前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的数学建模的分析方法主题范文,仅供参考,欢迎阅读并收藏。
一、数学建模思想的内涵分析
数学建模思想产生于上个世纪的六七十年代,在“新数运动”和“回到基础”的数学教学研究之后,数学教育的问题意识逐渐增强,数学建模作为问题素养培养的重要方法也逐渐被人们所认识到。在我国,以华罗庚为代表的数学家通过中学数学竞赛与数学讲座等方式向中学生介绍数学建模思想,虽然此时并没有明确采用数学建模的名称,但数学建模在解决数学问题中的应用已受到重视。在几十年的发展过程中,数学建模思想取得了很大发展。目前,我国初中数学建模思想在初中数学教育中广泛应用,新课程改革和素质教育的实施,推动了学生数学应用意识的加强,促进数学建模的教学方法的应用。但由于教师教育理念的陈旧和教学方法的不科学,导致数学建模思想的应用受到限制。数学建模思想的重要性在于以下几点:
首先,数学建模思想作为一种学习方法,可以将初中数学知识结合起来,在知识的相互渗透中挖掘出数学学习的规律。数学建模是一种综合性较强的数学解题方法,初中数学建模教学中,不仅包括实际的生活内容,还包括了多种学科,数学建模的范围比较广阔。
其次,数学建模可以简化信息。数学建模的目的是将繁杂的数学信息通过科学的模型直观反映出来,将问题的主要方面表现出来,以所学知识对问题进行解读。数学建模能够让学生体验建模的过程,教师将建模思想传授给学生,让学生在小组讨论中找出最佳的建模方法,将学生的独立思考和团队合作结合起来,为学生的建模活动提供良好的空间。
再次,数学建模将简化后的信息抽象为数学问题,利用已知条件,对数学问题进行分析,以数学思维将文字语言数学化,以解决问题,通过模型的建立,以简化、抽象的方法将数学学习中的问题进行有效解决。再者,数学建模强调教学中的因材施教,对学生的学习水平和认知差异进行分析,发挥学生的学习潜能和优势,提高学生的数学思维能力。
最后,数学建模的应用性强。随着经济社会道德快速发展,数学知识已深入到人们生产生活的各个方面,数学思维能力及数学应用能力的要求也越来越高,数学建模思想不仅能提高数学应用能力,还能极大促进数学思维能力的发展。在高考应用题解答中,建模思想能够方便学生的解题,情景模拟式的考题形式,对学生的语言能力及数学分析能力要求较高,数学建模思想体现了素质教育对学生全面发展的要求。
二、数学建模的实施步骤
(一)审题,即建模准备阶段
在初中数学的学习中,首先应仔细阅读题目,对问题的背景进行分析,将相关的已知数据进行整合,分清题目中的已知量与未知量之间的关系。在审题过程中,一定要把握住题干中关键字词的数学含义,如增加、减少、不大于、不小于、至少等等。在审题过程中,可以在头脑中形成一套解题思路,再根据已知量情况,选择最佳的问题解决方法。初中数学的审题有一定的难度,教师应引导学生对题目进行分析,找出问题的关键内容,提取有用的解题数据。在这个过程中,教师应加强对学生阅读能力的培养以及数学思维的培养,将形象繁杂的语言转化为抽象简洁的数学语言,为建模和解题做好准备工作。
(二)建立数学模型
在对题目信息进行准确分析之后,就应该着手建立数学模型。将繁杂的语言文字抽象化为简洁的数学语言,从题干中提取相关的数量关系,将该数量关系以数学符号或数学公式进行分析,从而建立起一个完整的数学模型。数学建模过程对学生来说有一定的难度,对于比较抽象的模型或相对复杂的建模方法,教师应先给出相应的范例,同时可以采取小组讨论的方法来激发学生的学习兴趣,根据学生的建模类型的适用性、可行性、效率等进行对比分析,根据题目类型选择最恰当的数学模型。
(三)求解数学模型
根据已建立的数学模型,运用所学知识选择最佳的问题解决方法,简化运算方式,以最短的时间求解出该问题的解。同时,应对求解过程中的变量范围和其他限制性条件予以注意。在模型求解过程中,应该重视算法简化及工具的使用,还包括跨学科知识的应用等方面的内容也应该予以重视。教师可以充分利用模型求解的过程,拓展学生的知识面,激发学生的学习兴趣和欲望,培养学生的数学思维。模型求解过程的难度不是很大,可以通过学生独立完成或者在分组中完成。
(四)模型验证
通过问题的求解,检验该求解结果是否与实际要求相符合,同时也应对该求解结果与数学模型的匹配性进行检验,实现最佳解决方案的实施。模型验证应在具体的问题中来检测,以实际问题现象和数据对结果进行分析,保证模型结果的适用性、合理性和准确性。如果检验结果不符,则要修改模型结构,通过不断改进以符合实际情况。模型验证环节是学生最易忽略的地方。在数学模型求解完成之后,由于模型与实际问题存在着一定地位问题,导致模型设计的不合理。这些都需要在模型验证过程中予以解决。因此,在模型求解完成之后,教师应要求学生将模型与公式对照检验,发现模型存在的问题,进而解决问题。在多次的测量中,得出比较准确的解题结果,之后则可以进行模型参数变化及扩展等教学内容。
三、数学建模的实施效果
[关键词]数学建模;商务数据分析与应用专业;实施路径
前言
数学模型是连接实际问题与数学问题的桥梁,是对某一实际问题,根据其内在规律,作一些必要的简化与假设,运用适当数学工具转化为数学结构,从而用数学语言描述问题、解释性质、预测未来,提供解决处理的最优决策和控制方案。数学建模是架设桥梁的整个过程,是从实际问题中获得数学模型,对其求解,得到结论并验证结论是否正确的全过程。数学建模是用数学语言和方法,借助数学公式、计算机程序等工具对现实事物的客观规律进行抽象并概化后,在一定假设下建立起近似的数学模型,并对建立的数学模型进行求解,然后再根据求解的结果去解决实际问题。在这个过程中要从问题出发,充分发掘问题内涵,按照问题中蕴含的内生动力,寻求合适的模型,经过实践检验后多次修改模型使之渐趋完善,同时还要进行因素灵敏度分析,找出对问题影响较大、更大或最大的因素。随着社会的发展,大数据时代的来临,数学建模越来越引起人们的重视,很多高校将数学建模纳入课程体系之中,以提高学生运用专业知识、数学理论与方法及计算机编程技术综合分析解决问题的能力,特别是数学建模竞赛能有效提升学生的计算机技术与运算能力、团队协作能力、写作表达和创新实际能力。近年来,随着互联网技术的迅速发展,形形的数据环绕着我们,数据分析方面的人才需求陡增,造就了商务数据分析与应用专业的问世。商务数据分析与应用专业虽是2016年才增补的新专业,但它是一个跨数学、电子商务、计算机应用等学科的边缘专业。培养主要面向互联网和相关服务、批发、零售、金融等行业,掌握一定的数理统计、电子商务及互联网金融相关知识,具有商务数据采集、数据处理与分析、数据可视化、数据化运营管理等专业技能,能够从事商务数据分析、网店运营、网络营销等工作的高素质技能型人才。商务数据分析与应用专业的学生毕业后主要从事电商数据化运营过程中的数据采集与整理、调整与优化、网店运营与推广等工作。从2019年开始1+X证书制度试点工作拉开了序幕,职业教育迈入考证新时代,商务数据分析与应用专业作为第二批试点专业正在如火如荼地进行着,这将拓宽学生就业创业渠道,提高学生就业创业本领。但作为一名优秀的数据分析师要对数据敏感,熟知业务背景,认知数据需求,具有超强的数据分析与展示能力。若将数学建模融入商务数据分析与应用专业的人才培养体系中去,不仅使学生运用数学思维解决问题的能力得到提升,更使学生思路变得富有条理性,让学生养成敏锐观察事物的习惯,对学生的未来发展产生深远的影响。
1将数学建模融入商务数据分析与应用专业的可行性分析
将数学建模融入商务数据分析与应用专业不是牵强附会的关联,具有一定的可行性。
1.1在课程体系上具有可行性
数学建模是源于实际生活的需求,借助于数学的思维及知识去解决问题,需要学生具备一定的数学基础和计算机编程相关知识。商务数据分析与应用专业的课程体系中含有统计基础、数理统计与应用、C++、数据分析与处理等课程为学生学习数学建模奠定了基础。
1.2在教学团队上具有可行性
数学建模相关课程需要一支专业基础扎实、年轻、富有创造力的教学团队。教学团队中的教师不仅要有较为宽广的数学知识,也要具备较强的计算机编程和操作能力,这样才能培养学生从实际问题中刻画问题的本质并抽象出数学模型的能力。我校商务数据分析与应用专业的数学建模相关教师共9人,由来自于统计专业、计算机专业、电子商务专业等专业背景的教师组成,完全可以胜任数学建模相关课程的教学与指导。
1.3在教学环境上具有可行性
本专业校内教学条件比较完善,校内实训室基本上能够满足所有专业课程及专业实操课程的教学需要,学生可以在仿真的环境中进行练习。鉴于现有校外实训基地的实习内容与学生所学专业并不对口或融合度较低的现状,学校还要积极拓展校外实训衔接度高的校外实训基地,让学生真正参与到企业活动中去,着实提升学生的商务实践技能。校内教学条件完全可以胜任数学建模相关课程的教学。
2将数学建模融入商务数据分析与应用专业的实施路径
任何的教学改革都不是一蹴而就的,是时间沉淀出来的产物,从无到有、从有到优需要一个漫长的过程。要将数学建模融入商务数据分析与应用专业,需要从课程体系、教学团队、管理制度等方面着手。
2.1构建数学建模的课程体系
将数学建模融入商务数据分析与应用专业,首先要制定融合数学建模的人才培养方案,明确数学建模在培养方案中的知识、素质、能力等培养目标和要求,设置数学建模在教学计划中的相关理论、实践等教学环节的课时与学分分配。对大一学生增设数学建模课程,将数学建模与统计学、经济应用数学并行教学,其中涉及数学建模思想、基本数学模型、Matlab软件入门等内容,使学生了解几类基础的数学模型、常规的数学建模步骤及方法。在教学中加入商务数据分析案例,根据问题需求先建立数学模型,然后通过Matlab编程求解出结果,并运用软件进行计算、仿真和模拟,这样将数学建模、数学实验和商务数据分析三者有机衔接起来,不仅可以激发学生的学习兴趣,提高学生运用数学建模进行商务数据分析及预测的能力,也为之后的数学建模竞赛铺路。
2.2组建数学建模的教学团队
数学建模的教师不仅要熟悉初等几何、微分方程、优化、图与网络、概率等机理分析性建模,还要熟悉统计、预测、检测等测试分析性建模;不仅要掌握差分方程、插值与拟合、回归分析、线性规划等数学建模方法,还要熟练掌握Matlab、LINGO等各类建模语言的使用。作为数学建模的教师,面对商务数据方面的实际问题,要全面深入细致地了解问题的背景,准确无误地明确问题的条件,在查阅、收集、阅读掌握相关的数据、信息和资料的基础上,清晰准确地形成问题的主要特征,初步确定模型类型。然后根据特征和目的,找到问题的本质,忽略一些次要因素,给出必要的、合理的简化与假设。在分析与假设的基础上,利用数学工具和方法,描述对象内在规律,建立变量间关系,确定数学结构,建立商务数据的问题模型。数学建模的一系列过程需要教学团队的合理分工与协作,在日常教学过程中既要重视数学理论,又要重视实践案例教学。使学生了解基本的数学模型和编程思想,把教学重心放在案例的分析、模型的选择、程序的实现、灵敏度的分析等过程之中。通过对大量问题的数学模型的建立及计算机编程的求解,让学生触类旁通地处理一些实际问题,使学生体会到数学的魅力所在及学以致用的道理,从而提高学生商务数据分析与应用能力,为学生今后的创新创业奠定基础。教学团队不仅要完成数学建模相关课程的教学,还要加强数学建模教学的研究和应用,加强与外界的交流,推动教学改革,以提高数学建模的水平和质量。
2.3成立数学建模的学生社团
除了数学建模融入商务数据分析与应用专业教学之外,还可以在学校成立数学建模社团,吸纳学校中对数学建模感兴趣的学生,特别是商务数据与分析专业的学生进入社团。由数学建模老师定期对社团学生进行指导,将数学建模相关的数学公式、数学方法,数学建模的流程,竞赛论文的撰写要领,编程技巧等以讲座的形式传授给学生。同时,社团学生之间成立互助小组,互助小组中选择商务数据分析与应用专业的学生为组长,由组长带领其他组员共同探讨数学建模的学习方法与技巧,分享数学建模的编程技术与相关资料,交流数学建模的解决问题的思路。这样由一个专业带动多个专业,一个社团辐射到整个学校,在提高学生的数学建模能力的同时,也为数学建模竞赛选拔人才做好准备。数学建模社团的建立在丰富学生业余生活的同时,也给那些对数学有兴趣的学生提供了一个相互交流的平台,不仅可以开阔学生数学发现和研究的思维,还可以加强数学理论与实际问题之间的联系,提高学生运用数学思维方式解决实际问题的能力。
2.4参加数学建模的相关竞赛
为了更好地发挥数学建模在培养大学生创新创业能力过程中的引领作用,学校组织学生参加数学建模的相关竞赛,并将其发挥到极致。大学生数学建模竞赛是提高学生数学建模能力最好的平台,美国在1985年开始创办数学建模竞赛,我国大学生于1989年开始参赛并逐步成为参赛主体,到2019年共有15个国家25370队注册参赛,其中中国大陆地区代表队约占98%。我国第一届大学生数学建模竞赛(CUMCM)于1992年创办,2019年1490校区42992队报名参赛,现已呈现出一派繁荣景象,其他数学建模竞赛,如:深圳杯、电工杯等也如火如荼地开展起来。想在竞赛中取得优异的成绩是一个系统的工程。数学建模参赛团队通常由3名学生组成。在学生选拔时,就要综合考虑学生的知识、能力、性格等因素,这3名学生不仅要有较好的计算机技术与运算能力,更要有吃苦耐劳的精神和较好的团队合作意识。在教学指导时,不仅为学生讲解一些基础的数学建模方法和技巧,更要注重综合分析解决问题、逻辑思维、语言文字理解与表达、科研创新等能力的培养。在模拟训练时,指导教师严格把关,让学生合理安排三天时间在网上查阅资料,分析问题之后建模与解答,检验与分析,再完成竞赛的论文的写作。通过多次有针对性的模拟训练,学生摄取新知识、新技能的能力得到提升,定量与定性分析的思维能力得到锻炼,责任意识得到加强,自主学习的习惯逐渐养成,不畏艰难的品质得到磨练,团队创新能力得到提高。指导教师通过对数学建模的研究和学生的指导,教学相长,自身的建模能力也将得到大幅提升。面对一些实际的商务数据问题,能够通过建立一些相关的数学模型,探索出解决实际问题的方案,并从这些方案中选择出最合理、最科学、最恰当的方案。
2.5搭建数学建模的管理体系
将数学建模课程融入商务数据分析与应用专业难度不大,但是要让学生组队参加数学建模竞赛并出彩,就需要学校领导重视及相关职能部门支持,在校内建立健全数学建模管理制度,如将数学建模竞赛作为二级学院考核指标、数学建模指导教师的工作量计算办法、学生在奖学金与评先评优等方面优先考虑等。只有建立健全校内管理体系,才能激励更多的教师主动承担数学建模相关课程的教学,参与数学建模社团的指导,同时激发学生学习数学建模的兴趣与参加数学建模竞赛的积极性。
【关键词】数学;模型;建模
近几年,随着数学建模教育的运用和扩展,数学建模能够让学生的创新意识和实践能力得到提高,已经得到了大家的肯定与认可。在人教版高中数学教材中,专家就对数学模型和数学建模提出了明确的概念,并对数学建模的过程和应用提出了相应的要求。但在实际的数学教学过程当中,由于我国边远少数民族地区很多高中学生、汉语理解能力较差、社会阅历较浅,做不到把实际问题和数学原理相结合,造成许多数学题目学生无法理解题目真实意义,更不用说建模和解题了。为此,如何在教学中构建建模教学思想并以此来提高学生的数学学习兴趣和学习成绩,我认为应该做到以下几点。
一、数学建模教学就是要让学生明白数学建模的概念,数学建模思想在解决实际问题中的作用
数学建模是把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解来解释现实问题。教学建模的目的是体会数学的应用价值,全面培养学生应用意识;增强学生对数学这门科学的学习兴趣,重视团队的合作,在分析问题和解决问的能力上得到有效的提升,知道数学知识的发生过程,培养学生建立良好的创新意识和能力。数学建模的具体分析方法主要有:①关系分析法,通过寻找关键量之间的数量关系的方法来建立问题的数学模型方法;②列表分析法,通过列表的方式探索问题的数学模型的方法;③图象分析法,通过对图象中的数量关系分析来建立问题的数学模型方法。在高中阶段通常利用另外一种数学模型来解应用问题:①建立几何图形模型;②建立方程或不等式模型;③建立三角函数模型;④建立函数模型。另外数学建模是数学学习的一种创新学习,这种学习让学生有了一定的自主学习空间,在学生应用数学解决实际问题的过程中获得其中的价值和作用所在,体验数学与日常生活和其他学科的联系,增强应用意识;用理论知识来解决实际问题,可以很好的增强学生的学习兴趣,使他们在创新意识和实践能力上得到有效的提升。
二、数学建模教学要从实际问题中出发并加以提炼,从而强化学生数学的应用意识和建模的应用能力
数学建模就是要理论联系实际,它主要包括;一是从实际问题中抽象出数学模型;二是利用数学模型来求解;三是结合数学模型解决实际的问题。实际问题在数学建模的教学中有非常重要的作用。例如:小明拿着20元钱去打长途电话,电信部门规定,通话前3分种内收2.4元,3分种后每分钟按1元收费,小明这20元最多能通多长的电话?这道题目知识点是考察学生对函数的概念认识及函数解析式的应用,那我们建模可以利用函数图象建模或列表建模,并利用图象模型或列表模型得出题目解,同时还可以利用图象和列表模型检验问题的解。再例如:学校要举办一次篮球比赛,如果全校共有24个班,每个班都要进行一场比赛,问:学校一共要组织多少场比赛?另外为公平期间,各年级之间每班都举行一场比赛(高三9个班级,高二7个班,高一8个班)问需要多少场比赛?这是一道排列组合题目,在第一问中我们先假设高一(一)班先和其他班级比赛,那么高一(一)班共要比赛23场[数学公式(n-1)]场那么全校要1/2x24x(24-1)[数学公式1/2*n(n-1)]场,对于这一题目我们也可以利用图像来分析演示(仍然是数形结合思想),并还可以用图像来分析判断所列代数式正确性。第二问我们同样可以用第一问中相同的数学方法来求出答案(解法略)。通过以上例题,我们可以看出数学建模教学尽量是从生活的实际需要出发,让学生在掌握知识的同时,也让学生了解为什么要学数学建模,数学建模对我们解决现实问题有何帮助,以及怎样将知识和实际相联系等。
三、数学建模教学要结合实际和有因地制宜的思想
因材施教原则是教育教学的一条基本原则,在高中数学建模教学中教师要结合实际因地制宜进行数学建模教学。首先要选择学生身边的实际问题进行数学建模,这样:一是容易使学生建立比较好的、考虑比较周全的数学模型(只有熟悉问题,才可能考虑周到);二是容易使学生真正体会到数学的应用。其次要依据学生学习过程的认识原则,数学建模教学的内容和方法需要经历一个逐渐深入、提高的过程,应该随着学生思维能力的增长,逐步提出更高的教学目标。再次要根据每个人的认识结构不同,而以不同的方法施教。
四、数学建模教学要提高认识和先行思想
数学建模教学活动是有效培养学生能力,促进应试教育向素质教育转轨的重要过程。它对提高学生的学习兴趣,培养学生应用数学进行分析、推理、证明和计算的能力,用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力都有很大的效果。为此,数学建模教学可以看作为新课程改革下教师在数学教学中的另一种模式。目前高中数学教科书中虽增加了部分利用建模来进行研究的探究问题,但实际教学中除高中数学课本中的学生“阅读材料”内容外,“现成”的数学建模内容非常少,再加上数学建模需要一定的汉语理解能力和数学思维构造能力。为此,在这种情况下教师需要具备数学建模教学的意识,这样才能在日常的教学过程中用自己的意识感染身边的每一个学生,使学生能自主利用现有的知识自主构建数学模型,在数学的王国中自由驰骋。
【参考文献】
[1]新人民教育出版社《中学数学教学课程标准》
【关键词】会计模型;会计建模;会计领域;综合性分析方法
一、提出背景
自从萨缪尔森把数学分析引入经济学领域后引起了经济领域的突破性变革,不仅解决了经济问题的困惑所在,而且也开启了数学在经济领域应用的划时代大门。随着数学的不断发展进步,1992年兴起了数学建模,在期间的20年里,数学建模处理解决了不同领域的复杂繁琐问题,攻克了许多领域的变动连续性难题,集成优化地解决得出了时效变化发展中的难题结果,为各领域的集优化速发展做出了应用性贡献。
而今,国民经济的各个领域及大型企业集团的技术人员等都运用相关模型进行分析。从会计科学技术的发展角度来看,不少新的分支学科出现了,特别是与会计相结合产生的新学科,如环境会计、绿色会计、土地会计等;同时,会计电算化发展至今已有30年的历程,我国已步入了会计信息化时代,现代信息技术与会计相融合而成的会计信息化管理信息资源,为对其进行获取、加工、传输等方面的处理提供了信息资源,实现了高度自动化和信息高度共享,使得信息技术的运用给会计建模带来了可行性。所以,作为现代会计,必须用应用会计知识等构造会计模型形成会计建模解决实际问题以适应经济时展的需要,并在会计研究与分析解决中作为独立出来的一个分支―会计建模。
二、问题提出的时代背景意义
会计被称为“通用的商业语言”,经济越发展,会计越重要,其是一个经济信息系统。随着会计文化的新起深化,会计建模是增强会计文化理解与传播及可读性的有力途径;而会计发展至今,会计具有预测经济前景、分析经济发展动态等效果与作用,会计作为一个经济信息系统和知识综合体系,对促进市场经济和现代企业制度的充分发展完善起着极为不可替代的作用。
会计已有三千多年的历史,经历了由古代的手工记账到信息化下的会计核算软件记账的过渡性发展阶段,期间所演化重组而成的新信息的生成方式程序及处理解决方法也因经济等环境不同而异。同时,会计要对会计现象进行解释和预测的实证研究和对不同层次的经济政策、会计政策作出最佳的规范选择,是一个规范分析和实证分析相结合的鲜明实践过程,也是进一步解决最佳会计理论、方法、程序在实践应用中的一个研究探讨过程。
经济波动变化产生的原生、次生信息数据交互组合而成的衍生错综信息严重影响了会计信息可靠计量下的准确完整性程度,给会计职业判断力的偏离造成了重要阻碍,而会计建模是一种解决各种复杂而又实际问题的十分有效的工具,信息化下,大量复杂的数值计算(如成本计算)、图形生成以及优化统计等工作需要运用建模方法来集成优化的处理解决以得到理想的实际结果。
三、问题概念解释
会计建模是根据研究需要针对实际问题组建会计模型的动态过程,其实质是会计理论、应用与所研究的实际问题相结合的结果。
会计模型是应用会计、数学等知识和计算机结合解决实际问题的一种工具,为了解决某种问题,通过简化抽象实际问题使用字母数字等会计符号或会计语言建立起来的等式、不等式及图表、框图等对实际问题现象的一个近似的客观描述事物特征及内在联系,以便于让人们更直观地认识所研究探讨的对象的一种会计结构表达式。
会计模型与会计建模是应用会计理论、数学和计算机等解决实际问题的工具,建立在会计理论、数学与实际问题之间。
会计建模是数学及其建模在其应用领域中独立出来的专门用于处理解决会计领域信息等一系列问题的一种专业化新兴建模方法,其是一种专门用于处理分析数据信息进而解决出精确结果的应用于会计领域的新方法。
四、基于数学建模视角下的会计建模研究问题的分析步骤及其特点步骤
(一)分析步骤
(1)对于问题条件尚不完全明确的,在建模中应通过各种假设来逐步问题明确化,以通过假设达到实际状态;
(2)在对实际问题进行分析时得到完全确定的条件下,需要对给出的问题进行恰当分析,以客观全面地反映问题的实质因素;
(3)在问题分析中需要考虑一些随机因素,需要借助计算机进行模拟实验处理,以排除随机因素的波动干扰对实际结果的非正态分布影响。
(二)建模特点
(1)结论具有通用性、精确性、深度性及层次性;
(2)在现实的具体问题中的可行性的实施程度高,在建模过程中排除了各种实际影响因素,是建模在各种趋同实际的假设条件下进行的;
(3)复杂的实际问题的建模过程需要反复迭代、验证及误差修正才能得到满意的实际模型;
(4)所建立的模型在现实的具体问题中具有较高的理想接近程度;
(5)具有高度的逻辑思维抽象性,对现实问题对象的分析要更全面、更深入、更有条理性等,是多角度化下的多元分析思维的处理结果。
(三)会计建模大致步骤
摘要关键字引言(问题重述)提出背景文献回放(模型准备)样本选取模型假设变量解释变量说明与约定模型建立模型介绍指标模型体系的建立模型数据处理与分析模型求解模型评价模型检验原因探析实证分析结果(描述性统计相关系数分析多元回归分析)对策及建议(结论)模型应用参考文献附录(图、表、计算机程序)。其中模型准备阶段就是相关理论模型概述,如Logitic模型、灰色系统理论模型、时间序列分析模型、序列平稳性分析等;模型数据处理与分析、模型求解等需运用计算机软件及技术。
五、数学建模思路方法在会计领域应用的具体分析
孙晓琳(2011)在《终极控股股东对公司投资行为影响的理论分析》中的“基于终极股东控制权私有收益的公司投资理论模型”分析时采用了“模型假设变量设置模型构建模型分析”中的数学建模思维步骤。
齐晓宁、申江丽(2011)在《注册会计师非审计服务与审计独立性关系分析》中的“注册会计师非审计服务与审计独立性关系的实证研究”分析时采用了“研究假设样本选择与数据来源研究模型与变量假设设计(被解释变量解释变量控制变量)统计结果(描述性统计模型结果统计)实证研究结论”的数学建模思路路径。
刘宏洲(2011)在《财务危机预警的Z计分模型实证研究》中采用了“研究设计(研究模型研究假设样本选择与数据来源)实证结果的分析解释与解释模型评价”的数学模型路径,实证了分析结果。
综上种种理论研究表明,研究者在进行问题分析、研究、处理及解决过程中都或多或少的融入运用了数学建模中的思路方法,其中数学建模中的模型评价与改进方向就是会计建模的研究不足与研究方向。其解决得出的结果步骤极具严谨说服力,结论结果的实际误差率较小,是一种极为理想的最低误差率精确结果。
由综上也可以看出,数学建模中的方法已经融合到了会计领域,并在会计领域中的复杂问题解决中发挥了极为核心环节的作用,多数会计研究中,在分散独立地解决某一问题时用到了会计建模中的模型方法,如层次分析法等;其优点得到了众多研究者的认可积极运用及研究方法思维深入研究者们的思维。
总之,以上种种建模思路方法在会计领域的具体灵活、综合而广泛运用,表明了建模思路在会计领域相融性的相关联运用地成熟与完善,充分说明了建模自身兼容型的适强大合和在会计领域应用的广阔发展前景,证实了建模在会计领域应用酝酿的完善成熟。
六、对会计建模的可行性认识
首先,会计建模是一种综合分析法,集合了各个独立于某方面、某领域的核心系统分析法。其由单一模型向多角度散射模型演化的集合拟集综合法,是一种以具体客体分析法为基础,综合其他独立的会计分析法,集成了其他适用会计分析的方法及系统运用各种辅助分析法,把各独立的会计分析法通过相关联度的大小连结成一个多角度多层次多思维为出发点的综合结构体系统分析法,把最有可能影响精确结果的内外在因素都做假设成变量假设,都进行变量假设环节的变量假设循环。
其次,会计建模是以会计信息数据为基础、市场经济动态环境发展变化为考察点、以数学建模的思想为带动理论指导点、以计算机技术与工具等为依托,进而构成一个集数学、计算机等与会计相结合于一体的核心建模论文的处理解决复杂问题的综合系统结构框架,是不同角度多变量误差拟合修正优化模型。
最后,计算机尤其会计电算化等处理工具与分析技术的强大与不断进步更新及科学技术的不断发展进步和计算机的迅速发展普及,大大增强了会计解决会计问题的能力,为会计建模所需数据与信息的处理分析提供了强大的物质源泉支持。同时我国市场经济的不断发展与完善活跃,为会计数据信息的获取提供了原始来源,经过技术工具加工处理过的数据信息具有真实完整、可靠计量的属性,为会计信息数据的获取途径与扩大时空间分布提供了便利;相关分析方法的广泛与活跃交叉运用加强了其在会计建模中的运用强度与可运用操作度,为相关分析法在会计领域的应用提供了分析方法和理论基础。
七、结论建议及展望
由于各种分析处理工具与技术的进步更新成熟为获取多方面多角度不同来源的会计信息数据提供了时间与空间分布上的基础,为各种会计信息数据的加工提炼处理提供了便利条件,为用会计建模解决实际变化的复杂研究对象问题提供了有力条件;同时为了会计信息数据及结果的准确误差性最优小及接近程度准确的预测会计领域中的发展态势及变化波动状况而提出运用会计建模来处理解决复杂系统实际问题。为此,为了适应时代新经济制度的市场经济体制的会计经济趋速发展的趋势,本文正式提出数学建模在会计领域转化为会计建模的呼吁与号召。
会计建模建立在一定的理论与实践基础上,更需要进行充分的各项准备工作才能顺利实施开展,相信会计建模是今后研究解决会计棘手问题的主流,也坚信会计建模受到重视与关注并成为高校、研究机构、研究人员等的主要研究方法。
参考文献
[1]孙晓琳.终极控股股东对公司投资行为影响的理论分析[J].会计师,2011(10):111~112.
[2]齐晓宁,申江丽.注册会计师非审计服务与审计独立性关系分析[J].会计之友,2011(10):
58~60.
[3]刘宏洲.财务危机预警的Z计分模型实证研究[J].会计之友,2011(10):83~84.
[4]薛毅.数学建模基础[M].北京:北京工业大学出版社,2005(1).
[5]葛家澍等.会计大典第1卷[M].会计理论[M].北京:中国财政经济出版社,1997(12).
关键词:数学建模 数学应用意识 数学建模教学
一、数学建模是从现实问题中建立数学模型的过程。
在对实际问题本质属性进行抽象提炼后,用简洁的数学符号、表达式或图形,形成便于研究的数学问题,并通过数学结论解释某些客观现象,预测发展规律,或者提供最优策略。它的灵魂是数学的运用并侧重于来自于非数学领域,但需要数学工具来解决的问题。这类问题要把它抽象,转化为一个相应的数学问题,一般可按这样的程序:进行对原始问题的分析、假设、抽象的数学加工。数学工具、方法、模型的选择和分析。模型的求解、验证、再分析、修改假设、再求解的迭代过程。
数学建模可以提高学生的学习兴趣,培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。具体的调查表明,大部分学生对数学建模比较感兴趣,并不同程度地促进了他们对于数学及其他课程的学习.有许多学生认为:"数学源于生活,生活依靠数学,平时做的题都是理论性较强,实际性较弱的题,都是在理想化状态下进行讨论,而数学建模问题贴近生活,充满趣味性;数学建模使我更深切地感受到数学与实际的联系,感受到数学问题的广泛,使我们对于学习数学的重要性理解得更为深刻"。数学建模能培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。由此,在高中数学教学中渗透数学建模知识是很有必要的。
二、那么当前我国高中学生的数学建模意识和建模能力如何呢?
学生数学建模意识和建模能力的现状不容乐观。学生在数学应用能力上存在的一些问题:(1)数学阅读能力差,误解题意。(2)数学建模方法需要提高。(3)数学应用意识不尽人意数学建模意识很有待加强。新课程标准给数学建模提出了更高的要求,也为中学数学建模的发展提供了很好的契机,相信随着新课程的实施,我们高中生的数学建模意识和建模能力会有大的提高!
三、那么高中的数学建模教学应如何进行呢?
数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。不同于传统的教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力。数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。
中学数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的方法,为将来的学习、工作打下坚实的基础。在教学时将数学建模中最基本的过程教给学生:利用现行的数学教材,向学生介绍一些常用的、典型的数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。教师可以通过教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。
四、在教学的过程中,引入数学建模时还应该注意以下几点
应努力保持自己的"好奇心",开通自己的"问题源",储备相关知识。这一过程也可让学生从一开始就参与进来,使学生提高自学能力后自我探究。
将数学建模思想引入数学课堂要结合实际,这是关键。学生在课堂中解决的实际问题即建模材料必须经过一定的加工,否则有可能过于复杂,有些问题的数学结论可能偏离生活实际太多,也很正常。
数学课堂中的建模能力必须与相应的数学知识结合起来。同时还应该通过解决实际问题(建模过程)加深对相应的数学知识的理解。
[关键词] 大众化 数学建模 教学模式
一、数学建模大众化教学的必要性
进入21世纪,我国高校大量扩招,办学规模不断扩大,学生数量增多,水平也参差不齐,高等教育已逐步从昔日的精英教育转向大众化教育,高校数学教育观念也由“英才数学”转向了“大众数学”,其目的不在于培养数学家,而是以培养实用型、创新型人才为目标,侧重于培养学生的数学思想、数学方法和数学素质,使学生逐步具备应用数学的意识和能力,数学建模大众化教学正是实现这一目标的有效途径。
数学模型是关于部分现实世界和为一种特殊目的而作的抽象、简化的数学结构。数学建模就是构造数学模型的过程,即用为了认识客观对象在数量方面的特征、定量地分析对象的内在规律,用数学的语言、符号、图表等近似的刻画和描述实际问题,然后经过数学的处理,通过计算、编程等手段得到定量的结果,以供人们分析、预报、决策和控制等参考。数学建模已渗透到社会、经济、环境、生态、医学、地质和工程等各种广泛的领域,成为对研究对象的特性进行系统研究所不可缺少的基础。数学建模是数学知识和应用能力共同提高的最佳结合点,是启迪创新意识和创新思维、锻炼创新能力、培养高层次人才的一条重要途径;也是激发学生欲望,培养学生主动探索、努力进取的学风和团结协作精神的有力措施。
目前,全国大学生数学建模竞赛已成为真正的“一次参与,终生受益”、面向全国高等院校每年一届的规模最大的传统竞赛。参加竞赛有利于培养学生的想象力和自学能力,有利于培养学生的团队精神和协作意识,有利于培养学生的自主创新能力和应用能力,有利于大学生顺利地踏上工作岗位并很快适应工作。但竞赛毕竟是竞赛,参加竞赛的同学较在校生而言仍是很少的一部分,实现数学建模大众化教学是全面培养学生数学素质,提高学生自主创新能力和应用能力的重要方式,是实现大众数学的有效途径。
二、数学建模大众化教学模式的研究和实践
数学作为一门科学,一个基础,一个工具,在人们的日常生活及生产建设中发挥着非常重要的作用。大学数学教育的任务是通过教学活动让学生学习、掌握数学的思想、方法和技巧,并能学以致用。作为工科院校的一个分校区,针对当前学生的层次和校区现有条件,我们对数学建模课的教学模式进行了调研、分析对比和探讨,进行了以下探索工作。
1.数学建模思想在数学类主干课程中的渗透。面向一、二年级的学生,将数学建模思想在高等数学、线性代数和概率论与数理统计课等主干课程中渗透,尝试改变传统的数学课的教学方法和教学内容,利用现代多媒体技术和各种计算软件,遴选典型案例库,穿插到正常的授课过程中,宣传数学建模,将数学学习与丰富多彩、生动活泼的现实生活联系起来,使他们了解数学有什么用,怎样用,并让他们体会到,真正的应用还需要继续学习,数学不是学多了,而是还远远不够,激发他们学习数学的兴趣、积极性和主动性。
2.开设选修课。数学建模是一个非常复杂的过程,学生不但需要掌握建模的主要类型和方法等数学知识,更需要掌握常用软件(如Matlab、Lingo等)的使用方法、计算机操作能力和组织写作能力。我们在校区范围内,利用课外活动时间,开设了《数学建模》、《数学实验》和《数学模型优秀案例》三门选修课,涉及到的主要建模方法有:线性规划、整数规划、非线性规划、动态规划、排队论、图论方法、微分方程和差分方程方法、层次分析法、综合评价法、概率统计方法、回归分析法、对策论方法和灰色系统分析方法等。采用多媒体上课和上机相结合的授课方式,授课内容以案例教学为主,这样的教学过程,学生能亲身体会到,身边的实际问题是如何用数学方法解决的,感觉很有趣、有意义,学生学习的积极性大大提高。而且,学生在解决实际问题时,常常要借助数学软件求解,也激发了他们学习相关软件的自觉性。
3.数学建模兴趣小组活动。通过数学建模思想的启蒙和数学建模选修课的学习以及数学建模竞赛的影响,很多同学对数学建模产生了浓厚的兴趣。我们积极加以引导和鼓励,在校区范围内成立数学建模兴趣小组。小组活动比较自由,以自学、互相交流为主,主要目的是在校区范围内形成浓厚的数学建模氛围,让更多的学生参与进来。教师主要是针对实际问题的某一方面,提出小的问题,指导学生如何建立模型,并撰写小论文,学生也可以针对自己感兴趣的问题完成论文或报告。
4.竞赛集训。为了积极备战全国大学生数学建模竞赛,每年在校区范围内选拔一批比较优秀的学生(多数是选修课和数学建模兴趣小组的学生)组成数学建模研讨班,利用暑假为期两周左右的时间进行强化集训,内容一般是建模方法、软件使用和模拟练习。通过训练,大部分同学熟悉了竞赛的流程,掌握了竞赛论文的基本写法。根据集中学习结果,再选拔参加竞赛的队伍,并配备指导教师。
三、数学建模活动的启示
1.数学建模重在普及、重在过程、重在学生受益面。一年一度的全国大学生数学建模竞赛如期举行,很多学校都很重视,尤其重视竞赛获奖和名次,这也是提高和刺激数学建模上水平的强有力指挥棒。但数学建模是为了培养大学生的数学素质,培养学生用数学方法解决实际问题的创新能力,不仅仅是为竞赛服务,参加竞赛的同学毕竟是少数,所以数学建模活动的开展,重在普及、大众化,加大学生的受益面,不论水平如何,竞赛结果如何,重在学习的过程。
2.数学建模促进教学改革。几十年来,大学数学教学内容几乎没有明显的改变,重经典轻现代,重解析轻计算,重连续轻离散,重理论分析轻综合应用,重闭卷考试轻综合考查。数学建模的实践教学,充分利用计算机手段,将数学理论和实际问题相联系,让学生自己建立数学模型,自己在计算机上实现,学生真正成为教学的主体,提高了教学效果。数学建模思想在大学数学主干课程中的渗透,小模型、小案例的引入,将进一步推动数学教学改革的步伐。
3.数学建模促进科学研究。数学建模是“问题驱动的数学”。做好数学建模不仅要有扎实的数学知识,还要有经济、生物、环境、工程等专业知识,要熟悉常用的数学软件和仿真等计算机手段,这些都需要进行深入的理论研究。
数学建模大众化教学模式已从学生受益面、提高竞赛水平、推动教学改革、促进科学研究等方面取得了初步成效,我们将更加深入具体地研究,以期形成更加成熟的教学模式。
参考文献:
[1]赵静等.数学建模和数学实验[M].北京:高等教育出版社,2009.
[2]韩中庚.数学建模方法及其应用[M].北京:高等教育出版社,2009.
[3]乐励华等.数学建模教学模式的研究与实践[J].工科数学,2002.
关于树叶质量的建模与分析
封锁嫌疑犯的数学建模方法
正倒向随机微分方程理论及应用
数学建模与数学实验课程调查报告
基于肤色模型法的人脸定位技术研究
生猪养殖场的经营管理策略研究
从数学建模到问题驱动的应用数学
大学篮球教练能力评价的机理模型
基于WSD算法的水资源调度综合策略
关于地球健康的双层耦合网络模型
多属性决策中几种主要方法的比较
塑化剂迁移量测定和迁移模型研究进展
基于信息熵的n人合作博弈效益分配模型
混合动力公交车能量控制策略的优化模型
垃圾减量分类中社会及个体因素的量化分析
随机过程在农业自然灾害保险方案中的应用
“公共自行车服务系统”研究与大数据处理
天然气消费量的偏最小二乘支持向量机预测
微积分与概率统计——生命动力学的建模
美国大学生数学建模竞赛数据及评阅分析
微积分与概率统计——生命动力学的建模
在微积分教学中融入数学建模的思想和方法
2015“深圳杯”数学建模夏令营题目简述
字符串匹配算法在DNA序列比对中的应用
差分形式的Gompertz模型及相关问题研究
小样本球面地面条件下的三维无源定位算法
数学建模思想渗入代数课程教学的试验研究
基于贝叶斯信息更新的失事飞机发现概率模型
基于人体营养健康角度的中国果蔬发展建模
关于数学成为独立科学形式的历史与哲学成因探讨
深入开展数学建模活动,培养学生的综合应用素质
完善数学建模课程体系,提高学生自主创新能力
利用动态贝叶斯网构建基因调控网络的研究进展
地方本科院校扩大数学建模竞赛受益面的探索
城镇化进程中洛阳市人口发展的数学建模探讨
基于TSP规划模型的碎纸片拼接复原问题研究
卓越现场工程师综合素质的AHP评价体系研究
基于Logistic映射和超混沌系统的图像加密方案
嫦娥三号软着陆轨道设计与控制策略问题评析
嫦娥三号软着陆轨道设计与控制策略的优化模型
微生物发酵非线性系统辨识、控制及并行优化研究
含多抽水蓄能电站的电网多目标运行优化研究
连接我们的呼吸:全球环境模型的互联神经网络方法
垃圾焚烧厂周边污染物浓度的传播模型和监测方案
以数学建模竞赛为切入点,强化学生创新能力培养
一种新的基于PageRank算法的学术论文影响力评价方法
基于视频数据的道路实际通行能力和车辆排队过程分析
关键词:应用型人才;数学建模;教学平台
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)06-0035-03
一、对应用型人才内涵与数学建模实践活动的深入认识
应用型人才是一种能将专业知识和技能应用于所从事的专业社会实践的一种专门的人才类型,是熟练掌握社会生产或社会活动一线的基础知识和基本技能,主要从事一线生产的技术或专业人才。在知识结构上,应用型人才更强调复合性、应用性和与时俱进,具有复合性和跨学科的特点。在能力结构上,应用型人才强调发现问题和解决问题的能力,要求具备解决复杂问题的实践能力;在素质结构上,应用型人才直接服务于各行各业,更强调社会适应性和与社会的共处能力。应用型人才的特点:强调实践,突出应用;终身学习,知识复合;科学态度,敢于创新;责任意识,团队协作。
数学建模就是通过对现实问题的抽象、简化,确定变量和参数,并应用某些“规律”建立起变量、参数间的确定的数学问题;然后求解该数学问题,最后在现实问题中解释、验证所得到的解的创造过程。数学建模过程可用下图来表明:
因此,数学建模活动是一个多次循环反复验证的过程,是应用数学的语言和方法解决实际问题的过程。数学建模是一种联系数学与实际问题的桥梁,它突出了实践活动的重要特点,强调人才的培养应从侧重知识教育转向侧重应用能力培养。
二、应用型人才培养模式下数学建模活动在人才培养过程中的作用
应用型人才培养模式下,数学建模活动不仅包括学习数学知识,展示各应用领域中的数学问题和建模方法,提高学生学习数学的积极性,更重要的是培养学生应用数学知识解决实际问题的能力,创造有利于提高学生将来从事实际工作能力的环境。数学建模活动的教学内容和教学方法是以应用型人才培养为核心,内容取材于实际、方法结合于实际、结果应用于实际,对学生能力的培养体现在多个方面。
(一)培养学生分析问题与解决问题的能力
数学建模竞赛的题目一般由工程技术、经济管理、社会生活等领域中的实际问题简化而成,在数学建模活动中,要求首先强调如何分析实际问题,如何利用所掌握的知识和对问题的理解提出合理且简化的假设,如何将实际问题抽象为数学问题,即将实际问题“翻译”成数学模型。其次是如何建立适当的数学模型,如何利用恰当的方法求解数学模型,以及如何利用模型结果解决实际问题。对数学模型求解后,还要用数学模型的结果解释实际现象。这是一个双向“翻译”的过程,通过这个过程,让学生体验数学在解决实际问题中的作用,培养学生应用数学知识的意识和能力,从而提高学习数学的兴趣和应用数学解决实际问题的能力。数学建模本身就是一个创新的过程并且为培养学生创新精神和创造能力提供了环境。
(二)培养学生的创造精神和创新能力
创造精神和创新能力是指利用自己已有的知识和经验,在个性品质支持下,新颖而独特地提出问题、解决问题,并由此产生有价值的新思想、新方法、新成果。数学建模问题的解决没有标准答案、不局限于唯一方法,不同的假设就会产生不同的模型,同一类模型也会有很多不同的数学求解方法。数学建模的每一步都给学生留有较大的空间,在数学建模活动中,要鼓励学生勤于思考、大胆实践,不拘泥于用一种方法解决问题,尝试运用多种数学方法描述实际问题,鼓励学生充分发挥想象力、勇于创造新方法,不断地修改和完善模型,不断地积累经验,逐步提高学生创新能力,数学建模本身就是一个创新的过程并且为培养学生创新精神和创造能力提供了环境。数学建模是培养学生创造性思维和创新精神的良好平台。
(三)培养学生的学习探索能力
心理学家布鲁纳指出:探索是数学教学的生命线。培养学生的探索能力,应贯串数学教学的全过程。这一点在普通的数学课堂上往往做不到。但在数学建模的教学过程中,通常会有意识地创设探索情境,引导学生以自我为主,进行调查研究、查阅文献、制定方案、设计实验、构思模型、分析总结等方面独立探索能力的训练,促进学生创新精神、科研能力和实践技能的培养。
(四)培养学生的洞察力和抽象概括能力
数学建模的模型假设需要根据对实际问题的观察和分析,透过现象看本质,将错综复杂的实际问题简化,再进行高度的概括,抽象出合理、简化、可行的假设条件。数学建模促进了对学生的洞察力和抽象概括能力的培养。
(五)培养学生利用计算机解决实际问题的能力
在数学建模中,很多模型的求解都面临着复杂的数学推导及大量的数值计算,同时所建模型是否与实际问题相吻合也常常需要通过计算或模拟来检验,能熟练使用计算机计算数学问题是对学生的必要要求。数学建模将数学、计算机有机地结合起来,逐步培养学生利用数学软件和计算机解决实际问题的能力。
(六)培养学生论文写作和语言表达的能力
数学建模的考核内容一般包括基本建模方法的掌握、简单建模问题的求解和实际问题的解决,考核方式往往采取闭卷与开卷相结合、理论答卷与上机实验相结合、笔试与答辩相结合的方法。因此,数学建模答卷需要学生具有一定的描述问题的能力、组织结构的能力以及文字表达的能力。而数学建模竞赛成绩的好坏、奖项的高低,其评定的唯一依据就是数学建模论文,假设是否合理,建模方法是否有特色,重点是否突出,模型结果是否正确,论文撰写是否清晰等是对论文成绩评定的主要标准。通过数学建模确实能培养学生的论文写作能力和语言表达能力。
(七)培养学生的交流与合作能力和团队精神
数学建模中的实际问题涉及多个学科领域,所需知识较多,因此集体讨论、学生报告、教师点评是经常采用的教学方式。数学建模竞赛活动是一个集体项目,比赛要求参赛队在3天之内对所给的问题提出一个较为完整的解决方案,具有一定规模的建模问题一般都不可能由个人独立完成,这就需要三个人积极配合,协同作战,要发挥每个人的长处,互相弥补短处,是培养学生全局意识、角色意识、合作意识的过程,也是一个塑造学生良好个性的过程。在此过程中,既要发挥好学生各自特点,又要有及时妥协的能力,目的是发挥整体的最好实力。作为对学生的一种综合训练,除了三个人都要有数学建模的基础知识外,成员之间的讨论、修改、综合,既有分工,又有合作。只有充分的团队合作,才能取得成功,凡是参加过竞赛的每一个人都能深刻体会到这种团队精神的重要性,认识到这一点对学生以后的成长是非常有帮助的。
数学建模在以上九个方面培养了学生的能力,促进了学生应用能力的养成。有目的、有计划、有针对性地开展数学建模教学将会使其对应用型人才的培养更具实效性。
三、应用型人才培养模式下数学建模三级教学平台的构建与实施
(一)将数学建模思想方法融入工科数学基础课,实现数学建模教学常态化
我们在开设《数学建模》选修课及必修课的基础上,积极探索将数学建模的思想方法融入到工科数学基础课教学之中,并进行了有益的教学实践。在相关课程的教学中,适当引入一些简单的实际问题,应用有关方法,通过建立具体的数学模型,利用模型结果解决实际问题。以向学生展示某些典型的数学方法在解决实际问题中的应用及应用过程,既巩固了相关知识又提高了处理问题的能力,比单纯的求解应用问题更有效。
1.在《高等数学》课程中,讲授函数的连续性时,引入方桌平稳问题,把实际问题转化为连续函数的零值点的存在问题;曲面积分时引入“通讯卫星的覆盖面积问题”,建立在距地面一定高度运行的卫星覆盖地球表面面积的曲面积分公式,并通过计算面积值确定为了覆盖地球表面所需卫星的最少数目;讲授微分方程时引入“交通管理中的黄灯时间问题”,通过简单分析黄灯的作用、驾驶员的反应等,建立汽车在交通路口行驶的二阶微分方程,通过求解方程计算给出应该亮黄灯的时间;在讲授无穷级数时,引入银行存款问题。
2.在《线性代数》课程中,讲授矩阵有关知识时引入“植物基因分布问题”,在简单地了解基因遗传的逐代传播过程基础上,引入基因分布状态向量,建立状态转移模型,通过矩阵运算求出状态解,进而分析基因分布变化趋势,确定植物变化特征。
3.在《概率论与数理统计》课程中,讲授随机变量时引入“报童的策略问题”,设定随机变量(购进报纸份数)、建立报童收益函数的数学期望、求数学期望的最大值,给出报童购进报纸的最佳份数。引导学生从实际问题中认识随机变量,并将其概念化,进而解决一定的问题。另外,还是学生认识了连续型和离散型随机变量在描述和处理上的不同。
总之,通过一些简单的数学建模案例介绍,让学生了解相关知识的实际应用,解决学生不知道所学数学知识到底有什么用,以及该怎么去用的问题;另一方面,使学生初步了解运用数学知识解决实际问题的简单过程和方法,并鼓励学生积极地去学数学、用数学。通过将数学建模思想融于低年级数学主干课教学中,培养学生的建模兴趣。激发学生科学研究的好奇心、参与探索的兴趣,培养学生学数学、用数学的意识。
(二)广泛开展学生数学建模课外科技活动,实现数学建模实践经常化
在数学建模课程教学和数学建模竞赛培训的基础上,以数学建模实验室为平台开展经常性的学生数学建模课外科技活动,包括教师讲座和问题研究。在每年三月初至五月初,开设《数学建模》课程,进行数学建模方法普及性教育;在五月下旬至六月末,开设数学建模讲座,内容主要包括一些专门建模方法讲解、有关案例介绍和常用数学软件介绍;在七月下旬至八月上旬,进行建模竞赛培训,准备参加全国竞赛。
全国竞赛之后,组织学生开展数学建模问题研究。问题来源于现有建模问题和自拟建模问题,其中自拟题目来自学生的日常生活、专业学习以及现实问题和教师研究课题等,针对自拟问题,建模组教师进行集体讨论,形成具体的建模问题;然后,教师指导学生完成问题研究,并尝试给出实际问题的解决方案。把这一活动与大学生科技立项研究项目结合起来。数学建模课外科技活动期间,实验室对学生开放、建模问题对学生开放、指导教师对学生开放。
从建模课程、建模讲座、竞赛培训、参加竞赛,到建模研究、学生科技立项等,数学建模活动从每年三月初开始至下一年的二月止,形成了以一年为一个周期的经常性的课外科技活动,实现了数学建模实践的经常化。很多学生从大一下学期开始连续一年半或两年参与建模活动,在思维方法、知识积累和建模能力等方面获得了极大的提高,为其后期的专业学习与实践打下了良好的基础。
(三)将数学建模思想方法引入专业教学与实践,实现数学建模应用专业化
无论是数学建模课程教学、数学建模讲座、建模竞赛培训,还是数学建模研究,所有过程大多定位于数学建模思想的传授、数学建模方法的应用,所针对的问题多数来自于社会生活、经济管理、工程管理等领域,专业背景不强。如何培养学生应用数学建模解决专业应用领域中的实际问题,这是数学建模应用的深层次研究问题,也是理工科专业学生创新型能力培养的重要内容,需要结合专业教学与实践得以实现。
首先,需要理工科专业教师的积极参与。数学建模教师主要承担数学建模和数学实验的课程教学、数学建模竞赛的培训与指导,教师队伍的构成基本上都是单一的数学专业教师,很少有其他专业的教师参与进来。教师队伍在知识的结构、实践动手能力上都有相当大的局限性,教师很难做到既了解实际问题、懂得专业知识,又熟悉有关算法与程序。因此,数学建模教师队伍需要在专业结构上多元化发展,吸引理工科专业的教师对数学建模的兴趣,引导其他专业教师的积极参与。
其次,要实现数学建模融入学生培养的各个环节和各个阶段,就必须在专业课教学、课程设计及毕业设计指导等阶段注重数学建模思想与方法的运用,注重对学生建模能力的培养。因此,通过一定的途径,比如,交叉学科教师间的交流活动、针对一些具体问题的教师共同探讨、建模教师帮助专业教师解决一些科研问题等,在专业教师中传播数学建模的思想与方法,使其了解数学建模的作用,并掌握一些数学建模知识。通过专业教师指导进入专业课学习、课程设计及毕业设计阶段的学生,去解决一些具有一定专业背景的实际问题,将数学建模的思想方法融入到工科专业领域,以实现数学建模应用的专业化。在问题解决的过程中,学生在专业领域的数学建模应用能力得以提高,专业教师对数学建模有了更深入的认识和了解,数学建模教师对专业理论知识也有了较多的理解,促进了数学建模向专业领域的应用拓展,并能逐步实现数学建模教学对创新型人才培养从通识性教育向专业性教育转换的目标调整。与专业老师相配合,实现在多学科教师共同研究指导下培养学生在专业领域中的数学建模能力的目的,也可逐步改善数学建模教师队伍的知识结构,为数学建模在专业领域中的深入应用探索思路。
四、结论与展望
数学建模在大学生创新能力培养中的重要作用已得到广泛共识,如何使这种作用得到充分发挥还需要深入探讨,本文从数学建模教学常态化、实践经常化和应用专业化的角度出发,我们探讨了数学建模教学的三级模式,更多的细节工作还有待于进一步探讨。
参考文献:
[1]姜启源,谢金星,叶俊.数学模型[M].北京:高等教育出版社,2013.
[2]钱国英,本科应用型人才的特点及其培养体系的构建[J].中国大学教学,2005,(9):54-56.
一、新疆地方高校数学建模的发展现状
(一)低年级大学生对数学建模知识认识欠缺
大学数学是理工类院校的重要基础课程,对专业课程起到了不可或缺的支撑作用,大学数学课程理论性强,新疆地方高校的学生本身学习起来就比较吃力,教师教学中更是无暇讲述和普及数学建模的思想和方法,所以相当一部分学生感到数学建模既神秘又高不可攀。
(二)新疆地方高校学生数学基础薄弱,大学数学课程的教学和专业学习存在脱节
受地域限制,新疆地方高校学生大部分来自于新疆各地州,包括汉、维、哈、柯、蒙等少数民族,数学基础参差不齐,相比较内地高校数学基础水平存在一定差距,学生学习数学兴趣不高,缺乏主动性,疲于应付考试,因此参加数学建模竞赛学生的比例比较低,导致理论知识与专业应用严重脱节,直接影响理工类专业学生的专业能力和培养质量。
(三)数学教学过程中,疏于数学教学建模思想和方法的渗透和培养
数学教学中渗透数学建模的思想和方法,要求授课教师不仅要有扎实的数学功底,而且还要有广博的知识面和丰富的数学建模经验。但实际教学中,由于课时的紧缺和教师专业方向的限制,完全仅限于所授课程知识的讲解,忽视了渗透数学建模的思想和方法对学学数学课程的促进作用,尤其忽视其对数学理论知识和专业知识的贯通作用。
(四)新疆地方高校对数学建模教学的重视和投入有待提高
自2012年以来,大部分新疆地方高校开始向应用型高校转型,工、农、医等应用型学科专业便成为各新疆地方高校的发展重点,在资金有限的状况下,数学类等基础学科便面临一个尴尬的境地,尤其是对数学建模的教育教学热情有所退却。但笔者以为,越是在向应用型高校转型之际,加强对数学类基础学科的投入,尤其重视数学建模思想和方法的渗透才能保障应用型学科高质量发展和新疆地方高校向应用型高校顺利转型。
二、新疆地方高校大学数学教学中融入数学建模思想和方法的建议与思考
(一)根据学生层次合理调整教学内容的侧重点
新疆地方高校大学生的多民族性、数学基础不等性特点对大学数学授课老师的经验水平提出更高要求,不但要了解学生的知识水平、民族学生的思维方式,还需要清楚中学数学的授课内容和欠缺知识点。根据本人近年民族教学的体会,结合学生入学成绩和知识层次教学中将新疆地方高校学生分为三个层次:1.“民考民”和“双语”学生,该层次学生入学成绩相对较低,汉语言水平不高,并且数学基础较差,该层次学生在大学数学授课中应侧重于对中学数学知识的补充和巩固,否则大学数学的知识和理论学生是无法理解的,而对大学数学的知识点就要侧重于基本概念、基本定理、基本方法的掌握与理解,那么对该层次学生进行数学建模思想和方法的融入,就要选择部分中学知识点和大学数学中较易理解掌握的知识点典型例题由浅入深,循序渐进的进行讲授。2.“民考汉”学生,该层次汉语言水平非常好,入学成绩也不错,与汉族学生混合编班,数学基础相比较同班汉族学生还是有差距,但该部分学生学习努力、态度端正,是任课教师需要重视的团体,可以偶尔选择晚自习辅导时间或其他时间对他们进行专门辅导,选择一些典型例题,由浅入深的进行数学建模的思想和方法的培养,从而也能激发他们的学习积极性,使之逐步赶超同班汉族同学。3.其他学生,新疆地方高校该层次学生主要来自于新疆各地州,入学成绩一般,数学知识差别不大,但基础知识还需要补充,个别的知识点,部分学生中学就没有学过,例如:参数方程、极坐标方程,反三角函数等知识点,但这些内容在大学数学教学中却是比较重要的知识点。
(二)在大学数学的日常教学中,改进教学方法和教学手段,有针对性的融入数学建模的思想和方法
能够适时选择授课知识点,针对学生所学专业讲述新课,同时融入数学建模思想和方法,例如:在“高等数学”第六章定积分的应用章节中,讲授利用“微元法”解决做功、水压力、引力等问题时,对物理学和工程类相关专业讲述数学建模思想和方法便是不错选择。例如:蓄水池抽水问题(如图1,图2)上图便是实际授课中课件,完全是定积分的内容,但这些例题具有非常典型的数学建模思想和方法,(1)题目符合实际生活问题,具有数学建模题型特点,完全是生活中的问题;(2)具有理工科专业特点,属于做功和热能问题;(3)解题过程本质就是数学建模的思想和方法,分析问题,建立数学模型,确定解题方法,给出结果,分析结果。只需经常性通过类似问题的讲解,使学生理解数学建模的主要过程:模型准备、模型假设、模型建立、模型求解、模型分析、模型检验和模型应用,学生不仅掌握数学建模思想和方法,而且认识到大学数学对于专业课学习的重要性[1]。大学数学教学中渗透数学建模思想和方法,归纳起来应注意以下几点:(1)要循序渐进,由简单到复杂,逐步渗透。(2)应选择密切联系学生专业、易接受、有趣味性、实用性的数学建模内容。(3)在教学中列举建模案例时,仅仅是让学生学习数学建模思想和方法的初步、举例等少而精,忌大而冷,否则会冲击了大学数学理论知识的学习,因为没有扎实的理论知识,也谈不上应用。(4)大学数学教学中,恰当的处理好理论与应用的关系,应该清楚理论和应用是相辅相成的。扎实的理论是灵活应用的基础,而广泛的应用又促进对理论的深刻理解[2]。
(三)组织鼓励各专业学生参加大学生数学建模竞赛,培养创新型人才
为了广泛开展数学建模活动,促进学风建设,提高学生学习兴趣和创新能力,自2007年开始,我校开始组织学生参加“全国大学生数学建模竞赛”,经过近十年的学习与摸索,形成了我校特色的大学生数学建模竞赛培训模式,经大学数学任课老师推荐和动员,不同专业学生报名后,培训工作分为三个步骤进行:每年4月至6月的建模竞赛初级培训、暑期集训和赛前强化。三个阶段培训内容均以数学知识模块化,分别由相应专业方向老师进行包干培训。知识模块主要分为初等数学模块、运筹学模块、概率统计模块、方程模块等。初级培训阶段主要培训理论知识,补充巩固不同专业学生大学数学理论知识;暑期集训阶段主要讲述不同模块的典型例题,促进理论知识的理解和灵活应用;赛前强化主要是选例题,让学生自己实践练习,进行赛前仿真模拟比赛。对参加过“全国大学生数学建模竞赛”的学生,我们经过统计发现:(1)参加过该竞赛培训和实践比赛的学生,在各自专业的学习过程中,专业课知识学习能力和应用能力明显高于其他同学,尤其毕业论文和设计的完成质量高于其他同学;(2)参加过该比赛的学生在此后的学习热情明显高涨,萌生继续深造提高的愿望,并且开始主动备战参加考研,考研成功率也高于其他同学;(3)该比赛中的各类生活科研问题,也激发了学生的创新性。大学生数学建模竞赛中的赛题大都为生活和科技中的热门问题和前沿科学问题,具有一定的科研前瞻性,经过该竞赛的洗礼,激发了这些参赛同学的创新能力,很多同学在比赛后仍继续研究比赛中的该问题,并把问题作为自己的毕业论文和毕业设计,并能高质量的完成,甚至有同学以此为出发点,申报了“大学生创新创业训练计划项目”,锻炼了大学生的科研能力和创新能力。结语随着社会的发展、科技的进步,数学已经不再是抽象的理论,其应用已深入到人类生活的各个方面,科学技术数学化、数学应用普及化已成为一种趋势,许多自然科学的理论研究实际就是数学研究,就是数学建模以及数学理论的探讨。一个国家的国民素质,很大程度上是体现在其数学素质上,数学是思维的体操,数学是科学的研究工具,数学建模是架于数学理论和实际问题之间的桥梁[3]。数学建模活动的开展促进了新疆地方高校的学风建设,提高了新疆大学生的综合素质。我校的数学建模组织活动、日常教学中的数学建模思想的渗透手段、规范的数学建模管理、方式多样的培训方案、学生参与的科研活动等已然逐步形成了新疆地方高校的数学建模思想和方法的渗透模式。新疆地方高校的特殊性也给新疆地方高校的教学模式提出了挑战,如何根据自身的特点搞好数学建模教学工作,是一项具有探索性的实践研究,本文仅是一个初步研究,还有很多问题需要深入的思考和实践。
作者:刘福国 马燕 单位:昌吉学院数学系 昌吉市回民小学
参考文献:
[1]晁增福,邢小宁.将数学建模融入大学数学教育的研究与实践[J].ConferenceonCreativeEducation.2012:1136-1138.