习积极性。同时,这个分层是动态的,教师可以根据学生平时完成数学建模的任务情况进行实时调整。(2)任务分层。教师在实际的教学过程中,应考虑到学生的个体差异,兼顾整体和弱、优势群体的发展。针对不同层次的学生,教师可以设置不同难度的任务,如基础类、提高类和创新类,由学生个人根据其自身的能力与水平,自主选择相应的数学建模任务。(3)学生反馈。每次数学建模课结束前,教师要求学生提交一份数学建模报告。提交数学建模报告是教学过程中非常重要的一个环节,数学建模报告显示了学生对任务的完成情况、对知识点和方法的学习情况等。教师要求学生下课之前提交数学建模报告,一方面提高了学生学习数学建模的积极性,保证了数学建模报告的质量;另一方面提高了学生课余时间参与数学建模课的热情,没有完成数学建模报告的学生,可以利用自习课等课余时间到实验室继续进行数学建模的学习。(4)教师分层解答。教师根据辅导过程中遇到的问题和学生在数学建模报告中提出的问题,进行分类归纳总结。对出现同样或相似知识点疑问的学生,单独召集学生进行讲解;对有不同疑问的学生,教师要分别给他们进行讲解。

四、数学建模模块化教学实践

数学建模需要依靠功能强大的Matlab与SAS等软件来实现,因此学习自己设计程序与熟练应用这些软件对于提高大学生的数学建模能力具有十分重要的意义。传统数学建模软件的教学,都是教学基本菜单和常用工具的使用,这种方法和使用环境相脱节,导致学生在具体实践中,面对大量的菜单和工具,不知如何下手、如何运用,教学效果并不理想。如果追求大而全,要求学生掌握数学建模软件所有的基本菜单和常用工具的使用方法,是不可能做到的。那么怎样把这样一个功能强大的数学建模软件教给学生,并让学生灵活应用呢?笔者结合自己多年的教学实践,提出了数学建模方法的模块化与典型案例相结合的教学方法。

1.数学建模方法的模块化。数学建模方法总体而言可以分为六大模块:综合评价、预测与预报、分类与判别、关联与因果分析、优化与控制、实验设计。其中,综合评价又可以分为三个小模块:方案选择、类别分析、排序。预测可分为三个小模块:灰色系统、ARIMA时间序列分析、回归预测;预报可分为三个小模块:按样本关联性分类、按距离分类、按动态聚类分类。分类与判别可分为两个小模块:模糊识别与贝叶斯判别。关联与因果分析可以分为三个小模块:两个变量的关联性、一个对多个变量的关联性、多个对多个变量的关联性。优化与控制则可以分为四个小模块:线性规划、非线性规划、目标规划、网络优化。实验设计在方法方面则可以分为三个小模块:方差分析、LOGISTIC回归、正交设计。数学建模方法众多,通过对数学建模方法的模块化进行分类,有助于学生面对具体实际问题时,做到脑中有法、心中不乱,快捷地建立出数学模型并解决实际问题。

2.典型案例教学。科学实践中的数学问题形形、无以穷尽。如何让大学生在有限的学习时间内,学好数学建模,为他们今后在科研实践中用数学建模解决实际问题打下良好的基础,这就对教师的数学建模教学方法提出了更高的要求。例如:假设某校基金得到了一笔数额为M=5000万元的基金,打算将其存入银行,校基金会计划在5年内每年用部分本息奖励优秀学生,要求每年的奖金额相同,且在5年末仍保留原基金数额,其中,收益比a=(本金+利息)/本金,银行存款税后年利息与各存款年限对应的最优收益比如表1与表2所示。

若??M分成5+1份,xi表示每年的份额,S表示每年用于奖励优秀学生的奖金额,ai表示第i年的最优收益比,建立数学模型的过程如下:

max S,

s.t.a■x■=S,i=1,2,…,5■x■=Ma■x■=M

运用LINGO编程如下:

?MAX=S;

?1.018*x1=S;

?1.0432*x2=S;

?1.07776*x3=S;

?1.07776*1.018*x4=S;

?1.144*x5=S;

?1.144*x6=M;

?M=5000;

?x1+x2+x3+x4+x5+x6=M.

程序运行结果如下:

该例子充分体现了数学建模的三大步骤:第一步,把实际问题通过一定的方法处理成数学问题;第二步,学习数学软件,用计算机语言来解释数学问题;第三步,结果分析,把整个数学建模的过程用实验报告的形式阐述出来,即写作过程。通过这个典型案例(基金的使用)的教学,有助于学生了解与认识数学建模的基本步骤,为其后续数学建模的学习打下了夯实的基础。古人云:“授人以鱼,不如授人以渔”。在数学建模的教学过程中,针对某一个具体数学建模的案例,结合实际问题由现象的直观描述到数学的抽象提炼,教师除了要讲解数学概念和求解方法这些基本知识之外,还需要组织学生就该案例中使用的数学思想展开讨论。同时,教师自身也需要有扎实的科研能力以及丰富的科研实践,真正做到结合案例讲基础,依托基础讲应用,使学生在实践中认识到数学建模的强大功能与魅力,在实践中培养大学生学习数学建模的兴趣,充分调动学生与教师的主观能动性,变满堂灌为主动学,真正做到“教学相长”。

第6篇:大学生数学建模课程范文

通常情况下,数学技术是指将实际的数学问题用数学语言进行表达,进而构造一个数学模型,对这个数学模型利用定量分析或定性分析,或者二者相结合的方式进行求解。在教学过程中,对学生进行数学技术方面的培养与教育,教学工作者利用这种方式对高职学生应用教学的能力进行了培养。

2培养创新意识

随着经济的不断发展,社会已经进入知识经济时代,传统的教学模式难以适应知识经济时代的需要,这时教学工作者需要培养学生的数学创新意识,一方面需要学生自身的努力,另一方面教学工作者在教学实践过程中要有创新意识。例如,高职院校通过数学建模竞赛,一方面让学生领悟数学知识,发现并掌握新的数学知识,另一方面要不断提高学生应用数学知识的能力和水平。

3开设实践课程

学生的自学能力通过开展课外实践课程可以得到提升。在我国高等教育中,高等职业技术教育作为重要的组成部分,一方面满足了经济建设和社会发展的需要,另一方面也满足了国民素质和创新能力的需要。随着高等职业技术教育的发展,全面推进素质教育,逐渐成为实施高等职业技术教育的重点所在。在教学实践工作中,教学工作者需要重点把握教学目标,不断提高学生应用数学的能力,进而在一定程度上更好地培养学生的数学素养。

4数学建模课程的标准化

数学建模通常情况下连接数学理论和现实,在2009年我校以选修课的形式开设了数学建模,它是为了满足数学建模竞赛的需要而开设的。通过组织数学建模竞赛,在一定程度上在学生当中起到宣传作用,同时激发了学生的学习兴趣、进而调动了学生学习的热情,尤其是今年来,在全国竞赛中,我校取得了优异的成绩,为此增加了我校数学建模竞赛的影响力,进而选修该课程的人数也在不断增加,形成了良好的循环,最终这种现象在一定程度上为数学建模课的开设奠定了坚实的基础。为此,我校数学建模也在悄然发生改变,逐渐向着竞赛与普及相结合的方向发展,高职学生的综合素质和实践能力在一定程度上得以有效地提高。

5培养大学生建模能力

对于高职大学生来讲,数学建模是一项综合性的活动,通过参加这项活动,高职学生需要把理论知识和实践进行有机的结合。我校开展的数学建模活动包括三个方面:数学建模课程、数学建模竞赛、数学实验。通过调查我校组织开展的数学建模活动,结果显示,学生的综合能力通过参加数学建模竞赛在一定程度上得到提升和加强,主要表现在:所谓建模是对实际问题进行抽象,进而形成数学问题,然后解决数学方面的问题,最后在实际问题当中应用数学结论。通过求解得出的数学结论通常情况下都具有通用性,这样通过建模,对实际问题进行求解,在一定程度上培养并锻炼了学生的逻辑思维推理能力和抽象思维能力。衡量成功的标准很多,其中坚韧的态度就是一项重要的指标。成功的取得通常情况下没有固定的环境。对于高职学生来讲,通过学习数学建模和参与竞赛,一方面学习到数学知识,掌握根本的学习方法,另一方面教会学生使用工具对实际问题进行求解,真正领悟坚韧不拔的重要性。在进行数学建模时,涉及到的内容和问题比较多,而且比较复杂,在课堂中没有学习过的知识可能在建模活动中会用到,因此,要求大学生能够通过自学和探讨的方式对新知识进行学习,并且应用,在一定程度上不断培养大学生更新知识的能力。随着市场竞争的不断加剧,个人能力早已难以应对激烈的竞争,这时就需要团队进行协作,学生的这种团队意识和合作能力可以通过参与数学建模竞赛得到良好的锻炼。建模活动需要具备不同专业背景的人员进行组合,实现了优势互补,让具有不同知识结构的人进行讨论,让若干名学生集结在一组,通过学习、集训、竞赛等进行分工与合作,通过彼此之间的沟通与交流,最后达成共识,这就需要具备团队意识和合作精神。数学建模活动是进行分析与综合的过程,其中关键是抽象与概括。因此,要求大学生将自身所学的知识进行综合,给予计算结果科学合理的解释。通过数学建模活动,让学生提高分析、综合与解决问题的能力。在建模过程中,问题根本没有现成的答案和现成的模式,需要学生通过创新解决现实中的问题。

6数学建模课程取得的效应

第7篇:大学生数学建模课程范文

关键词:高职数学建模现状分析教学改革

全国大学生数学建模竞赛是由教育部高教司和中国工业与应用数学学会主办的。该竞赛有利于培养大学生运用数学方法和计算机技术解决实际问题的能力,有利于培养学生的实践能力、创新能力和合作精神,有利于推动数学教学改革。目前,数学建模竞赛正以其独特魅力与规则,成为我国规模最大、范围最广的大学生课外科技竞赛活动之一。

1 我院近两年组队参赛获奖现状以及存在的问题

为了提高学院知名度、推动数学教学改革及为学院转制评估作贡献,我院2010年首次参加全国大学生数学建模竞赛(专科组)。5个队参赛,其中1个队获得广西赛区二等奖,2个队获得广西赛区三等奖,2个队获成功参赛奖。2011年我院进一步扩大参赛规模。10个队参赛,其中1个队获得广西赛区二等奖,1个队获得广西赛区三等奖,8个队获成功参赛奖。经过这两年的带队参赛实践,我们分析发现我们的参赛队伍还是缺乏系统的数学建模相关知识和一定的参赛经验,这也是没有获得广西赛区一等奖及国家级奖项的原因。为了进一步扩大参赛和获奖规模,我们必须解决当前组队参赛存在的一些问题。①从普遍上来说,我院高职学生的数学基础相当薄弱。而数学知识逻辑性强、计算繁琐,这就给学生在理解数学概念和掌握数学方法上造成一定的困难。②目前我院开设的公共数学课程《数学与管理》,给学生介绍的数学知识用来参加数学建模竞赛远远不够。必须通过赛前培训给学生补充数学建模相关知识。但是由于培训时间紧,学生又要同时兼顾其他专业课程,造成培训效果不佳的状况。③组织数学建模赛前培训的师资队伍力量薄弱,主要由青年教师承担培训指导任务,缺乏参赛经验丰富的老教师。④报名参赛的学生主要来自计算机系,其他系参与学生较少。说明学院对这项竞赛的宣传力度不够,仍有多数学生未听说过此项比赛。⑤目前组队参赛的任务是交给公共课教学部来完成,如果能够将主管部门上升至学院,学生参赛的积极性应该有所提高。

2 持续开展数学建模竞赛的必要性和重要性

二十一世纪的数学教学应该适应新世纪科学技术的发展,培养高素质创新型人才。教育必须反映社会的需要,数学建模进入高职教育课堂,既能顺应时展的潮流,也符合数学教育改革的要求。而且从某种意义上来说,数学建模是能力与知识的一次综合应用。数学建模活动的蓬勃发展,为数学教学注入了新的生机与活力,这无疑是我国高职数学教育改革的一次成功的实践,也为我国高职教育的数学教学改革做出了重要贡献。

全国大学生数学建模竞赛是面向全国高等院校所有专业学生的一项竞赛活动。自1992年教育部倡导在全国大学生中开展这项活动以来,社会各界反响热烈,参赛规模不断扩大,目前该项竞赛已成为我国高校大学生课外学科竞赛中规模最大、影响最大也是最为成功的竞赛。而且随着此项比赛影响力地不断扩大,一个学校在数学建模竞赛中获得的名次已成为衡量该校教学水平的一项重要指标。

数学是几乎所有学科的基础。通过建立数学模型来解决实际问题,其应用范围是相当广泛的,数学模型成为了建立实际问题与数学工具之间联系的桥梁。社会发展的需要要求加快培养既有坚实的理论基础,又有实践能力和创新精神的高素质复合型人才。为了使现在的高职学生将来能适应时代和社会发展的需要,学校的高职教育必须努力加快培养社会所需人才应具备的能力,提高学生的综合素质。正因为如此,培养数学建模所需的数学素质是知识经济时代人才素质的一个重要方面,是培养创新能力的一个重要方法和途径。于是,开展数学建模活动将会在人才培养过程中有着重要的地位和作用。

一方面,高职学生通过参加数学建模竞赛开拓视野,提高创新精神创新能力以及团结协作精神,增强学习数学知识和应用计算机技术的积极性;另一方面,通过数学建模的教学、组织培训和指导竞赛等工作,还可以扩充指导教师的知识面,促进他们学习新理论和新方法,增强自身的理论水平和提高科研能力。所以说,教师和学生同样都是数学建模活动的受益者。

3 开展数学建模培训的教学改革若干思路

3.1 把数学建模的思想方法渗透到《数学与管理》课程的教学当中。《数学与管理》教学内容中,第三章有线性规划方法。线性规划模型属于数学模型中的一种。在教授线性规划模型的同时可以给学生介绍数学模型的概念。通过从现实生活中的应用实例建立线性规划模型,到使用数学软件求出模型的解,在此过程中学生可以看到数学建模的全过程,对数学建模有一个初步的了解。这时再给学生介绍全国大学生数学建模竞赛相关知识,必能激起学生报名参赛的积极性。

3.2 加强培养学生学习使用基本的数学软件和掌握相关的计算机操作知识。数学建模和与之相伴的计算机正在成为工程设计中的关键工具,这些领域中的科技进展与数学的巧妙结合产生了大量的专业应用软件,形成了一种强有力的数学技术。

3.3 提高数学建模培训的系统性和针对性。由于赛前培训时间较短,只有二十来天的时间,更应该提高培训的效率,有针对性地给学生进行数学建模强化训练。除了学生已有的数学基础外,还要给学生补充模糊数学、离散数学知识。

同时给学生增加信息检索方面的知识,介绍数学建模论文的写作格式和要求,并且精选历年全国大学生数学建模竞赛试题来讲解。最后给学生留些空余时间进行实战练习。

3.4 参加数学建模培训的学生相当于完成一门选修课。鉴于学生参加数学建模培训和数学建模竞赛是一项有益的活动、且需要花费较多的时间和精力,为了鼓励学生参加大学生数学建模活动,建议我院对参加数学建模培训的学生按选修课登记成绩(成绩等级由任课老师评定),学生可免修一门相近课时的选修课。

4 建设一支适应指导数学建模竞赛的师资队伍

自从2010年组队参赛以来,我院共有4名教师参加了数学建模培训和数学建模竞赛的指导工作,主要以青年教师为主。在数学建模培训过程中,教师是关键,教师水平的高低直接决定着数学建模活动能否达到预期的效果。带领学生参加数学建模竞赛,进行数学建模竞赛培训,要求教师具备多方面的条件和素质。既要有广博的数学及其他交叉学科的知识,且科研、教学能力强,又能够应用计算机和网络,还要有较多的实践经验和较强的解决实际问题的能力。这需要每年组织相关教师出去进行数学建模的培训学习,或者参与数学建模的学术会议。

并且加强同行之间的合作交流,互帮互助,共同进步,从而建成一支完善的数学建模教师指导队伍,促进学院数学建模活动的顺利开展。

参考文献:

[1]王秀梅.数学建模竞赛培训和课程建设的探索[J].中国成人教育,2007,2.

[2]汤志浩.高职数学建模活动的探索与实践研究[J].上饶师范学院学报,2010,12.

第8篇:大学生数学建模课程范文

关键词:数学建模 数学建模竞赛 大学综合素质

中图分类号: G642文献标识码:A 文章编号:1007-3973(2010)06-157-02

自从1995年我校首次组织学生参加全国大学生数学建模竞赛工作以来,不知不觉我在数学建模教学与竞赛工作已有16年。在校、教务处、理学院的领导下, 通过全体教练在教学上不断探索和共同努力, 取得了优异的成绩, 共获全国一等奖26项,全国二等奖49项,浙江省奖项多项,2006年至今共获美国特等奖1项,一等奖9项,二等奖16项。取得了省参赛高校与全国同类高校中的优异成绩。通过十几年来的教学与竞赛活动, 我感触很多, 现有如下一点认识与体会。

1数学建模教学及意义

数学建模是就是应用建立数学模型来解决各种实际问题的方法,即就是通过对实际问题的抽象、简化,确定变量和参数,应用某些“规律”建立起变量、参数间的确定的数学模型,并对数学模型求解,解释、验证所得到的结论,从而确定能否用于实际问题的多次验证、循环并不断深化的过程。它作为联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学理论知识和应用能力共同提高的最佳结合点,在培养学生过程中,数学建模教学起到了启迪学生的创新意识和创新思维、培养综合素质和实践动手能力的作用,是培养创新型人才的一条重要途径。

2数学建模教学内容和方法

数学建模教学的根本宗旨是学生能力的培养和综合素质的提高, 而能力和素质的培养应以知识及教学活动为载体, 同时须辅之以相应的教学内容和方法。由于数学建模课程教学不同与其它数学类课程,其主要特点:(1)数学建模的主要“载体”是一个个的具体问题, 这些具体问题大多是各领域的实际问题或是它们的抽象和简化。(2)数学建模的问题涉及各个领域, 且均有一定的深度和广度, 并非单靠数学知识和某些专业知识就能完成, 但如果不具备数学知识和相关的专业知识是根本无法建立数学模型的; 而且即使已建立起的模型, 单靠某一学科的知识往往不可能得到满意的模型解。总而言之, 数学建模常常需要跨学科跨专业的多学科多专业知识的综合施用。因此,我们必须处理好书本知识与实际问题的关系,数学知识与其它相关知识的关系。

我校自1995年开设数学建模课程以来,根据实际需要,课程设置不断得到改革,目前课程组面向全校开设了多种不同课时不同程度要求的数学建模系列课程,包括数学实验以及课程设计等实践性环节。课程设置满足了不同专业学生的多样化需求和大量学生学习数学建模的大众化需求。根据我校特点,我们将数学建模课程的目标定位为“学习数学建模的常用基础知识和基本方法,培养学生综合素质、团队精神和实践能力,努力提高学生研究性学习和创新性应用能力”。 根据这样一个目标定位,在教学安排上注意基础知识的宽泛性,建模训练的应用性,教学方法的研究性。课程教学内容分为四大模块。(1)常用的数学方法讲解,如运筹学中的规划论、图论、组合优化、排队论等,概率统计与马尔可夫过程、层次分析,常微分方程,还有计算方法等等。当然我们不可能把这些内容面面俱到地细讲,只是择其要义,把最基本最有用的一些思想与方法展示给学生,让学生知道一些基本思想,同时知道何处可以找到何种方法用于解决何种问题。余下的问题则由学生自己去解决。本模块教学时数在各个不同层次分别为20到40学时;(2)建模分析,这一块除了历年竞赛模型外,还从教师自身的科研课题以及大量的科技杂志上精选加工了为数不少的建模案例,让学生初步明白用数学方法解决实际问题的一些基本方法。这里有的是老师讲解分析,有的则是让学生先读后讲,即让学生先去尝试着对所给问题建模并给以解决,然后向大家介绍他所用的方法,并让大家讨论,最后老师作简要总结或补充。这种教学方式是完全区别于传统的教学方式的,也是数学建模课程最具特色的内容之一(时)。(3)数学软件的使用以及计算机编程能力的培养,这一模块可以穿插在前两块的过程之中,也可以数学实验课的形式得以体现。若以实验课形式出现,则根据各个层次的不同,学时为17学时(课程配套的课内实验)到33学时(独立开设的数学实验选修课)。以上三块内容互相补充,互为依托,彼此间也没有一个明确界限,每一块内容,也没有明确的范围限制,尤其是第二大块,我们几年下来,可以说每年的教学内容都有较大的更新。而数学建模也正因为此而使得它对于师生两方面都是极具挑战性。(4)在前面三块的基础上,再配以实践性教学环节的设计,该环节中学生分成3人一组,要求学生根据教师提出的实际问题进行充分讨论,广泛查阅有关资料,提出各自的观点及模型雏形,写出对应的论文梗概,然后在班上进行讨论。

通过学习要让学生学会数学建模的思想,即在理解问题的基础上,将具体问题总结归纳提炼为一个数学问题,并设计出一整套求解方法来加以求解。难点是能够使用的数学方法涉及面太多太广,作为一个本科学生,尤其是我校这样地方性普通学校的学生难以在短期内接受。针对这个难题,我们采用基础知识和案例教学相结合,理论教学和上机实践相结合,教师讲课和学生自主练习相结合,教师引导和学生收集资料,探索讨论相结合,学生报告加教师点评相结合的方法,较好地解决了这个难题。十余年的教学实践证明,经过我们以这样一个模式培养的学生已经初步具备了从实际问题,到数学方法,到计算机编程实现并最终解决问题的基本能力,这一点不仅从我们的学生在历年的竞赛中均取得良好的成绩中可以得到验证,而且从毕业设计,指导“新苗人才计划”、“创新杯”等科研活动,学生就业,及研究生学习中充分体现。

3数学建模教学与竞赛关系

从我校数学建模活动实践说明,数学建模竞赛推进了数学建模教学课程化,数学建模课程教学为竞赛活动开展打下了基础,同时开设数学建模课程的目的也转向了竞赛与普及相结合,以提高大学生的综合素质和实践能力作为一个重要目标。我校最初开设选修课是因为参加数学建模竞赛的需要,选修的学生数较少,而且必须是往年成绩较优的学生才允许选修。经过几年探索,我们通过以竞赛为平台, 加强引导与指导, 充分激发学生的学习兴趣和热情。而且通过数学建模竞赛,促进了我校教学内容、教学方法、教学手段的创新,参加过训练和竞赛的学生们普遍感到,以往学多门课程的知识不如参加一次竞赛集训学得全面和扎实。因为数学建模竞赛需要全面掌握本领域相关知识, 在深入理解、领会前人智能精髓的基础上, 敢于提出自己的想法和观点。只有善于进行创造性地学习和运用知识, 善于对已知知识进行融会贯通, 注意知识积累的同时更注重对知识的处理和运用, 才能取得成功。随着数学建模竞赛在我校影响的增加,同时参加竞赛过的学生能力的提高,要求选修数学建模课程的学生逐年增加,使得开设数学建模必修课有了一定的群众基础,同时开设数学建模课程的目的也转向了竞赛与普及相结合,以提高大学生的综合素质和实践能力作为一个重要目标。目前,已在自动化、信息管理、统计、电子信息科学与技术、计算机、软件、通信等专业的学生开设不同层次的数学建模必修课与限选课,同时仍然在全校开设不同层次的数学建模选修课。对于不同层次,理论教学学时分别为34、50、66学时,并辅以上机实践训练,每年从当初几十名学生到目前每年近2000名学生修读此课。参加校数学建模竞赛学生近600人。数学建模教学已经形成了多个品种、多种层次、多种方式的教学格局。

4数学建模教学团队重要性

课程教学实施与建设离不开教学团队建设,这一点数学建模教学团队建设更显得重要。因为一切科学研究都需要建模,而建模会用到多方面的知识与技能,例如,通过数据处理分析,找出统计规律的能力、运用数学知识建立数学模型的能力、运用最优化方法与技术改进模型并设计出算法的能力等等。这些能力的培养单靠一门课程的努力是不够的。因此数学建模教学与竞赛离不开集体的力量,教学内容涉及面广、方法多、工作量大,必须组建一支知识面宽、业务素质高、解决实际问题能力强、热爱学生、具有团结协作和乐于奉献精神的新型教师队伍。我校课程小组利用这些年新进教师比较多的实际情况,每年动员吸收适量新教师加入到数学建模教师队伍。通过以老带新,请专家来我校讲学或让有一定潜力的教师外出观摩或参加相关交流活动等形式逐步提高青年教师的数学建模教学水平。通过努力,已经建设成功一支规模适当、水平较高、结构合理、相对稳定的数学建模师资队伍,教师队伍从最初的5名教师扩展为现在的15位教师。课程教师队伍在年龄结构、学历结构、知识结构各个方面得到了很大的改善。原先5位教师中仅有2名副教授和3名讲师,现有教师中有5位教授,7位副教授,博士学位获得者有8名,超过50%。课程组教师的教学科研水平较高。这为我校数学建模活动很好开展作了保障。

5数学建模教学促进了数学课程教学的改革

数学建模教学促进了我校数学课程教学的改革工作,这种促进既有内容上的也有教学方法上的。比如早在上世纪末,我们与电子分院部分教师一道组织讨论,在高等数学、线性代数以及概率统计教学中,找一些结合学生专业方向工程背景的实际问题,融入到课堂教学中,加强应用所学方法解决实际问题的例子,一方面可以使学生学到数学在本专业用处与数学建模知识,另一方面也可以使学生加深对数学思想本质的理解。这与以后将数学建模思想融入到本科公共课程数学中思想是一致的。另外,在第二学期,开设高等数学实验试验。并且在数学建模教学方法上探索得到经验,有目的应用到其他数学教学方法上,在教学中注意强调讨论式教学以及学生的自主学习尝试。激发学生的多种思维,增强其学习主动性,培养学生独立思考,积极思维的特性,这样有利于学生根据自己的特点把握所学知识,形成自己的学习机制,逐步培养很强的自学能力和分析、解决新问题的能力。

6数学建模教学活动对学生能力培养影响

通过数学建模教学、组织大学生数学建模竞赛,学生在数学应用能力、分析处理问题综合素质方面得到极大的提高,表现出很好的继续培养潜力。培养锻炼提高了教师的教学、科研能力;活跃了本科生的科技活动和学习氛围。正像我校参加过数学建模活动学生代表王教团感言那样,数学建模,它魅力无穷,能够很好地锻炼和考查一个人的综合素质,是培养创新能力的一个极好载体。它能充分体现参与者的洞察力、创造力、数学语言翻译能力、文字表达能力、综合应用分析能力、想象力、使用当代科技最新成果的能力等等;它能塑造参与者同舟共济的团队精神、自律精神和协调组织能力,提高自主学习的能力和主动寻求问题、思考问题、解决问题的能力。 正是这些能力的培养和锻炼,使我在后续的一些学习和研究工作中能够游刃有余。在大三大四阶段,我和团队的其余4位成员承担完成了07年省新苗人才计划项目,并最终顺利通过验收,撰写了一份调查报告以及发表了2篇学术论文。这让我第一次接触到了真实的研究型项目,通过这个项目,使我迅速成长起来。但是归根结底,没有数学建模期间积累的经验,我们是没法独立承担一个项目的。 在目前研究生阶段中,我同样非常得益于数学建模期间培养的能力。能让我在研究的过程中快速获取信息、接受新知识,充分发挥团队合作精神等等。我为我选择数学建模感到无比的荣幸,没有它,或许我还在布满荆棘的道路上摸索着。数学建模是一盏永不泯灭的明灯,指引着我找寻正确的方向,并为之不懈奋斗下去。 “一份耕耘,一份收获”、“天行健,君子以自强不息”成为我也是所有数模人共同的心得写照。

最后,数学建模教学活动开展除提高大学生的综合素质和实践能力以及推进大学数学课程内容与方法改革外,我感触最深的是开展数学建模教学与竞赛活动,推广了数学认知。这点好,而且非常重要。通过数学建模教学及校竞赛,让我校学生有机会知道将所学的数学知识运用到解决实际问题中,同时通过全国竞赛,扩展了影响,消除用人单位一些认识上的误区,让大家更加深刻地体会到数学的魅力,亲近数学。

参考文献:

[1]李大潜. 中国大学生数学建模竞赛[M]. 北京:高等教育出版社,2008.

[2]姜启源,谢金星,叶俊.数学模型[M].北京:高等教育出版社,2003.

第9篇:大学生数学建模课程范文

关键词:数学建模;力学实践;科学思维;创新能力

数学模型是解决各种实际问题的过程,是将数学应用于力学等现代自然科学的重要桥梁。数学建模不仅是数学走向力学应用的必经之路,而且也是科学思维建立的基础。通过数学建模分析力学问题,将数学应用于实际的尝试,亲历发现和创造的过程,可以取得在课堂里和书本上无法获得的宝贵经验和亲身感受,不断深化科学思维,培养学生的创新意识和实践能力。数学建模对力学教学思维的建立具有重要的指导作用。

一、数学建模与数学建模教学的发展

数学建模最早出现于公元前3世纪,欧几里得所写的《几何原本》为现实世界的空间形式构建了数学模型。可以说,数学模型与数学是同时产生的。数学建模的发展贯穿近代力学的发展过程,两者互相促进,相互推动。开普勒总结的行星运动三大规律、牛顿的万有引力公式、电动力学中的Maxwell方程、流体力学中的Navier-Stokes方程与Euler方程以及量子力学中的Schrodinger方程等等,无不是经典的数学建模。

1985年,美国开始举办国际大学生数学建模竞赛,至此数学建模的教育开始引起广泛的重视。数学建模在我国兴起并被广泛使用是近三十年的事。从1982年起我国开设“数学建模”课程,1992年起举办全国大学生数学建模竞赛,现在已经成为我国高校规模最大的课外科技活动。2002年,开展“将数学建模的思想与方法融入数学类主干课程”的教改实践,2012年,《数学建模及其应用》杂志创办。

二、数学建模对力学教学的指导作用

1.数学建模是将数学应用于力学实践的必要过程

数学建模(Mathematical Modeling)是通过对实际问题的抽象、简化,建立起变量和参数间的数学模型,求解该数学问题并验证解,从而确定能否用于解决问题多次循环、不断深化的过程。数学模型(Mathematical Model)是指为了一个特定目的,对于一个现实问题,发掘其内在规律,通过积极主动的思维,提出适当的假设,运用数学工具得到的一个数学结构。

数学建模几乎是一切应用科学的基础,用数学来解决的实际问题,都是通过数学建模的过程来进行的。而力学是应用科学的一个重要分支,一种力学理论往往和相应的一个数学分支相伴产生,如:运动基本定律和微积分,运动方程的求解和常微分方程,弹性力学及流体力学和数学分析理论,天体力学中运动稳定性和微分方程定性理论等。因此,有人甚至认为力学应该也是一门应用数学。

2.数学建模是培养科学思维的基础

科学思维是以科学知识为基础的科学化、最优化的思维,是科学家适应现代实践活动方式和现代科技革命而创立的方法体系。科学思维的其他重要研究者Dunbar立足心理学视角指出,科学思维过程是建构理论、实验设计、假设检验、数据解释和科学发现等阶段中的认知过程。这个过程与数学建模完全吻合,因此数学建模是培养科学思维的基础。

许多的力学家同时也是数学家,他们在力学研究工作中总是善于从复杂的现象中洞察问题本质,又能寻找合适的解决问题的数学模型,逐渐形成一套特有的思维与方法。数学建模不单单是对某个问题或是某类问题的研究和解决,更重要的是一种思维的培养。科学思维的培养是科学素养的重要组成,是科学教学的核心内容。

3.数学建模对培养学生的创新能力具有重要作用

数学建模是一个分析问题和解决实际问题的过程,从数学理论到应用数学,再到应用科学,它为培养学生从实践到理论再从理论回到实践的能力,创造了十分有利的条件。数学建模的过程是一个不断探索的过程,因此,数学建模竞赛是培养学生综合能力和发挥创新能力的有效途径。

创新可以是前所未有的创造,也可以是在原有基础上的发展改进,即包含创造、改造和重组等意思。数学模型来源于错综复杂的客观实际,没有现成的答案和固定的模式,因此学生在建立和求解这类模型时,从貌似不同的问题中抓住其本质,常常需要打破常规、突破传统。可以说,培养学生的创造能力始终贯穿在数学建模的整个过程。在数学建模的过程中体现了知识的创新、方法的创新、结果的创新和应用的创新。

三、数学建模在力学教学中的现状

数学建模教育在我国取得了长足的发展,越来越多的本科、专科和高职学院开设了数学建模课程,但普及率并不高,并且大部分学校只针对特殊专业开设,如中南大学物理升华班,湖南师范大学数学与应用数学专业等。

在学习力学之前,学生对数学建模的了解主要来自于高校对数模竞赛的宣传,所知有限。教师应在本科第一堂力学课上帮助学生树立正确的数学建模概念,将数学建模贯穿整个教学过程。在教学过程中重视数学建模思维的培养,联系实际力学问题培养学生的创新能力。

参考文献:

[1]孙琳.浅析数学建模[J].大学数学,2007,23(05):129-134.

[2]米广春.科学思维培养的实证研究:MBD教学模式的建构及其影响[D].华东师范大学,2011:28-35.

[3]晁增福,邢小宁,周保平.数学建模对大学数学教学的影响[J].大众科技,2011(06):179-182.

[4]李大潜.从数学建模到问题驱动的应用数学[J].数学建模及其应用,2014,3(03):1-9.

[5]杨四香.浅析高等数学教学中数学建模思想的渗透[J].长春教育学院学报,2014,30(03):89-95.

[6]刘唐伟,熊思灿,乐励华.大学生数学建模竞赛与创新能力培养[J].东华理工大学学报:社会科学版,2008,27(01):77-79.