公务员期刊网 精选范文 高层建筑结构特点范文

高层建筑结构特点精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的高层建筑结构特点主题范文,仅供参考,欢迎阅读并收藏。

高层建筑结构特点

第1篇:高层建筑结构特点范文

关键词:高层建筑 ;建筑结构特点

Abstract: high-rise building can save the city land, public facilities and municipal pipe network to shorten the development cycle, thereby reducing the municipal investment, accelerate the construction of the city, these advantages make the high-rise building has been rapid development in recent years. This paper mainly analyses the features of high-rise building structure and its development trend.

Key words: high-rise building; structural characteristics;

中图分类号:TU972 文献标识码:A 文章编号:2095-2104(2013)

世界各城市的生产和消费的发展达到一定程度后,莫不积极致力于提高城市建筑的层数。实践证明,高层建筑可以带来明显的社会经济效益。当高层建筑的层数和高度增加到一定程度时,它的功能适用性、技术合理性和经济可行性都将发生质的变化。与低层建筑相比,在设计上、技术上都有许多新的问题需要加以考虑和解决。

高层建筑结构的特点

高层建筑结构与低层建筑结构以受竖向载荷为主不同,需同时承受水平和竖向的荷载或作用,例如在遇到巨大风力和地震力时所产生的水平侧向力。在低层建筑结构中,竖向荷载往往就是设计的控制因素,但在高层建筑结构中,较大的建筑高度造成了完全不同的受力情况,水平荷载不仅是主要荷载的一种,跟竖向荷载共同起作用,而且往往还成为设计中的控制因素。因此,在水平荷载作用下,若高层建筑结构的抵抗侧向变形能力或侧向刚度不足,将会产生过大的侧向变形,不仅使人产生不舒服感觉,而且会使结构在竖向荷载作用下产生附加内力,会使填充墙、建筑装修和电梯轨道等服务设施出现裂缝、变形,甚至会导致结构性的损伤或裂缝,从而危及结构的正常使用和耐久性。因此设计高层建筑结构时,不仅要求结构有足够的强度,而且要求结构有合理的刚度,使水平荷载所产生的侧向变形限制在规定的范围内、同时,有抗震设防要求的高层建筑还应具有良好的抗震性能,使结构在可能的强震作用下当构件进入屈服阶段后,仍具有良好的塑性变形能力,即具有良好的延性性能。

高层建筑还具有建筑功用上的特点。人们常说建筑是凝固的音乐,优美的高层建筑犹如艺术品,成为城市的标志景观。建筑同时是时代跳动的脉搏,高层建筑占地面积小,符合了地价昂贵时代的需求,它可以节约建设用地或获得史多的空闲地面,以作为绿化等环境用地,并因向高空方向发展而缩短了城市道路和各种管线的长度,减少了基础设施的投资、当然,大量高层建筑的建设,也会给城市带来不利的影响,如人口会密集化而造成交通拥挤问题;城市局部热场发生不利的变化以及地质的沉陷、消防的复杂化等问题。综合高层建筑的上述受力特点可知,与低层结构不同,高层建筑结构在强度、刚度和延性三方面要满足更多的设计要求、抗侧力结构的设计成为高层建筑结构设计的关键。

2.高层建筑结构发展特点及趋势分析

高层建筑结构所需承担的载荷和倾覆力矩将越来越大,在确保高层建筑物具有足够可靠度的前提下,为了进一步节约材料和降低造价,高层建筑结构构件将不断的更新,设计理念也将不断发展。

2.1结构材料高强度化

随着建筑高度的增加,结构面积占建筑使用面积的比例越来越大,为了改善这一不合理状况,采用高强度钢和高强度混凝土势在必行。随着高强混凝土材料的研制和不断发展,混凝土的强度等级和韧性性能也不断得到改善。C80和C100强度等级的混凝土已经在超高层建筑中得到广泛使用。可以减少结构构件的尺寸,减少构件的自重,必将对高层建筑的发展产生严重的影响。高强度且具有良好可焊性的厚钢板将成为今后高层建筑结构的主要用刚,而耐火钢材FR钢的出现为钢结构的抗火设计提供了方便。采用FR钢材制作高层钢结构时,其防火保护层的厚度可大大减不,从而降低钢结构的造价,使钢结构更具竞争力。

2.2结构形体多样化

城市建设的发展,使得人们对建筑的功能需求更加深入,对建筑的体型要求也逐渐呈现多样化。高层建筑结构的复杂度和不规则度将会不断的呈现,例如建筑结构的平面形状会出现:矩形、方形、八角形、扇形、圆形、菱形弧形、Y 形、L 形等各种吸引人们眼球的形状,立面出现各种类型转换、外挑、内敛、大底盘多塔楼、连体建筑、立开大洞等复杂体型的建筑。

2.3建筑结构综合化

经合理设计的组合结构可取得经济合理、技术性能(如抗震性能)优良的效果,且易满足高层建筑的侧向刚度的需求,可建造比钢筋混凝土结构更高的建筑。因此在较高的建筑中,混合结构往往仍是合理、可行的结构方案,今后建造混合结构的比率将会越来越大。在强震国家日本,组合结构高层建筑发展迅速,其数量已超过混凝土结构的高层建筑。目前应用较为广泛的有:外包混凝土组合柱、钢管混凝土组合柱以及外包混凝土的钢管混凝土双重组合柱等多种组合结构。特别是由于钢管内混凝土处于三轴受压状态,能提高构件的竖向承载能力,从而可以节约大量钢材。巨型组合桩首次在香港的中国银行大厦中应用,获得成功并取得了很大的经济效益,上海金茂大厦构中也成功地应用了巨型组合结构。随着混凝土强度的提高以及结构构造施工和施工技术上的改进创新,组合结构在高层建筑中应用将进一步扩大。巨型框架结构柱体体系以其刚度大,在内部便于设置大空间等优点,也将得到更多的应用。例如,上海证券大厦和香港的汇丰银行大厦。多束筒结构体系在实际工程中的应用,已表明该结构体系在适应建筑场地、丰富建筑造型、满足多种功能和减不剪力滞后效应等诸多方面的优点,多束筒结构体系也将在超高层建筑结构实际工程中扩大应用。在钢筋混凝结构基础上,充分发挥钢结构优良的抗拉性能以及混凝土结构的抗压性能,进一步减轻结构重量,提高结构延展性。

2.4结构减震控制智能化

高层建筑结构必须妥善处理因风力、地震、温度变化和基础沉降带来的变形节点,而构造建筑结构的减震正是解决这一问题的关键。在高层建筑中的被动耗能减震有耗能支撑、带竖缝耗能剪力墙,被动调谐质量阻尼器以及安装各种被动耗能阻尼器等;主动减震则是计算机控制的,由各种驱动器驱动的调谐质量阻尼器对结构进行主动控制和混合控制的各种作用过程。结构主动减震的基本原理是:通过安装在结构上的各种驱动装置和传感器,与计算机相连接,计算机系统对震动和结构反应进行实时分析,向驱动装置发出信号,使驱动装置对结构不断地施加各种与结构反应相反的作用,以达到在地震或风的作用下减小结构反应的目的。目前,在美国、日本等国家各种耗能减震控制装置已在高层建筑结构中得以应用。在中国有部分高层建筑工程中应用了这种技术。随着人类进入信息时代,计算机、通讯设备以及各类办公电子设备不受震动干扰而安全平稳地运行,具有重要现实意义。

3.结束语

现代建筑功能趋于多样性,高层建筑的体形和结构体系趋向复杂多变,趋向立体化,应运而生新的设计概念和结构技术的深化。高层建筑在迅猛发展的同时,对其建筑结构及结构设计的研究也取得了相应的进步。科学技术的发展,高强轻质材料的出现以及机械化、电气化在建筑中的实现等,为高层建筑的发展提供了技术条件和物质基础。可以想见,未来的高层建筑结构不仅在可靠度与安全性能上大大增强,其科技含量也会越来越高。

参考文献:

[1]焦维,秦艳.高层建筑结构设计的问题探讨[J].科技致富向导.2011(27)

[2]沈芳.高层建筑结构设计中应注意的几个问题[J].科技资讯.2007(21)

第2篇:高层建筑结构特点范文

关键词:高层建筑;结构设计;结构特点

Abstract: With the rapid development of society and economy and the functional diversification of the buildings, the constant growth of urban population,increasingly tense of land for construction, and the demands of urban planning promote the rapid development of high-rise buildings. Therefore, it plays an important role to pay attention to the design of the building structure, discover problems timely and take measures to resolve in the construction activities.

Key words: high-rise buildings; structural design; structural features

中图分类号: TU973 文献标识码:A 文章编号:2095-2104(2012)

一、高层建筑结构分析方法及常见问题

1.各类结构体系采用的分析方法

①框架一剪力墙体系

框架一剪力墙结构内力与位移计算的方法很多,大都采用连梁连续化假定。由剪力墙与框架水平位移或转角相等的位移协调条件,可以建立位移与外荷载之间关系的微分方程来求解。由于采用的未知量和考虑因素的不同,各种方法解答的具体形式亦不相同。框架一剪力墙的机算方法,通常是将结构转化为等效壁式框架,采用杆系结构矩阵位移法求解。

②剪力墙体系

剪力墙的受力特性与变形状态主要取决于剪力墙的开洞情况。单片剪力墙按受力特性的不同可分为单肢墙、小开口整体墙、联肢墙、特殊开洞墙、框支墙等各种类型。不同类型的剪力墙,其截面应力分布也不同,计算内力与位移时需采用相应的计算方法。剪力墙结构的机算方法是平面有限单元法。此法较为精确,而且对各类剪力墙都能适用。但因其自由度较多,计算机资源耗费较大,目前一般只用于特殊开洞墙、框支剪力墙的转换层等应力分布复杂的情况。

③筒体结构

筒体结构的分析方法按照对计算模型处理手法的不同可分为三类:等效连续化方法、等效离散化方法和三维空间分析。等效连续化方法是将结构中的离散杆件作等效连续化处理。一种是只作几何分布上的连续化,以便用连续函数描述其内力;另一种是作几何和物理上的连续处理,将离散杆件代换为等效的正交异性弹性薄板,以便应用分析弹性薄板的各种有效方法。具体应用有连续化微分方程解法、框筒近似解法、拟壳法、能量法、有限单元法、有限条法等。等效离散化方法是将连续的墙体离散为等效的杆件,以便应用适合杆系结构的方法来分析。这一类方法包括核心筒的框架分析法和平面框架子结构法等。具体应用包括等代角柱法、展开平面框架法、核心筒的框架分析法、平面框架子结构法。

2.我国高层建筑抗震分析中常见问题

①材料的选用和结构体系问题

在高层建筑中,建议尽可能采用钢骨混凝土结构、钢管混凝土(柱)结构或钢结构,以减小柱断面尺寸,并改善结构的抗震性能。在超过一定高度后,为减小风振,钢骨(钢管)混凝土通常作为首选。在钢骨混凝土构件中,日本阪神地震震害说明,采用格构式的型钢时,震害严重,采用实腹式的热轧型钢或焊接工字钢的,则震害要减小许多。

②在某些烈度区采用了较低的抗震措施与构造措施

对于“小震不坏,中震可修,大震不倒”这个抗震设计原则,在新形势下也有重新审核的必要。我国建筑结构抗震设计除了设防烈度较低外,具体抗震计算方法和构造规定的安全度也不如国外,在配筋率、轴压比、梁柱承载力匹配等一系列保证抗震延性的要求上,与外国相比,也有异同,其中的8度区,我国就明显不如外国严格。随着社会财富的增长,结构失效带来的损失愈来愈大,加之结构造价在整个投资中的比例下降,因而有人主张结构在设防烈度下应该采用弹性设计,特别是高烈度区要有严格的抗震措施与抗震构造措施来保证结构的安全。

二、高层建筑结构的特点

结构既要承受垂直荷载和风产生的水平荷载,还要具有抵抗地震作用的能力。随着高度的增加,位移增加很快。但是过大的侧移会使人感觉不舒服,从而影响使用,会造成非结构构件和结构构件的损坏。所以必须将结构的侧移控制在一定的范围之内。

1980年以前,高层建筑基本上是钢筋混凝土三大常规抗侧力体系:框架结构,剪力墙结构和框架剪力墙结构,它们的共同特点是以平面框架或平面剪力墙作为基本抗侧力结构单元,多方向(纵向、横向、斜向)组成空间受力结构。80年代后,随着人们对建筑功能要求的提高,平面布置和竖向体系日益复杂,而且层数增多,高度加大,以及设防烈度提高,常规的抗侧力体系往往难满足要求,于是以空间整体受力为特征的筒体结构便得到了广泛的采用,在建和已建的100米以上的高层建筑中,采用筒体结构的占80%。最近几年,一些更新颖的结构形式己经得到应用。这些结构体系都从整体受力为特点,而且能更好地满足动能要求。在高层建筑的设计中,通常采用钢和钢筋混凝土两种材料。

1.水平荷载是决定因素

首先,对具有一定高度的高层建筑来说,虽然,竖向荷载大体上是定值,但是作为水平荷载的风荷载和地震作用,其数值是随结构动力特性的不同而发生较大幅度变化的。其次,水平荷载对结构产生的倾覆力矩以及由此在竖构件中引起的轴力,却与楼房高度的两次方成正比,但是,楼房自重和楼面使用荷载在竖构件中所引起的轴力和弯矩的数值,仅与楼房高度的一次方成正比。

2.不可忽视轴向变形

在竖向荷载作用下, 边、角柱压缩变形相对较小,而中柱承担的楼板面积大,轴向力大,压缩变形大。在高层建筑中, 柱中较大的轴向变形是由于竖向荷载数值大而引起的,并且还会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩之和端支座负弯矩值增大。同时,由于这一作用还会对预制构件的下料长度产生影响,因此,在实际的操作中,要根据轴向变形计算值,对下料长度进行调整。

3.把侧移作为控制指标

随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。因此,结构侧移已成为目前高层建筑结构设计中的关键因素。

4.结构抗震性与延性

第3篇:高层建筑结构特点范文

关键词:高层建筑结构;特点;发展趋势

中图分类号:TU208文献标识码: A

引言

高层建筑的增多一方面体现着城市现代化建设进程的加快。但是随着数量的增多,对高层建筑的要求也随之提高。

一、高层建筑结构的特点

高层建筑相对于一般的建筑而言,主要的特点就是其整体的建筑高度较高。而这一特点将会带来一系列建筑结构方面的问题。建筑的构建是由水平和竖向构建组成,高层建筑中的主要水平构件包括了梁、板,竖向构建主要包括了墙、柱、斜撑等。竖向荷载作用在楼盖、屋盖上,由楼板传至梁,再传至墙、柱、斜撑等,最后传递到基础。水平荷载由梁、柱、斜撑、墙组成的抗侧力体系抵抗,通过楼盖最后传至基础。高层建筑会受到水平和垂直荷载两个方向的作用,水平作用力一般是由于外界的风或者地震荷载所产生,而垂直荷载则一般是指建筑本身的重力,以及分布于各楼层的人员及设备的荷载。一般而言,在低层建筑中,其所受到的水平作用力较小,因此所带来的影响也较小。而随着建筑高度的增高,受到的水平风荷载影响将越来越大,因此会产生较大的水平侧向位移,而这无疑会对人们的居住舒适度和建筑的安全性造成较大的影响。因此,在进行高层建筑的设计时,应尤其注意对其水平荷载作用的控制,通过抗侧力结构设计减少侧向位移,保证高层建筑的经济性和稳定性。

二、高层建筑结构体系的选型

所谓高层建筑结构体系是指建筑的结构在同时抵御来自水平方向和垂直方向荷载力的过程中形成的构件组织方式以及传力途径。一般来讲,高层建筑结构体系的处理主要包括以下几个方面的经验:首先通过墙体、柱等垂直方向的构件和楼盖等水平方向的构件将荷载力有效的传递到基础上去。其次,有效利用抗侧力体系将水平方向的荷载力最大程度的传递到基础上去。总之,高层建筑结构体系需要处理的重点在于如何有效的将高层建筑来自垂直方向和水平方向的荷载力最大化的传递给基础。

一般来讲,根据高层建筑组成材料的不同可以将高层体系以及钢与钢筋混凝土组合结构体系。在上述高层建筑结构体系中,应用最为广泛的结构体系为钢筋混凝土结构体系,在日常的工程实践中,这种高层建筑结构体系常见于各种工程结构中。这种结构体系具有协同受力特点,而且造价相对比较低廉,耐火性也相对较高,整体的个性性能都比较优良。但该种结构体系也存在较多的不足和问题,常见的问题主要有自重较大、延性不佳且施工进度较慢等缺点。而钢结构体系相比较于钢筋混凝土结构体系而言,具有强度加大,抗震性能较为优良,且施工较为方便,用途风格较为多样。但另一方面,这种结构体系存在着造价高、防火性差、施工较为复杂等各种问题。钢与钢筋混凝土组合结构体系相比较于以上两种结构体系而言,在工程施工中应用这种结构体系有利于提升建筑的承载能力,增强建筑的抗震能力,具备相对较好的防火能力,而且施工速度也较快。但不足之处在于这种结构体系存在节点构造复杂的问题,但可以应用小偏心受压件加以应对。

每一种结构体系都有其独特的优点和缺点,并不能单纯的讲那种结构体系是好的或者坏的。应当综合考虑高层建筑工程施工的具体条件,对不同结构体系加以选择,才能真正的实现结构体系应用的扬长避短。

二、高层建筑结构设计中存在的问题

(一)高层建筑结构的均衡关系不够合理

在高层建筑的结构布局上,设计人员在设计前应该先将街道的宽度和窄度测量清楚,再考虑高层建筑物的自身尺度。一个设计合理的高层建筑其主题、裙房和顶部之间应该是均衡的尺度空间。另外,高层建筑的地理位置应该以城市的街道布局为基础,与其相容,做到和谐,确保高层建筑的结构设计部不会坏周边建筑的美感,不阻碍车辆行人的出行,并且自身外形应该做到美观。然而,设计人员在该方面还存在一些薄弱意识。

(二)高层建筑消防结构设计不够规范合理

高层建筑的结构设计是非常复杂的,因为其功能的多样化,就要求其内部结构设计的多样化。不同的结构设计又会需要不同性质的材料,这也给高层建筑的设计带来了障碍。换言之,材料的可燃性会加大火灾的风险,特别是在风力较大的高层建筑中,一旦发生了火灾,就会迅速扩张火势,对高层建筑的安全性造成了极大的威胁。此外,高层建筑的层数越多,越应该充分考虑到高层建筑材料的特性。

(三)高层建筑结构的高度问题

不少建筑开发商家为了谋取自身高额的利润而一味地使高层建筑结构超高,这种在建筑物上私自增高的行为不仅违反规范操作,而且还会带来很多隐患。我国地质结构多样化,每一个地方的地质结构都有自己的特点。一般处在板块边缘交界处的地方就容易发生地震,如我国的西南地区,如果高层建筑的高度过高,就会降低它的抗震效果,对使用人群带来极大的生命安全威胁。

(四)高层建筑结构设计体系不够合理

高层建筑的结构设计出了追求外观好看以外,还有注意设计的科学性和和合理性、体系化。对于高层建筑的设计并不是单一的,有剪力墙结构体系、筒体结构体系等等。另外,要想一个高层建筑达到一定的安全性,一定要将其整个结构设计系统化,既要考虑地震等带来的巨大载荷,也要考虑到水平方向的强风等,并且还有做好相关的预防措施。如果这些问题只是被单独拿出来解决,而忽视其他一连串的问题,就极容易给高层建筑埋下隐患,对突如其来的灾害不知所措。

三、高层建筑结构设计控制

(一)超高的问题

在高层建筑中,对于其总体建筑高度的确定是很重要的,建筑的高度设计必须满足其相关的结构和抗震的要求。我国建筑规范对高层建筑的结构高度有着严格的规定,在新规定中不但把原来限制的高度规定为A级高度,并且增加了B级高度,从而使高层建筑结构的设计方法和措施都有了很大的改进。在进行建筑的设计时,建筑的高度对于其受到的水平荷载以及自身的重力都有很大的影响。同时,过高的建筑将会增加建设的成本以及工期。因此,在对高层建筑进行设计时,应尤其注意对其超高问题的处理,合理保证建筑的高度,通过各专业的协调,达到整体设计的最优。

(二)扭转问题

房屋结构的扭转问题是目前世界上地震工程中的一个热点问题,高层建筑因功能需要或由于受地形限制等原因,常常不能设计得完全对称,使得扭转耦联问题特别突出。一般而言,在设计时就要求结构平面力求简单、规则、对称,结构的主要抗侧力构件应对称均匀布置,尽量使结构的刚度中心和质量中心重合。在方案阶段或初设阶段,结构专业就应当加入建筑专业的工作,从前期就要满足抗震的的要求,从概念设计上就要提前把握上。扭转不规则时,应计及扭转影响,且楼层竖向构件最大的弹性水平位移和层间位移分别不宜大于楼层两端弹性水平位移和层间位移平均值的1. 5倍。

(三)设备承载设计问题

高层建筑中往往会存在很多相关的设备,包括各类空调和消防系统,且由于高层建筑的层数较多,这类设备的数量也往往较多。而一般而言,这些设备都被放置在楼层的梁底下,如果没有梁底开洞,就没有办法进行设备的安装。因此对于梁底承载力的计算和校验就显得尤为重要,若是设计不合理则有可能由于设备的荷载导致梁底承载力不足而导致结构的安全性问题。加强梁底的承载力设计一方面可以通过在孔洞的周围补强筋以及通过开孔梁挠度、裂缝宽度等数据进行分析和设计。在进行钢筋混凝土梁的承载力计算时,还要综合考虑不同种类的腹部开孔方式,以提高计算的准确性。有效的承载力度计算以及裂缝控制措施对于建筑结构设计的稳定性而言具有十分重要的意义。

建设时段内的实施流程、竣工时段的流程。在拟定出来的周期以内,要经由动态统计,得来建筑固有的用地面积、细分的类别、将被建构的总规模。对预设的关注范围,进行动态的评判;对总体框架下的城区规划、分区的用地指标,进行评判并预警。智能特性的工作流,在预设的时段内,对查验得来的多样数据,进行评判归结。数据固有的内涵及类别、设定好的布局配置,都能归结出来。在时空特有的维度以内,比对制备好的图表,实现特有的智能钻取。配置好的展示页面,带有联动的特性。细分出来的主体功能,涵盖了城区特有的规划监测、居住用地及关涉的商业用地查验、区段内的分类统计、建设用地特有的态势辨识、存量规划范畴内的趋势辨识。

结语

综上所述,高层建筑的安全性是十分重要的,因此,设计人员除了要加强自身的专业技能外,还要积累经验,不断地进行创新和突破。只有这样,我国的建筑行业才会稳步发展,才会有利于我国社会主义的发展。

参考文献:

[1]韦良.高层钢框架结构体系稳定分析的样条函数方法[D].广西大学,2014.

第4篇:高层建筑结构特点范文

改革开放以来随着经济的不断发展,综合国力的不断提高,房地产业迅猛发展,建筑业逐渐成为社会支柱产业,由于土地资源的紧缺,高层建筑在众多建筑形式中脱颖而出,而在目前在工程设计领域中,高层建筑结构设计也越来越成为高层建筑结构工程设计工作的难点与重点,对其具体的分析与论述也就显得更加的重要,设计师们设计了很多新的结构体系,如何更加合理的设计结构体系,做好结构设计,解决可能出现的问题,同时又满足人们各方面的要求,本文对这些问题进行了分析与论述,以提高建筑结构设计水平,这是值得我们探讨的问题。

关键词:高层建筑结构设计 分析

中图分类号:TU97 文献标识码:A

前言:

随着土地资源的日益紧张,高层建筑也如雨后春笋般迅速发展,数量剧增,结构体系也是越来越多样化,高层建筑结构设计也越来越成为高层建筑结构工程设计工作的难点与重点。面对如此形势,怎样满足建筑空间最大化怎样满足用户结构需求,为了高层建筑更加安全更加美观更加耐用为了更加的节约成本,为了更好地追求新的结构形式和更加合理的力学模型,我们必要了解结构设计的基本特点。一个经济合理的结构方案决定了建筑结构设计的合理性,同时还需选择一个切实可行的结构体系和结构形式。

高层建筑结构设计的特点

1.水平力是设计的主要因素

水平力在高层建筑结构设计中起着至关重要的作用,由于高度的不断增加,水平力的作用会使建筑物产生位移,水平力的设计我们可以给出数值是随着动力的变化而变化的。但同时也应注意建筑材料的选择,建筑结构体系的选择以及结构的合理布置。

2.侧向位移是重要控制指标高层建筑结构设计中,随着建筑高度的变高,侧移变形会快速增加,当然这是在水平荷载下结构的分析,这是的结构一定要保持足够的刚度及抵抗侧向力,结构在水平力作用下所产生的侧向位移限制在规范规定的范围内。如侧向位移会产生主体结构构件出现较大裂缝,甚至损坏现象。

3.承载力是基础要素

与低层、多层建筑相比,高层建筑需要更严格的承载力。假使地基或桩基情况不发生改变,高层建筑设计也应该减轻自身的重量。如在高层建筑的抗风设计中,应保证结构有足够承载力,必须具有足够的刚度;控制在风荷载作用下的位移值,保证有良好的居住和工作条件;外墙、窗玻璃、女儿墙及其他围护和装饰构件,必须有足够的承载力,并与主体结构有可靠的连接,防止房屋在风荷载作用下发生部分损坏的可能。例如,建筑物质量过大会导致期重心在地震中发生倾覆力,会导致建筑物结构的抗震能力减弱。

4.结构延性是重要设计指标

高层结构在水平力作用下的形变一定会比底层建筑要大。所以,让建筑物结构设计具有一定的延性,能在实际中避免建筑物的倒塌。这样结构设计就变得可塑,变成具有一定变形能力的物体,这个好处又如弹簧可以回弹一样。

二、高层建筑的结构体系设计

随着社会经济的迅速发展和建筑功能的多样化,城市规划设计中的高层建筑越来越广泛。高层建筑结构设计影响着建筑物的规划、设计、构造和使用功能。其中结构体系设计成为是否经济合理进行高层建筑的关键。

1.框架结构体系

框架结构主要承重结构,由梁、柱、基础构成平面框架。对于框架柱而言,轴压比越小在往复水平上荷载下的滞回曲线也会越丰满,即耗能能力越大,延性就愈好。其优点:建筑平面布置灵活,可以依据自身的要求设计。其缺点:框架结构本身刚度不大,抗侧力能力差,水平荷载作用下会产生较大的位移,地震荷载作用下较易破坏。不高于巧层宜采用框架结构,可以达到比较好的经济平衡点。框架体系中,角柱的受力应该比别的柱差,为了防止角柱遭遇扭转变形或是弯压变形吗,柱截面不宜过小,同时还要加密箍筋,起到增加受压区混凝土约束的作用。注意事项:在框架结构体系中,一定要考虑高层建筑的底部柱,柱截面的大小要注意:在高层建筑中,应该尽量的三排柱结构设计方案;采用钢管混凝土柱、劲钢混凝土柱或是高强混凝土柱;通过增加体积配箍率或是沿着柱身增加箍筋达到提高延性。

剪力墙结构体系

当建筑结构的框架体系强度和刚度不能满足设计要求时,往往需要在建筑平面的适当位置设置较大的剪力墙来代替部分框架,从而形成了框架一剪力墙体系。在承受水平力时,框

架和剪力墙通过有足够刚度的楼板和连梁组成协同工作的结构体系。在体系中框架主要承受垂直荷载,剪力墙主要承受水平剪力。当墙体受力主体全部由剪力构成的话,就会是剪力墙体机构,剪力墙结构体系是把建筑物墙体当作承受荷载的结构体系。对于剪力结构墙间距一般为3一8m,墙体同时作为维护及房间分隔构件。其优点:其刚度、强度都比较高,传力直接均匀,有一定的延性,整体性好,抗倒塌能力强,结构体系特征明显。现浇钢筋混凝土剪力墙结构整体性好,刚度大,在水平荷载作用下钡U向变形小,承载力要求容易满足,适于建造较高的高层建筑。抗震性能力强,承受力好。其缺点:剪力结构墙间距设计方面不能太大,,空间平面布局不太灵活,自重大,开洞宜小等。注意事项:在高层剪力墙结构中,连梁的设计收到很多制约,刚度在高层建筑结构设计中,与剪力墙相连并且允许开裂可作刚度折减的梁称作连梁。应该选用跨高比较大的连梁,减少其剪切破坏,按常规设计方法配筋,进行截面抗剪设计,保证其延性。联系墙肢的连梁,不仅会影响剪力墙的受力,而且其本身的受力条件也比较复杂。在剪力墙结构设计中,必须坚持的原则就是强墙弱连梁,对连梁的刚度要进行折减,降低其抗弯能力。

3.筒结构体系

以筒体为抗侧力构件的结构体系统都称为筒结构体系,它包含单筒,多筒,复合筒等,它是由由一个或者几个简体为主抵抗水平力。也有把简体结构分为实腹筒、框筒及析架筒的说法。其优点:筒体结构体系能使整个建筑犹如一个固定于基础上的封闭空心的筒式悬臂梁来抵抗水平力,其是以空间受力为主,具有较大的刚度、强度、整体性,各构件受力比较合理,抗风、抗震能力强,往往应用于大跨度、大空间或超高层建筑。其缺点延展性能有问题,并且全部此阿勇成本高,造价高。注意事项:在建筑是讲多层筒体结构组合在一起能够产生更大抵抗水平荷载的能力,使结构具有更大抗力性,这样的结构也是多筒结构设计,如加哥西尔斯大楼就是9个筒结合在一起的多筒结构使其具有更好的刚性和能力。当然,还可以让筒体结构设计和其他结构设计一起运用,如带加强层的框架一一核心筒结构与一般的框架一核心筒结构在受力上更强大,当然除了这几种建筑结构体系外,还有其他一些结构体系,如网架,薄壳等。随着建筑业的不断发展,我们还会开发出更多、更加实用的结构体系,这就要求我们建筑设计师不断学习,不断创新。

结束语:

建筑结构设计是需要扎实的理论知识的,是一个整体性,系统性很强的工作,设计师具有创新的思维,既有认真负责的工作态度是结构设计成功的至关重要的基础环节。在结构设计时,设计人员要把每个环节做到了然于胸,重视每个基本的构件,密切配合其它专业来进行设计,并能深刻理解规范和规程的含义,然,这些都需要我们不断的反思和总结工作的经验教训。为何说高层结构专业在各专业中占有更重要的地位呢?高层建筑设计从安全,地基等更重方面都要比低层、多层建筑结构设计有更严格的要求。在高层建筑设计中,我们设计师能遇到能遇到各种问题,这就需要我们加强学习,不断强化自身对设计中运用科学的方式方法,把好高层设计的首要关口。

参考文献:

[1]安海峰.论高层建筑结构设计研究田.中小企业管理与为何说高层结构专业在各专业中占有更重要的地位呢?高科技,2010,(11).

第5篇:高层建筑结构特点范文

关键词:高层建筑;结构设计;原则;特点;体系

Abstract: This paper discusses effects of tall building structure design must first produced by the different structure system as the basis, the reasonable scheme for selection.

Key words: high-rise building; structure design; principle; characteristic; system

中图分类号:[TU208.3]文献标识码:A文章编号:

1高层建筑结构设计的原则

适用、安全、经济、美观、便于施工是进行高层建筑结构设计的原则。一个优秀的建筑结构设计往往是这五个方面的最佳结合。完美的建筑结构设计就是在努力追求这五个方面的最佳结合的过程中产生的,适用、安全、经济、美观、便于施工是结构设计人员最终努力的目标,是结构设计的最佳体现。

结构设计一般在建筑设计之后,“受制”于建筑设计,但又“反制”于建筑设计。结构设计不能破坏建筑设计,应满足、实现各种建筑要求;高层建筑设计不能超出结构设计的能力范围,不能超出安全、经济、合理的结构设计原则。结构设计决定高层建筑设计能否实现,从这个意义上讲,结构设计显得更为重要,虽然一栋标志性建筑物建成后,人们只知道建筑师的名字,但一个适用、安全、经济、美观、便于施工的结构设计也是工程师们的骄傲和成就。

2高层建筑结构设计的特点

高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各

专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平

面的布置、立面体形、楼层高度、施工技术的要求、施工工期长短和投

资造价的高低等。其主要特点有:

2.1 水平力是设计主要因素

在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比(N=WH);而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比(水平均布荷载:M=1/2qH2,水平倒三角形荷载:M=1/3qH2),如图一示。另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。

2.2 侧移成为设计的控制指标与低层或多层建筑不同,结构侧移成为高层结构设计中的关键因素。随着建筑高度的增加,水平荷载下结构的侧向变形迅速增大,与建筑高度H 的4 次方成正比:

此外,高层建筑随着高度的增加、轻质高强材料的应用、新的建筑形式和结构体系的出现、侧向位移的迅速增大,在设计中不仅要求结构具有足够的强度,还要求具有足够的抗侧刚度,使结构在水平荷载下产生的侧移被控制在某一限度之内,否则会产生以下情况:①因侧移产生较大的附加内力,尤其是竖向构件,当侧向位移增大时,偏心加剧,因P- 效应而使结构产生的附加内力,甚至破坏;②使居住人员产生不安全感;③使填充墙或建筑装饰开裂或损坏,主体结构出现裂缝或损坏,影响正常使用。

2.3 抗震设计要求更高,延性成为结构设计的重要指标有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、中震可修、大震不倒。结构的抗震性能决于其“能量吸收与耗散”能力的大小,即决于结构延性的大小。延性是表示构件和结构屈服后,具有承载能力不降低、具有足够塑性变形能力的一种性能,通长采用延性系数μ来衡量延性的大小,μ=u/y如图2。

3.3概念设计与理论计算同等重要

概念设计是指一些难以做出精确力学分析或在规范中难以具体规定的问题,必须由工程师运用“概念”进行分析,做出判断,以便采取相应措施。概念设计带有一定经验性。高层建筑结构的抗震设计计算是在一定假定条件下进行的。尽管分析的手段不断提高,分析的原理不断完善,但是由于地震作用的复杂性和不确定性,地基土影响的复杂性和结构体系本身的复杂性,可能导致理论分析计算和实际情况相差数倍之多。尤其是当结构进入弹塑性阶段之后,会出现构件的局部开裂,甚至破坏,这时结构就很难用常规的计算原理去进行内力分析。实践表明,在设计中把握好高层建筑的概念设计,从整体上提高建筑的抗震能力,消除结构中的抗震薄弱环节,再辅以必要的计算和结构措施,才能设计出具有良好抗震性能的高层建筑。将注重概念设计作为高层建筑结构的最高原则提出其主要内容为:应特别重视建筑结构的规则性(包括平面规则性和竖向规则性);合理选择建筑结构体系包括:a.明确的计算简图和合理的地震作用传递途径;b.避免因部分结构构件的破坏而导致整个结构丧失承受重力、风载和地震作用的能力;c.结构体系应具备必要的承载能力和良好的变形能力,从而形成良好的耗能能力;采取必要的抗震措施提高结构构件的延性。

3高层建筑的结构体系

3.1框架结构体系

由梁、柱、基础构成平面框架,它是主要承重结构,各平面框架再由梁联系起来,形成空间结构体系。框架结构的优点是建筑平面布置灵活,可以做成有较大空间的会议室、餐厅、车间、营业厅、教室等。需要时,可用隔断分割成小房间,或拆除隔断改成大房间,因而使用灵活。外墙采用非承重构件,可使立面设计灵活多变。但是框架结构本身刚度不大,抗侧力能力差,水平荷载作用下会产生较大的位移,地震荷载作用下较易破坏。不高于15层宜采用框架结构,可以达到比较好的经济平衡点。

3.2剪力墙结构体系

剪力墙结构体系是利用建筑物墙体作为承受竖向荷载、抵抗水平荷载的结构体系。墙体同时作为维护及房间分隔构件。剪力墙间距一般为3~8m,现浇钢筋混凝土剪力墙结构整体性好,刚度大,在水平荷载作用下侧向变形小,承载力要求容易满足,适于建造较高的高层建筑。而且其抗震性能良好,在历次的地震中,都表现了很好的抗震性能,震害较少发生,程度也很轻微。但是剪力墙结构间距不能太大,平面布置不灵活,而且不宜开过大的洞口,自重往往也较大,不是很能满足公共建筑的使用要求,而且其成本也较大。

3.3框架-剪力墙结构体系

框架-剪力墙结构体系由框架和剪力墙组成。剪力墙作为主要的水平荷载承受的构件,框架和剪力墙协同工作的体系。在框架-剪力墙结构中,由于剪力墙刚度大,剪力墙承担大部分水平力(有时可以达到80%~90%),是抗侧力的主体,整个结构的侧向刚度大大提高。框架则承受竖向荷载,提供较大的使用空间,同时承担少部分水平力。由于有了剪力墙,其体系比框架结构体系的刚度和承载力都大大提高了,在地震作用下层间变形减小,因而也就减小了非结构构件(隔墙和外墙) 的损坏。这样无论在非地震区还是地震区,都可以用来建造较高的高层建筑。还可以把中间部分的剪力墙形成筒体结构,布置在内部,外部柱子的布置就可以十分灵活;内筒采用滑模施工,的框架柱断面小、开间大、跨度大,很适合现在的建筑设计要求。

除了上述的几种结构体系外,还有其他一些结构体系,如薄壳、膜结构、网架等。随着时代的进步,会涌现出越来越多更好的结构体系。这就需要不断学习,从各方面考虑运用经济合理的手段到达目标。

4结语

总之,高层建筑的高度和数量,从一个侧面反映一个国家科学技术水平和经济发展程度但对于高层建筑亦应适当控制,即要与原有建筑相协调,还要与城市历史特点相协调。

参考文献

第6篇:高层建筑结构特点范文

关键词:高层建筑;结构设计;结构体系;抗震分析

一、结构分析与设计特点

(一)水平载荷是决定因素

随着楼房层数的增多,水平荷载愈益成为结构设计中的控制因素。一方面,因为楼房自重和楼面使用荷载在竖构件中所引起的轴力和弯矩的数值,仅与楼房高度的一次方成正比;而水平荷载对结构产生的倾覆力矩,以及由此在竖构件中所引起的轴力,是与楼房高度的两次方成正比;另一方面对某一高度楼房来说,竖向荷载的风荷载和地震作用,其数值随结构动力特性的不同而有较大幅度的变化。

(二)轴向变形不容忽视

通常在低层建筑结构分析中,只考虑弯矩项,因为轴力项影响很小,而剪切项一般可不考虑。但对于高层建筑结构,情况就不同了。由于层数多,高度大,轴力值很大,再加上沿高度积累的轴向变形显著,轴向变形会使高层建筑结构的内力数值与分布产生显著的改变。对连续梁弯矩的影响:采用框架体系和框一墙体系的高楼中,框架中柱的轴压应力往往大于边柱的轴压应力,中柱的轴向压缩变形大于边柱的轴向压缩变形。当房屋很高时,此种差异轴向变形将会达到较大的数值,其后果相当于连续梁的中间支座产生沉陷,从而使连续梁中间支座处的负弯矩值减小,跨中正弯矩值和端支座负弯矩增大。对构件剪力和侧移的影响,与考虑竖向杆件轴向变形的剪力相比较,不考虑竖杆件轴向变形时,各构件水平剪力的平均误差达30%以上,结构顶点侧移减小一半以上。

(三)侧移成为控制指标

与低层建筑不同,结构侧移已成为高层建筑结构设计中的关键冈素,随着楼层的增加,水平荷载作用下结构的侧向变形迅速增大。设计高层结构时,不仅要求结构具有足够的强度,能够可靠地承受风荷载作用产生的内力;还要求具有足够的抗侧刚度,使结构在水平荷载下产生的侧移被控制在某一限度之内,保证良好的居住和工作条件。

(四)结构延性是重要设计指标

相对低层结构而言,高层结构更柔一些,在地震作用下的变形更大一些。为了使建筑在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌。特别需要在构造上采以恰当的措施,来保证结构具有足够的延性。

二、高层家住结构体系结构

当框架体系的强度和刚度不能满足要求时,往往需要在建筑平面的适当位置设置较大的剪力墙来代替部分框架,便形成了框架一剪力墙体系。在承受水平力时,框架和剪力墙通过有足够刚度的楼板和连梁组成协同工作的结构体系。在体系中框架体系主要承受垂直荷载,剪力墙主要承受水平荷载。框架―剪力墙体系的位移曲线呈弯剪型。

当受力主体结构全部由平面剪力墙构件组成时,即形成剪力墙体系。在剪力墙体系中,单片剪力墙承受了全部的垂直荷载和水平力。剪力墙体系属刚性结构其位移曲线呈弯曲型。剪力墙体系的强度和刚度都比较高,有一定的延性,传力直接均匀,整体性好,抗倒塌能力强,是一种良好的结构体系,能建高度大于框架或框架一剪力墙体系。

凡采用简体为抗侧力构件的结构体系统称为筒体体系,包括单简体、简体―框架、筒中筒、多束筒等多种型式。筒体是一种空间受力构件,分实腹筒和空腹筒两种类型。实腹筒是由平面或曲面墙围成的三维竖向结构单体,空腹筒是由密排柱和窗裙梁或开孔钢筋混凝土外墙构成的空间受力构件。筒体体系具有很大的刚度和强度,各构件受力比较合理,抗风、抗震能力很强,往往应用于大跨度、大空间或超高层建筑。

三、高层建筑结构分析与设计方法

高层建筑结构是由竖向抗侧力构件(框架、剪力墙、筒体等)通过水平楼板连接构成的大型空间结构体系。要完全精确地按照三维空间结构进行分析是十分困难的。各种实用的分

析方法都需要对计算模型引入不同程度的简化。下面是常见的一些基本假定:弹性假定;小变形假定;刚性楼板假定;计图形的假定。

对于框架一剪力墙体系来说,框架一剪力墙结构内力与位移计算的方法很多,大都采用连梁连续化假定。由剪力墙与框架水平位移或转角相等的位移协调条件,可以建立位移与

外荷载之间关系的微分方程来求解。由于采用的未知量和考虑因素的不同,各种方法解答的具体形式亦不相同。框架一剪力墙的机算方法,通常是将结构转化为等效壁式框架,采用杆系结构矩阵位移法求解。剪力墙的受力特性与变形状态主要取决于剪力墙的开洞情况。单片剪力墙按受力特性的不同可分为单肢墙、小开口整体墙、联肢墙、特殊开洞墙、框支墙等种类型。不同类型的剪力墙,其截面应力分布也不同,计算内力与位移时需采用相应的计算方法。剪力墙结构的计算方法是平面有限单元法。筒体结构的分析方法按照对计算模型处理手法的不同可分为三类:等效连续化方法、等效离散化方法和三维空间分析。等效连续化方法是将结构中的离散杆件作等效连续化处理;等效离散化方法是将连续的墙体离散为等效的杆件,以便应用适合杆系结构的方法来分析;比等效连续化和等效离散化更为精确的计算模型是完全按三维空间结构来分析筒体结构体系.其中应用最广的是空间杆一薄壁杆系矩阵位移法。

四、抗震分析与设计在高层建筑的应用

在罕遇地震作用下,抗震结构都会部分进入塑性状态。为了满足大震作用下结构的功能要求,有必要研究和计算结构的弹塑性变形能力。当前国内外抗震设计的发展趋势,是根据对结构在不同超越概率水平的地震作用下的性能或变形要求进行设计,结构弹塑性分析成为抗震设计的必要的组成部分。我国现行抗震规范(GB5001l一2001)要求高层建筑的抗震计算主要是在多遇地震作用下(小震),按反应谱理论计算地震作用。用弹性方法计算内力及位移。对于重要建筑或有特殊要求时,要用时程分析法补充计算,并进行罕遇地震作用下(大震)的变形验算。

在我国高层建筑的抗震分析与设计中常见的问题有以下几种:首先是高度问题,对于超高限建筑物,应当采取科学谨慎的态度。因为在地震力作用下,超高限建筑物的变形破坏性态会发生很大的变化,随着建筑物高度的增加,许多影响因素将发生质变,即有些参数本身超出了现有规范的适宜范围,如安全指标、延性要求、材料性能、荷载取值、力学模型选取等。其次是材料选用和结构体系的问题,在高层建筑中。我国算150m以上的建筑,采用的三种主要结构体系(框一筒、筒中筒和框架一支撑),这些也是其他国家高层建筑采用的主要体系。但国外特别在地震区,是以钢结构为主,而在我国钢筋混凝土结构及混合结构占了90%。如此高的钢筋混凝土结构及混合结构,国内外都还没有经受较大地震作用的考验。根据现在我国建筑钢材的类型、品种和钢结构的加工制造能力,建议 尽可能采用钢骨混凝土结构、钢管混凝土(柱)结构或钢结构,以减小柱断面尺寸,并改善结构的抗震性能。第三是轴压比与短柱问题,在钢筋混凝土高层建筑结构中,往往为了控制柱的轴压比而使柱的截面很大,而柱的纵向钢筋却为构造配筋。柱各的塑性变形能力小。则结构的延性就差,当遭遇地震时。耗散和吸收地震能量少,结构容易被破坏。第四,在某些烈度区采用了较低的抗震措施与构造措施,现在许多专家学者提出,现行的建筑结构设计安全度已不能适应国情的需要,认为我国 “取用了可能是世界上最低的结构设计安全度”并主张“建筑结构设计的安全度水平应该大幅度提高”。有人主张在设防烈度下应该采用弹性设计,特别是高烈度区要有严格的抗震措 施与抗震构造措施来保证结构的安全。

五、结语

结构设计是一项集结构分析,数学优化方法以及计算机技术于一体的综合性技术工作,是一项对国家建设有重大意义的工作,同时,亦是一门实用性很强的工作。本文就高层建筑的结构设计的各个方面进行分析,一起有助于提高结构工程师在建筑空间中的设计能力,特别是在处理高层建筑方面的问题。

参考文献:

1.赵衍增.试论高层建筑结构体系及其选型.城市建设,2010年第09期

2.虞伟军.浅谈复杂高层建筑结构的关键设计.科技与生活,2010年第18期

3.郭宝红.论载荷因素在高层建筑结构设计中的影响及解决办法.城市建设,2010年第10期

第7篇:高层建筑结构特点范文

【关键词】高层建筑;结构体系;特点

1.框架结构体系

框架结构是指以钢筋混凝土浇捣成承重梁柱,再用预制的加气混凝土、膨胀珍珠岩、浮石、蛭石、陶烂等轻质板材隔墙分户装配而成的住宅楼、商用楼等。比较适合高层和大面积结构的楼层施工[1]。框架结构体系是由竖向构件与水平构件通过节点连接而成,既承担竖向荷载,又承担水平荷载。框架结构建筑平面布置灵活,可以提供较大的建筑空间,也可以构成丰富多变的立面造型。但是框架结构抗侧能力较弱,属较柔结构,因此建筑高度受到限制。在水平荷载作用下,其内力分布特点是底层柱轴力、剪力、弯矩最大,由下往上减小,其变形规律是虽然柱的轴力引起的侧移随高度递增,但由于框架结构的高度限制,仍以剪切型变形为主,底层之间变形最大,向上递减。框架结构抗震效果较传统的砖混结构要高,在地震作用下的震害多发生于柱端,边柱破坏程度重于中柱,且以角柱最为严重。底层柱破坏早于以上各柱,而框架梁及节点通常震害较少。经过合理设计,钢筋混凝土框架可以获得良好的延性,即“延性框架”,但由于其层间变形较大,容易引起非结构构件的破坏。混凝土框架结构施工包括以下工序:轴线定位,柱钢筋绑扎及支模架搭设,柱模板,柱混凝土,梁底模及梁筋,板底模及板筋,梁板混凝土。

2.剪力墙结构体系

剪力墙结构体系是由钢筋混凝土墙体互相连接构成的承重墙结构体系,用以承受竖向荷载,抵抗水平荷载,同时亦兼作建筑物的围护和内部空间的分隔构件。剪力墙结构体系集承重、抗风、抗震、围护与分隔于一体,经济合理地利用了结构材料,结构整体性强、抗侧刚度大,侧向变形小,在承载力方面的要求易于满足,适于建造较高的建筑;抗震性能好,具有承受强烈地震而不倒的良好性能;用钢量省;相比于框架结构,施工相对简便快速。但是剪力墙结构体系墙体较密,使建筑平面布置和空间利用受到限制,很难满足大空间建筑功能的要求;结构自重大,并且抗侧刚度也较大,从而自振周期较短,导致须承受较大的地震作用。其受力特点随着墙体上开洞方式,开洞大小的不同可以划分为不同的剪力墙,具有不同的受力特点。

剪力墙的变形特点,当层数较低,墙体的高宽比小于1时,水平荷载作用下墙体以剪切型变形为主,当层数较高,高宽比大于4时,变形以弯曲型为主,为高宽比处于1~4之间时,变形呈现弯剪型特征。通过合理的设计及构造措施,剪力墙可以具备较好的延性,震害轻微,但是对于剪力墙结构的一种特殊形式—框支剪力墙结构情形就完全不一样了。框支剪力墙结构就是底层大空间采用框架,上部标准层采用剪力墙的结构。由于这种结构的侧向刚度在底层楼盖处发生突变,在遭受地震作用时,往往由于底层框架刚度太弱、强度不足,侧移过大、延性不足而出现破坏,甚至导致结构倒塌,所以在地震区通常不宜采用。

框架结构,往往因柱楞突出隔墙,妨碍美观,影响使用;一般剪力墙结构,对于底部有停车场等公共设施的情况则矛盾很大,满足不了建筑的使用功能;对于房屋高度不太大的小高层建筑,采用剪力墙结构会造成刚度过大,重量增加,导致地震反应过强,使得上部结构和基础造价提高。以一般剪力墙结构为基础,吸取框架结构的优点,使结构刚度调整到适宜的“短肢”剪力墙结构体系越来越多的受到人们的关注。短肢剪力墙结构体系墙肢较短,布置灵活;结构自重减轻,结构整体刚度小,地震作用力小;墙肢高宽比较大,延性较好,对抗震有利;连梁跨高比较大,以受弯破坏为主,地震作用下首先在弱连梁两端出现塑性铰,能起到很好的耗能作用[2]。

3.框架一剪力墙结构体系

框架一剪力墙结构体系既能提供较大较灵活布置的建筑空间,又具有良好的抗震性能。如果把剪力墙布置成筒体,就组成了框筒结构。筒体的载力、抗扭能力均较单片剪力墙有较大提高,在结构上可以提高材料的利用率,在建筑布置上往往可以利用筒体作电梯间、楼梯间和竖向管道的信道。由于框架结构在水平荷载作用下变形呈剪切型而剪力墙则呈弯曲型。将框架与剪力墙经过连梁、楼板连结成一个协同工作的整体,使框架与剪力墙在同一楼层上的位移协调一致,侧向变形将呈弯剪型。其上下各层变形趋于均匀并减小了顶点位移,同时框架各层剪力趋于均匀,各层梁柱截面尺寸和配筋也趋于均匀。

框架—剪力墙结构的底部,全部剪力由剪力墙承担,而框架的底部剪力为零;框架与剪力墙顶部的剪力不等于零,框架顶端与剪力墙顶端各自受一等量反向的水平集中力作用;由于剪力墙刚度大,将承担大部分水平力是抗侧力的主体;框架则承担竖向荷载,提供较大的使用空间。框剪结构在承受地震作用时可形成多道防线,刚度很大的剪力墙作为第二道防线,随着剪力墙的开裂,刚度退化,框架在保持结构稳定及防止结构倒塌上发挥第一道防线作用。经过合理设计,框架剪力墙结构的延性是比较好的。由于剪力的刚度大,若数量多,从而结构自振周期变短,导致较大的地震作用,若数量不足,整体刚度过小,在地震作用下会出现过大的侧向变形,从而导致严重的震害[3]。

4.筒体结构体系

筒体结构抗侧刚度大,空间受力性能强,当建筑物的层数较多,高度大,抗震设防烈度高时,采用前述的几种结构体系往往难满足要求,建议采用筒体结构体系。筒体的基本形式有三种:实腹筒、框筒、析架筒。由剪力墙围成的筒体称为实腹筒。在实腹筒的墙体上形出许多规则排列的窗洞所形成的开洞筒体称为框筒,它实际上是由密排柱和刚度很大的窗裙梁形成的密柱深梁框架围成的筒体。如果筒体的四壁是由竖杆和斜杆形成的析架组成,则称为析架筒。

筒体结构的受力特点,以框筒为例,在于柱子的正应力并不符合平截面假定,而呈现曲线形分布的特点,在角柱及其附近柱的正应力大于理想臂。梁的正应力,而在中间区段柱的正应力则小于正应力。在整体弯曲作用下框筒柱正应力的这种两边大,中间小的现象称为“剪力滞后”。剪力后的根源在于裙梁的柔性,因为在框筒中竖向力由角柱向中间柱的传递需要通过裙梁的剪力来完成,裙梁刚度的大小直接影响剪力滞后现象的轻重,当梁的刚度比柱的刚度大时,梁的剪力传递应力的能力较大,剪力滞后现象不严重,框筒能有效地发挥整体空间作用。梁较柔时,剪力滞后就较严重。另外框筒结构的长宽比及高宽比均会影响结构整体空间作用的发挥。长宽比越接近于1,高宽比大于3时才能充分发挥整体空间作用。由于裙梁截面高度一般很大,导致框筒成为强梁弱柱型结构,在地震作用下容易形成楼层屈服机制和柱铰侧移机构,对抗震不利。可以在裙梁中开设水平缝以改善其延性,这种横缝裙梁确能使框筒保持较好的整体空间性能,且又可避免裙梁发生脆性剪切破坏,使框筒的抗震性能得到改善。

【参考文献】

[1]李立军.浅议高层建筑框架结构施工质量控制[J].河南建材,2010,1.

第8篇:高层建筑结构特点范文

关键词:高层建筑 建筑结构 特点

世界各城市的生产和消费的发展达到一定程度后,莫不积极致力于提高城市建筑的层数。实践证明,高层建筑可以带来明显的社会经济效益。当高层建筑的层数和高度增加到一定程度时,它的功能适用性、技术合理性和经济可行性都将发生质的变化。与低层建筑相比,在设计上、技术上都有许多新的问题需要加以考虑和解决。

1. 高层建筑结构的特点

高层建筑结构与低层建筑结构以受竖向载荷为主不同,需同时承受水平和竖向的荷载或作用,例如在遇到巨大风力和地震力时所产生的水平侧向力。在低层建筑结构中,竖向荷载往往就是设计的控制因素,但在高层建筑结构中,较大的建筑高度造成了完全不同的受力情况,水平荷载不仅是主要荷载的一种,跟竖向荷载共同起作用,而且往往还成为设计中的控制因素。因此,在水平荷载作用下,若高层建筑结构的抵抗侧向变形能力或侧向刚度不足,将会产生过大的侧向变形,不仅使人产生不舒服感觉,而且会使结构在竖向荷载作用下产生附加内力,会使填充墙、建筑装修和电梯轨道等服务设施出现裂缝、变形,甚至会导致结构性的损伤或裂缝,从而危及结构的正常使用和耐久性。因此设计高层建筑结构时,不仅要求结构有足够的强度,而且要求结构有合理的刚度,使水平荷载所产生的侧向变形限制在规定的范围内、同时,有抗震设防要求的高层建筑还应具有良好的抗震性能,使结构在可能的强震作用下当构件进入屈服阶段后,仍具有良好的塑性变形能力,即具有良好的延性性能。

高层建筑还具有建筑功用上的特点。人们常说建筑是凝固的音乐,优美的高层建筑犹如艺术品,成为城市的标志景观。建筑同时是时代跳动的脉搏,高层建筑占地面积小,符合了地价昂贵时代的需求,它可以节约建设用地或获得史多的空闲地面,以作为绿化等环境用地,并因向高空方向发展而缩短了城市道路和各种管线的长度,减少了基础设施的投资、当然,大量高层建筑的建设,也会给城市带来不利的影响,如人口会密集化而造成交通拥挤问题;城市局部热场发生不利的变化以及地质的沉陷、消防的复杂化等问题。综合高层建筑的上述受力特点可知,与低层结构不同,高层建筑结构在强度、刚度和延性三方面要满足更多的设计要求、抗侧力结构的设计成为高层建筑结构设计的关键。

2.高层建筑结构发展特点及趋势分析

高层建筑结构所需承担的载荷和倾覆力矩将越来越大,在确保高层建筑物具有足够可靠度的前提下,为了进一步节约材料和降低造价,高层建筑结构构件将不断的更新,设计理念也将不断发展。

2.1结构材料高强度化

随着建筑高度的增加,结构面积占建筑使用面积的比例越来越大,为了改善这一不合理状况,采用高强度钢和高强度混凝土势在必行。随着高强混凝土材料的研制和不断发展,混凝土的强度等级和韧性性能也不断得到改善。C80和C100强度等级的混凝土已经在超高层建筑中得到广泛使用。可以减少结构构件的尺寸,减少构件的自重,必将对高层建筑的发展产生严重的影响。高强度且具有良好可焊性的厚钢板将成为今后高层建筑结构的主要用刚,而耐火钢材FR钢的出现为钢结构的抗火设计提供了方便。采用FR钢材制作高层钢结构时,其防火保护层的厚度可大大减不,从而降低钢结构的造价,使钢结构更具竞争力。

2.2结构形体多样化

城市建设的发展,使得人们对建筑的功能需求更加深入,对建筑的体型要求也逐渐呈现多样化。高层建筑结构的复杂度和不规则度将会不断的呈现,例如建筑结构的平面形状会出现:矩形、方形、八角形、扇形、圆形、菱形弧形、Y 形、L 形等各种吸引人们眼球的形状,立面出现各种类型转换、外挑、内敛、大底盘多塔楼、连体建筑、立开大洞等复杂体型的建筑。

2.3建筑结构综合化

经合理设计的组合结构可取得经济合理、技术性能(如抗震性能)优良的效果,且易满足高层建筑的侧向刚度的需求,可建造比钢筋混凝土结构更高的建筑。因此在较高的建筑中,混合结构往往仍是合理、可行的结构方案,今后建造混合结构的比率将会越来越大。在强震国家日本,组合结构高层建筑发展迅速,其数量已超过混凝土结构的高层建筑。目前应用较为广泛的有:外包混凝土组合柱、钢管混凝土组合柱以及外包混凝土的钢管混凝土双重组合柱等多种组合结构。特别是由于钢管内混凝土处于三轴受压状态,能提高构件的竖向承载能力,从而可以节约大量钢材。巨型组合桩首次在香港的中国银行大厦中应用,获得成功并取得了很大的经济效益,上海金茂大厦构中也成功地应用了巨型组合结构。随着混凝土强度的提高以及结构构造施工和施工技术上的改进创新,组合结构在高层建筑中应用将进一步扩大。巨型框架结构柱体体系以其刚度大,在内部便于设置大空间等优点,也将得到更多的应用。例如,上海证券大厦和香港的汇丰银行大厦。多束筒结构体系在实际工程中的应用,已表明该结构体系在适应建筑场地、丰富建筑造型、满足多种功能和减不剪力滞后效应等诸多方面的优点,多束筒结构体系也将在超高层建筑结构实际工程中扩大应用。在钢筋混凝结构基础上,充分发挥钢结构优良的抗拉性能以及混凝土结构的抗压性能,进一步减轻结构重量,提高结构延展性。

2.4结构减震控制智能化

高层建筑结构必须妥善处理因风力、地震、温度变化和基础沉降带来的变形节点,而构造建筑结构的减震正是解决这一问题的关键。在高层建筑中的被动耗能减震有耗能支撑、带竖缝耗能剪力墙,被动调谐质量阻尼器以及安装各种被动耗能阻尼器等;主动减震则是计算机控制的,由各种驱动器驱动的调谐质量阻尼器对结构进行主动控制和混合控制的各种作用过程。结构主动减震的基本原理是:通过安装在结构上的各种驱动装置和传感器,与计算机相连接,计算机系统对震动和结构反应进行实时分析,向驱动装置发出信号,使驱动装置对结构不断地施加各种与结构反应相反的作用,以达到在地震或风的作用下减小结构反应的目的。目前,在美国、日本等国家各种耗能减震控制装置已在高层建筑结构中得以应用。在中国有部分高层建筑工程中应用了这种技术。随着人类进入信息时代,计算机、通讯设备以及各类办公电子设备不受震动干扰而安全平稳地运行,具有重要现实意义。

3.结束语

现代建筑功能趋于多样性,高层建筑的体形和结构体系趋向复杂多变,趋向立体化,应运而生新的设计概念和结构技术的深化。高层建筑在迅猛发展的同时,对其建筑结构及结构设计的研究也取得了相应的进步。科学技术的发展,高强轻质材料的出现以及机械化、电气化在建筑中的实现等,为高层建筑的发展提供了技术条件和物质基础。可以想见,未来的高层建筑结构不仅在可靠度与安全性能上大大增强,其科技含量也会越来越高。

参考文献:

[1]焦维,秦艳.高层建筑结构设计的问题探讨[J].科技致富向导.2011(27)

[2]沈芳.高层建筑结构设计中应注意的几个问题[J].科技资讯.2007(21)

第9篇:高层建筑结构特点范文

关键词:高层建筑;结构设计;特点;优化措施

中图分类号:TU208文献标识码: A

随着城市的快速发展,高层建筑已经成为现代城市发展的主要方向,并且也成为反映现代城市繁荣与进步的重要标志。现代建筑功能越来越多,结构体系也日趋复杂,因此建筑结构设计也必须与时俱进,以保证设计方案的科学性、合理性。

1高层建筑的结构特点

1.1结构延性是重要设计指标。高楼层因为其独特的特性在很多方面都比低层楼房有优势,其最显著的特点就是高层楼房拥有较好的柔韧性,正是因为这种特性,使得这种高层楼房在发生地震的时候容易出现变形等情况。因此想要保证高层建筑的延性,建造楼房的时候通常都会在建造过程别是在其进人塑性变形阶段之后,其仍然能够保持很强的变形力,这样就能保证楼房在遇见晃动的情况之下不会出现坍塌的现象,因此在设计的时候需要针对这种情况采取专门的措施进行防护。

1.2轴向变形不容忽视。剪力墙结构是现代建筑中应用较为广泛的一种结构形式,这种结构的特点是建筑中心轴受到的压力比建筑四周的支柱受到的压力要大的很多,因此建筑物中轴受到压力产生形变的可能性要远远地大于周围支柱轴。通常如果建造的建筑高度越高,那么其产生形变的可能性也就越大,在这种情况之下很容易导致建筑的中心支柱因为受到较大的压力而出现坍塌的现象。如果说在建造较高楼层的建筑时候不能够很好的进行设计,那么建筑完工之后,中轴就会承担过多的压力,这样很容易使中轴出现形变的情况,一旦中轴出现形变之后,整个建筑的连续弯矩就会受到较大的影响,中轴承担了过多的压力使得中轴底座的负弯矩变得很小,跨中正弯矩和端支座负弯矩值增大;如果设计的不够合理这种轴向变形还会对建筑构件的下料长度等产生非常大的影响;轴向变形还能造成构件剪力受到影响,这样就会大大加剧建筑的不安全性。

1.3水平荷载成为决定因素。高层楼房的设计以及建造和底层楼房不同,在考虑竖向荷载的同时还需要考虑建筑的水平荷载能力,因为在建造高层楼房的时候水平荷载往往能对建筑产生非常重要的作用。水平荷载能够产生如此重要的影响主要有以下几个原因:第一点就是如果在设计的时候仅仅考虑竖向荷载,那么其相关联的数据和设计高度成一次方关系,这在设计的时候是不够的,但是水平荷载相关的数据能够保证其和高度成二次方关系;第二点就是建筑物设计的时候关于竖向荷载是相对固定的,但是水平荷载却受到众多因素的影响,在设计的时候还需要考虑到地震等能够对建筑物造成破坏的因素。

2高层建筑结构体系及分析

在设计不同的抗侧力结构的时候,用到的钢筋混凝土的结构也是不同的,该结构主要有框架结构、剪力墙结构等结构体系,不同的结构在设计的时候有这不同的作用,因此建筑师在设计的时候需要根据建筑的实际情况合理的进行选择和利用。

2.1框架结构体系。在钢筋混凝土结构以及钢结构中使用最多的就是框架结构,其在构建的时候非常的灵活,能够提供较大的空间,在构建的时候了,将梁和柱进行完美的融合,构建出建筑的整体构架。在构建框架结构体系的时候需要对位移以及框架―剪力墙机构的内力等进行测量,在测量的时候使用较多的就是连梁连续化假定法。在计算的时候将剪力墙以及框架水平进行位移,然后再计算各种参数,最终得到结果。

2.2剪力墙结构:构建剪力墙结构的时候通常都是根据建筑物的结构设计,合理的利用建筑物的墙体来承受一部分压力。剪力墙结构通常都是在钢筋混凝土结构中使用的,在设计的时候利用墙体来承载来自于建筑的全部水平以及竖向荷载。剪力墙在构建的时候起开洞情况决定了剪力墙结构在整个建筑物种起到的作用。在构建剪力墙的时候,不同的剪力墙结构会产生不同的作用效果。

2.3筒体结构。筒体建构的分类比较多,主要包括实腹筒、框筒等。实腹筒主要是利用平面剪力墙结构组成空间筒体;框筒在设计的时候主要是键框架的肢距减小;析筒在设计的时候通常都是用空间析架组成。不同的结构在计算的时候往往采用不同的计算方式,现在的计算方式主要有以下几种:一是等效连续化方法;第二种就是等效离散化方法;第三种则是三维空间分析。

3高层建筑结构设计优化方法

3.1优化结构方案设计

结构方案的确定对于之后进行的结构计算以及施工图制作有极大的影响,简而言之,只有确定一种合理、科学的结构方案后,之后两步才能顺利、有序地进行。所以在对高层建筑钢筋混凝土结构开展优化设计的过程中应当充分重视这一部分的优化。具体可以采取的优化措施有三类,第一,在确定结构方案时,让结构工程师参与其中。建筑师需要做到的就是确保建筑的外形美观,而结构工程师需要做到就是确保建筑的结构安全。让两者同时参与到结构方案设计中能让两种思想融会贯通,最终产生安全与美观兼备的建筑结构方案。在进行结构设计时需要遵循的原则包括建筑外形的简洁、美观、规则以及对称,尽量保证建筑机构抗侧刚度中心与建筑平面形心、建筑质量中心三点重合,保证建筑立面形状规则、并且分布规则、均匀,避免让建筑外形上产生过多的外凸以及内凹。第二,使建筑拥有直接、简单的受力、传力途径。简洁的受力、传力途径能减少建筑在建设过程中结构构件的使用量,完成对建筑造价成本的控制。过于复杂的受力、传力结构需要用到更多用于转换力的结构构建,会造成建筑成本的大幅增加。第三,结构概念设计。目前全球建筑都面临着地震类地质危害等问题,在设计建筑结构时考虑建筑的抗震性能是十分必要的。结构概念设计是建筑结构工程师通过长时间的实践以及总结得出的经验,合理利用能保证建筑的实际抗震性能与预期抗震性能达到统一。

3.2优化建筑图纸制作

建筑施工图纸直接用于指导施工现场的施工过程,所以在其设计过程中应当遵循三项原则,这里重点讲解的是建筑的结构施工部分。首先,施工图纸面向的是施工现场,也就是说需要施工人员能对图纸有正确的理解,这就要求结构设计师在设计过程中需要规范地进行各类符号的标记,同时建筑施工图纸中的说明内容中不能包含可能产生歧义的内容,确保施工人员理解的准确性。其次,建筑结构设计施工前,结构设计人员应当与施工现场的技术人员以及施工人员进行技术交底,将施工中需要注意的部分详细地说明,并与施工技术人员进行协商,保证各项施工过程的可操作性。最后,结构施工尽量选用从业时间长,施工经验多的施工人员进行,保证施工质量,从而保证建筑的整体安全。

3.3合理选用各类施工材料

在钢筋混凝土结构中,最常使用的两种材料分别为钢筋与混凝土。以下针对这两方面进行了详细的说明。

1)钢筋的选用。我国对于钢筋混凝土结构建筑中的钢筋型号有明确规定,要求在进行材料选用时要尽量使用HRB400、HRB500等普通热轧带肋钢筋,避免HRB355热轧带肋钢筋的使用。同时结构施工中通过高强钢筋的合理应用能有效减少建筑施工中需要付出的结构成本。

2)混凝土的选用。混凝土工艺经过100多年的发展,在现代社会依然有极大的应用空间,究其原因就是其根据现代建筑的需求进行了大量的创新。在建筑结构施工中选用现代高强度混凝土能在保证建筑安全的情况下完成对建筑结构体积的缩小,并且此种混凝土还具有形变系数小,耐久度高的特点。

4结语

想要实现高层建筑钢筋混凝土结构的优化,需要从建筑结构的各方各面进行优化改进。建筑结构设计师在进行结构设计时需要对建筑的外形、功能以及安全各方面进行全面的考虑,实现建筑钢筋混凝土结构的优化设计,满足用户使用需求、减少建筑建设成本的同时确保建筑使用过程中的稳定性。

参考文献

[1]赵腾,等.高层钢结构建筑施工技术研究的探析[J].城市建设理论研究,2013(14).